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ABSTRACT

Among the well-known methods to approximate derivatives of expectancies computed by Monte-Carlo simu-
lations, averages of pathwise derivatives are often the easiest one to apply. Computing them via algorithmic
differentiation typically does not require major manual analysis and rewriting of the code, even for very com-
plex programs like simulations of particle-detector interactions in high-energy physics. However, the pathwise
derivative estimator can be biased if there are discontinuities in the program, which may diminish its value for
applications.

This work integrates algorithmic differentiation into the electromagnetic shower simulation code HepEmShow
based on G4HepEm, allowing us to study how well pathwise derivatives approximate derivatives of energy de-
positions in a sampling calorimeter with respect to parameters of the beam and geometry. We found that when
multiple scattering is disabled in the simulation, means of pathwise derivatives converge quickly to their expected
values, and these are close to the actual derivatives of the energy deposition. Additionally, we demonstrate the
applicability of this novel gradient estimator for stochastic gradient-based optimization in a model example.

1. Introduction

Monte-Carlo simulations. Monte-Carlo (MC) simulations are a pop-

in Geant4) that returns independent random numbers uniformly dis-
tributed on the interval [0, 1], like numpy . random. rand in Python or
(double) rand () /RAND MAX in C. We may think of Q as the set of
sequences of random numbers.

ular method to model processes that involve stochasticity; for instance,
the Geant4 toolkit [1-3] is widely used to simulate the passage of par-
ticles through matter. Unlike deterministic simulations, the output data
y €Y cR™ of MC simulations does not only depend on the input data
0 € ® c R", but also on random numbers supplied by a pseudo-random
number generator (RNG). We can think of MC simulations as functions

f:OXQ->Y,0,0)~y @)

with an additional argument w from a probability space Q with a prob-
ability measure P. For simplicity, we assume in the following that
the RNG defines only a single stochastic primitive called flat () (as

* The review of this paper was arranged by Prof. David W. Walker.
* Corresponding author.

Usually, the function f is evaluated many times; a common quantity
of interest for a MC simulation is the expected value of the output for a
given input 6,

Ef :=E,f(0,0)= / f0,0)dP(w), (2)
which can be estimated by averaging over N independent random sam-

ples,

fi= 10,00 )]
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The choice of N must balance the required run-time, which grows lin-
early with N, with the standard deviation of f, which is proportional
to N~1/2,

Algorithmic Differentiation. Sometimes, users of (for now, deter-
ministic) computer simulations are not primarily interested in the output
y at a specific input value 6, but rather wish to identify optimal inputs
0 € ©® c R” that maximize or minimize a scalar output y. For example,
0 might be a set of parameters to be tuned in order to minimize the de-
viation y between model predictions and observed data; closely related,
0 might contain the weights of a neutral network and y be the training
error. As another example, § might be a set of design parameters and y
a utility function to be improved, see e.g. the work of Albring et al. [4]
who optimized the shape of an airfoil to reduce the drag computed by
a computational fluid dynamics simulation.

To employ gradient-based optimization methods like gradient descent
or BFGS [5], it is necessary to be able to evaluate gradients dy/d6. Be-
sides, the derivative dy/0d6 characterizes the sensitivity of y with respect
to changes in 6, and can thus be useful for uncertainty quantification.
When the function 6 — y is given by computer code, the gradient dy/060
of a computer-implemented deterministic function can often be obtained
efficiently and accurately by algorithmic differentiation (AD) [6], a set of
techniques based on the chain rule and the well-known derivatives of
the elementary operations performed by the computer program while
evaluating 6 — y.

Specifically, the forward mode of AD with a single scalar input § € R
(i.e. n =1) keeps track of the dot value ¢ = dq/00 whenever an inter-
mediate variable ¢ is computed by the program; for example, the primal
operation g = ¢q; - ¢, is augmented with the AD logic ¢ =¢; - ¢, + ¢ - ¢5.
Optimization applications favor the reverse mode of AD because, unlike
the forward mode of AD and unlike difference quotients, it provides
the entire gradient of a scalar output y € R (i.e. m = 1) with respect to
many inputs § € R” in a run-time independent from n, however at the
expense of a higher memory consumption; we refer to the textbook by
Griewank and Walther [6] for details. On the implementation side, there
are several mechanisms for AD tools to detect real arithmetic in an ex-
isting primal program and to augment them with AD logic; for instance,
operator-overloading tools provide a custom floating-point datatype with
arithmetic operators and math functions overloads, to be used instead of
the built-in floating-point types like double in C++. In contrast, source
transformation tools operate on the program as a whole. While they are
usually more difficult to implement and may only support a subset of the
language, having access to the entire program allows for more advanced
performance optimizations.

AD for MC Simulations. Typically, AD tools recognize and differen-
tiate the basic operations +, —, - and / and related operators like +=, as
well as simple math functions like \/— , exp, sin, etc. Higher-level math-
ematical constructs often need manual treatment; while it is usually
straightforward to inform AD with analytical derivatives of, e.g., solu-
tions of linear systems [7] and the dominating eigenvalue of a matrix
[81], computing the derivative of an expected value of a MC simulation,

r._ 0 d
ESf) = FY [E, /(6. 0)] = Y] [/ f(G,w)dP(w)] , C)]

poses a rather difficult but very important challenge across application
domains.

In quantitative finance, certain derivatives of e.g. expected option
prices are called “Greeks” and define strategies to hedge risks [9]. Differ-
entiable rendering allows to reconstruct three-dimensional scenes from
images [10-14]. In reinforcement learning, policy gradients can be used
for training [15]. In many of the aforementioned application areas of
gradient-based optimization using deterministic AD, it is natural to add
stochasticity to the differentiated code, leading to e.g. stochastic neu-
ral networks [16] including VAEs [17] and GANs [18]. See [19] for a
review of Monte Carlo gradient estimation in machine learning.

