l‘)

Check for
updates

Radical-Cylon: A Heterogeneous Data
Pipeline for Scientific Computing

Arup Kumar Sarker’3®) Aymen Alsaadi?, Niranda Perera’, Mills Staylor!,
Gregor von Laszewski®, Matteo Turilli®*, Ozgur Ozan Kilic*, Mikhail Titov*,
Andre Merzky?, Shantenu Jha?4, and Geoffrey Fox!3

1 University of Virginia, Charlottesville, VA 22904, USA
{djy8hg,qadbg,vxj6mb}@virginia.edu
2 Rutgers University, 57 US Highway 1., New Brunswick, NJ 08901-8554, USA
{aymen.alsaadi,matteo.turilli,shantenu. jha}@rutgers.edu
3 Biocomplexity Institute and Initiative, Town Center Four, 994 Research Park
Boulevard, Charlottesville, VA 22911, USA
4 Brookhaven National Laboratory, 98 Rochester St, Upton, NY 11973, USA
{okilic,mtitov}@bnl.gov

® Voltron Data, 650 Castro St, Mountain View, CA, USA

Abstract. Managing and preparing complex data for deep learning, a
prevalent approach in large-scale data science can be challenging. Data
transfer for model training also presents difficulties, impacting scientific
fields like genomics, climate modeling, and astronomy. A large-scale solu-
tion like Google Pathways with a distributed execution environment for
deep learning models exists but is proprietary. Integrating existing open-
source, scalable runtime tools and data frameworks on high-performance
computing (HPC) platforms is crucial to address these challenges. Our
objective is to establish a smooth and unified method of combining data
engineering and deep learning frameworks with diverse execution capabil-
ities that can be deployed on various high-performance computing plat-
forms, including cloud and supercomputers. We aim to support heteroge-
neous systems with accelerators, where Cylon and other data engineer-
ing and deep learning frameworks can utilize heterogeneous execution.
To achieve this, we propose Radical-Cylon, a heterogeneous runtime sys-
tem with a parallel and distributed data framework to execute Cylon as
a task of Radical Pilot. We thoroughly explain Radical-Cylon’s design
and development and the execution process of Cylon tasks using Radical
Pilot. This approach enables the use of heterogeneous MPI-Communicators
across multiple nodes. Radical-Cylon achieves better performance than
Bare-Metal Cylon with minimal and constant overhead. Radical-Cylon
achieves (4~15)% faster execution time than batch execution while per-
forming similar join and sort operations with 35 million and 3.5 billion
rows with the same resources. The approach aims to excel in both scientific
and engineering research HPC systems while demonstrating robust perfor-
mance on cloud infrastructures. This dual capability fosters collaboration
and innovation within the open-source scientific research community.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025
D. Klusacek et al. (Eds.): JSSPP 2024, LNCS 14591, pp. 84-102, 2025.
https://doi.org/10.1007,/978-3-031-74430-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-74430-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-74430-3_5

Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing 85

Keywords: HPC - BSP + Cylon - ETL - MPI - UCX - RP - BM -
SPMD - MPMD

1 Introduction

The exponential growth of data volume and complexity creates unprecedented
challenges for the scientific community. With the increasing prevalence of sensors,
internet-connected devices, and social media, the amount of data being generated
is growing at an unprecedented rate. In addition, the complexity of scientific data
is also increasing, with data coming from multiple sources often characterized by
heterogeneity, high dimensionality, and complex relationships between variables,
making it challenging to analyze data using traditional analysis tools. Even with
the most advanced computing systems, processing massive datasets can be a
significant bottleneck. Moreover, the sheer volume ofx data can make storing
and transferring data across systems challenging.

These challenges have far-reaching implications across various scientific
domains, including but not limited to genomics, climate modeling, physics sim-
ulations, and neuroscience. In genomics, for example, the amount of data gener-
ated from a single genome sequencing has grown exponentially, with individual
genome sequencing now generating over 200GB of data [14]. Processing and ana-
lyzing such data using traditional methods can take months or even years. Similar
to genomics, a single climate modeling simulation can generate vast amounts of
data, with some simulations producing up to 10PB of data. Apart from huge
growth, a data science survey conducted by Anaconda, indicates that a consider-
able amount of developer time (45%) is dedicated to tasks like data exploration,
preprocessing, and prototyping along with 33% on deep learning tasks [3].

Analyzing and extracting insights from such massive data sets can be difficult,
requiring a paradigm shift in how data analysis is performed, with the need for
more efficient and scalable data analysis tools. Finding scalable solutions for pro-
cessing data, such as large-scale simulations, modeling, and machine learning, is
crucial for domain science, as it enables researchers to extract insights and knowl-
edge from vast amounts of data efficiently. These solutions can directly impact
reducing the time to solution and cost associated with data analysis by order
of magnitudes, allowing scientists to focus on understanding complex systems
that are not possible with smaller datasets and conduct more comprehensive and
accurate analyses, leading to more robust and reliable results.

Such solutions can be achieved by integrating existing scalable HPC run-
time tools with data frameworks. Nevertheless, these solutions impose many
research questions, such as performance optimization, programming models, effi-
cient scalability, resource management, and utilization. Cylon [2] provides under-
lying frameworks for data engineering and deep learning applications to run on
scalable HPC machines. However, it is not optimized for the efficient use of
system resources and does not support a heterogeneous data pipeline. So, we
first focus on a Python runtime engine that efficiently executes heterogeneous
workloads of both executables/Python functions (non)MPI on a set of HPC

86 A. K. Sarker et al.

machines. A task-based architecture, RADICAL-Pilot enable Cylon to interact
and operate with different HPC platforms seamlessly, shielding Cylon from het-
erogeneous configurations of different HPC platforms. RADICAL-Pilot separates
the resource management from the application layer, this would allow Cylon to
run on any HPC resources without the need to refactor or rewrite the code, which
reduces the development efforts, resulting in a loosely coupled integration.

