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ABSTRACT

Heterogeneous workflows represent a promising approach for over-
coming traditional application performance limitations and to ac-
celerate scientific insight on high-performance computing (HPC)
platforms. As HPC platforms grow in size and complexity, manag-
ing and optimizing workflow resources while maximizing scientific
output assumes vital importance. Optimal workflow resource al-
location requires high-quality and timely information about the
state of the hardware resources, the status of the pending tasks,
the performance of the tasks that have already been executed, and
the current status of the workflow itself. A robust performance ob-
servability framework that captures and delivers this information
can fundamentally improve the quality of decision-making within
the workflow system, setting the stage for the adaptive execution
of workflow tasks. We propose the use of SOMA, a service-based
performance observability framework for such HPC workflows.
With the RADICAL-Pilot runtime system as a development vehicle,
SOMA demonstrates that service-based architectures coupled with
an appropriate data model can serve the performance monitoring
needs of large-scale ensemble workflows in a low-overhead fashion.
Effective observability of workflow performance requires export-
ing, storing, and analyzing several types of performance data from
across the application and workflow software stacks. Our study
finds significant benefits in integrating observability frameworks as
first-class citizens within an HPC workflow software stack. In this
paper, we demonstrate how SOMA can simultaneously observe the
performance states of the individual tasks, system hardware, and
the workflow as a whole. Such information can then be employed
to calculate better resource allocation and task configuration.
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1 INTRODUCTION

HPC clusters have continued to grow in size, scale, and complexity,
offering degrees of scale-out parallelism that few scientific applica-
tions can take full advantage of using traditional scaling strategies.
In the past decade or so, the type and mix of scientific application
workloads requiring HPC resources have undergone a paradigm
shift, moving away from the traditional single program multiple
data (SPMD) model to include a set of heterogeneous tasks work-
ing towards a common scientific goal [9]. The recent advances in
machine learning (ML) and artificial intelligence (AI) technologies
have served to motivate their integration into traditional scientific
applications, accelerating this move away from traditional message-
passing-based SPMD execution models. Heterogeneous workflows,
touted to be the new HPC “application” [9], have emerged as a
promising approach to deploying scientific applications on HPC
platforms. Heterogeneous workflows is an umbrella term, covering
the broad spectrum of multi-task execution, from ensemble com-
puting, wherein several instances of the same (parallel) task are
launched on a set of HPC resources to workflows where several
instances of different types of tasks asynchronously execute with
varying degrees of concurrency.

The breadth of HPC workflows spans a variety of scientific do-
mains, including, for example, molecular dynamics, ML applica-
tions, material science, climate scienceand drug discovery. Today,
workflows executing on HPC platforms orchestrate 100s to 10000s
of individual tasks [18]. The tasks can be heterogeneous in terms of
the application they execute and the computing resources they are
mapped to. As HPC workflow scale continues to grow, managing
workflow resources efficiently while simultaneously optimizing for
the scientific output or performance of the workflow assumes vital
importance. We argue that the ability of the workflow system to
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dynamically adapt task execution based on the information about
the tasks that have been completed or the state of the hardware
resources would represent an important step towards enabling
optimal workflow resource management.

Consider, for example, the simplest case of a workload consist-
ing of a set of MPI tasks scheduled to execute on a set of HPC
resources. Most workflow systems place the onus of deciding on
the resource requirements of the individual tasks on the user. The
user supplies this information a priori to the workflow system,
typically during the task creation step. However, if the task does
not scale well, assigning too many or too little resources to each
individual task may lead to poor use of the assigned HPC work-
flow resources. The optimal strategy might well be to run more
or less tasks, each at a smaller or larger scale. In another scenario,
involving the concurrent coupling of machine learning (ML) tasks
to traditional ensemble simulations[22], the allocation of comput-
ing resources to the two task types is not always apparent, and a
misconfigured allocation can accrue vast performance penalties. In
both these scenarios, enabling adaptive decision-making within the
workflow system would require the timely availability of all the
necessary performance information.

Several software challenges need to be addressed before the
promise of adaptive workflows is realized in full effect. This re-
search work focuses on the challenges involved in enabling robust
performance observability of the workflow execution. First, there is
the challenge of understanding what data to collect and make avail-
able online to the workflow such that observability is enabled. The
second challenge pertains to choosing the appropriate data model
for monitoring and analysis. Third, different types of data may re-
quire different instrumentation strategies and sampling frequencies
that must serve the goal of observability while not incurring signif-
icant overheads during their measurement and transport. Fourth,
there is the related challenge of exporting, storing, and making
available the monitoring data online in a timely fashion to enable
adaptive decision-making. Lastly, there is the question of how to as-
sign resources to the monitoring system, given that it must run as a
part of the workflow. This includes choosing the suitable interaction
model between the workflow and the monitoring system.

This paper focuses on the use of SOMA, (Service-based Observ-
ability, Monitoring, and Analysis) [48] in a new approach — for HPC
workflows. SOMA’s ability to monitor and enable adaptive work-
flow execution is demonstrated through integration with RADICAL-
Pilot [33], an HPC pilot-enabled [46] runtime system, integrated
with multiple workflow systems including RADICAL-EnTK (En-
semble Toolkit) [8] and Parsl [3, 4], and that can be deployed on
exascale platforms [5]. Current projections suggest that scientific
workflows for HPC can comprise between 10°-10° tasks [9]. At this
scale, performance monitoring is likely to be treated as a first-class
citizen of the workflow and also require a non-negligible amount
of computing resources [18].