The present work is a study on applying AD in the realm of high-
energy physics (HEP), where gradient-based optimization is explored
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as a way to enhance the design of future particle detectors [20,21] or
reconstruct properties of detected particles [22,23], and gradients of
stochastic programs could help performing Bayesian inference of param-
eters of the standard model [24]. The Geant4 toolkit for the simulation
of the passage of particles through matter [1-3] is widely used across
many HEP-related application areas, from the planning of detectors at
the LHC to radiation safety in space to medical physics.

As a step to explore ways to create a differentiated version of Geant4,
in this study, we differentiate a more compact but algorithmically sim-
ilar MC code composed of G4HepEm [25] and HepEmShow [26,27].
We are interested in derivatives of the expected value of energy deposi-
tion of electromagnetic showers in a simple sampling calorimeter, with
respect to parameters of the geometry and the incoming particles.

A natural first step to approach (4) is to form the pathwise derivative
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by applying AD to the MC simulation f in a way that, with regard to
differentiation, treats random numbers like constants. This has been
accomplished for Geant4 in principle, without focus on performance
though and only simulating a single particle to demonstrate technical
feasibility [21]. The second step then is to estimate the expected value
of the pathwise derivative,

B i=E, [ 20, ©

by averaging it over Ny independent random samples,

7=t ~}Viﬁ[£f(0,w(i))]. @)
Nag = oo

However, the expected pathwise derivative E(f") matches the sought
derivative (Ef) of the expected value only under certain assumptions
on f. A well-known corollary of Lebesgue’s dominated convergence
theorem [28, Theorem A.5.3] states that (Ef) = E(f') if f(0, w) is con-
tinuously differentiable in 6 and |%| < B(w) for an integrable random
variable B : Q — R. Fig. 1 gives an example of such a function

1, rw)<0.6

f10,0) = { 2. rw)> 06 } +0 - (d + sin(8zr(w))) (€))

with (Ef,) = E(f 1’ ) = d, where r(w) is a random variable uniformly
distributed on [0, 1].
In general, E(f’) and (Ef)’ can take different values. For the function

1, rlw)<06—-d-6
0 = 9
f2(8, ) {2, ) 06—d -0 9

in Fig. 1, we can analytically see that
E,f,0.0)=0.6—-d-0)-1+(04+d-0)-2=14+d-60
0
ey [Epf2(0,0)] =d,

but the pathwise derivative % f2(0,w) is zero for almost all w. Only
for the zero-probability set of @ with r(w) =0.6 —d - 0, f,(0,) has a
jump at 6. This jump makes (E f)’ non-zero but does not affect E(f’).
An estimator like /7, whose expected value does not match the target
value (Ef)’, is called biased.

Non-trivial MC simulations usually contain control flow constructs
like if and while, whose (discrete and hence non-differentiable) con-
dition depends on both the AD inputs 6 and the randomness w, so their
pathwise derivative estimators are generally biased. Accordingly, sev-
eral approaches to create unbiased estimates for derivatives of expected
values of MC simulations have been proposed in the literature; see e.g.
references [29,30,13], or Kagan and Heinrich [31] for a first analysis of
some of these methods in HEP.

The reparametrization trick [17] refers to implementing parametric
random distributions as differentiable expressions of the parameters and
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double f_1(double theta){

3 double r = flat();
\/‘\/ double offset = theta *
21 N T (d+sin (8*pix*r));
> if(r<0.6){
1W | return 1.0+offset;
} else {
0 return 2.0+offset;
w e 3
¥
3 double f_2(double theta){
double r = flat();
2] if (r<0.6-d*theta){
= return 1.0;
1 i } else {
return 2.0;
}
0
weN b
— f(0,w) — f(0+db,w)
— f(0+2d0,w) F(0+3d0,w)

Fig. 1. Different mechanisms for Monte-Carlo simulations to combine input
parameters and randomness. The RNG primitive flat () yields independent
random numbers uniformly distributed on [0, 1]; this is how the second argu-
ment o in (1) comes in. Around 6 = 0, both functions have E_ f;(6,w)=d - 6.
Top: The pathwise derivative is distributed around the mean d. Bottom: The
pathwise derivative is zero almost everywhere, and undefined at a single point
where f jumps.

non-parametric random numbers. For instance, a random number uni-
formly distributed on [0, 8] (with 0 < 6 < 1, say) would be implemented
as 0 - £lat () rather than, e.g., rejection-sampling £lat () repeatedly
until it yields a number in [0, #]. This makes the differentiable depen-
dency between the sampled random numbers and the parameters visible
to the mean pathwise derivative E(f’). For elementary parametric dis-
tributions like normal distributions, MC simulations in HEP often follow
the reparametrization trick by default. However, MC simulations then
usually continue to process them using non-differentiable operations
(like f, in Fig. 1), to which the reparametrization trick cannot be ap-
plied in general.

Christodoulou and Naumann [32] and Kreikemeyer and Andelfin-
ger [33] have presented frameworks to smoothen control-flow-induced
discontinuities by interpolating between the outputs of all the relevant
control-flow branches. Applying this approach to a particle simulation
is a promising future research direction, but may come with large run-
times due to the very high number of control-flow branches encountered
in a particle simulation.

