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Among the well-known methods to approximate derivatives of expectancies computed by Monte-Carlo simu
lations, averages of pathwise derivatives are often the easiest one to apply. Computing them via algorithmic 
differentiation typically does not require major manual analysis and rewriting of the code, even for very com
plex programs like simulations of particle-detector interactions in high-energy physics. However, the pathwise 
derivative estimator can be biased if there are discontinuities in the program, which may diminish its value for 
applications.
This work integrates algorithmic differentiation into the electromagnetic shower simulation code HepEmShow 
based on G4HepEm, allowing us to study how well pathwise derivatives approximate derivatives of energy de
positions in a sampling calorimeter with respect to parameters of the beam and geometry. We found that when 
multiple scattering is disabled in the simulation, means of pathwise derivatives converge quickly to their expected 
values, and these are close to the actual derivatives of the energy deposition. Additionally, we demonstrate the 
applicability of this novel gradient estimator for stochastic gradient-based optimization in a model example.

1. Introduction

Monte-Carlo simulations.Monte-Carlo (MC) simulations are a pop
ular method to model processes that involve stochasticity; for instance, 
the Geant4 toolkit [1--3] is widely used to simulate the passage of par
ticles through matter. Unlike deterministic simulations, the output data 
𝑦 ∈ 𝑌 ⊂ℝ𝑚 of MC simulations does not only depend on the input data 
𝜃 ∈Θ ⊂ℝ𝑛, but also on random numbers supplied by a pseudo-random 
number generator (RNG). We can think of MC simulations as functions

𝑓 ∶ Θ ×Ω→ 𝑌 , (𝜃,𝜔)↦ 𝑦 (1)

with an additional argument 𝜔 from a probability space Ω with a prob
ability measure ℙ. For simplicity, we assume in the following that 
the RNG dfines only a single stochastic primitive called flat() (as 
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in Geant4) that returns independent random numbers uniformly dis
tributed on the interval [0,1], like numpy.random.rand in Python or
(double)rand()/RAND_MAX in C. We may think of Ω as the set of 
sequences of random numbers.

Usually, the function 𝑓 is evaluated many times; a common quantity 
of interest for a MC simulation is the expected value of the output for a 
given input 𝜃,

𝔼𝑓 ∶= 𝔼𝜔𝑓 (𝜃,𝜔) = ∫ 𝑓 (𝜃,𝜔) dℙ(𝜔), (2)

which can be estimated by averaging over 𝑁 independent random sam
ples,

𝑓 ∶= 1 
𝑁

⋅
𝑁∑
𝑖=1 

𝑓 (𝜃,𝜔(𝑖)). (3)
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The choice of 𝑁 must balance the required run-time, which grows lin
early with 𝑁 , with the standard deviation of 𝑓 , which is proportional 
to 𝑁−1∕2.

Algorithmic Differentiation. Sometimes, users of (for now, deter
ministic) computer simulations are not primarily interested in the output 
𝑦 at a specific input value 𝜃, but rather wish to identify optimal inputs
𝜃 ∈ Θ ⊂ℝ𝑛 that maximize or minimize a scalar output 𝑦. For example, 
𝜃 might be a set of parameters to be tuned in order to minimize the de
viation 𝑦 between model predictions and observed data; closely related, 
𝜃 might contain the weights of a neutral network and 𝑦 be the training 
error. As another example, 𝜃 might be a set of design parameters and 𝑦
a utility function to be improved, see e.g. the work of Albring et al. [4] 
who optimized the shape of an airfoil to reduce the drag computed by 
a computational fluid dynamics simulation.

To employ gradient-based optimization methods like gradient descent 
or BFGS [5], it is necessary to be able to evaluate gradients 𝜕𝑦∕𝜕𝜃. Be
sides, the derivative 𝜕𝑦∕𝜕𝜃 characterizes the sensitivity of 𝑦 with respect 
to changes in 𝜃, and can thus be useful for uncertainty quantification. 
When the function 𝜃 ↦ 𝑦 is given by computer code, the gradient 𝜕𝑦∕𝜕𝜃
of a computer-implemented deterministic function can often be obtained 
efficiently and accurately by algorithmic differentiation (AD) [6], a set of 
techniques based on the chain rule and the well-known derivatives of 
the elementary operations performed by the computer program while 
evaluating 𝜃 ↦ 𝑦.

Specifically, the forward mode of AD with a single scalar input 𝜃 ∈ℝ
(i.e. 𝑛 = 1) keeps track of the dot value 𝑞̇ = 𝜕𝑞∕𝜕𝜃 whenever an inter
mediate variable 𝑞 is computed by the program; for example, the primal
operation 𝑞 = 𝑞1 ⋅ 𝑞2 is augmented with the AD logic 𝑞̇ = 𝑞̇1 ⋅ 𝑞2 + 𝑞1 ⋅ 𝑞̇2. 
Optimization applications favor the reverse mode of AD because, unlike 
the forward mode of AD and unlike difference quotients, it provides 
the entire gradient of a scalar output 𝑦 ∈ℝ (i.e. 𝑚 = 1) with respect to 
many inputs 𝜃 ∈ ℝ𝑛 in a run-time independent from 𝑛, however at the 
expense of a higher memory consumption; we refer to the textbook by 
Griewank and Walther [6] for details. On the implementation side, there 
are several mechanisms for AD tools to detect real arithmetic in an ex
isting primal program and to augment them with AD logic; for instance, 
operator-overloading tools provide a custom floating-point datatype with 
arithmetic operators and math functions overloads, to be used instead of 
the built-in floating-point types like double in C + +. In contrast, source 
transformation tools operate on the program as a whole. While they are 
usually more difficult to implement and may only support a subset of the 
language, having access to the entire program allows for more advanced 
performance optimizations.

AD for MC Simulations. Typically, AD tools recognize and differen
tiate the basic operations +, −, ⋅ and ∕ and related operators like +=, as 
well as simple math functions like 

√
, exp, sin, etc. Higher-level math

ematical constructs often need manual treatment; while it is usually 
straightforward to inform AD with analytical derivatives of, e.g., solu
tions of linear systems [7] and the dominating eigenvalue of a matrix 
[8], computing the derivative of an expected value of a MC simulation,

(𝔼𝑓 )′ ∶= 𝜕

𝜕𝜃

[
𝔼𝜔𝑓 (𝜃,𝜔)

]
= 𝜕

𝜕𝜃

[
∫ 𝑓 (𝜃,𝜔) dℙ(𝜔)

]
, (4)

poses a rather difficult but very important challenge across application 
domains.