Furthermore, Cylon requires a heterogeneous runtime environment that con-
structs a private MPI/UCX/GLOO communicator for every Cylon task on
HPC machines, which can be delivered using RADICAL-Pilot. Adding het-
erogeneous capabilities with RADICAL-Pilot and Cylon framework, which we
call Radical-Cylon, can provide a powerful solution to these challenges as it
enables the development of a unified system that can handle both compute and
data-intensive workloads in an efficient and scalable manner. The experimental
outcomes demonstrate that Radical-Cylon performs comparable to Bare-Metal
(BM)-Cylon in strong and weak scaling scenarios involving join and sort oper-
ations. Radical-Cylon outperforms BM-Cylon in certain instances, particularly
when the parallelism level reaches 512 or higher. For heterogeneous execution
with strong and weak scaling of multiple tasks (e.g. combination of sort and
join), Radical-Cylon showcases a performance improvement of (4~15)% faster
compared to batch execution with the same amount of resource utilization across
all configurations with datasets of 35 million and 3.5 billion rows.

2 Related Works

Recently, researchers in the field of distributed computing systems have been
exploring various ways to improve the runtime of machine learning models. One
such approach is the Ray framework [17], which proposes a new way of thinking
about distributed computing for future Al applications. Although Ray is primar-
ily intended for reinforcement learning scenarios, it has not yet been adopted
for large-scale reinforcement learning systems due to some unresolved issues.
However, Ray has had a significant impact and is considered to be positioned
between K8S and deep learning frameworks, although it cannot replace them
in these areas. Therefore, there is a need for an end-to-end framework that can
optimize performance at every layer of the system, as the multiple components
in each layer are tightly coupled, and the performance of each distributed model
operation is affected if a single node or communication is not optimized.

The question of why we need a uniform distributed architecture arises, along
with the bottlenecks of the current system. The answer is that we need an opti-
mized system to reduce latency, but we also need to prove that the architecture is
incremental and adaptive. To address this, Jeff Dean proposed a new concept of
program execution patterns in his blog “Pathways: Next Generation AI Architec-
tures.” [9]. The framework is straightforward when considering Single Program
Multiple Data (SPMD) criteria, but Multiple Program Multiple Data (MPMD)
is composed of multiple SPMDs. Pathways [6] departs from the traditional deep
learning framework and design at a higher level to consider the best architecture

Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing 87

for MPMD which aggregates all state-of-the-art Big Data frameworks. Hadoop
[4] was the first generation of Big Data analytics and introduced the MapRe-
duce programming model [10]. However, Apache Spark [27] and Apache Flink
[7] surpassed Hadoop by providing faster and more user-friendly APIs. These
advancements were made possible by hardware improvements that allowed for
in-memory Big Data processing. Python Pandas Dataframes [15] have emerged
as the preferred data analytics tool among the data science and engineering com-
munity, despite being limited in performance and scalability. Dask Distributed
and Modin are built on top of Pandas, providing distributed and generalized
DataFrame abstractions, respectively. Later, CuDF emerged as a DataFrame
abstraction that can be used for ETL pipelines on top of GPU hardware.

OneFlow [26] is a pioneering effort to revolutionize distributed data process-
ing specifically within the realm of deep learning. The authors of OneFlow assert
that their framework has the potential to replace Plaque, a component within the
Pathways system. ZeroMQ [28] is a high-performance asynchronous messaging
library that provides communication between different applications or parts of
an application over transport protocols. It can be a potential alternative to MPI.
Arkouda [13] supports ZeroMQ-based communication protocol but has limita-
tions in supporting heterogeneous data pipelines. Parsl [5] is a parallel scripting
library designed to enhance Python with straightforward, scalable, and adapt-
able elements for representing parallelism. RP employs specifically to create a
dynamic dependency graph of components.

3 Design and Implementation

A unique integration approach of Cylon with the RADICAL-Pilot runtime sys-
tem via their native Application Programming Interface (API) is proposed on
Radical-Cylon. In the core system, RADICAL-Pilot is used as the distributed
runtime for managing the execution of Cylon tasks. Importantly, we consider
both systems ‘as they are’ in a loosely coupled design without the need to
implement an integration plugin while exposing both system capabilities via
RADICAL-Pilot API. This approach allows Cylon to benefit from RADICAL-
Pilot heterogeneous runtime capabilities, specifically the capabilities to construct
and deliver MPI communicators without modifying Cylon tasks. Additionally,
the proposed design offers a flexible and adaptable framework for developing
and deploying data-intensive applications on various HPC platforms.

3.1 Radical-Pilot (RP)

RADICAL-Pilot is a flexible and scalable runtime system designed to support
the execution of large-scale applications on HPC leadership-class platforms.
RADICAL-Pilot enables the execution of concurrent and heterogeneous work-
loads on various HPC resources. Further, RADICAL-Pilot offers the capabilities
to manage the execution of (non)MPI single/multi-thread/core/node executa-
bles and functions efficiently.

88 A. K. Sarker et al.

:g;) Java

ﬁ PyCylon JCylon
Dataframe API Table API

G eir T

Cylon C++ Table API

Distributed Operator Layer
[join][union][sort][groupby]@

Local Operator Layer Communication Layer
[join][union][sort][groupby]@ [shuffle][gather‘_][reduce]@

ACERO>>> Nnumey CYLON % @ GLOO

== ES
Data Layer Transport Layer |
|
(_table [array J(scalar] TP Infiniband |
|

‘A”ﬁ‘inow>> ____________________

N

Hardware Layer

AMDZ

x86_64 a rm ne’JBAA ROCm one1API CY LQ N

Fig. 1. Cylon Layered Architecture. From the bottom-up view, the Hardware layer is
compatible with vendor-based or open-sourced transport layer [20]

RADICAL-Pilot consists of three main components: The PilotManager,
TaskManager, and RemoteAgent. Both PilotManager and TaskManager run on
user resources such as local computer or login/compute node of a cluster or HPC
platforms, while the RemoteAgent resides on the compute resources [16].