As a well-known alternative or addition to pathwise derivatives, the
likelihood ratio or score function method [34,35] proposes to compute a
term

dlog(p(6, w)) 52(0.0)
E, |55 /(0.0)| =E, m-f(e,w) . (10

This term accounts for the part of the derivative of E f related to a dif-
ferentiable change of the probability p(6, w) that discrete random events
(e.g. whether an if or else branch is taken) turn out in the way they
do when f(8,®) is computed. As such, (10) should be added to E(f).
Indeed, for the function f, in Fig. 1, the bracketed expression in (10)
evaluates to [% - 1.0] when the if branch is taken (60 % probability)

and to [& - 2.0] when the else branch is taken (40 % probability),
giving an expected value of d. However, we were only able to determine
the values of the probabilities p = 0.6,0.4 in the denominators, and their
derivatives 2 = —d,d in the numerators, because the condition of the

06
if statement is very simple.
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Fig. 2. Geometric structure of the sampling calorimeter. Figure courtesy of
Novék et al. [26,27].

In the case of MC particle simulations, it is unclear how to deter-
mine p, because these simulations typically implement stochasticity by
combining several random numbers and variables depending on the AD
input 6, in non-linear ways. Additionally, the term (10) tends to have a
high variance [36].

The stochastic AD method by Arya et al. [29] integrates certain kinds
of discrete randomness into pathwise derivatives. For each intermedi-
ate value appearing in the MC program, this method keeps track of an
alternative value that could have been attained with different random
outcomes, and the derivative of the probability of such an outcome with
respect to the AD input. While we consider it an interesting and promis-
ing approach, it appears not to be easily applicable to a MC particle
simulation, because if statements and discrete randomness originating
from comparisons of continuous random values are not yet supported.

Instead of trying to create an unbiased estimator for (Ef)’, in this
work, we analyze the biased estimator f7 for a MC code with full electro-
magnetic physics coverage but simple geometry. It turns out that when
a single physics process called multiple scattering is disabled in our setup,
the variance of f’ is sufficiently low to obtain reliable estimates (7) of
E(f”) for moderate Ny, and E(f”) deviates from a difference quotient
approximation of (Ef)’ only by a few percent. A bias of this magni-
tude can be perfectly acceptable as the derivatives only serve as a tool
to guide optimization algorithms (and are not physical quantities that
have to match measurements).

Section 2 gives an overview on the simulated hardware setup and
the MC code, which we differentiated following the methodology de-
scribed in Section 3. We then report on the stochastic noise of the MC
code (Section 4.1), the variance and bias of the pathwise algorithmic
derivative estimators (Section 4.2), and a simple demonstrator using
these estimators for gradient-based optimization (Section 4.3), closing
with conclusions and an outlook in Section 5.

2. Simulation of electromagnetic showers in a sampling
calorimeter

2.1. Detector geometry

Fig. 2 shows the simple detector geometry used in this study. The de-
tector hardware is a stack of »; identical pairs of absorber and gap layers,
each with a thickness of a and g (respectively) and transversal dimen-
sions d, X d,. The two types of layer are each made from homogeneous
material; in particular, material properties are piecewise constant and
change only at well-known two-dimensional volume boundaries. This
assumption on the detector geometry is also made by Geant4 and is
usually satisfied in practice. Primary particles arrive centered and or-
thogonally with an initial kinetic energy e.

A default set of values for these parameters is specified in Table 1.
The setup was created by Novak et al. [26,27] and is based on Geant4’s
TestEm3 test case; however, the absorber material is lead tungstate
(PbWO,) instead of elementary lead (Pb), as a mixture of different atoms
makes the test case more general. In this study, the primary energy e and
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Table 1
Parameters of the simple sampling calorimeter geometry dis-
played in Fig. 2.

Parameter Symbol  Arg. Default value
Kinetic energy of primaries e -e 10000 MeV
Thickness of absorber layers  a -a 2.3 mm
Thickness of gap layers g -g 5.7mm
Transversal dimension d, -t 400 mm
Number of layers m -1 50
Type of primary particles -p electrons
Absorber material (JS,ON) PbWO,
file
Gap material (J;iN) liquid Ar
layer 1 layer 2
abs gap abs. gap

Fig. 3. Sketch of a very small shower consisting of electrons (lines) and photons
(wiggly lines). Colors indicate different mechanisms leading to energy deposi-
tion in layer 1. (For interpretation of the colors in the figure(s), the reader is
referred to the web version of this article.)

the layer thicknesses a and g will be considered as AD inputs 6, and all
other parameters are considered constant.

2.2. Electromagnetic showers

Electrons, positrons and photons interact with the surrounding mat-
ter through various physical processes: ionization, bremsstrahlung, an-
nihilation, pair production, the photoelectric effect, Compton scattering,
etc. These processes happen at discrete points in time and can result in
a loss of kinetic energy, change of momentum, deposition of energy
in the surrounding matter, and/or creation of secondary particles. The
interaction rates/cross-sections for these processes and their possible out-
comes depend on the type and kinetic energy of the particle, and the
material composition of the surrounding matter. Except for rare lepto-
and photo-nuclear interactions that are neglected in the following, sec-
ondary particles are either electrons, positrons and photons. Secondary
particles themselves interact with the surrounding matter, forming an
electromagnetic shower.

A very small shower is sketched in Fig. 3. The brown circle indicates
the emission of a photoelectron, depositing the K-shell binding energy
of the ionized atom in the first gap layer. When electrons have lost all
their kinetic energy, they stop and become part of the surrounding ma-
terial (indicated by a gray background). Some of the aforementioned
processes produce low-energetic particles very frequently; such interac-
tions are usually modeled by a continuous energy loss along the entire
path of the particle with a deterministic mean (yellow and gray back-
ground) and stochastic fluctuations. Very small but frequent changes
of the momentum (multiple scattering, MSC) can be modeled by discrete
changes of position and momentum, but this is not shown in Fig. 3.