In quantitative finance, certain derivatives of e.g. expected option 
prices are called ``Greeks'' and dfine strategies to hedge risks [9]. Differ
entiable rendering allows to reconstruct three-dimensional scenes from 
images [10--14]. In reinforcement learning, policy gradients can be used 
for training [15]. In many of the aforementioned application areas of 
gradient-based optimization using deterministic AD, it is natural to add 
stochasticity to the differentiated code, leading to e.g. stochastic neu
ral networks [16] including VAEs [17] and GANs [18]. See [19] for a 
review of Monte Carlo gradient estimation in machine learning.

The present work is a study on applying AD in the realm of high
energy physics (HEP), where gradient-based optimization is explored 

as a way to enhance the design of future particle detectors [20,21] or 
reconstruct properties of detected particles [22,23], and gradients of 
stochastic programs could help performing Bayesian inference of param
eters of the standard model [24]. The Geant4 toolkit for the simulation 
of the passage of particles through matter [1--3] is widely used across 
many HEP-related application areas, from the planning of detectors at 
the LHC to radiation safety in space to medical physics.

As a step to explore ways to create a differentiated version of Geant4, 
in this study, we differentiate a more compact but algorithmically sim
ilar MC code composed of G4HepEm [25] and HepEmShow [26,27]. 
We are interested in derivatives of the expected value of energy deposi
tion of electromagnetic showers in a simple sampling calorimeter, with 
respect to parameters of the geometry and the incoming particles.

A natural first step to approach (4) is to form the pathwise derivative

𝜕

𝜕𝜃
𝑓 (𝜃,𝜔) (5)

by applying AD to the MC simulation 𝑓 in a way that, with regard to 
differentiation, treats random numbers like constants. This has been 
accomplished for Geant4 in principle, without focus on performance 
though and only simulating a single particle to demonstrate technical 
feasibility [21]. The second step then is to estimate the expected value 
of the pathwise derivative,

𝔼(𝑓 ′) ∶= 𝔼𝜔

[
𝜕

𝜕𝜃
𝑓 (𝜃,𝜔)

]
, (6)

by averaging it over 𝑁diff independent random samples,

𝑓 ′ ∶= 1 
𝑁diff

⋅
𝑁diff∑
𝑖=1 

[
𝜕

𝜕𝜃
𝑓 (𝜃,𝜔(𝑖))

]
. (7)

However, the expected pathwise derivative 𝔼(𝑓 ′)matches the sought 
derivative (𝔼𝑓 )′ of the expected value only under certain assumptions 
on 𝑓 . A well-known corollary of Lebesgue’s dominated convergence 
theorem [28, Theorem A.5.3] states that (𝔼𝑓 )′ = 𝔼(𝑓 ′) if 𝑓 (𝜃,𝜔) is con
tinuously differentiable in 𝜃 and | 𝜕𝑓

𝜕𝜃
| ≤ 𝐵(𝜔) for an integrable random 

variable 𝐵 ∶ Ω→ℝ. Fig. 1 gives an example of such a function

𝑓1(𝜃,𝜔) =
{

1, 𝑟(𝜔) < 0.6
2, 𝑟(𝜔) ≥ 0.6

}
+ 𝜃 ⋅ (𝑑 + sin(8𝜋𝑟(𝜔))) (8)

with (𝔼𝑓1)′ = 𝔼(𝑓 ′
1) = 𝑑, where 𝑟(𝜔) is a random variable uniformly 

distributed on [0,1].
In general, 𝔼(𝑓 ′) and (𝔼𝑓 )′ can take different values. For the function

𝑓2(𝜃,𝜔) =

{
1, 𝑟(𝜔) < 0.6 − 𝑑 ⋅ 𝜃

2, 𝑟(𝜔) ≥ 0.6 − 𝑑 ⋅ 𝜃
(9)

in Fig. 1, we can analytically see that

𝔼𝜔𝑓2(𝜃,𝜔) = (0.6 − 𝑑 ⋅ 𝜃) ⋅ 1 + (0.4 + 𝑑 ⋅ 𝜃) ⋅ 2 = 1.4 + 𝑑 ⋅ 𝜃

⇒
𝜕

𝜕𝜃

[
𝔼𝜔𝑓2(𝜃,𝜔)

]
= 𝑑,

but the pathwise derivative 𝜕

𝜕𝜃
𝑓2(𝜃,𝜔) is zero for almost all 𝜔. Only 

for the zero-probability set of 𝜔 with 𝑟(𝜔) = 0.6 − 𝑑 ⋅ 𝜃, 𝑓2(𝜃,𝜔) has a 
jump at 𝜃. This jump makes (𝔼𝑓 )′ non-zero but does not affect 𝔼(𝑓 ′). 
An estimator like 𝑓 ′, whose expected value does not match the target 
value (𝔼𝑓 )′, is called biased.

Non-trivial MC simulations usually contain control flow constructs 
like if and while, whose (discrete and hence non-differentiable) con
dition depends on both the AD inputs 𝜃 and the randomness 𝜔, so their 
pathwise derivative estimators are generally biased. Accordingly, sev
eral approaches to create unbiased estimates for derivatives of expected 
values of MC simulations have been proposed in the literature; see e.g. 
references [29,30,13], or Kagan and Heinrich [31] for a first analysis of 
some of these methods in HEP.