The PilotManager is responsible for managing the lifecycle of the pilot, which
is a placeholder for resources on HPC systems. The TaskManager is responsible
for managing the lifecycle of tasks, which represent an application such as a func-
tion or executable that runs on the pilot’s available resources. The RemoteAgent
is responsible for preparing the execution environment and starting the pilot to
execute the tasks on the remote resources.

RADICAL-Pilot enables efficient scheduling, placement, and launching of
independent tasks across multiple compute nodes. Leveraging the pilot abstrac-
tion model, RADICAL-Pilot has demonstrated the ability to concurrently exe-
cute up to one million tasks across one thousand nodes with minimal over-
heads [16].

3.2 Cylon

Cylon represents a profound evolution in the realm of data engineering, offering
a comprehensive toolkit that seamlessly connects AI/ML(with PyTorch [19] and
TensorFlow [1]) systems with data processing pipelines [25]. Cylon’s overarching
vision is rooted in the fusion of data engineering and AI/ML, as exemplified by
its ability to effortlessly interact with a spectrum of data structures and systems
and optimize ETL performance.

Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing 89

At the heart of Cylon’s architecture, there is a core framework, wielding a
sophisticated table abstraction to represent structured data in Fig. 1. This abstrac-
tion empowers individual ranks or processes to collectively handle partitions of
data, fostering a sense of unity and collaboration despite distributed computing
challenges. Cylon’s arsenal of “local operators” execute operations solely on locally
accessible data, while “distributed operators” harness network capabilities to exe-
cute complex tasks that necessitate inter-process communication.

To mitigate the complexities of distributed programming, Cylon orchestrates
network-level operations that transpire atop communication protocols (Fig.2)
like TCP or Infiniband. This allows multiple communication abstraction frame-
works, e.g., MPI, UCX [23], and GLOO [12] for heterogenous data transmission
[21,24]. This strategic approach of channel abstraction elevates the efficiency of
Cylon’s operations(e.g. shuffle, gather, reduce, etc.), enabling seamless communi-
cation between processes while harmonizing performance across diverse hardware
environments.

Communication Layer

Communicator

Routine Definitions

AT | shuffle i gatTher‘ Jii r‘edL:ce }@

I

~

Il [I
Abstract Implementation

. Abstract Abstract

/ Channels Collectives

1

1

t CGoncrete Implementation
\ Buffer Buffer
NB-send/recv NB-collectives

\ 2) @ GLOO
A\ OPEN MPI //’\\\
»

1
J
|
!

-
-

-
=

,,,,,,,,,,,,,,,,,,,,,

Data Layer !

(table J(array) scalar]| !
|

|

|

Fig. 2. Cylon Communicator Model. It has cross-platform support of Open-MPI,
GLOO and UCX [20]

With Apache Arrow’s Columnar Format as its foundation, Cylon’s data
model aligns seamlessly with a myriad of open-source frameworks and libraries.
This interoperability ensures a harmonious coexistence within the larger data
ecosystem, facilitating the exchange of data and insights between different plat-
forms. In this paper, we embark on an exploration of Cylon’s rich tapestry,

90 A. K. Sarker et al.

dissecting its core components and intricate layers as an abstraction of
RADICAL-Pilot. From data models and operators to communication and trans-
port layers, Cylon’s architecture emerges as a core component of distributed high-
performance frameworks to reshape the future of data engineering and AI/ML
integration.

3.3 Design

Cylon and RADICAL-Pilot are two isolated systems offering different function-
alities and capabilities. The integration design advocates the loosely coupled
approach where both systems work independently of each other, with minimal
dependencies and interactions, while benefiting from each other’s capabilities.

The integrated design of RADICAL-Pilot and Cylon is shown in Fig. 3 where
Cylon is plugged as a top-level component to send different types of Cylon tasks
(functions or executables) to RADICAL-Pilot to execute on HPC resources. The
main communication point between both systems is their native APIs, as both
systems offer flexible and simple Python-based interfaces.

Cylon and RADICAL-Pilot loosely coupled integration can be easily scaled
out, expanded, or contracted to meet changing demands [11]. Flexibility-wise,
both systems are developing rapidly and might introduce new fundamental
changes in the design or implementation, such as adding or removing new sys-
tem components. Further, any changes in both systems do not necessarily require
changes to the other system’s components and would not affect the existing inte-
gration as there are no direct dependencies between the integrated systems. From
a fault tolerance perspective, the integration approach of Cylon and RADICAL-
Pilot is more resilient, as failures in one system or component do not affect the
entire system. Failure of any component can be isolated and contained, allowing
the rest of the system to continue receiving and executing tasks.

3.4 Implementation

We implemented Radical-Cylon as a single system enabling communication
between the two systems via their Python APIs, as shown in Figs. 3. The imple-
mentations expose RADICAL-Pilot API as a main interface to specify, interact,
and execute Cylon tasks on multiple HPC platforms. Further, each Cylon task
is represented as a RadicalPilot.TaskDescription class with their resource
requirements, such as the number of CPUs, GPUs, and memory.

Once the Radical-Cylon starts (Figs.1, 2, 3), RADICAL-Pilot instructs
the PilotManager to create the Pilot object with the required number
of resources (Figs.2, 3). Further, RADICAL-Pilot creates the TaskManager
and submits Cylon tasks to the TaskManager to be executed on the remote
resources (Fig. 3). Synchronously, once the pilot resources are acquired from the
HPC resource manager, RADICAL-Pilot starts the RemoteAgent on the acquired
resources (Figs. 3, 4). Once the RemoteAgent is bootstrapped and ready, it starts
the RAPTOR subsystem (Figs. 3, 4, 5), which is an abstraction of the Master-
Worker MPI paradigm. RAPTOR implementation is based on mpidpy [8] and

Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing 91

can concurrently execute heterogeneous MPI/non-MPI functions across multiple
nodes. Unlike other pilot systems, RADICAL-Pilot and via RAPTOR offer the
capabilities of constructing private MPI communicators of different sizes during
the runtime, which Cylon tasks require.