The AD outputs f(6,®) analyzed in this study are given by the en-
ergy depositions edep; (0, ) in the layers i =1, ...,50. Fig. 4 shows that
disabling MSC (and energy loss fluctuations) has only a small effect on
the energy depositions in our setup (as the dashed and thick lines are
close to each other). The energy depositions without MSC and fluctu-
ations are represented in Fig. 4 as a sum of the energy deposited by
the continuous energy loss of electrons and positrons (sum of yellow
and gray), and the much smaller binding energies that photoelectrons
leave behind (brown); other energy deposition mechanisms are mostly
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T T T T T T

T T
—— --- with MSC, fluc.

E 300 — no MSC, fluc.
Z > ~ -

- 200 energy loss of electrons/
- positrons without stopping

gf 100 *

) 0SSt
bS] 0 o elactees |
‘ ‘ ‘ ‘ p‘hotﬁo-el?(‘,w‘bindiug energy ‘

15 20 25 30 35 40 45 50
layer index

Fig. 4. HepEmShow-simulated average energy depositions in the 50 layers for
e=10GeV, a = 2.3mm, g =5.7mm, with multiple scattering and energy loss
fluctuations enabled (dashed line) or disabled (thick line) in the simulation. A
breakdown of the energy deposition without MSC and fluctuations into the main
energy deposition mechanisms is also shown (yellow, gray, brown).

Listing 1: Conceptual structure of a particle simulation.

for eventin 1,...,N:
create primary particle and push to stack
while stack not empty:
pop particle from stack
while particle not stopped:
determine pathlength to next discrete physics process

or hit of volume boundary
‘ move particle accordingly
‘ account for effects of physics processes (e. g. momentum
\ change, energy deposition, secondary particles pushed
‘ onto the stack, stopping or annihilation of particle)

event loop
stacking loop
stepping loop

irrelevant in our setup. The plotted data were obtained with a particle
simulation, as detailed in the next section.

2.3. Particle simulations

Simulations of electromagnetic showers in material arrangements
like the sampling calorimeter of section 2.1 can be thought of as a set
of nested loops, as illustrated in Listing 1. Every iteration of the outer-
most event loop is concerned with a new primary particle, and contains a
stacking loop that iterates over all particles in the resulting shower. Con-
ceptually, each iteration of the innermost stepping loop determines the
remaining pathlength until either a volume boundary is hit or a discrete
physics process happens, and then moves the particle accordingly and
accounts for any effects of physics processes. This is opposed to the parti-
cle simulator model studied by Kagan and Heinrich [31], which models
material characteristics as a continuously changing three-dimensional
field without explicit knowledge on the locations of volume boundaries.

The Geant4 toolkit [1-3] covers a wide set of particles and pro-
cesses, and has a very general way to handle geometry; accordingly,
it is a very complex software project with around one million lines of
code, mostly written in C++. The G4HepEm toolkit [25] isolates much
of Geant4’s models of physics processes in electromagnetic showers; e.g.,
G4HepEm’s run-time functionality includes sampling of the distance
to the next discrete interaction and sampling of interaction outcomes.
On the one hand, G4HepEm can be used inside of Geant4 as an al-
ternative to Geant4’s native implementation of electromagnetic physics
processes. Once the relevant material data (such as cross-sections) and
other information have been pre-computed into a JSON file using sep-
arate initialization-time functionality of G4HepEm based on Geant4,
G4HepEm'’s run-time functionality can also be used independently from
Geant4, as a very compact standalone library for research and devel-
opment activities in the field of HEP simulations. The HepEmShow
package [26,27] consists of two applications: A data generation program
using G4HepEm’s initialization-time functionality and Geant4 to create
the JSON file, and the main simulation that implements event, stacking
and stepping loops in the sampling calorimeter setup described above
(section 2.1), using physics information solely from G4HepEm’s run-
time functionality. HepEmShow’s energy deposition results, represented
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by the dashed line in Fig. 4, are in excellent agreement with Geant4-
G4HepEm’s [27].

2.4. Contributions and limitations

In this work, we differentiate the standalone run-time part of the
G4HepEm toolkit and the HepEmShow simulation application. After
disabling MSC in the simulation, we successfully validate our mean path-
wise derivative estimator against difference quotients, observing only a
small bias. To our knowledge, this is the first time that AD has been
successfully applied to a full-fledged HEP simulation. Furthermore, we
demonstrate the usefulness of these derivatives in a simple gradient-
based optimization study.

While this is a major step on the way towards a differentiated Geant4-
scale particle simulator, our setup makes the following key simplifica-
tions:

- As further detailed in section 4, we have to disable MSC in the simu-
lation. Fig. 4 shows that this causes a minor change in the deposited
energies in the simple sampling calorimeter setup considered by us,
but it can potentially become more important for other use cases of
Geant4.

HepEmShow is made for one particular parametric geometry
(Fig. 2) whereas Geant4 has a very general and flexible implemen-
tation of geometry.

External electromagnetic fields, which exert forces on charged par-
ticles, are not available in HepEmShow but are fully supported in
Geant4.

HepEmShow is only meant for simulating electromagnetic show-
ers consisting of electrons, positrons and photons, whereas Geant4
supports all particles relevant in HEP, and many models for physics
processes across wide energy ranges.

The present study is concerned with a limited set of AD inputs and
outputs, whereas Geant4 users have very broad access to parame-
ters and output data.