The reparametrization trick [17] refers to implementing parametric 
random distributions as differentiable expressions of the parameters and 
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Fig. 1. Different mechanisms for Monte-Carlo simulations to combine input 
parameters and randomness. The RNG primitive flat() yields independent 
random numbers uniformly distributed on [0,1]; this is how the second argu
ment 𝜔 in (1) comes in. Around 𝜃 = 0, both functions have 𝔼𝜔𝑓𝑖(𝜃,𝜔) = 𝑑 ⋅ 𝜃. 
Top: The pathwise derivative is distributed around the mean 𝑑. Bottom: The 
pathwise derivative is zero almost everywhere, and undfined at a single point 
where 𝑓 jumps.

non-parametric random numbers. For instance, a random number uni
formly distributed on [0, 𝜃] (with 0 < 𝜃 ≤ 1, say) would be implemented 
as 𝜃 ⋅ flat() rather than, e.g., rejection-sampling flat() repeatedly 
until it yields a number in [0, 𝜃]. This makes the differentiable depen
dency between the sampled random numbers and the parameters visible 
to the mean pathwise derivative 𝔼(𝑓 ′). For elementary parametric dis
tributions like normal distributions, MC simulations in HEP often follow 
the reparametrization trick by default. However, MC simulations then 
usually continue to process them using non-differentiable operations 
(like 𝑓2 in Fig. 1), to which the reparametrization trick cannot be ap
plied in general.

Christodoulou and Naumann [32] and Kreikemeyer and Andelfin
ger [33] have presented frameworks to smoothen contro-flow-induced 
discontinuities by interpolating between the outputs of all the relevant 
contro-flow branches. Applying this approach to a particle simulation 
is a promising future research direction, but may come with large run
times due to the very high number of contro-flow branches encountered 
in a particle simulation.

As a well-known alternative or addition to pathwise derivatives, the 
likelihood ratio or score function method [34,35] proposes to compute a 
term

𝔼𝜔

[
𝜕 log(𝑝(𝜃,𝜔))

𝜕𝜃
⋅ 𝑓 (𝜃,𝜔)

]
= 𝔼𝜔

⎡⎢⎢⎣
𝜕𝑝 
𝜕𝜃
(𝜃,𝜔)

𝑝(𝜃,𝜔) 
⋅ 𝑓 (𝜃,𝜔)

⎤⎥⎥⎦ . (10)

This term accounts for the part of the derivative of 𝔼𝑓 related to a dif
ferentiable change of the probability 𝑝(𝜃,𝜔) that discrete random events 
(e.g. whether an if or else branch is taken) turn out in the way they 
do when 𝑓 (𝜃,𝜔) is computed. As such, (10) should be added to 𝔼(𝑓 ′).

Indeed, for the function 𝑓2 in Fig. 1, the bracketed expression in (10)
evaluates to [ −𝑑0.6 ⋅ 1.0] when the if branch is taken (60% probability) 
and to [ 𝑑

0.4 ⋅ 2.0] when the else branch is taken (40% probability), 
giving an expected value of 𝑑. However, we were only able to determine 
the values of the probabilities 𝑝 = 0.6,0.4 in the denominators, and their 
derivatives 𝜕𝑝 

𝜕𝜃
= −𝑑,𝑑 in the numerators, because the condition of the

if statement is very simple.

Fig. 2. Geometric structure of the sampling calorimeter. Figure courtesy of 
Novák et al. [26,27].

In the case of MC particle simulations, it is unclear how to deter
mine 𝑝, because these simulations typically implement stochasticity by 
combining several random numbers and variables depending on the AD 
input 𝜃, in non-linear ways. Additionally, the term (10) tends to have a 
high variance [36].

The stochastic ADmethod by Arya et al. [29] integrates certain kinds 
of discrete randomness into pathwise derivatives. For each intermedi
ate value appearing in the MC program, this method keeps track of an 
alternative value that could have been attained with different random 
outcomes, and the derivative of the probability of such an outcome with 
respect to the AD input. While we consider it an interesting and promis
ing approach, it appears not to be easily applicable to a MC particle 
simulation, because if statements and discrete randomness originating 
from comparisons of continuous random values are not yet supported.

Instead of trying to create an unbiased estimator for (𝔼𝑓 )′ , in this 
work, we analyze the biased estimator 𝑓 ′ for a MC code with full electro
magnetic physics coverage but simple geometry. It turns out that when 
a single physics process called multiple scattering is disabled in our setup, 
the variance of 𝑓 ′ is sufficiently low to obtain reliable estimates (7) of 
𝔼(𝑓 ′) for moderate 𝑁diff, and 𝔼(𝑓 ′) deviates from a difference quotient 
approximation of (𝔼𝑓 )′ only by a few percent. A bias of this magni
tude can be perfectly acceptable as the derivatives only serve as a tool 
to guide optimization algorithms (and are not physical quantities that 
have to match measurements).

Section 2 gives an overview on the simulated hardware setup and 
the MC code, which we differentiated following the methodology de
scribed in Section 3. We then report on the stochastic noise of the MC 
code (Section 4.1), the variance and bias of the pathwise algorithmic 
derivative estimators (Section 4.2), and a simple demonstrator using 
these estimators for gradient-based optimization (Section 4.3), closing 
with conclusions and an outlook in Section 5.

2. Simulation of electromagnetic showers in a sampling 
calorimeter

2.1. Detector geometry

Fig. 2 shows the simple detector geometry used in this study. The de
tector hardware is a stack of 𝑛l identical pairs of absorber and gap layers, 
each with a thickness of 𝑎 and 𝑔 (respectively) and transversal dimen
sions 𝑑𝑡 × 𝑑𝑡. The two types of layer are each made from homogeneous 
material; in particular, material properties are piecewise constant and 
change only at well-known two-dimensional volume boundaries. This 
assumption on the detector geometry is also made by Geant4 and is 
usually satified in practice. Primary particles arrive centered and or
thogonally with an initial kinetic energy 𝑒.

A default set of values for these parameters is specfied in Table 1. 
The setup was created by Novák et al. [26,27] and is based on Geant4’s 
TestEm3 test case; however, the absorber material is lead tungstate 
(PbWO4) instead of elementary lead (Pb), as a mixture of different atoms 
makes the test case more general. In this study, the primary energy 𝑒 and 
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Table 1
Parameters of the simple sampling calorimeter geometry dis
played in Fig. 2.
Parameter Symbol Arg. Default value 
Kinetic energy of primaries 𝑒 -e 10 000MeV
Thickness of absorber layers 𝑎 -a 2.3mm
Thickness of gap layers 𝑔 -g 5.7mm

Transversal dimension 𝑑𝑡 -t 400mm
Number of layers 𝑛l -l 50 
Type of primary particles -p electrons 
Absorber material (JSON

file

)
PbWO4

Gap material (JSON
file

)
liquid Ar 

Fig. 3. Sketch of a very small shower consisting of electrons (lines) and photons 
(wiggly lines). Colors indicate different mechanisms leading to energy deposi
tion in layer 1. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

the layer thicknesses 𝑎 and 𝑔 will be considered as AD inputs 𝜃, and all 
other parameters are considered constant.