In summary, the key contributions of this work are: (1) The
design and implementation of SOMA for service-based workflow
monitoring with RADICAL-Pilot (RP) as an exemplar use-case,
(2) Experiments demonstrating that SOMA can enable holistic ob-
servability of workflow performance, and (3) Experiments demon-
strating the costs and benefits of enabling workflow observability
through a service-based monitoring architecture.
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This paper is organized as follows: Section 2 gives background
on the architecture of RADICAL-Pilot and SOMA and explains how
they are integrated for workflow monitoring. Section 3 describes
the experiments. Section 4 presents the results of those experiments,
demonstrating the effectiveness of enabling such monitoring func-
tionality. We discuss related works in section 5, and lastly, we
present conclusions and future work in section 6.

2 SOFTWARE ARCHITECTURE

This section discusses the software architecture necessary to mon-
itor heterogeneous HPC workflows, including our existing tech-
nologies and what new functionality was required to implement
for this study. Section 2.1 describes the architecture of RP and the
ensemble environment. Section 2.2 discusses SOMA and the asso-
ciated service components is given. Section 2.3 presents the novel
work on how SOMA is integrated into RP and the special consider-
ations needed to support HPC workflows (as opposed to traditional
MPI-based HPC applications).

2.1 RADICAL-Pilot

RADICAL-Pilot (RP) [32] is a Python implementation of the pilot
paradigm and architectural pattern [24, 46]. Pilot systems enable
users to submit jobs to HPC platforms and then use those resources
to execute the application’s tasks. Those tasks are directly sched-
uled via the pilot-system without queueing in the platform’s batch
system. In that way, it is possible to achieve high-throughput task
execution on HPC, avoiding the limits imposed by a centralized,
multi-tenant batch queue [46].

Distinctively, RP supports executing heterogeneous executable
or function tasks on HPC resources. Both types of tasks can be
single/multi-core/GPU/node and MPI/OpenMP. Executable tasks
are programs that run as self-contained entities, while function
tasks are functions or methods written in a specific program-
ming language. Currently, RP utilizes a dedicated subsystem called
RAPTOR [31] to execute Python functions at a very large scale.
Uniquely, RP supports the concurrent execution of heterogeneous
executable and Python function tasks on up to 193,000 cores and
27,600 GPUs [33].

RP implements two abstractions: Pilot and Task. Pilots are place-
holders for computing resources, where resources are represented
independently of architecture and platform details. Tasks are units
of work specified by a program’s executable or a language-specific
function/method, alongside resource and execution environment
requirements. Fig. 1 depicts RP’s architecture with two subsystems
(white boxes), each with several components (purple and yellow
boxes). Purple components manage pilots and tasks, while yellow
components enable communication and coordination. Subsystems
can execute locally or remotely, communicating over TCP/IP and
enabling multiple deployment scenarios.

Numbers in Fig. 1 show resource acquisition and task execution
processes. PilotManager uses PSI/J [13] to queue a pilot job on an
HPC platform’s batch system (Fig. 1 (1)~(2)). Once scheduled, the
job bootstraps RP’s Agent and the Agent’s Updater notifies RP’s
Client that tasks can be executed (Fig. 1 (3)). Upon notification, the
client’s TaskManager queues the available tasks onto the client’s
Scheduler and, after staging files when required, tasks are queued
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Figure 1: RADICAL-Pilot (RP) architecture has two main
components: Client and Agent. The Client may execute on
an HPC platform’s compute node or remotely, such as on
the user’s workstation. Agent always executes on a compute
node. The Client and Agent subcomponents manage resource
acquisition and task execution on those resources. Numbers
indicate the RP’s execution process.

to the Agent’s Scheduler (Fig. 1 (4)-(6)). The Agent’s scheduler
assigns tasks to suitable portions of the available resources and then
queues those tasks to an Executor (Fig. 1(7)). The Agent’s Executor
places each task on the assigned resources, sets up their execution
environment, and launches each task for execution (Fig. 1 (8)).

RP is designed and implemented as a building block [43]. In that
way, RP can be more easily integrated with software tools inde-
pendently developed by third-party engineering teams. Integration
can utilize RP’s public or private application programming inter-
faces (APIs). For example, RP has been successfully integrated with
Parsl [3], Swift [44] and PanDA [30] via its public API, but also with
PMIx [42, 45], Flux [36], Hadoop and Spark [23] via its internal APL
This paper uses RP’s private API to integrate it with SOMA.

2.2 SOMA

SOMA is a service-based framework for monitoring HPC appli-
cations [48]. SOMA’s service implementation builds upon the
Mochi [39] HPC microservice framework. Microservice architec-
tures rely on the principle of composability to scale out and incre-
mentally integrate advanced functionality. Mochi microservices
employ high-performance RPC libraries that can use modern HPC
network hardware to transport data efficiently and quickly through
remote direct memory access (RDMA). By building upon existing
state-of-the-art HPC software frameworks, SOMA can take direct
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and seamless advantage of the improvements made to these frame-
works, while cleanly separating functionality and performance.
This design choice arguably makes SOMA a more maintainable
monitoring service than other ad hoc implementations.

HPC workflows require the capture of data from different sources
across the workflow and application software stacks to enable ob-
servability. Not only are their storage needs different, but data from
these sources may need to be monitored appropriately, directly
impacting their computational needs within the SOMA service. In
response, SOMA takes a leaf out of SERVIZ [37], a workflow-ready
visualization service, to enable the partitioning of monitoring ser-
vice resources into one or more independent “instances”, each of
which is responsible for monitoring data from one source.

2.2.1  Service Design and Implementation. SOMA’s functionality
is split up into a client stub and a service library. The client stub
exposes the SOMA monitoring APIand is responsible for translating
the API calls into remote procedure call or local function calls as
appropriate. The client stub can run within the address space of
the component being instrumented (application or middleware)
and require no additional computational resources to execute. The
client stub can also be implemented in a separate binary that does
run on additional resources. This is used to collect metrics unrelated
to the application, both are demonstrated in this paper.