3. Pathwise algorithmic differentiation

The HepEmShow/G4HepEm simulation code computes the averaged
per-layer energy depositions edep; (i =1,...,50) from the input data in
Table 1, notably the primary energy e, absorber thickness a and gap
thickness g. We have applied AD to the simulation program in order to
compute averaged per-layer derivatives

dedep; dedep; dedep;

de ' oda ° adg
To this end, we first applied the machine-code-based AD tool Derivgrind
in a black-box fashion (Section 3.1). After first promising observations,
we switched to the operator-overloading AD tool CoDiPack (Section 3.2)
with a MC-specific tape size reduction technique to reduce memory us-
age in the reverse mode (Section 3.3).

3.1. Machine-code-based differentiation using derivgrind

Derivgrind [37] inserts AD logic into the machine code of the pro-
gram to be differentiated. Therefore, only very little modification of the
source code of G4HepEm and HepEmShow is required. Naturally, we
had to change a few lines to indicate AD inputs (e, a, g) and outputs
(edep;) and to output the derivatives. In addition, a few G4HepEm-
defined math functions like G4Log were replaced with their standard
library counterparts (e.g. std::log), as their implementations per-
form real arithmetic via bit-wise manipulations of floating-point data
in a way that might not be correctly understood by AD tools [21]. Af-
ter exploratory experiments with Derivgrind’s forward mode showed
encouraging results, we decided to invest the time to apply an operator-
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number of  primary energy in MeV
events value dot value

\ {
$ ./HepEmShow —n\SOOO -e 10000:1.0
-a QT.3 -g 5.\7 -S 1234\RNG

. . seed
absorber thick-gap thick-
Ness 111 mi ness 11 min

$ cat edeps
4.801 27.30 -0.0001313 7.130e-05
8.884 112.6 0.0002098 7.650e-05

«— layer 1
— layer 2

293.5 92016.1 0.02713 0.1247 — layer 17

68.79 5636.2 0.006464 0.3673

I |

average ede average edep
value in Me dot value

— layer 50

Fig. 5. User interface of the differentiated HepEmShow application in the for-
ward mode. Dot values of inputs are specified in the command line interface
(here, shown for -e). Dot values of outputs are written to a file edeps.

overloading AD tool that offers much higher performance (see Table 2
for a comparison of run-times).

3.2. Operator-overloading differentiation using CoDiPack

Results presented in the remainder of this study were obtained by
the operator-overloading AD tool CoDiPack [38]. In the shape of a
C++ header, CoDiPack defines AD types that behave very similar to the
built-in C++ floating-point types like double, but augment all real-
arithmetic operations with AD logic. For maximal flexibility, we re-
placed most occurrences of double in the source codes of G4HepEm
and HepEmShow with a type alias G4double, which we can set to dou-
ble, codi: :RealForward and codi: :RealReverse to build non-
AD, forward-mode and reverse-mode variants, respectively. The code is
available at

https://github.com/SciCompKL/g4hepem/

https://github.com/SciCompKL/hepemshow/
No type exchange has been performed

« in the data generation part of HepEmShow producing the JSON file
(containing pre-computed material data etc.), to avoid having to
differentiate Geant4;

+ in the JSON I/0 library [39] used by the standalone part of
G4HepEm - instead, conversions between doubles in the library
and G4doubles in G4HepEm have been added to the interface; and

« for variables declared as constexpr, as they must have a literal
type according to the C++ standards but the CoDiPack types are not
literal.

In addition to the replacements of G4HepEm-defined math functions
(Section 3.1), some manual refactoring of the source code was necessary
around uses of the ? :-operator and implicit casts to integers.

We have extended HepEmShow’s I/O to allow the user to specify
the AD inputs and outputs. As shown in Fig. 5, in the forward mode, the
user can supply dot values of the primary energy e, absorber thickness a,
and gap thickness g and access dot values of the average edeps. Reverse-
mode HepEmShow requires an additional command-line argument -b
with the adjoint values of the mean edeps in all layers, separated by
colons, and output the adjoint values of e, a and g in a file.

For other variables used by HepEmShow, adding them as AD inputs
and outputs would likely be straightforward. However, as we have not
differentiated the initialization-time functionality (which uses Geant4),
it is not possible at the moment to declare Geant4-internal data (e.g.
cross-section tables) as AD inputs.


https://github.com/SciCompKL/g4hepem/
https://github.com/SciCompKL/hepemshow/
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Fig. 6. Dependency of the simulated mean energy deposition in layer 17 on the
primary energy e. For every point in this plot, N = 100 events were simulated
using the same random seed. Fig. 7 zooms into this plot to see if these “noisy”
functions are differentiable and if their derivatives match the large-scale slope
of 0.025.

3.3. Reduction of the tape size

In the reverse mode of AD, operator-overloading AD tools record a
tape data structure storing the real-arithmetic evaluation graph from the
inputs to the outputs. For long-running programs, the tape size might
exceed the amount of available memory. In our case, the recording of a
single event loop iteration occupies roughly around 250 MB of memory
on the tape (measured for e = 10GeV, a =2.3mm, g = 5.7mm). As all
event loop iterations run independently from each other, only a single
iteration must be stored at a time, and the corresponding section of the
tape can be evaluated and cleared at the end of each iteration to limit
the tape size [40].

As source transformation tools have access to the entire source code
of the function to be differentiated, they can generally use smaller tapes
and apply more advanced code optimizations. As it is possible to compile
the HepEmShow simulation and its G4HepEm dependency in a single
translation unit, it would be worthwhile to investigate how compiler-
based source transformation AD tools such as Clad [41] perform on the
code base.