2.2. Electromagnetic showers

Electrons, positrons and photons interact with the surrounding mat
ter through various physical processes: ionization, bremsstrahlung, an
nihilation, pair production, the photoelectric effect, Compton scattering, 
etc. These processes happen at discrete points in time and can result in 
a loss of kinetic energy, change of momentum, deposition of energy 
in the surrounding matter, and/or creation of secondary particles. The 
interaction rates/cross-sections for these processes and their possible out
comes depend on the type and kinetic energy of the particle, and the 
material composition of the surrounding matter. Except for rare lepto-
and photo-nuclear interactions that are neglected in the following, sec
ondary particles are either electrons, positrons and photons. Secondary 
particles themselves interact with the surrounding matter, forming an 
electromagnetic shower.

A very small shower is sketched in Fig. 3. The brown circle indicates 
the emission of a photoelectron, depositing the K-shell binding energy 
of the ionized atom in the first gap layer. When electrons have lost all 
their kinetic energy, they stop and become part of the surrounding ma
terial (indicated by a gray background). Some of the aforementioned 
processes produce low-energetic particles very frequently; such interac
tions are usually modeled by a continuous energy loss along the entire 
path of the particle with a deterministic mean (yellow and gray back
ground) and stochastic fluctuations. Very small but frequent changes 
of the momentum (multiple scattering, MSC) can be modeled by discrete 
changes of position and momentum, but this is not shown in Fig. 3.

The AD outputs 𝑓 (𝜃,𝜔) analyzed in this study are given by the en
ergy depositions edep𝑖(𝜃,𝜔) in the layers 𝑖 = 1,… ,50. Fig. 4 shows that 
disabling MSC (and energy loss fluctuations) has only a small effect on 
the energy depositions in our setup (as the dashed and thick lines are 
close to each other). The energy depositions without MSC and fluctu
ations are represented in Fig. 4 as a sum of the energy deposited by 
the continuous energy loss of electrons and positrons (sum of yellow 
and gray), and the much smaller binding energies that photoelectrons 
leave behind (brown); other energy deposition mechanisms are mostly 

Fig. 4. HepEmShow-simulated average energy depositions in the 50 layers for 
𝑒 = 10GeV, 𝑎 = 2.3mm, 𝑔 = 5.7mm, with multiple scattering and energy loss 
fluctuations enabled (dashed line) or disabled (thick line) in the simulation. A 
breakdown of the energy deposition without MSC and fluctuations into the main 
energy deposition mechanisms is also shown (yellow, gray, brown).

Listing 1: Conceptual structure of a particle simulation.

for event in 1,… ,𝑁 :
create primary particle and push to stack
while stack not empty:

pop particle from stack
while particle not stopped:

determine pathlength to next discrete physics process
or hit of volume boundary

move particle accordingly
account for effects of physics processes (e. g. momentum

ev
en
t lo

op

st
ac
ki
ng

 lo
op

st
ep
pi
ng
lo
op

change , energy deposition , secondary particles pushed
onto the stack , stopping or annihilation of particle )

irrelevant in our setup. The plotted data were obtained with a particle 
simulation, as detailed in the next section.

2.3. Particle simulations

Simulations of electromagnetic showers in material arrangements 
like the sampling calorimeter of section 2.1 can be thought of as a set 
of nested loops, as illustrated in Listing 1. Every iteration of the outer
most event loop is concerned with a new primary particle, and contains a 
stacking loop that iterates over all particles in the resulting shower. Con
ceptually, each iteration of the innermost stepping loop determines the 
remaining pathlength until either a volume boundary is hit or a discrete 
physics process happens, and then moves the particle accordingly and 
accounts for any effects of physics processes. This is opposed to the parti
cle simulator model studied by Kagan and Heinrich [31], which models 
material characteristics as a continuously changing three-dimensional 
field without explicit knowledge on the locations of volume boundaries.

The Geant4 toolkit [1--3] covers a wide set of particles and pro
cesses, and has a very general way to handle geometry; accordingly, 
it is a very complex software project with around one million lines of 
code, mostly written in C + +. The G4HepEm toolkit [25] isolates much 
of Geant4’s models of physics processes in electromagnetic showers; e.g., 
G4HepEm’s run-time functionality includes sampling of the distance 
to the next discrete interaction and sampling of interaction outcomes. 
On the one hand, G4HepEm can be used inside of Geant4 as an al
ternative to Geant4’s native implementation of electromagnetic physics 
processes. Once the relevant material data (such as cross-sections) and 
other information have been pre-computed into a JSON file using sep
arate initialization-time functionality of G4HepEm based on Geant4, 
G4HepEm’s run-time functionality can also be used independently from 
Geant4, as a very compact standalone library for research and devel
opment activities in the field of HEP simulations. The HepEmShow
package [26,27] consists of two applications: A data generation program 
using G4HepEm’s initialization-time functionality and Geant4 to create 
the JSON file, and the main simulation that implements event, stacking 
and stepping loops in the sampling calorimeter setup described above 
(section 2.1), using physics information solely from G4HepEm’s run
time functionality. HepEmShow’s energy deposition results, represented 
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by the dashed line in Fig. 4, are in excellent agreement with Geant4
G4HepEm’s [27].

2.4. Contributions and limitations

In this work, we differentiate the standalone run-time part of the 
G4HepEm toolkit and the HepEmShow simulation application. After 
disabling MSC in the simulation, we successfully validate our mean path
wise derivative estimator against difference quotients, observing only a 
small bias. To our knowledge, this is the first time that AD has been 
successfully applied to a ful-fledged HEP simulation. Furthermore, we 
demonstrate the usefulness of these derivatives in a simple gradient
based optimization study.

While this is a major step on the way towards a differentiated Geant4
scale particle simulator, our setup makes the following key simplfica
tions:

• As further detailed in section 4, we have to disable MSC in the simu
lation. Fig. 4 shows that this causes a minor change in the deposited 
energies in the simple sampling calorimeter setup considered by us, 
but it can potentially become more important for other use cases of 
Geant4.