Once all RAPTOR master(s) and worker(s) start, the master(s) receives the
Cylon tasks from the RemoteAgent scheduler and distributes them across the
workers to be executed. When the worker receives Cylon tasks, it isolates a
set of MPI-Ranks based on the resource requirements of the Cylon task and
groups them to construct a private MPI-Communincator and deliver it to the
task during runtime (Figs.3, 4, 5, 6). Finally, once all of Cylon’s tasks finish
execution, the master collects the results of the tasks and sends them back to
the TaskManager.

C++ Java Python R

@ Notebooks and Workflows

Data Engineerin

RADICAL-Pilot
[Pilot API |
RP-Client
Pilot @ MP! tasks @ Task
Manager %E Manager
Launch/Compute node(s)
RP RemoteAgent
.| RP Scheduler (5) RP Executor
EEEEE "/ EEE
T T T T

Master
1cru

[Master [Task [CJRP component
I Worker OFunction E MPI-Communicator

Fig. 3. Radical-Cylon Architecture. A modular design with dependent components.
Segregated independent module with top-down flow from cross-platform to hardware
resources.

92 A. K. Sarker et al.

A bird’s-eye view of the Radical-Cylon system is shown in Fig.4, with in-
depth components and data flow. In the initial step (Step 1), when a user
intends to execute a traced program (MPMD) comprising multiple computations
(SPMD), they employ the Radical-Cylon system by invoking the RP-Client. Mov-
ing to Step 2, the Pilot Manager assigns virtual devices for computations not
previously executed and registers these computations with the Resource Man-
ager.

I

Executor Cylon Sort Weak | |
Scaling |

@ o]

I

I

I

I

I

Baaior e Cylon Joi_n Weak
Scaling
Task @ @
Manager || »~— | I~~~ -~~~ I~~~ -~~~ -~~~ B

[Executor] [Cylon Sort Strong
L

)

Remote

=

|

|

Agent @ Scaling I

I

[oarer)| 2 |

Manager ! BEaiEr Cylon Jon_n Weak | 1

| RP Scaling |

1 I

| SchedulerJ @ ¢ @ |

| [F— Cylon Join Strong] |

| Scaling I

1 I

| @ MO}

| Execution (BEaier Cylon Sort Weak | |

| Pipeline #2 | Scaling |

| _______ |

L J L J L J

RS RS RS

Front-end Distributed Execution Engine SPMD Framework

Fig. 4. Heterogeneous Execution with Control and Data Flow. The execution pipeline
uses a separate SPMD framework for underlying tasks.

Subsequently, in Step 3, the client activates the background server to exe-
cute instructions for the pilot manager, incorporating considerations for network
connections between devices and data routing operations among various compu-
tations. If the virtual device for a program remains unchanged, the generated
representation can be swiftly reused; however, if the Resource Manager alters
a program’s virtual device, recompilation is necessary. These three steps col-
lectively form the front end of Radical-Cylon. Remote Agent creates multiple
execution pipelines with two persistent daemons - a scheduler and an executor
- capable of communicating (Steps 5, 6, 7) to achieve distributed coordination,
constituting the control plane communication.

The executor invokes Cylon data engineering frameworks (Step 8) to perform
local sorting or joining, or data plane communication as indicated in Step 9 (pri-
marily cluster communication involving shuffle or gather operations). Notably,
the communication between the data plane employs the same communication
framework, with the former depicted by a blue arrow indicating higher band-
width, and the latter represented by a green arrow indicating lower bandwidth.

Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing 93

4 Experiments

Table 1 shows the setup of our experiments. We use UVA Rivanna HPC [22]
and ORNL-Summit [18] to set up weak and strong scalability experiments. On
Rivanna, we use the parallel queue with 37 cores per node and a maximum of
14 nodes, and on ORNL-Summit, we use a maximum of 64 nodes with 42 cores
per node. We evaluate the efficiency of Radical-Cylon and compare it to Bare-
Metal Cylon (BM-Cylon) while executing Cylon join and sort operations with
single pipeline execution. We measure two metrics: Total Execution Time and
Radical-Cylon overheads. The Total Execution Time represents the total time
Radical-Cylon spent executing the join and sort tasks on the computing resources
with N ranks. The Overheads represent the time taken by Radical-Cylon (mainly
RP) to (i) deserialize the task object and (ii) construct the MPI-Communicator
with N ranks and deliver it to the tasks. Each join and sort task takes N ranks
with a maximum of 35 million rows per rank for weak scaling, and 3.5 billion rows
are divided into N ranks for strong scaling. Collectively, experiments 4.1, 4.2 and
4.3 allow us to study and evaluate the scalability performance of Radical-Cylon
while comparing it to BM-Cylon on Rivanna and batch execution of BM-Cylon
on ORNL-Summit with the setup of multiple configurations.

Table 1. Experiments Setup on UVA.Rivanna and ORNL.summit. WS/SS =
weak /strong scaling; M=Million; B=Billion; rank=1 physical core; RN=Rivanna
Nodes; SN=Summit Nodes; RC=Rivanna CPU; SC=Summit CPU

ID|Experiment Type RN |SN |Rows Size |RCs(ranks) |SCs(ranks)

A Join Operation WS/SS4 — 14/2 — 64/[35M | 3.5B]|#nodes x 37|#mnodes x 42
B |Sort Operation WS/SS/4 — 14/2 — 64/[35M | 3.5B]|#nodes x 37|#nodes x 42
C Heterogeneous WS/SS 2 —64/[35M | 3.5B]| #nodes x 42

4.1 Join Operation Scalability

The join weak scaling experiment is depicted in Figs. 5 (right), 6 (right). Across
all tests are performed 10 times with multiple parallelisms (a single rank is used
for each parallel execution), and the total execution time ranges from 215 to
250s for both bare-metal and RADICAL-Pilot Cylon executions on Rivanna.
We got an overlapping error bar by increasing the number of workers in ORNL-
Summit with different configurations because of constant RP overheads (Fig. 6
(right)).