Typically, the SOMA service executes on a set of dedicated re-
sources outside the application or workflow component being moni-
tored. This clean separation between the client and service libraries
allows significant flexibility in determining where SOMA’s service
instances execute while being completely transparent to the calling
client. Previous work [48] has explored the benefits of running
SOMA’s service instances on the unused cores within the appli-
cation’s compute node. However, for HPC workflows, we choose
to dedicate a part of the workflow’s total computing resources to
running the SOMA service instances.

2.2.2  Data Model. SOMA makes use of Conduit [12] to represent
the data for monitoring. Conduit was chosen for the generality of
its hierarchical approach to describing scientific data for transport
between different software components within an application. Con-
duit has found adoption within the HPC community for integrating
visualization capabilities into scientific HPC applications [16, 21].
In particular, this hierarchical data model is used for workflow mon-
itoring, enabling the division of different monitoring data into their
separate logical namespaces that can be combined during analysis.
Examples of Conduit data models are shown in section 2.3.2.

2.3 Workflow Monitoring Using SOMA

RP introduced the concept of services in its latest API implemen-
tation and SOMA is treated as a first-class citizen within RP. A
first-class citizen means that a SOMA task is able to be scheduled
and run as any other application task would. This helps support
SOMA client binaries that run outside of the application names-
paces for collecting different metrics. This section enlists the special
considerations required to integrate RP and SOMA and the method-
ologies used to capture various types of monitoring data from across
the workflow and application software stacks.
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2.3.1 Service Support Inside RADICAL-Pilot. Integrating SOMA
and RP required two main capabilities: (1) scheduling and launch-
ing SOMA components on dedicated and shared resources and (2)
enabling data exchange between SOMA and RP. SOMA can use a
set of dedicated resources to run its service instances. The SOMA
service is treated as a service task within RP. While the service
task can specify its resource requirements like any other regular
RP application task, the SOMA service task needs to be scheduled
before any application tasks. Recall that this stems from the need for
the SOMA service instances to make their RPC addresses publicly
known within the workflow for clients to connect. RP enables such
capability by scheduling the service tasks immediately after boot-
strapping its Agent component but before any other task. Service
tasks communicate their state to RP for the consumers of those
services to know where, when, and whether they are available.
RP’s Agent components (see Fig. 1) exchange data via queues im-
plemented with ZeroMQ [14]. Each component gets its inputs via
a queue and pushes its output to another component’s queue. That
enables RP to integrate third-party components via well-defined
interfaces and a unified coordination infrastructure.

Service tasks are also special concerning their scope. While reg-
ular application tasks execute and go out of scope, thereby releas-
ing their computing resources, service tasks are long-running, i.e.,
execute for the entire workflow duration. Once the workflow is
completed, service tasks are shut down through an appropriate
control command from RP. Fig. 2 depicts the timeline of events and
the RP-SOMA interaction model during workflow execution.

Initially, RP is scheduled via the HPC platform’s batch system
as a pilot job [46] (Fig. 2 (1). That allows us to execute RP Client
that, in turn, executes RP Agent on one or more compute nodes
(Fig. 2, solid arrows). In this way, we avoid consuming resources on
the cluster’s login node, in accordance to the HPC platform usage
policies. Once the RP Agent bootstraps (Fig. 2 (2)), it first schedules
and launches the SOMA service (Fig. 2 (3)), then it schedules the
RP monitoring task, one for the entire workflow, co-located with
the service (Fig. 2 (4)). Next, RP schedules the hardware monitoring
tasks, one on each available compute node (Fig. 2 (5)). Both mon-
itoring tasks run a SOMA client communicating with the SOMA
server via RPC (Fig. 2, dotted arrows). Finally, once the monitoring
infrastructure bootstrap is completed, RP proceeds to schedule the
task of the workflow application Fig. 2 (6). Note that each applica-
tion task can also run a SOMA client to enable the SOMA service
to receive asynchronous application information. SOMA Clients
can be launched and stopped via RP’s task pre/post execution capa-
bilities and/or the task executable can be wrapped in a script that
launches the SOMA client.

2.3.2  Capturing Monitoring Data. SOMA’s ability to split its ser-
vice task resources between several instances and the concept of
logical namespaces is crucial in workflow monitoring. Monitor-
ing data is divided into four namespaces — workflow, hardware,
performance, and application. The total of N SOMA service pro-
cesses within the service task is divided appropriately among four
instances, each supporting the compute and storage needs of one
namespace. For this work specifically, two new namespaces were
introduced — workflow and hardware — the performance names-
pace was improved on from previous work, and the application
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Figure 2: Example layout of how RP and SOMA components
can be arranged and interact on the compute nodes of a pilot
job. RP Client and Agent schedule and manage services and
tasks on the available resources. A SOMA server is launched
as a service, and each monitoring and application task has a
SOMA client per rank. Monitoring tasks collect local node
hardware and workflow profile data and send them to the
SOMA server via a SOMA client.

namespace is not used. The methodology for capturing data for
each of these namespaces is as follows.