• HepEmShow is made for one particular parametric geometry 
(Fig. 2) whereas Geant4 has a very general and flexible implemen
tation of geometry.

• External electromagnetic fields, which exert forces on charged par
ticles, are not available in HepEmShow but are fully supported in 
Geant4.

• HepEmShow is only meant for simulating electromagnetic show
ers consisting of electrons, positrons and photons, whereas Geant4 
supports all particles relevant in HEP, and many models for physics 
processes across wide energy ranges.

• The present study is concerned with a limited set of AD inputs and 
outputs, whereas Geant4 users have very broad access to parame
ters and output data.

3. Pathwise algorithmic differentiation

The HepEmShow/G4HepEm simulation code computes the averaged 
per-layer energy depositions edep𝑖 (𝑖 = 1,… ,50) from the input data in 
Table 1, notably the primary energy 𝑒, absorber thickness 𝑎 and gap 
thickness 𝑔. We have applied AD to the simulation program in order to 
compute averaged per-layer derivatives

𝜕 edep𝑖
𝜕 𝑒 

,
𝜕 edep𝑖
𝜕 𝑎 

,
𝜕 edep𝑖
𝜕 𝑔

.

To this end, we first applied the machine-code-based AD tool Derivgrind 
in a black-box fashion (Section 3.1). After first promising observations, 
we switched to the operator-overloading AD tool CoDiPack (Section 3.2) 
with a MC-specific tape size reduction technique to reduce memory us
age in the reverse mode (Section 3.3).

3.1. Machine-code-based differentiation using derivgrind

Derivgrind [37] inserts AD logic into the machine code of the pro
gram to be differentiated. Therefore, only very little modfication of the 
source code of G4HepEm and HepEmShow is required. Naturally, we 
had to change a few lines to indicate AD inputs (𝑒, 𝑎, 𝑔) and outputs 
(edep𝑖) and to output the derivatives. In addition, a few G4HepEm
defined math functions like G4Log were replaced with their standard 
library counterparts (e.g. std::log), as their implementations per
form real arithmetic via bit-wise manipulations of floating-point data 
in a way that might not be correctly understood by AD tools [21]. Af
ter exploratory experiments with Derivgrind’s forward mode showed 
encouraging results, we decided to invest the time to apply an operator

Fig. 5. User interface of the differentiated HepEmShow application in the for
ward mode. Dot values of inputs are specfied in the command line interface 
(here, shown for -e). Dot values of outputs are written to a file edeps.

overloading AD tool that offers much higher performance (see Table 2
for a comparison of run-times).

3.2. Operator-overloading differentiation using CoDiPack

Results presented in the remainder of this study were obtained by 
the operator-overloading AD tool CoDiPack [38]. In the shape of a 
C++ header, CoDiPack dfines AD types that behave very similar to the 
built-in C++ floating-point types like double, but augment all real
arithmetic operations with AD logic. For maximal flexibility, we re
placed most occurrences of double in the source codes of G4HepEm 
and HepEmShow with a type alias G4double, which we can set to dou
ble, codi::RealForward and codi::RealReverse to build non
AD, forward-mode and reverse-mode variants, respectively. The code is 
available at

https://github.com/SciCompKL/g4hepem/
https://github.com/SciCompKL/hepemshow/

No type exchange has been performed

• in the data generation part of HepEmShow producing the JSON file 
(containing pre-computed material data etc.), to avoid having to 
differentiate Geant4;

• in the JSON I/O library [39] used by the standalone part of 
G4HepEm -- instead, conversions between doubles in the library 
and G4doubles in G4HepEm have been added to the interface; and

• for variables declared as constexpr, as they must have a literal 
type according to the C++ standards but the CoDiPack types are not 
literal.

In addition to the replacements of G4HepEm-defined math functions 
(Section 3.1), some manual refactoring of the source code was necessary 
around uses of the ?:-operator and implicit casts to integers.

We have extended HepEmShow’s I/O to allow the user to specify 
the AD inputs and outputs. As shown in Fig. 5, in the forward mode, the 
user can supply dot values of the primary energy 𝑒, absorber thickness 𝑎, 
and gap thickness 𝑔 and access dot values of the average edeps. Reverse
mode HepEmShow requires an additional command-line argument -b
with the adjoint values of the mean edeps in all layers, separated by 
colons, and output the adjoint values of 𝑒, 𝑎 and 𝑔 in a file.

For other variables used by HepEmShow, adding them as AD inputs 
and outputs would likely be straightforward. However, as we have not 
differentiated the initialization-time functionality (which uses Geant4), 
it is not possible at the moment to declare Geant4-internal data (e.g. 
cross-section tables) as AD inputs.
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Fig. 6. Dependency of the simulated mean energy deposition in layer 17 on the 
primary energy 𝑒. For every point in this plot, 𝑁 = 100 events were simulated 
using the same random seed. Fig. 7 zooms into this plot to see if these ``noisy'' 
functions are differentiable and if their derivatives match the large-scale slope 
of 0.025.

3.3. Reduction of the tape size

In the reverse mode of AD, operator-overloading AD tools record a 
tape data structure storing the real-arithmetic evaluation graph from the 
inputs to the outputs. For long-running programs, the tape size might 
exceed the amount of available memory. In our case, the recording of a 
single event loop iteration occupies roughly around 250MB of memory 
on the tape (measured for 𝑒 = 10 GeV, 𝑎 = 2.3 mm, 𝑔 = 5.7 mm). As all 
event loop iterations run independently from each other, only a single 
iteration must be stored at a time, and the corresponding section of the 
tape can be evaluated and cleared at the end of each iteration to limit 
the tape size [40].

As source transformation tools have access to the entire source code 
of the function to be differentiated, they can generally use smaller tapes 
and apply more advanced code optimizations. As it is possible to compile 
the HepEmShow simulation and its G4HepEm dependency in a single 
translation unit, it would be worthwhile to investigate how compiler
based source transformation AD tools such as Clad [41] perform on the 
code base.