As the number of ranks increases, a minor addition of execution time for all-
gather from all ranks becomes evident in the performance in the join weak scal-
ing experiment. It’s noteworthy that Radical-Cylon exhibits better performance
with a lower number of ranks, particularly when it’s below 200. Starting from
222 ranks and onwards, in join weak scaling, an average of 10s of increasing is

94 A. K. Sarker et al.

Table 2. Radical-Cylon((RP-Cylon)) Execution Time and Overheads of Strong and
Weak Scaling from Experiment A (Join Operations) and B (Sort Operation) on
Rivanna.

Operation|Scaling Parallelism Execution Time|Overheads
time (seconds) |(tasks/second)
Join Weak [148 215.64/+4.35 2.9 |+0.1
222 226.12|£2.59 2.3 |+£0.4
296 237.01/£2.96 2.8 |£0.8
370 239.87/£3.41 2.5 |+0.8
444 241.59/£2.76 2.9 0.4
518 253.66/£1.53 3.2 |+0.6
Strong |148 144.80/4+3.21 2.79/40.05
222 98.03 |£3.32 2.51/40.2
296 78.14 |£3.02 2.45/+0.1
370 61.80 |£3.35 |2.81/£0.3
444 52.72 |£2.32 3 |£0.8
518 47.10 |£3.54 |3.5 |£0.8
Sort Weak (148 192.74/+3.21 [3.87/4+0.9
222 204.44/+3.32 3.4 |£1.2
296 207.20/+4.02 3.85/£0.9
370 212.81/+3.35 2.59/4+0.39
444 215.05/£3.32 2.61/40.88
518 223.88|£4.54 3.23|£1.3
Strong |148 125.53|+2.64 2.42/+0.8
222 84.20 £2.64 2.37/+0.61
296 63.76 |£2.80 2.42/+0.5
370 51.31 |£3.18 |2.65/+0.92
444 44.46 |£0.96 2.91/4+0.8
518 39.52 |£3.98 3.5 |+1.05

observed, which is deemed acceptable considering the benefit of achieving hetero-
geneity among multiple nodes in the HPC system. However, the error bar graph
in both Cylon overlaps indicates we achieved similar execution times in a sin-
gle pipeline. Similar trends can be observed in the join strong scaling operation.
For strong scaling, where 3.5 billion rows are distributed among all ranks, the
same 10 iterations are employed. The results, depicted in Figs. 5 (left), 6 (left)
demonstrate a significant reduction in execution time as the number of ranks
increases for both BM-Cylon and Radical-Cylon implementations on Rivanna
and ORNL-Summit.

Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing 95

160 Strong Scaling of Join Operation Weak Scaling of Join Operation

—e— BM-Cylon —e— BM-Cylon

140 —e— Radical-Cylon 250 —®— Radical-Cylon
120

100

execution time (s)
execution time (s)

1001

04— T T T T T r T T T T T
4|148 61222 8/296 10[370 12(444 14/518 4148 6/222 8296 101370 12|44 14[518
nodes | parallelism nodes | parallelism

Fig. 5. Comparison of strong scaling(left) and weak scaling(right) performance of Bare-
Metal and Radical-Cylon with join operation on Rivanna. execution time(s) is
calculated by running task for 10 iterations. The number of parallelism is calculated
by nodes multiple by 37 cores per node

With the increasing rank count, Radical-Cylon gradually closes the latency
gap with BM-Cylon, showing only a marginal difference in latencies of total exe-
cution time. The error bar shows an identical performance with both experiments
set up. This leveling of latencies can be attributed to the efficient scheduling and
task distribution mechanisms employed by Radical-Cylon. This efliciency arises
from the fixed allocation of rows among ranks for join operations and the uti-
lization of a consistent table index for merging in distributed join operations.

Consequently, the communication and aggregation overheads are constant in
Radical-Cylon (in Table 2).

4.2 Sort Operation Scalability

The identical scaling configurations are applied to sorting operations, and a sin-
gle rank is used in each parallel execution on Rivanna and ORNL-Summit (Figs.
7 (right), 8 (right)). In Fig. 7 (right), for Rivanna, an average latency discrepancy
of around 15s is observed between the minimum rank count (148) and the max-
imum rank count (518) in the weak scaling experiment. This latency increase
with higher rank numbers is anticipated, as it influences the data shuffling and
merging stages within the distributed sorting process, thereby introducing addi-
tional overhead. Effective utilization of resources for communication and data
partition is pivotal in influencing execution time. Remarkably, as the rank count
increases, Radical-Cylon demonstrates enhanced performance and consistently
narrows the gap with BM-Cylon. But with multiple iterations, we are getting an
overlapping error bar that indicates similar performance with both metrics.
Partitioning a massive dataset across numerous nodes leads to a reduction
in execution time. In the strong scaling sort operation, showcased in Figs. 7
(left) and 8 (left), a tabular dataset containing 3.5 billion rows is partitioned
among hundreds of ranks across various test runs. Each test run encompasses
10 iterations, and the execution time is utilized for graph plotting. The results

96 A. K. Sarker et al.

unequivocally highlight that with 148 ranks, the total execution time amounts
to 125s, which diminishes to a mere 39.5s with 518 ranks on the Rivanna clus-
ter. Due to constant overheads in both scaling of the sort operation, the same
behavior is observed in the ORNL-Summit.