Workflow Namespace: For the first of the two new namespace
implementations we created a model for RP’s workflow states. RP’s
components function as a state machine — the lifecycle of each com-
ponent, including application tasks, proceeds through a set of pre-
dictable states through the execution. For example, a task proceeds
through the NEW, SCHEDULED, EXECUTING, and DONE/FAILED
states. The transitions between states are further broken down by
timestamped events that indicate a new state, shown in Listing 1
are the events within the EXECUTING state. Likewise, the Pilot
component and the RP Agents have appropriate state transitions.
Snap-shotting these state transitions and collecting statistics on
the total number of pending tasks, completed tasks, and so on can
provide valuable insight into the overall performance of the work-
flow, to be used for subsequent analysis (online or offline). SOMA
captures workflow-level information through a service client task
launched on a single compute node within the workflow. This client
task launched as a daemon, periodically reads the appropriate pro-
file files generated by RP, summarizes basic statistics about the
workflow from this data, and publishes the same to the SOMA ser-
vice processes (using RPC) at a configurable monitoring frequency.
This client task runs for the duration of the workflow. See Listing 1
for an example of the Conduit data model implemented to represent
this workflow data.
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RP: /* Top-level SOMA namespace */
task .000000: /x Task name tag */

/* Timestamp: "event" *x/
1698435412.6060030: "launch_start"
1698435412.9642950: "exec_start"
1698435412.9717330: "rank_start"
1698435427.9775150: "rank_stop"
1698435427.9850750: "exec_stop"
1698435428.0583980: "launch_stop"

Listing 1: Conduit::Node of the RP workflow data model

Hardware Namespace: For the second of the two new namespaces
we created a data model for certain hardware utilization metrics.
Basic information about the state of the hardware, gathered pe-
riodically by reading /proc/ is captured by SOMA client tasks,
which can be scheduled on reserved cores on each compute node
within the workflow. RP launches these client tasks before applica-
tion tasks are scheduled and run for the duration of the workflow.
Granted, such information can be captured directly by the appli-
cation task in an alternative design. However, there is the issue
of task scope. Application tasks come and go, but the hardware
information is valid throughout the workflow execution. Therefore,
we captured this information through long-running special SOMA
client tasks. See Listing 2 for an example of the Conduit data model
implemented to represent some /proc/ data.

PROC: /* Top-level SOMA namespace =*/
cn4302: /* Hostname tag */
3824813742052238: /* Timestamp =*/

Uptime: 49902

Num Processes: 3

Available RAM: 8422

stat:
cpu: 10749 865 685 9293 999 745
cpu@: 4698 591 262 8953 612 449

Listing 2: Conduit::Node of the hardware data model

Performance Namespace: Traditional sources of performance in-
formation, such as MPI counters and application profiles, are cap-
tured by integrating the TAU [26] performance system with the
application. We have developed a TAU plugin that captures the
measurements enabled by the execution and converts the TAU
profiles internally to a Conduit::Node through SOMA. While the
plugin runs in the application’s address space, it creates a sepa-
rate client object and connects to the SOMA instances reserved
for monitoring the performance namespace data. Updates to the
Conduit::Node data model for TAU include adding the hostname
tag (compute node name) as well as a task identifier in the filename.
These additions allow for the properly attributing the TAU profile
to the correct heterogeneous workflow tasks. This was not needed
or considered previously as the TAU plugin was only being used
for a single application, not a heterogeneous workflow.

Application Namespace: In addition to capturing performance
data from traditional sources, the application may have useful cus-
tom information to be monitored, i.e., the scientific rate-of-progress
or figure-of-merit self-reported by the application. For example, a
molecular dynamics code might want to capture the atom-timesteps
per second as the figure of merit. Unlike the other three namespaces,
capturing this data typically requires application instrumentation
with SOMA’s API and is not the focus of this paper.
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3 EXPERIMENTS

The primary function of the SOMA monitoring service is to enable
online access to performance data. In order to demonstrate that such
functionality is indeed useful in the context of HPC workflows, we
designed three main thrusts of experiments: (1) the observation of
the ensemble performance state at different granularity described
in section 3.1; and (2) using performance data to explore potential
changes to the workflow or application configuration, as well as (3)
an overhead analysis, both in section 3.2. All experiments were run
on the Summit supercomputer, its architecture details are specified
in further detail online [35].

For both the OpenFOAM [11, 41] experiments in Section 3.1, and
DeepDriveMD mini-app experiments [19] described in Section 3.2,
we adapted existing RADICAL-Pilot workflow scripts by incorporat-
ing SOMA monitoring functionality. Any existing RADICAL-Pilot
workflow could make use of SOMA monitoring in a similar manner.
In addition, the run scripts can serve as examples for any workflow
to use RADICAL-Pilot with SOMA monitoring. For workflows that
are not managed with RADICAL-Pilot, SOMA could still be used to
measure all except the workflow namespace.

The most straightforward use case is one that allows a user to
understand useful metrics about the state of the workflow and
make an observation about entities. SOMA allows users to observe
the following metrics: hardware utilization across the pilot job,
runtime performance of the workflow (current and average task
throughput), performance statistics across tasks (distribution of
load imbalance, task performance variation, etc), and monitoring
the task state transitions. We show that SOMA enables measuring
each of those metrics from different sources: hardware metrics,
task-level TAU performance data TAU, and RP event-based states.

Experiment Tuning | Overload
Number of Tasks 4 80
Number of Nodes 10 10

Number of MPI Ranks 20, 41, 82, 164
Monitors proc, rp, tau
SOMA Ranks Per Namespace 1

Table 1: OpenFOAM Experiment Summary

3.1 OpenFOAM Workflow

We run the existing real-scale workflow from the Exascale Additive
Manufacturing (ExaAM) project [10], part of the Exascale Comput-
ing Project. The ExaAM project has developed a suite of exascale-
ready computational tools to model the process-to-structure-to-
properties (PSP) relationship for additive manufactured (AM) metal
components. The target workflow contains simulations for the
melt pool physics and uses AdditiveFOAM [11], an extension of
OpenFOAM [41] for AM processes.

We created a corresponding workflow using RADICAL-Pilot [5]
and will refer to it as the OpenFOAM workflow. We run this work-
flow on Summit, monitoring it with our SOMA service. Each com-
pute node of Summit has 44 physical cores, two of which are re-
served for the system, leaving 42 available to the user. We run four
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different task configurations within the OpenFOAM workflow, with
either 20, 41, 82 or 164 MPI ranks per task, and with each rank using
one physical core. We turn hardware multi-threading off, and re-
serve one core per node for the SOMA hardware monitoring client.
Thus, each task utilizes between 0.5 compute node to 4 compute
nodes, respectively. Initially, we run one instance of each task con-
figuration across a workflow with 4 nodes, we refer to this as the
“tuning" run, and then we run 20 instances of each across 10 nodes,
which we refer to as the “overloaded" run, see Tablel. In both cases
we allocate one extra node (for 5, and 11 total) that is reserved for
running the RADICAL-Pilot Agent and SOMA service.