4. Results

4.1. Stochastic noise with and without multiple scattering

We first take a look at how the energy deposition depends on the 
primary particle energy 𝑒 without AD, in order to be able to explain our 
findings with AD in the next section 4.2.

Large scale. Fig. 6 shows the simulated mean energy deposition 
in layer 17, edep17, averaged over 𝑁 = 100 events per run, as a func
tion of primary particle energy 𝑒. Each of the 4001 data points between 
𝑒 = 8000 MeV and 12 000MeV was produced by a separate run of Hep
EmShow, always using the same initial random seed. The experiment 
has been conducted with the full set of electromagnetic processes avail
able in G4HepEm (red), and with a simplfied setup that had MSC and 
energy loss fluctuations disabled (blue).

The number of 𝑁 = 100 simulated events for Fig. 6 is very small, 
so the standard deviation of the mean (3) is rather large, causing the 
clearly visible stochastic noise. This is expected: If 𝑒 is perturbed even 
very slightly, the control flow in the simulator is likely to change at 
some point, making a different number of calls to the RNG and thus 
leaving it in a different state for the subsequent execution, which is 
therefore entirely uncorrelated even though the same RNG seed has been 
used initially [42]. Choosing a higher 𝑁 reduces the amplitude of the 
stochastic noise, but does not eliminate it.

Despite the noise, Fig. 6 shows a clear large-scale trend, with 
edep17(𝑒) rising, in both setups, approximately linearly by 100MeV
over the entire range of 𝑒 spanning 4000MeV. Thus, the derivative 
(𝔼 edep17)′ of the expected energy deposition at 𝑒 = 10 000 MeV can be 
estimated as

(𝔼 edep17)′ ∶=
𝜕

𝜕𝑒

[
𝔼𝜔edep17(𝑒,𝜔)

]
≈ 100 MeV

4000 MeV
= 0.025. (11)

Fig. 7. Zoom into Fig. 6, showing a much smaller range of 𝑒. Again, each 
point represents a HepEmShow simulation of 𝑁 = 100 events, always using 
the same random seed. The energy deposition computed with the full set of 
physics processes still appears noisy (top). With multiple scattering and energy 
loss fluctuations disabled, however, the averaged energy deposition is a piece
wise differentiable function of the primary energy, and its derivative (i.e. the 
slope of the segments) approximately matches the large-scale slope.

This large-scale slope is what is relevant for e.g. optimization purposes, 
so this is what we want to compute. For validation purposes, we approx
imate the large-scale derivative using difference quotients similar to the 
right-hand side of (11), taking care that a sufficiently large number of 
events is simulated as difference quotients are poorly conditioned.

When we apply AD to a code computing edep17, we obtain the 
floating-point accurate, local slope edep′17 of the algorithm implemented 
in the code. To read this local slope from the plot, we have to zoom in.

Small scale. Fig. 7 shows edep17(𝑒) plotted over a much more nar
row interval, again using the same seed for all runs of HepEmShow. For 
the full physics setup, we observe the same noisy behavior (top figure), 
even if we zoomed in further. With MSC and energy loss fluctuations 
turned off, however, the function is clearly piecewise differentiable (bot
tom figure). This qualitative difference is very important for AD, as it 
allows us to cofirm that the slopes of the differentiable segments (which 
is what pathwise AD computes) are close to the large-scale slope of about 
0.025 as determined in (11) which we want to compute. There is still 
more than one jump per keV on the horizontal axis, due to discrete 
randomness and decorrelating RNG states as mentioned above. These 
jumps are much larger in magnitude than the differentiable evolution 
in between, and they are responsible for the noise visible in Fig. 6. How
ever, the differentiable evolution in between the jumps already accounts 
for (approximately) the entire large-scale evolution.

In fact, it is not necessary to disable energy loss fluctuations; a plot in 
the style of Fig. 7, with only multiple scattering turned off, has more dis
continuities but still clearly visible increasing differentiable segments.

Summary. The qualitative analysis conducted in this section for a 
single layer indicates that after disabling MSC, there is only a small 
difference between

• the large-scale derivative (𝔼 edep17)′ required for applications and 
approximated by difference quotients, and

• the local derivative edep′17, computed by AD without special care 
for randomness (thus treating random numbers as constants), which 
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Fig. 8. Algorithmic derivative of the mean edep in the calorimeter layers with 
respect to the primary energy 𝑒 (blue), and the corresponding difference quo
tients (black). Error bars indicate 68 %-confidence intervals (i.e. plus/minus one 
standard deviation). Top: Default cofiguration of G4HepEm with all physics 
processes, means over 24 M events. Middle: All physics processes except for 
multiple scattering, means over 24 M events. Bottom: 864 M simulated events 
to reduce the stochastic error, and a smaller interval for the difference quotient 
to reduce the truncation error.

approximates 𝔼(edep′17) in the limit of many simulated events 
(𝑁diff →∞) by the strong law of large numbers.

In the next section 4.2, we study this hypothesis quantitatively and in 
more generality, looking at algorithmic derivatives of energy deposi
tions in all layers with respect to 𝑒, 𝑎 and 𝑔.

4.2. Variance and bias of pathwise algorithmic derivatives

In this section, we collect results obtained with our CoDiPack
differentiated version of HepEmShow/G4HepEm (sections 3.2, 3.3).

Pathwise derivatives of the full simulation code including MSC 
are noisy. Fig. 8 shows the mean pathwise forward-mode algorith
mic derivative of the simulated energy deposition edep𝑖(𝑒) in all the 
calorimeter layers 𝑖 = 0,… ,49, with respect to the initial kinetic energy 
𝑒 of the primary particles, at 𝑒 = 10 GeV. For the top plot, 24 M events 
were simulated using the full list of physics processes. Mean pathwise 
derivatives edep′

𝑖
(𝑒) of the code seem to have a very large variance and 

deviate by orders of magnitudes from the value of 0.025 suggested by 
(11). Averaging over many more events might reduce noise, but as the 
number of events would need to rise by a factor of 1012 to bring a stan
dard deviation of the order of 104 down to the order of 10−2, this is not 
feasible in practice.