Strong Scaling of Join Operation 450 Weak Scaling of Join Operation
—e— BM-Cylon —e— BM-Cylon
300 —e— Radical-Cylon 4004 —®— Radical-Cylon

execution time (s)
execution time (s)

2(84 4168 8|336 16672 32[1344 64/2688 2|84 4)168 8|336 16672 32(1344 64]2688
nodes | parallelism nodes | parallelism

Fig. 6. Comparison of strong scaling(left) and weak scaling(right) performance of
Bare-Metal and Radical-Cylon with join operation on ORNL-Summit. execution
time(s) is calculated by running the task for 10 iterations and it’s used for a higher

scalability test. The number of parallelism is calculated by nodes multiple by 42 cores
per node.

Strong Scaling of Sort Operation Weak Scaling of Sort Operation

140 —e— BM-Cylon —e— BM-Cylon

—e— Radical-Cylon —e— Radical-Cylon
120 200

100

150 4
80

60

execution time (s)
execution time (s)

40

a|148 6|222 8296 10/370 12|444 14/518 41148 6222 81296 101370 12/444 14]518
nodes | parallelism nodes | parallelism

Fig. 7. Comparison of strong scaling(left) and weak scaling(right) performance of Bare-
Metal and Radical-Cylon with sort operation on Rivanna. execution time(s) is
calculated by running task for 10 iterations. The number of parallelism is calculated
by nodes multiple by 37 cores per node

Both RADICAL-Pilot and BM-Cylon approaches achieve closely compara-
ble performance, differing by mere milliseconds in their total execution times,
although, with multiple iterations, we are getting an overlapping error bar. How-
ever, distributed execution introduces a set of challenges encompassing the man-
agement of data distribution, navigation of communication overhead between

Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing 97

Strong Scaling of Sort Operation 450 Weak Scaling of Sort Operation
—e— BM-Cylon —e— BM-Cylon
—e— Radical-Cylon 400 —8— Radical-Cylon

3501

Now
o S
3 3

N
S
3

execution time (s)
execution time (s)

-
&
3

=
S
3

I
3

04— v v - v N v v N - v v
2(84 4168 8|336 16672 32[1344 64]2688 2|84 4)168 8|336 161672 32|1344 64]2688
nodes | parallelism nodes | parallelism

Fig. 8. Comparison of strong scaling(left) and weak scaling(right) performance of Bare-
Metal and Radical-Cylon with sort operation on ORNL-Summit. The number of
parallelism is calculated by nodes multiple by 42 cores per node. Strong scaling with
2688 nodes takes a bit more time than with 1344 due to the lack of rows available for
each worker and some workers go idle.

Scaling with Heterogeneous Data Pipeline

400 1 —@— Sort Weak Scaling
—8— Join Weak Scaling
3501 Sort Strong Scaling
—&— Join Strong Scaling

3001

2501

execution time (s)
- N
wu o
o o
L L

1001

50 4

2|84 4|168 8|336 16/672 32|1344 64]2688
nodes | parallelism

Fig. 9. Heterogeneous Executions with sort and join strong and weak scaling(4) opera-
tions on ORNL-Summit. Strong scaling with 2688 nodes takes a bit more time than
with 1344 due to the lack of rows available for each worker and some workers go idle.

nodes, and mitigation of potential node failures. These complexities are magni-
fied with an increased number of nodes. That might happen in both BM and
Radical Cylon. Apart from the comparable performance, we see a constant over-
head when using Radical-Cylon in strong and weak scaling operations (in Table 2)
despite of increasing parallelism.

4.3 Benchmarking with Multiple Data Pipeline

The heterogeneous data pipeline is used on the ORNL-Summit clusters, involving
multiple scaling benchmarks. Four distinct scaling operations, namely Sort and

98 A. K. Sarker et al.

o Batch and Heterogeneous Strong scaling with Join and Sort 800 Batch and Heterogeneous Weak scaling with Join and Sort

—e— Radical-Cylon Strong Scaling Radical-Cylon Weak Scaling
—e— Batch-Cylon Strong Scaling

®
3

—e— Batch-Cylon Weak Scaling

<
=]
3

700 4

@
3
3
o
3
3

w
S
3

500

execution time (s)
Noow s
s 8 &
g 8 &8
execution time (s)
N IS
S S
8 8

,ﬂ
o
3
=
1)
3

2(84 4168 8|336 16672 32[1344 64]2688 2|84 41168 8|336 161672 32|1344 64]2688
nodes | parallelism nodes | parallelism

Fig. 10. Comparison of strong scaling(left) and weak scaling(right) performance of
Heterogeneous and Batch executions on ORNL-Summit. execution time(s) is cal-
culated by running task for 10 iterations. Batch execution time for join and sort is
calculated separately from two batch outputs

Join weak scaling (WS), are configured with 35 million rows in each worker,
while strong scaling is executed with 3.5 billion rows. Six different experiments
are conducted with CPU counts ranging from 84 to 2688. Each experiment is
iterated 10 times in a single run. We gauge the total execution time (in seconds)
against the number of nodes or parallelism and illustrate the results in Fig. 9.

In the case of weak scaling for the sort and join operations, there is a gradual
increase in execution time to compile results for generating a global table. As
the number of CPUs rises. Similarly, with strong scaling operations, where 3.5
billion rows are distributed among multiple workers, performance improves as
the number of workers increases, resulting in a significant reduction in execution
time. This experiment validates the achievement of a scalable model using the
proposed task-based execution framework.

However, the core premise of our argument faces a potential challenge if the
proposed design cannot surpass the performance of Batch execution while ensur-
ing minimal resource utilization. In the Batch execution model, join and sort
operations are configured through an LSF-based script on the ORNL-Summit
cluster, running in parallel. Each operation lacks control over the hardware
resources of the other operation, even if some workers finish their tasks, intro-
ducing a potential inefficiency in resource usage.

In the context of the heterogeneous scaling operation, the join and sort pro-
cesses are treated as distinct tasks within a single execution. Consequently, when
any worker completes their task, the released resources become available to oth-
ers. For weak scaling join and sort operations (depicted in Fig. 10 (right)),
84 CPUs are efficiently allocated, and resource release is effectively managed,
enabling both tasks to conclude in 417.33s. In contrast, under the batch exe-
cution model, the same amount of CPUs are allocated separately for the join
and sort processes, consuming a total of 488.33 s to execute both tasks, despite
resource allocation considerations.

Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing 99

Radical-Cylon Performance Improvement(%) in Multiple Scaling

14.5 14.4 Weak Scaling Performance

144 mmm Strong Scaling Performance

12.
124 11.5 11.4

execution improvement (%)

2|84 4|168 8|336 16/672 32|1344 64(2688
nodes | parallelism

Fig. 11. Radical-Cylon performance improvement with scaling operation on ORNL-
Summit. The number of nodes for batch execution is generated by the requested
resource as the system allocates resources separately

The same efficiency is observed in strong scaling join and sort operations
for both heterogeneous and batch execution, as illustrated in Fig. 10 (left).
Radical-Cylon achieves comparable or improved execution times while utiliz-
ing the same resources for the two tasks, thanks to additional optimizations
in separate resource utilization and constant RP overheads. To provide a com-
prehensive overview of the performance evaluation between heterogeneous and
batch execution, we have plotted a bar graph (Fig. 11) depicting performance
improvement with multiple configurations. Radical-Cylon consistently outper-
forms batch execution by 4-15% in various configurations of scaling operations.
This underscores the effectiveness of Radical-Cylon in achieving superior perfor-
mance with optimized resource utilization.

4.4 Discussions

The results in 4.1, 4.2 show that Radical-Cylon scales efficiently with very small
overheads and achieves similar performance in single-task execution. It also out-
performs batch processing of BM-Cylon in 4.3 with heterogeneous execution.
Radical-Cylon overheads presented in Table2 show that Radical-Cylon takes
an average of 3.4s to construct an MPI-Communincator with 518 ranks which
are marginal compared to the total execution time and the size of the experi-
ments. [t shows impeccable scalability, particularly when the number of CPUs is
less than or equal to 2688 on ORNL-Summit. The Raptor module, responsible
for resource allocation and scheduling, unfortunately, encountered challenges in
allocating resources for Cylon. We are working consistently with OLCF support
team to fix the issue.

100 A. K. Sarker et al.

Cylon performance is measured with a data frame execution runtime. A col-
lection of data frame operators can be arranged in a directed acyclic graph
(DAG). Execution of this DAG can further be improved by identifying inde-
pendent branches of execution and executing such independent tasks parallelly.
Additionally, each of these tasks themselves is Bulk Synchronize Parallel (BSP).
Radical-Cylon allows us to control the parallelism of these BSP tasks. In the
future, Cylon is planning to add an optimizer based on the data frame DAG.
One aspect is traditional query optimization, similar to SQL query optimization,
which is orthogonal to the scheduling mechanism. Another important metric
would be scheduling overhead distribution of the underlying scheduling environ-
ment. This forward-looking initiative aims to enhance the efficiency and perfor-
mance of data processing within the context of machine/deep learning tasks.

Radical-Cylon has been meticulously crafted to address a unified execution
setting encompassing both CPUs and GPUs, catering to the needs of multiple
data pipelines. While integrating CPUs and GPUs within a single task does
introduce computational intricacies owing to the foundational structure of Cylon,
the concept of heterogeneous execution remains viable. This involves employing
distinct groups of ranks equipped with specialized memory allocated either on
CPUs or GPUs, enabling the concurrent utilization of these processing units.
However, we limit our experiments to CPU clusters only due to dependencies
on CUDA-aware MPI along with supported frameworks of ORNL-Summit and
Rivanna cluster, which is in the process of being addressed.

The design of RADICAL-Pilot aims to support an extensive spectrum of
meticulous resource management policies. Our initial focus has revolved around
establishing multiple data pipelines and executing distributed operations in the
form of functions. Here Cylon plays an important part by providing distributed
execution. Looking ahead to more complex multi-tenancy scenarios, RADICAL-
Pilot must proficiently manage a diverse range of resource types, including not
only device and host memory but also network bandwidth. The Master-Worker
raptor model employed by RADICAL-Pilot provides the system with a robust
capability to monitor available resources and allocate them on a large scale.
Our future plans involve exploring common multi-tenancy requirements such as
prioritization, performance segregation, and resource tracking. Importantly, the
timeframe for these endeavors is considerably shorter than prior efforts yet will
encompass significantly larger pools of resources that will help to implement a
seamless ML /DL pipeline.

5 Conclusions

RP achieves parity with the cutting-edge multi-execution design in today’s
data engineering execution landscape, which predominantly employs an SPMD
approach. This compatibility extends to multi-execution setups using SLURM-
SRUN on top of Cylon, as evidenced in our evaluation section. RP effectively
tackles the intricacies of resource management and the execution of diverse data
pipelines. Notably, RADICAL-Pilot attains performance levels comparable to
Bare-Metal Cylon across various distributed operations.

Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing 101

Concurrently, RP revolutionizes the execution model of Cylon programs,
consolidating user code under a single execution framework. This transforma-
tion introduces a centralized resource management and scheduling framework
that interfaces between the client and cluster nodes. The outcome of this uni-
fied execution model is enhanced user access to more comprehensive computa-
tion patterns. Our micro-benchmarks substantiate the effective interleaving of
client workloads and streamlined pipelined execution, firmly establishing the effi-
ciency and adaptability of the system with minimal overhead. Furthermore, the
resource management and scheduling layer facilitates the reimplementation of
cluster management policies, such as multi-execution sharing and virtualization,
tailored specifically to the demands of ML and BigData workloads.

Acknowledgments. We gratefully acknowledge the support from the Department of
Energy and National Science Foundation through DE-SC0023452, NSF 1931512, and
NSF 2103986 grants.