Monitoring Setup: In these experiments we use the following
three SOMA clients to observe the workflow and collect metrics.
The first is workflow task information via our RP monitoring client
for SOMA, launched with one client per workflow. At configurable
intervals, the SOMA client gathers RP-managed task status informa-
tion, calculates the time spent in each state, and sends it via RPC to
the SOMA service. This client setup is shown in Figure 2 by the pink
square (3). We schedule the RP monitoring client onto the same
node as the RP client and agent, sharing the node resources. This is
an additional node that is not used for any simulation-related tasks,
but only by RP and its associated SOMA monitoring client. The
second source of metrics is from the hardware monitoring client
shown in Figure 2 by the squares (4). At configurable intervals,
that client reads memory and CPU usage data from /proc/. This
monitoring client runs on one physical core on each node.

The third and final data source for these OpenFOAM experi-
ments is the TAU [26] performance profiling plugin for SOMA,
which samples the running application to gather performance data,
e.g., time spent in each function or MPI metrics. In this case, the
TAU plugin is executed without any need for instrumentation of
the OpenFOAM code. The plugin uses the tau_exec functionality
to sample the code and publishes the sampled performance pro-
files to the SOMA server. This isn’t specifically denoted in Fig. 2,
but is similar to the squares (5), where a SOMA client is created
within the same task space as the application. However, from Open-
FOAM'’s perspective, it is just being profiled by TAU, and all SOMA
functionality is encapsulated by the TAU plugin.

3.2 DeepDriveMD Miniapp Workflow

With the increase in heterogeneous machine learning workflows
as an acceleration technique for domain science, the ability to mon-
itor and improve such a workflow with SOMA is important. The
DeepDriveMD workflow mini-apps [19] models the computational
patterns and behaviors of a Deep Learning oriented Moleculer Dy-
namics simulation workflow using DeepDriveMD (deep-learning
driven molecular dynamics) [22].

The DeepDriveMD workflow mini-apps consists of phases, each
phase made up of four stages. The stages are (1) Simulation, (2)
ML Training, (3) Model Selection, and (4) Agent (Inference), which
must be run in order. The baseline workflow uses 12 simulation
tasks and 1 task each for training, selection, and agent. We do
not modify the number of tasks except for the training tasks as
explicitly stated in Table 2. The simulation, training, and agent
stages use both CPU cores and one GPU resource per task, whereas
the selection stage runs only on the CPU. This is configured and
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managed by the RADICAL-EnTK (Ensemble Toolkit), which is a
higher-level abstraction of RADICAL-Pilot functionality [5]. We use
EnTK to schedule n number of phases in a row, within m number
of concurrent pipelines, this can be done for any combination of
n X m, see Fig. 3. We run three different experiment setups with the
DeepDriveMD workflow mini-apps, summarized in Table 2.

pipeline 1 pipeline 2 pipeline m
I [l 1 [l 1 [l 1
3 1 | 1 | 1 |
phase 1 1 ! phase 1 1 | phase 1 1

1 1

i soma analysis—N SOMA analysis | = = =7+ SOMAanalysis | = = -,
T 1o 1 ! 1
I phase 2 1 I phase 2 I I phase 2 1
_________________ _! __ _______
{ soMaanalysis |- - - somaanalysis | - - =7+ soMAanalysis | - - -,
RIEEATIONIDT ! : phase n : : phase n :
| | |

phase n

1 1
1 1
1 Task(s): Task(s): Task(s): Task(s): |!
14 si Training Selection Agent :
1

Figure 3: An illustration of how RADICAL-EnTK can launch
SOMA monitoring tasks, one or more pipelines, and one or
more phases of the DeepDriveMD mini-app workflow. Each
phase is one full DDMD mini-app workflow comprised of
multiple tasks, shown in the inset.

The first experiment is a tuning study, where we alter the number
of cores allocated per task. We run n = 6 phases, and m = 1 pipelines.
We can compare each phase of the workflow for the effects the
core assignment has on the runtime of each stage of the workflow.
Details of the configurations for this experiment can be found in
Table 2 under the “Tuning” column.

The second DeepDriveMD mini-app experiment involves con-
ducting SOMA analysis to identify free resources during runtime.
While EnTK cannot make adaptive changes during runtime, we
can use SOMA to learn more about how to configure the workflow
during each successive phase. We run n = 4 phases, and m = 1
pipelines. The setups that were run during the second experiment
can be found in table 2 under the “Adaptive" column. The number
of training tasks listed in the Table are set a priori, as in the original
workflow, but we conduct online SOMA analysis to be available
between phases. Fig. 3 depicts where the SOMA analysis fits within
the flow of the adaptive experiments.

The third experiment set for the DeepDriveMD mini-app was
scaling it up to more compute nodes to ensure SOMA monitoring
could keep pace. In Scaling A and B we run n = 1 phases form = a
pipelines of the workflow, where a is the number of application
nodes. This creates an over-subscription during the simulation
stage, where each simulation stage (per pipeline) requires 12 GPUs,
but there are only 6 available per node. In Scaling A we vary the
ratio of SOMA server ranks to pipelines, and in Scaling B we keep
the ratio steady, see Table 2.