It should be noted that this observation does not imply that the phys
ical phenomenon of MSC itself would be inherently non-differentiable. 
We can only infer that G4HepEm’s algorithm implementing the Urban 
MSC model [43] has noisy algorithmic derivatives. This could be re
lated to the often-heard statement that ``black-box'' differentiation of 
iterative numerical algorithms may compute wrong derivatives [44] and 
knowledge on the mathematical structure behind them should thus be 

Fig. 9. Algorithmic derivative of the edep with respect to the absorber thickness 
𝑎 (top) and gap thickness 𝑔 (bottom).

included into the AD implementation. For the remainder of this study, 
however, we disable MSC in the simulation, and leave the development 
of an AD-friendly MSC model to further research.

Disabling MSC leads to low variance and bias for pathwise 
derivatives. The middle plot of Fig. 8 shows the averaged result of 24 M 
AD runs at 𝑒 = 10 GeV with MSC disabled in the simulation. Addition
ally, 24 M primal runs without MSC at 𝑒 = 9.9 GeV and 𝑒 = 10.1 GeV
were conducted to compute a central difference quotient (DQ) that ap
proximates the large-scale slope (𝔼 edep𝑖(𝑒))′. Both plots match very 
well. Thus, disabling multiple scattering is the key algorithmic change 
that allows us to obtain algorithmic derivatives with a sufficiently low 
variance and an expected value close to the numerical derivatives. Er
ror bars in Fig. 8 indicate plus/minus one standard deviation of the 
derivative approximation; it should be noted that the error bars of the 
difference quotient approximation are very tight because it is evaluated 
on a rather large interval (|||±0.1 GeV10 GeV

||| = 1%), and that they do not include 
any numerical truncation error.

The bias with respect to difference quotients is around 5%. The 
bottom plot of Fig. 8 has been created with 864 M samples to decrease 
the stochastic error, and a more narrow interval 9.995. . . 10.005 GeV for 
the difference quotient to decrease the numerical truncation error, again 
with MSC disabled. We observe a statistically highly significant but low 
deviation of the mean pathwise derivative approximating 𝔼(edep′

𝑖
) from 

the difference quotients approximating (𝔼 edep𝑖)′. Except for the first 
and last few layers, the relative error of the derivatives is around 5%.

Similar observations can be made for derivatives w. r. t. layer 
thicknesses. Fig. 9 shows that algorithmic derivatives of the energy 
deposition with respect to the absorber and gap thicknesses as well have 
a sufficiently low variance and bias (w. r. t. difference quotients) when 
MSC is turned off.

Algorithmic and numeric derivatives deviate much more for in
dividual edep mechanisms. While the mean pathwise derivatives of 
the total energy depositions edep𝑖 are close to the large-scale derivatives 
approximated by difference quotients, as described above, this does not 
hold on the level of individual mechanisms to register energy deposition 
in the simulation code.

We have used Fig. 4 to illustrate that most of the energy deposition 
comes from continuous energy loss, followed by the binding energy of 
photoelectrons. In fact, G4HepEm registers continuous energy loss at 
two main places in the code: As a side action next to another physical 
process or a change of volumes in the geometry (indicated in yellow) 
and as the sole action if it uses up all the remaining kinetic energy of 
the particle (indicated in gray). Fig. 10 shows the derivatives of these 
three terms, with respect to the primary energy 𝑒 again. Interestingly, 
algorithmic and numeric derivatives do not match.
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Fig. 10. Breakdown of 𝜕 edep𝑖∕𝜕 𝑒 into the dominating energy deposition mech
anisms.

To understand the algorithmic derivatives of the two energy loss con
tributions, let us imagine that the incoming electron in Fig. 3 had an 
ifinitesimally higher initial kinetic energy. This would allow the pri
mary and the secondary electrons to travel ifinitesimally further before 
they stop, making the gray segments longer and their energy deposi
tion higher. Thus, this mechanism contributes most to the algorithmic 
derivative of the energy deposition.

Regarding the difference quotients, we have to imagine a small but 
non-infinitesimal increase in the initial kinetic energy. As before, gray 
segments become longer, but one of the secondary electrons may now 
have enough energy to reach the next layer, and the energy loss would 
become a side action. Therefore, difference quotients mainly see an in
crease in energy loss that does not stop the particle.

We should note that the distinction between the two mechanisms to 
register continuous energy loss comes from modeling and coding consid
erations and is not rooted in physics. Our observation that algorithmic 
and numerical derivatives deviate heavily for the two individual mech
anisms, even though they approximately match for the sum, shows that 
care should be taken to only declare physically meaningful data as AD 
outputs.

Concerning the deposition of binding energies in photoelectric effect 
events, difference quotients register an increase that could be caused by 
more events taking place, and/or an increasing probability of elements 
with higher binding energies to be selected as the ionized atom from the 
material. Both types of dependencies have the structure of 𝑓2 in Fig. 1, 
and are thus not seen by pathwise algorithmic derivatives, which are 
therefore zero. This illustrates that we cannot expect pathwise deriva
tives to perfectly match the numerical derivatives. Note that the order 
of magnitude of the missing photoelectric binding energy part of 𝜕 edep

𝜕 𝑒 
(around 10−3, as displayed in the bottom plot of Fig. 10), is similar to 
the error of 𝜕 edep

𝑒 itself (displayed in Fig. 8). However, the binding en
ergy is not the only source of error, as the latter is positive for some 
layers and negative for other layers.

Table 2
Runtime (in seconds) and memory (in MB) required to simulate 
10 000 electron events for 𝑒 = 5,10,20GeV. In comparison, the 
run-times of forward-mode AD using the exploratory AD tool De
rivgrind (section 3.1) for 100 electron events are 61 s / 114 s / 
218 s, corresponding to a slow-down of the primal simulation by 
a factor of around 70.
Primary 5GeV 10GeV 20GeV

energy time mem. time mem. time mem. 
primal 84 5.7 163 5.6 320 5.7 
forward 147 5.9 287 5.9 558 5.9 
mode (×1.8) (×1.8) (×1.7) 
reverse 452 111 867 195 1662 284 
mode (×5.4) (×5.3) (×5.2) 

Performance Measurements. Table 2 shows the runtime and mem
ory consumption of a HepEmShow simulation of 10 000 electrons, in 
terms of user time and maximum resident set size measured on an ex
clusive 2.6 GHz Intel Xeon Gold 6126 node at the Elwetritsch cluster of 
the University of Kaiserslautern-Landau.