References

1. Abadi, M., et al.: TensorFlow: Large-scale machine learning on heterogeneous sys-
tems (2015). https://www.tensorflow.org/, software available from tensorflow.org

2. Abeykoon, V., et al.: Data engineering for hpc with python. arXiv preprint
arXiv:2010.06312 (2020)

3. Anaconda: The state of data science 2020 moving from hype toward maturity.
https://www.anaconda.com/resources/whitepapers/state-of-data-science-2020"
(December 2020). Accessed 05 May 2023

4. Apache: Apache hadoop. https://hadoop.apache.org/ (May 2022). Accessed 18 Apr
2023

5. Babuji, Y., et al.: Parsl: Pervasive parallel programming in python. In: Proceed-
ings of the 28th International Symposium on High-Performance Parallel and Dis-
tributed Computing, pp. 25-36 (2019)

6. Barham, P., et al.: Pathways: Asynchronous distributed dataflow for ml. Proc.
Mach. Learn. Syst. 4, 430449 (2022)

7. Carbone, P., Katsifodimos, A., Ewen, S., Markl, V., Haridi, S., Tzoumas, K.:
Apache flink: Stream and batch processing in a single engine. Bull. Tech. Com-
mittee Data Eng. 38(4) (2015)

8. Dalcin, L., Paz, R., Storti, M.: Mpi for python. J. Parall. Distrib. Comput. 65(9),
1108-1115 (2005). https://doi.org/10.1016 /j.jpdc.2005.03.010

9. Dean, J.: Introducing pathways: A next-generation ai architecture. https://
blog.google/technology/ai/introducing- pathways-next-generation-ai-architecture/
(October 2021). Accessed 17 Apr 2023

10. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107113 (2008)

11. DeCandia, G., et al.: Dynamo: Amazon’s highly available key-value store. In: Pro-
ceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Prin-
ciples, pp. 205—-220. SOSP ’07, Association for Computing Machinery, New York,
NY, USA (2007). https://doi.org/10.1145/1294261.1294281

12. Facebookincubator: Gloo: Collective communications library with various prim-
itives for multi-machine training. https://github.com/facebookincubator/gloo”
(March 2023). Accessed 01 Apr 2023

https://www.tensorflow.org/
http://arxiv.org/abs/2010.06312
https://www.anaconda.com/resources/whitepapers/state-of-data-science-2020
https://hadoop.apache.org/
https://doi.org/10.1016/j.jpdc.2005.03.010
https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
https://blog.google/technology/ai/introducing-pathways-next-generation-ai-architecture/
https://doi.org/10.1145/1294261.1294281
https://github.com/facebookincubator/gloo

102

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

A. K. Sarker et al.

Government, U.: Arkouda: Numpy-like arrays at massive scale backed by chapel.
https://pypi.org/project/arkouda/#+##description ” (March 2019). Accessed 05
Apr 2023

McKenna, A.: The genome analysis toolkit: a mapreduce framework for analyzing
next-generation dna sequencing data. Genome Res. 20 9, 1297-303 (2010). https://
doi.org/10.1101 /gr.107524.110

McKinney, W., et al.: pandas: a foundational python library for data analysis and
statistics. Python High Perform. Sci. Comput. 14(9), 1-9 (2011)

Merzky, A., Turilli, M., Titov, M., Al-Saadi, A., Jha, S.: Design and performance
characterization of radical-pilot on leadership-class platforms. IEEE Trans. Par-
all. Distrib. Syst. 33(04), 818-829 (apr 2022). https://doi.org/10.1109/TPDS.2021.
3105994

Moritz, P., et al.: Ray: A distributed framework for emerging {AlI} applications.
In: 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18), pp. 561-577 (2018)

ORNL-Summit: Summit (2019). https://www.olcf.ornl.gov/olcf-resources/
compute-systems/summit/

Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems 32, pp. 8024-8035.
Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

Perera, N., et al.: In-depth analysis on parallel processing patterns for high-
performance dataframes. Future Generation Computer Systems (2023)

Perera, N., et al.: Supercharging distributed computing environments for high per-
formance data engineering. arXiv preprint arXiv:2301.07896 (2023)

Rivanna: University of virginia’s high-performance computing (hpc) system (2019).
https://www.rc.virginia.edu/userinfo /rivanna/overview /

Shamis, P., et al.: Ucx: an open source framework for hpc network apis and beyond.
In: 2015 IEEE 23rd Annual Symposium on High-Performance Interconnects, pp.
40-43. IEEE (2015)

Shan, K., et al.: Hybrid cloud and hpc approach to high-performance dataframes.
In: 2022 IEEE International Conference on Big Data (Big Data), pp. 2728-2736.
IEEE (2022)

Widanage, C., et al.: High performance data engineering everywhere. In: 2020 IEEE
International Conference on Smart Data Services (SMDS), pp. 122-132. IEEE
(2020)

Yuan, J., et al..: Oneflow: Redesign the distributed deep learning framework from
scratch. arXiv preprint arXiv:2110.15032 (2021)

Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Commun.
ACM 59(11), 56-65 (2016)

ZMQ: High-level messaging patterns. https://zguide.zeromq.org/docs/chapter2/
#+#High-Level-Messaging-Patterns” (October 2021). Accessed 05 Apr 2023

https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1101/gr.107524.110
https://doi.org/10.1109/TPDS.2021.3105994
https://doi.org/10.1109/TPDS.2021.3105994
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://arxiv.org/abs/2301.07896
https://www.rc.virginia.edu/userinfo/rivanna/overview/
http://arxiv.org/abs/2110.15032

	Radical-Cylon: A Heterogeneous Data Pipeline for Scientific Computing
	1 Introduction
	2 Related Works
	3 Design and Implementation
	3.1 Radical-Pilot (RP)
	3.2 Cylon
	3.3 Design
	3.4 Implementation

	4 Experiments
	4.1 Join Operation Scalability
	4.2 Sort Operation Scalability
	4.3 Benchmarking with Multiple Data Pipeline
	4.4 Discussions

	5 Conclusions
	References