Monitoring Setup: In the DeepDriveMD Miniapp experiments,
we implemented data collection from two sources. Similar to the
OpenFOAM workflow, we initialized one RADICAL-Pilot moni-
toring client per workflow, scheduled onto the same node as the
RADICAL-Pilot agent. Also similarly, we initialize one /proc/ mon-
itoring client per compute node for collection of CPU usage data,
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Experiment Phases Pipelines Application | SOMA Cores / Num Train Cores / SOMA Ranks | Monitoring
(n) (m) Nodes Nodes | Sim Task Tasks Train Task | / Namespace Freq. (s)
Tuning 6 1 2 1 1,3,7 1 1,3,7 1 60
Adaptive 4 1 2 1 6 1,2,4,6 1 1 60
Scaling A 1 64 64 1,2,4 3 1 7 16,32,64 60
Scaling B 1 64,128,256,512 | 64,128,256,512 | 4,7,13,25 3 1 7 64,128,256,512 60,10
Table 2: DeepDriveMD Mini-app Experiment Summary
which takes a reading every minute, and calculates the current —~ 00 T
CPU utilization online. We did not use the TAU monitoring client N
in the DeepDriveMD Miniapp experiments. In most experiments, .g <00
we sampled and published the performance data every 60 seconds. '; i
In Scaling B, to push the limits of SOMA, we increased the fre- -% 400
quency to every 10 seconds. We also run baseline workflows with 2 T ’L‘
no SOMA nodes or monitoring for comparison. S 300 == =T —
4 RESULTS 164 82 41 20

The three data sources: RP task information, hardware (proc), and
TAU performance profiles, give us a rich understanding of the online
performance of the OpenFOAM workflow. In sections 4.1, and 4.2
we discuss the OpenFOAM results at two levels of granularity, local
to each task and global to the entire workflow.

For the DeepDriveMD mini-app experiments we use the collected
data from the hardware (proc) and rp monitors. In section 4.3 we
first discuss the results from the tuning and adaptive workflows.
We then look at the scaling workflows and illustrate our discoveries
about the overhead and effects of SOMA monitoring at scale.

4.1 OpenFOAM Task Scaling Analysis

Fig. 4 shows the results of strong-scaling the OpenFOAM tasks from
one to four nodes. Without any a priori knowledge of the application
execution time we ran multiple configurations. Since we capture
performance from 20 different instances of each configuration, we
see a variation in the total execution time, but are able to calculate
averages. An interesting observation that can be made here is that
there is limited benefit to scaling the OpenFOAM tasks beyond
two nodes. This information can be used to inform RADICAL-
Pilot which MPI task configurations to use, and is fundamental in
enabling runtime adaptivity. RP could collect information about
MPI task performance, and utilize that information to change the
task description, adjusting the number of ranks of each type of
task in the workflow. As shown by our experiments, that would
allow to utilize the available resources better, thus reducing the
total time to completion of the entire workflow. Additionally, from
monitoring with the TAU SOMA integration we can also gather
the related MPI metrics that correspond for further analysis. We
zoom in on one instance of a task for clarity in Fig. 5. We observe
that a large portion of time for each rank is spent in MPI_Recv ()
and MPI_Waitall(). While this may not be as easy for on-the-fly
adaption, it can be used for further simulation tuning.

As with the number of ranks per task, RP could utilize the infor-
mation about the physical location of the MPI ranks across nodes
to make adaptive scheduling decisions. Fig. 6 shows our results
from comparing the execution times when the physical location
of the MPI ranks can differ. In the case of 20, and 41 MPI ranks —
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Number of MPI Ranks

Figure 4: A scaling study of different OpenFOAM configura-
tions. We vary the number of MPI ranks and run 20 instances
of each configuration in one RP managed workflow.

where all ranks could fit on one compute node — RP has the option
to schedule all of these on one compute node, or spread the ranks
out across any available CPU cores of the allotted nodes. Fig. 6
shows a distribution of 20 and 41 rank tasks running on different
node distributions based on what was available during the over-
loaded run. Along the x-axis we see whether each task was run on
a single node, or split across up to 5 nodes. For the 20 rank runs
we actually see an execution time improvement as the ranks are
spread across more nodes. This is possibly due to the fact that the
smaller rank runs were typically scheduled later in the workflow,
when resources are less utilized. This can be seen in Fig. 8 where
non-green sections indicate unused resources. However, in the 41
rank case our performance improvement is not quite as remarkable
as we may be approaching an upper bound.

1000
0
0 5 10 15 20 25 30 35 40

MPI Rank

M MPI_Recv()_Inclusive M MPI_Waitall()_Inclusive [ MPI Collective Sync_Inclusive
B MPI_Allreduce()_Inclusive MPI_Init_thread()_Inclusive MPI_Comm_split()_Inclusive

Time (s)

Figure 5: From the TAU SOMA plugin we have access to TAU
profile information such as the time spent in MPI calls here
to observe load balancing.
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4.2 OpenFOAM Workflow Analysis

Observation of the workflow from a global perspective offers in-
sights into areas where scheduling of future tasks could be improved.
Results from our overloaded scenario — with twenty instances of
each task configuration — shown in Fig. 8. In Fig. 8 we can see the
resource utilization from the perspective of RP. It marks resources
(cores in this case) as either available or unavailable, but does not
look at percent utilized. The green color on the graph indicates a
resource has a task running on it, and the purple sections show
when it is scheduling a new task to be run on that resource. The
resources are well used, but using this data in combination with
the CPU utilization could lead to even more informed decisions.
Currently, RP schedules a task as soon as there are enough free
resources, i.e., CPU cores and/or GPUs. Based on the online infor-
mation about overall CPU (or GPU) utilization, RP could adapt its
scheduling decisions, prioritizing the use of the free CPUs on a
node with comparably lower overall CPU utilization. The benefits
of this approach are better appreciated with a run with a lower
overall resource utilization.