Forward-mode and reverse-mode AD using CoDiPack slow down the 
program by factors of around 1.8 and 5.4, respectively.

Memory consumption increased slightly in the forward mode be
cause CoDiPack’s forward-mode type has twice the size of a double. 
In the reverse mode, the tape occupies a significant but perfectly man
ageable amount of memory, which grows with the primary energy.

4.3. Optimization using averages of pathwise derivatives

This section deals with an application of pathwise algorithmic 
derivatives for gradient-based optimization.

The gradient descent algorithm attempts to find the minimizer 𝜃∗ ∈ℝ𝑛

of a loss function 𝐿 ∶ ℝ𝑛 → ℝ, starting from an initial guess 𝜃(0) ∈ ℝ𝑛, 
by iteratively computing better and better ``candidate minimizers'' 𝜃(1) , 
𝜃(2), . . . via

𝜃
(𝑘+1)
𝑗

= 𝜃
(𝑘)
𝑗

− 𝑑
(𝑘)
𝑗

⋅ 𝜕𝐿 
𝜕𝜃𝑗

(𝜃(𝑘)). (12)

The factors 𝑑(𝑘)
𝑗

are called step-sizes or learning rates, and may be fixed 
or computed adaptively. When stochastic estimates are used instead of 
the actual gradient, the scheme is known as stochastic gradient descent
(SGD). In machine learning, stochastic estimates of loss function gra
dients typically result from computing the loss on a randomly selected 
subset of the training data instead of the entire data. In our case, out
puts of the MC simulation, and hence their derivatives, are stochastic 
already by definition. Deviations of the estimated derivatives from the 
true values steer the optimizer into a less ideal direction, but it can still 
arrive at the minimum, maybe with a larger number of steps.

Automated Design of Scientific Instruments. To demonstrate that 
the stochastic and biased pathwise AD gradient estimator can indeed be 
useful for optimization, we have designed the following simple parame
ter identfication problem. The parameters in Table 1 have been used to 
simulate a target edep distribution edep𝑖 across the layers 𝑖 = 0,… ,49
of the calorimeter, shown in Fig. 4. From this target edep distribution, 
we wish to infer 𝑒∗ = 10 GeV and 𝑎∗ = 2.3 mm, assuming that we only 
know the other parameters in Table 1. The task of identifying a primary 
energy value 𝑒∗ that leads to a prescribed energy deposition curve is 
a model problem for applications where the position of physical inter
actions should be controlled, e.g. for experiment design or in radiation 
therapy planning. Derivatives with respect to a geometric parameter 𝑎∗
could be useful for detector optimization problems.

To identify 𝑒∗ and 𝑎∗, we have to search for the minimizer of the loss 
function 𝐿 given by the squared error of the resulting edep distribution,
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Fig. 11. Reconstruction of the values of primary energy and absorber thickness 
that lead to a given energy deposition prfile in a sampling calorimeter, using 
the gradient descent optimizer with algorithmic derivatives of the shower sim
ulation.

𝐿(𝑒, 𝑎) =
49 ∑
𝑖=0 

(
edep𝑖(𝑒, 𝑎) − edep𝑖(𝑒∗, 𝑎∗)

)2
. (13)

Fig. 11 shows 16 paths of the stochastic gradient descent scheme 
across the loss landscape of 𝐿. We have chosen a step-size of 1 for 𝑒 and 
10−7 mm2MeV−2 for 𝑎 to account for their different units and orders 
of magnitude, and estimate the gradient using 1 k events in each step, 
for 350 steps. Starting from 𝑒(0) = 22 GeV and 𝑎(0) = 3 mm, the SGD op
timizer robustly converges to the minimizer (𝑒∗, 𝑎∗). There is room for 
further investigation of optimal choices of such hyperparameters; e.g., 
the optimization succeeds even with only 100 events per step.

5. Conclusion and outlook

Conclusion. In this work, we have successfully applied AD to 
a Monte-Carlo simulation of electromagnetic showers in a sampling 
calorimeter, in order to compute pathwise derivatives of the energy de
positions with respect to the energy of the primary particles and the 
thicknesses of the layers. The simulation models all the relevant physics 
processes, while the detector geometry has been kept rather simple. 
Applying AD to the code without any algorithmic changes led to algo
rithmic derivatives of very high variance, but the only problem seems to 
be that black-box pathwise AD is not the right tool to differentiate the 
algorithm used to model multiple scattering in G4HepEm. With multiple 
scattering disabled, variances of algorithmic derivatives are sufficiently 
low and their means are close to the (numerical) derivatives of the av
erage energy depositions, with a deviation of about 5%. Errors of this 
magnitude may be perfectly acceptable when the derivatives are used 
for gradient-based optimization, as demonstrated by a simple parameter 
identfication study.

Outlook. In order to scale our encouraging result to the full gener
ality of Geant4, we propose the following next steps:

• It could be worthwhile to apply a high-performance AD tool to the 
Geant4 codebase, in order to try to reproduce the findings of our 
present work with Geant4’s G4HepEm physics process. This would 
allow to see if Geant4’s very general implementation of geometry is 
an obstacle for AD, and if not, allow to consider many different de
tector layouts. Subsequently, Geant4’s G4HepEm physics process 
could be replaced by the native Geant4 electromagnetic physics 
processes. We have reported encouraging preliminary results in a 
preprint [45].

• Additional efforts should be dedicated to analyze and mitigate the 
incompatibility of AD with multiple scattering, potentially by cre
ating an AD-friendly MSC model.

• One could then enable uniform and non-uniform electromagnetic 
fields in the simulation to check their compatibility with AD.

• To conclude physics generalizations, it would be interesting to in
clude other particles and, in particular, enable hadronic processes.

• At some point, it may become necessary to go beyond mean path
wise derivatives, and employ and improve differentiable and prob
abilistic programming tooling to account for discrete randomness; 
e.g. following the approaches of StochasticAD [29] or DiscoGrad 
[33].

• In particular, systematic efforts should be dedicated to source trans
formation AD tools to enable the above worflows.

• Once any pre- and postprocessing software is differentiated as well, 
algorithmic derivatives can be used to efficiently optimize actual 
experiment designs in their planning phase.
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