4. Results
4.1. Stochastic noise with and without multiple scattering

We first take a look at how the energy deposition depends on the
primary particle energy e without AD, in order to be able to explain our

findings with AD in the next section 4.2.
Large scale. Fig. 6 shows the simulated mean energy deposition

in layer 17, edep;;, averaged over N = 100 events per run, as a func-
tion of primary particle energy e. Each of the 4001 data points between
e =8000MeV and 12000 MeV was produced by a separate run of Hep-
EmShow, always using the same initial random seed. The experiment
has been conducted with the full set of electromagnetic processes avail-
able in G4HepEm (red), and with a simplified setup that had MSC and
energy loss fluctuations disabled (blue).

The number of N =100 simulated events for Fig. 6 is very small,
so the standard deviation of the mean (3) is rather large, causing the
clearly visible stochastic noise. This is expected: If e is perturbed even
very slightly, the control flow in the simulator is likely to change at
some point, making a different number of calls to the RNG and thus
leaving it in a different state for the subsequent execution, which is
therefore entirely uncorrelated even though the same RNG seed has been
used initially [42]. Choosing a higher N reduces the amplitude of the
stochastic noise, but does not eliminate it.

Despite the noise, Fig. 6 shows a clear large-scale trend, with
edep,;(e) rising, in both setups, approximately linearly by 100 MeV
over the entire range of e spanning 4000 MeV. Thus, the derivative
(Eedep;;)’ of the expected energy deposition at e = 10000 MeV can be
estimated as

100 MeV

—— =0.025. 11
4000 MeV 0.025 an

(Eedep;) := % [E,edep;s(e, )] ~
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Fig. 7. Zoom into Fig. 6, showing a much smaller range of e. Again, each
point represents a HepEmShow simulation of N = 100 events, always using
the same random seed. The energy deposition computed with the full set of
physics processes still appears noisy (top). With multiple scattering and energy
loss fluctuations disabled, however, the averaged energy deposition is a piece-
wise differentiable function of the primary energy, and its derivative (i.e. the
slope of the segments) approximately matches the large-scale slope.

This large-scale slope is what is relevant for e.g. optimization purposes,
so this is what we want to compute. For validation purposes, we approx-
imate the large-scale derivative using difference quotients similar to the
right-hand side of (11), taking care that a sufficiently large number of
events is simulated as difference quotients are poorly conditioned.

When we apply AD to a code computing edep,;, we obtain the

floating-point accurate, local slope edep'17 of the algorithm implemented
in the code. To read this local slope from the plot, we have to zoom in.

Small scale. Fig. 7 shows edep;;(e) plotted over a much more nar-
row interval, again using the same seed for all runs of HepEmShow. For
the full physics setup, we observe the same noisy behavior (top figure),
even if we zoomed in further. With MSC and energy loss fluctuations
turned off, however, the function is clearly piecewise differentiable (bot-
tom figure). This qualitative difference is very important for AD, as it
allows us to confirm that the slopes of the differentiable segments (which
is what pathwise AD computes) are close to the large-scale slope of about
0.025 as determined in (11) which we want to compute. There is still
more than one jump per keV on the horizontal axis, due to discrete
randomness and decorrelating RNG states as mentioned above. These
jumps are much larger in magnitude than the differentiable evolution
in between, and they are responsible for the noise visible in Fig. 6. How-
ever, the differentiable evolution in between the jumps already accounts
for (approximately) the entire large-scale evolution.

In fact, it is not necessary to disable energy loss fluctuations; a plot in
the style of Fig. 7, with only multiple scattering turned off, has more dis-
continuities but still clearly visible increasing differentiable segments.

Summary. The qualitative analysis conducted in this section for a
single layer indicates that after disabling MSC, there is only a small
difference between

+ the large-scale derivative (E edep;;)’ required for applications and
approximated by difference quotients, and

« the local derivative edep’17, computed by AD without special care
for randomness (thus treating random numbers as constants), which
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Fig. 8. Algorithmic derivative of the mean edep in the calorimeter layers with
respect to the primary energy e (blue), and the corresponding difference quo-
tients (black). Error bars indicate 68 %-confidence intervals (i.e. plus/minus one
standard deviation). Top: Default configuration of G4HepEm with all physics
processes, means over 24 M events. Middle: All physics processes except for
multiple scattering, means over 24 M events. Bottom: 864 M simulated events
to reduce the stochastic error, and a smaller interval for the difference quotient
to reduce the truncation error.

approximates [IE(edep’17) in the limit of many simulated events
(Ngige — o0) by the strong law of large numbers.

In the next section 4.2, we study this hypothesis quantitatively and in
more generality, looking at algorithmic derivatives of energy deposi-
tions in all layers with respect to e, g and g.

4.2. Variance and bias of pathwise algorithmic derivatives

In this section, we collect results obtained with our CoDiPack-
differentiated version of HepEmShow/G4HepEm (sections 3.2, 3.3).

Pathwise derivatives of the full simulation code including MSC
are noisy. Fig. 8 shows the mean pathwise forward-mode algorith-
mic derivative of the simulated energy deposition edep;(e) in all the
calorimeter layers i =0, ...,49, with respect to the initial kinetic energy
e of the primary particles, at e = 10GeV. For the top plot, 24 M events
were simulated using the full list of physics processes. Mean pathwise

derivatives edepl'.(e) of the code seem to have a very large variance and
deviate by orders of magnitudes from the value of 0.025 suggested by
(11). Averaging over many more events might reduce noise, but as the
number of events would need to rise by a factor of 10'? to bring a stan-
dard deviation of the order of 10* down to the order of 1072, this is not
feasible in practice.