650 MPI Ranks
= 600 o a1
: 0 20

550
£
F 500
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0
2
3 400
X
w350 |::_Lr| £ =
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1 2 3 4 5

Number of Compute Nodes

Figure 6: Comparison of the execution time of OpenFOAM
tasks when configured with 20 or 41 ranks and scheduled
onto a different number of compute nodes.
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Figure 7: CPU utilization for an OpenFOAM Tuning workflow.
Each colored line shows the CPU utilization on a different
compute node, measured every 30 seconds by the SOMA hard-
ware monitoring client. The orange dots indicate when the
SOMA RP monitor observed from RP that a task is starting.

Figs. 7 and 8(bottom) provide a simplified version of the results
above where we launched only one instance of each task type. With
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Figure 8: RP resource utilization for the OpenFOAM work-
flows. Top: Overload workflow. Bottom: Tuning workflow.
Light blue: RP bootstrap time. Purple: RP task scheduling
time. Green: task running time. White space: unused re-
sources, a measure of RP scheduling optimization based on
information provided by SOMA.

fewer nodes and tasks it is easier for a human to observe the spe-
cific behavior. We can see on the CPU utilization graph (Fig. 7 that
as a rank starts, there is a corresponding spike in CPU utilization.
However, we can clearly see an imbalance in the utilization on
each node in roughly the latter half of the runtime, which offers
room for better scheduling decisions on a second go-around. As in
Fig. 8(top), in Fig. 8(bottom) green represents resource utilization,
and white space denotes free cores, or resources that could poten-
tially be utilized. In this case, once the 164 rank task completed
using all of the cores, the other tasks were scheduled to use the
cores simultaneously.

4.3 DeepDriveMD Mini-app Analysis

The tuning experiment results — where we have 6 phases of the
workflow and change the number of cores per simulation and train-
ing task — are in Fig. 9. We see that even when changing the number
of cores that can be used per task, CPU utilization remains low. This
is due to the fact that most of the work for the two longest stages,
simulation and training, is done on the GPU. Therefore, learning
that the effect of using fewer CPU cores per task was minimal, we
next explored parallelizing the training tasks in order to use more
GPUs per node. To parallelize the training tasks appropriately, we
also resized the data and added additional MPI_Reduce calls to the
tasks. While the full-scale DeepDriveMD workflow does not yet
support such parallelization, we determined this a good use of the
mini-app, to model potential changes without having to implement
it in the full-scale workflow unless deemed worthwhile. SOMA can
calculate the current CPU utilization online, but the integration to
utilize that feedback with RP is still in progress.

Fig. 10 depicts the pipeline execution times from the Scaling A
experiment where we increased the number of pipelines to SOMA
ranks from 1:1 to 8:1 to pinpoint any significant bottlenecks. Be-
cause we allocated extra nodes for SOMA and did not necessarily
need to use every single core on those nodes for SOMA ranks
we ran in two configurations. The shared configuration allowed
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Figure 9: CPU utilization for the DeepDriveMD mini-app
Tuning experiment shows. Gray background shows 7 cores
per training task, and green shows 3 cores. Shading changes
from light to dark for 1, 3, and 7 cores per simulation task.

RADICAL-Pilot to make use of any free cores on the SOMA nodes.
The exclusive configuration reserved the nodes only for SOMA
ranks and did not allow RADICAL-Pilot to schedule any applica-
tion tasks on any available cores. Because of the oversubscription
of simulation tasks in the workflow, each pipeline requires 12 GPUs
during the simulation stage but there are only 6 per node. In the
shared cases, RADICAL-Pilot was able to make use of the some of
the free GPUs and cores on the SOMA nodes as SOMA runs on
CPU-only and did not completely fill the allocated SOMA nodes.
This caused more variance in overall execution times but reduced
the execution time for many of the pipelines.

1400 SOMA Monitoring
[ shared

[ exclusive
1200

—
2]
~ 0
Q1000 o e = = —
800 L]
600
16,2, 10 32,2, 20 48, 3, 30 64, 4, 40

Num SOMA Ranks, Num SOMA Nodes, Num Extra Cores

Figure 10: Runtimes for 64 pipelines of the DDMD Mini-app
Scaling A experiment workflow. The oversubscription of
GPUs causes more variability in scheduling and execution
times in the shared configuration, but the ratio of SOMA
ranks to pipelines does not have much effect.

Fig. 11 demonstrates the distribution of pipeline execution times
when we kept the ratio of SOMA ranks to pipelines at 1:1 and
scaled up SOMA ranks and nodes, and application pipelines and
nodes. Details of our configurations are given by the Scaling B
column in table 2. We again make use of the flexible integration
between RADICAL-Pilot and SOMA to run in both the shared and
exclusive configurations described previously. We compare these
with the baseline none configuration which was only m DDMDmini-
app workflow pipelines running on m applications nodes with
no SOMA monitoring or SOMA nodes. Again, we can actually
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see potential benefit from running with extra SOMA nodes in the
shared configuration as RADICAL-Pilot’s opportunistic scheduling
system can make use of the available cores. The higher outliers in
the shared configurations are due to the fact that RADICAL-Pilot
is non-deterministic in scheduling and may make an inefficient
placement during runtime that delays one or more pipelines.
Furthermore, when pushing SOMA to a higher monitoring fre-
quency — every 10 seconds, up from every 60 seconds — we do
start to see increased overhead costs. This is shown in Fig. 11 under
the frequent-exclusive label. In these results, the frequent-exclusive
experiments are also exclusive in configuration, i.e., the extra cores
on the SOMA nodes cannot be used by the application tasks. This
gives us a better direct comparison to the exclusive execution times
because only the monitoring frequency changes. Some of this over-
head can be mitigated when we run in the frequent-shared config-
uration. This allows for RADICAL-Pilot to utilize any extra cores
during scheduling, thus increasing the variability, but reducing
some execution times. When comparing the worst performance,
frequent-exclusive, with the baseline we see approximately 1.4, 3.4,
3.2, and 4.6 percent runtime overhead for 64, 128, 256, and 512
nodes respectively. In the shared configuration, we actually see a
reduction in runtime for 64, 128, and 256 nodes (6.5, 3.8, 1.1 percent,
respectively) and an overhead cost of about 1.8 percent at 512 nodes.