It should be noted that this observation does not imply that the phys-
ical phenomenon of MSC itself would be inherently non-differentiable.
We can only infer that G4HepEm’s algorithm implementing the Urban
MSC model [43] has noisy algorithmic derivatives. This could be re-
lated to the often-heard statement that “black-box” differentiation of
iterative numerical algorithms may compute wrong derivatives [44] and
knowledge on the mathematical structure behind them should thus be
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Fig. 9. Algorithmic derivative of the edep with respect to the absorber thickness
a (top) and gap thickness g (bottom).

included into the AD implementation. For the remainder of this study,
however, we disable MSC in the simulation, and leave the development
of an AD-friendly MSC model to further research.

Disabling MSC leads to low variance and bias for pathwise
derivatives. The middle plot of Fig. 8 shows the averaged result of 24 M
AD runs at e = 10GeV with MSC disabled in the simulation. Addition-
ally, 24 M primal runs without MSC at e = 9.9GeV and e = 10.1 GeV
were conducted to compute a central difference quotient (DQ) that ap-
proximates the large-scale slope (Eedep;(e))’. Both plots match very
well. Thus, disabling multiple scattering is the key algorithmic change
that allows us to obtain algorithmic derivatives with a sufficiently low
variance and an expected value close to the numerical derivatives. Er-
ror bars in Fig. 8 indicate plus/minus one standard deviation of the
derivative approximation; it should be noted that the error bars of the
difference quotient approximation are very tight because it is evaluated
on a rather large interval (| iloleGe;V = 1%), and that they do not include
any numerical truncation error.

The bias with respect to difference quotients is around 5%. The
bottom plot of Fig. 8 has been created with 864 M samples to decrease
the stochastic error, and a more narrow interval 9.995...10.005 GeV for
the difference quotient to decrease the numerical truncation error, again
with MSC disabled. We observe a statistically highly significant but low
deviation of the mean pathwise derivative approximating [E(edep; ) from
the difference quotients approximating (E edep;)’. Except for the first
and last few layers, the relative error of the derivatives is around 5 %.

Similar observations can be made for derivatives w. r. t. layer
thicknesses. Fig. 9 shows that algorithmic derivatives of the energy
deposition with respect to the absorber and gap thicknesses as well have
a sufficiently low variance and bias (w. r. t. difference quotients) when
MSC is turned off.

Algorithmic and numeric derivatives deviate much more for in-
dividual edep mechanisms. While the mean pathwise derivatives of
the total energy depositions edep; are close to the large-scale derivatives
approximated by difference quotients, as described above, this does not
hold on the level of individual mechanisms to register energy deposition
in the simulation code.

We have used Fig. 4 to illustrate that most of the energy deposition
comes from continuous energy loss, followed by the binding energy of
photoelectrons. In fact, G4HepEm registers continuous energy loss at
two main places in the code: As a side action next to another physical
process or a change of volumes in the geometry (indicated in yellow)
and as the sole action if it uses up all the remaining kinetic energy of
the particle (indicated in gray). Fig. 10 shows the derivatives of these
three terms, with respect to the primary energy e again. Interestingly,
algorithmic and numeric derivatives do not match.
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Fig. 10. Breakdown of d edep, /0 e into the dominating energy deposition mech-
anisms.

To understand the algorithmic derivatives of the two energy loss con-
tributions, let us imagine that the incoming electron in Fig. 3 had an
infinitesimally higher initial kinetic energy. This would allow the pri-
mary and the secondary electrons to travel infinitesimally further before
they stop, making the gray segments longer and their energy deposi-
tion higher. Thus, this mechanism contributes most to the algorithmic
derivative of the energy deposition.

Regarding the difference quotients, we have to imagine a small but
non-infinitesimal increase in the initial kinetic energy. As before, gray
segments become longer, but one of the secondary electrons may now
have enough energy to reach the next layer, and the energy loss would
become a side action. Therefore, difference quotients mainly see an in-
crease in energy loss that does not stop the particle.

We should note that the distinction between the two mechanisms to
register continuous energy loss comes from modeling and coding consid-
erations and is not rooted in physics. Our observation that algorithmic
and numerical derivatives deviate heavily for the two individual mech-
anisms, even though they approximately match for the sum, shows that
care should be taken to only declare physically meaningful data as AD
outputs.

Concerning the deposition of binding energies in photoelectric effect
events, difference quotients register an increase that could be caused by
more events taking place, and/or an increasing probability of elements
with higher binding energies to be selected as the ionized atom from the
material. Both types of dependencies have the structure of f, in Fig. 1,
and are thus not seen by pathwise algorithmic derivatives, which are
therefore zero. This illustrates that we cannot expect pathwise deriva-
tives to perfectly match the numerical derivatives. Note that the order
of magnitude of the missing photoelectric binding energy part of %
(around 1073, as displayed in the bottom plot of Fig. 10), is similar to

the error of 224 jtgelf (displayed in Fig. 8). However, the binding en-

e
ergy is not the only source of error, as the latter is positive for some
layers and negative for other layers.
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Table 2

Runtime (in seconds) and memory (in MB) required to simulate

10 000 electron events for e = 5,10,20GeV. In comparison, the
run-times of forward-mode AD using the exploratory AD tool De-
rivgrind (section 3.1) for 100 electron events are 61s / 114s /
218 s, corresponding to a slow-down of the primal simulation by

a factor of around 70.

Primary  5GeV 10GeV 20GeV

energy time mem. time mem. time mem.
primal 84 5.7 163 5.6 320 5.7
forward 147 5.9 287 5.9 558 5.9
mode (x1.8) (x1.8) (xX1.7)

reverse 452 111 867 195 1662 284
mode (X5.4) (x5.3) (x5.2)

Performance Measurements. Table 2 shows the runtime and mem-
ory consumption of a HepEmShow simulation of 10 000 electrons, in
terms of user time and maximum resident set size measured on an ex-
clusive 2.6 GHz Intel Xeon Gold 6126 node at the Elwetritsch cluster of
the University of Kaiserslautern-Landau.

Forward-mode and reverse-mode AD using CoDiPack slow down the
program by factors of around 1.8 and 5.4, respectively.

Memory consumption increased slightly in the forward mode be-
cause CoDiPack’s forward-mode type has twice the size of a double.
In the reverse mode, the tape occupies a significant but perfectly man-
ageable amount of memory, which grows with the primary energy.

4.3. Optimization using averages of pathwise derivatives

This section deals with an application of pathwise algorithmic
derivatives for gradient-based optimization.

The gradient descent algorithm attempts to find the minimizer 6* € R”
of a loss function L : R" — R, starting from an initial guess 8 € R”,
by iteratively computing better and better “candidate minimizers” 81,
0@, .. . via

(k+1) _ p(k) _ () OL (k)
6'1. —Oj dj aaj(e ). 12)

The factors d* are called step-sizes or learning rates, and may be fixed
or computed adaptively. When stochastic estimates are used instead of
the actual gradient, the scheme is known as stochastic gradient descent
(SGD). In machine learning, stochastic estimates of loss function gra-
dients typically result from computing the loss on a randomly selected
subset of the training data instead of the entire data. In our case, out-
puts of the MC simulation, and hence their derivatives, are stochastic
already by definition. Deviations of the estimated derivatives from the
true values steer the optimizer into a less ideal direction, but it can still
arrive at the minimum, maybe with a larger number of steps.

Automated Design of Scientific Instruments. To demonstrate that
the stochastic and biased pathwise AD gradient estimator can indeed be
useful for optimization, we have designed the following simple parame-
ter identification problem. The parameters in Table 1 have been used to
simulate a target edep distribution edep; across the layers i =0, ...,49
of the calorimeter, shown in Fig. 4. From this target edep distribution,
we wish to infer e* = 10GeV and ¢* = 2.3 mm, assuming that we only
know the other parameters in Table 1. The task of identifying a primary
energy value e* that leads to a prescribed energy deposition curve is
a model problem for applications where the position of physical inter-
actions should be controlled, e.g. for experiment design or in radiation
therapy planning. Derivatives with respect to a geometric parameter a*
could be useful for detector optimization problems.

To identify e* and a*, we have to search for the minimizer of the loss
function L given by the squared error of the resulting edep distribution,
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Fig. 11 shows 16 paths of the stochastic gradient descent scheme
across the loss landscape of L. We have chosen a step-size of 1 for e and
10~7mm2MeV~2 for a to account for their different units and orders
of magnitude, and estimate the gradient using 1 k events in each step,
for 350 steps. Starting from e(® =22 GeV and ¢© = 3 mm, the SGD op-
timizer robustly converges to the minimizer (e*, a*). There is room for
further investigation of optimal choices of such hyperparameters; e.g.,
the optimization succeeds even with only 100 events per step.

5. Conclusion and outlook

Conclusion. In this work, we have successfully applied AD to
a Monte-Carlo simulation of electromagnetic showers in a sampling
calorimeter, in order to compute pathwise derivatives of the energy de-
positions with respect to the energy of the primary particles and the
thicknesses of the layers. The simulation models all the relevant physics
processes, while the detector geometry has been kept rather simple.
Applying AD to the code without any algorithmic changes led to algo-
rithmic derivatives of very high variance, but the only problem seems to
be that black-box pathwise AD is not the right tool to differentiate the
algorithm used to model multiple scattering in G4HepEm. With multiple
scattering disabled, variances of algorithmic derivatives are sufficiently
low and their means are close to the (numerical) derivatives of the av-
erage energy depositions, with a deviation of about 5 %. Errors of this
magnitude may be perfectly acceptable when the derivatives are used
for gradient-based optimization, as demonstrated by a simple parameter
identification study.

Outlook. In order to scale our encouraging result to the full gener-
ality of Geant4, we propose the following next steps:

« It could be worthwhile to apply a high-performance AD tool to the
Geant4 codebase, in order to try to reproduce the findings of our
present work with Geant4’s G4HepEm physics process. This would
allow to see if Geant4’s very general implementation of geometry is
an obstacle for AD, and if not, allow to consider many different de-
tector layouts. Subsequently, Geant4’s G4HepEm physics process
could be replaced by the native Geant4 electromagnetic physics
processes. We have reported encouraging preliminary results in a
preprint [45].

Additional efforts should be dedicated to analyze and mitigate the
incompatibility of AD with multiple scattering, potentially by cre-
ating an AD-friendly MSC model.

One could then enable uniform and non-uniform electromagnetic
fields in the simulation to check their compatibility with AD.

To conclude physics generalizations, it would be interesting to in-
clude other particles and, in particular, enable hadronic processes.
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+ At some point, it may become necessary to go beyond mean path-
wise derivatives, and employ and improve differentiable and prob-
abilistic programming tooling to account for discrete randomness;
e.g. following the approaches of StochasticAD [29] or DiscoGrad
[33].

In particular, systematic efforts should be dedicated to source trans-
formation AD tools to enable the above workflows.

Once any pre- and postprocessing software is differentiated as well,
algorithmic derivatives can be used to efficiently optimize actual
experiment designs in their planning phase.
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