SOMA Monitoring L]
1300 @ shared

O exclusive

1200 [ none
« [ frequent-exclusive .
~ 1100 frequent-shared . 8
o .
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£ 1000 - éé & Z
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Number of Application Nodes, Number of SOMA Nodes

Figure 11: Distribution of runtimes for each concurrent
pipeline of the DDMD Mini-app Scaling B experiment work-
flow. Shared indicates RADICAL-Pilot can schedule applica-
tion tasks on the free cores on the nodes reserved to SOMA.
Exclusive means that nodes were reserved for SOMA only. In
the “none" case, the number of SOMA nodes is zero, and we
run the pipelines without any extra nodes. Frequent indicates
the increased publication rate. (Note the x-axis application
nodes is on a log scale).

5 RELATED WORK

The monitoring of HPC applications has historically been limited to
“system-level” monitoring — typically available to HPC system ad-
ministrators to monitor the health of the cluster and view job-level
statistics and hardware usage over time. Examples of such moni-
toring services include LDMS [1], Ganglia [28], and XDMoD [40].
ZeroSum[15] is special in this regard, designed to operate in be-
tween the application and system layer and focused on optimizing
the environment configuration of the HPC application. Typically,
such services operate in the background (deployed as daemons on
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the compute nodes) and lie outside the scope of the HPC applica-
tion — both in terms of online, real-time access to the monitoring
data and the configuration of the monitoring service itself. Recent
work that has made use of the LDMS monitoring data by employ-
ing active learning-based frameworks to diagnose performance
anomalies during runtime includes [2], and they focus on reducing
the amount of labeled data required for accurate diagnostics. We
envision that work in this vein could be a future integration with
the SOMA framework, as a consumer of the performance metrics
in order to improve online decision-making, especially at scale.

As HPC workloads have evolved to include complex heteroge-
neous workflows [9, 18], the need for online monitoring has grown
in importance. Prior work for HPC workflow monitoring has en-
abled user-based workflow steering [29], integration of machine-
level data into workflow monitoring [40], integration of ML-based
techniques into distributed workflows for minimizing resource
wastage [7], and specialized workflow monitoring systems to de-
tect execution anomalies [27]. OSU INAM is a tool that provides
online introspection into application performance through a visu-
alization dashboard, focusing on monitoring Infiniband network
traffic and MPI communication between nodes [20]. Some of these
metrics overlap with what we can collect from the TAU plugin, i.e.
MPI message size, but they include more network specific metrics
whereas we prioritize hardware and workflow states in this work.

There have also been proposed solutions for online performance
analysis for individual applications, such as TAUoverMRNet [25],
TAUoverSupermon [34], MONA [47], and Score-P [17]. The idea of
combining application metrics with current hardware and system
activity is useful in that it presents a much more robust picture,
and may help account for perforomance variations or anomalies.
However, with the focus of these studies on individual applications,
it remains to be seen if they are capable or effective in monitoring
a more complex workflow, i.e., if they can measure and analyze any
metrics specific to workflow performance.

Bader et al. [6] present an architectural blueprint for categorizing
monitoring data from the HPC workflow and application stacks,
closely resembling the concept of namespaces presented in this
work. SYMBIOMON [38] introduces a service-based monitoring
infrastructure for coupled HPC applications. SOMA represents a
generalized design and data model for service-based monitoring of
heterogeneous HPC workflows. In particular, SOMA’s implementa-
tion and architecture are specially geared towards real-time online
monitoring to enable adaptive execution of the workflow.

6 CONCLUSION AND FUTURE WORK

The increased complexity of HPC application workflows versus
traditional simulation codes necessitate a different approach to per-
formance measurement and analysis, one that observes the dynamic
task execution, workflow scheduling, and resource allocation ac-
tions throughout the application’s lifetime. Performance objectives
of turnaround time are expanded to include makespan and utiliza-
tion, especially in large many-task scenarios where resource man-
agement, critical paths, and scheduling efficiency are paramount.
It is no longer reasonable to rely on a post-mortem performance
analysis and tuning strategy because the computation environment
for workflow execution can not be assumed to be constant and the
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same as prior runs. A performance monitoring system is needed
to capture real-time tasks and system performance data together
with workflow operation information and ideally provide in situ
processing for runtime decision actuation.

The paper describes how the SOMA monitoring framework
is integrated with a HPC many-task workflow system based on
RADICAL-Pilot (RP). In this environment, we developed multiple
observability sources that connect to SOMA and provide informa-
tion about RP workflow states, resource usage, system performance,
and application tasks. Different interfaces to access the informa-
tion leverage robust measurement tools, such as TAU for granular
task-level performance metrics. Once in SOMA’s possession, the
data gathered can be processed and analyzed online. The analysis
of this data can inform decisions for choosing better configurations
of the workflow in future runs.

The experiments we performed and presented are intended to
highlight functional capabilities of SOMA and to convey the pos-
sibilities for more scalable and sophisticated translation of our re-
search work. The results in section 4 demonstrate a solid foundation
for realtime monitoring and the opportunity for in situ analysis and
feedback to RP to guide dynamic scheduling and resource assign-
ment. In future work, we plan to extend SOMA’s support to develop
adaptive workflows in RADICAL-Pilot. The idea is to analyze per-
formance metrics together with scientific progress measures to
make smart scheduling and configuration decisions, including the
altering of the workflow configuration on-the-fly.
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