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A B S T R A C T

Phenological indices are an effective approach for assessing spatial and temporal patterns and variability in plant 
development. The Spring Indices (SI-x), two widely adopted phenological indices, have been used in recent 
decades to predict development of woody plants, and document changes in spring growth timing, especially in 
North America. However, these two indices (Leaf and Bloom) capture only two “moments” in the continuum of 
spring when quantities of thermal or photo/thermal energy, associated with seasonal events in plants, are 
accumulated, limiting their utility to characterize the remainder of the spring season. Further, the Spring Indices 
do not account for intraspecific variation, limiting their ability to reflect non-cloned plant development. To 
address these shortcomings, we developed a novel suite of phenological indices that encompass a broader span of 
the spring season. These indices were constructed using observations contributed to the USA National Phenology 
Network’s Nature’s Notebook platform across many non-cloned tree and shrub species’ ranges, thereby incor
porating differing regional responses within species due to genetic variations.

Individual species model predictions of leaf or bloom timing exhibited an average mean absolute error of 8.55 
days; most were improved by the inclusion of site-specific latitude, elevation, or 30-year average temperature. 
Leaf and bloom model outputs for individual species across the spring season were temporally aggregated into 
four leaf and bloom groups to produce a suite of Spring Development Indices (SDI). Accuracy of the SDI pre
dictions was 0.89 days lower, on average, than the species models, but 2.65 days better than SI-x. Generally, all 
SDIs were highly correlated. The SDIs exhibiting the most difference from the others were Early leaf, Very Early 
bloom, and Late bloom. As such, these SDIs provide novel insights, beyond SI-x, into the relative timing of spring- 
season “moments” across species in space and time.

1. Introduction

Phenology, the timing of seasonal developmental phases of plants 
and animals as driven by environmental factors, plays a major role in 
governing nutrient cycling, species interactions, and ecosystem services. 
The timing of seasonal events in plants and animals also affects organ
ismal growth, performance, and fitness (Chuine and Régnière 2017). 
Accordingly, phenological models, which predict the timing of seasonal 
events such as leaf and bloom in plants, and egg hatch and adult 
emergence in insects, have become increasingly useful in applications 

such as scheduling pest and invasive species treatment, predicting 
development in agricultural species, and in modeling population dy
namics (e.g., Adole et al., 2019; Crimmins et al. 2020; Park et al. 2019; 
Roslin et al. 2021; Taylor and White 2020).

A strength of phenological models is that they can be used to predict 
the timing of seasonal activity or a seasonal transition in a selected or
ganism at any location and any time (present, past, or future) for which 
environmental variable data are available. As such, phenological models 
can also be used to evaluate changes in phenology—or when particular 
conditions associated with particular biological events are 
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reached—driven by changing climate conditions (e.g., Blümel and 
Chmielewski 2012; Chuine et al. 1999; Črepinšek et al. 2006; Hänninen 
1990; Masle et al. 1989).

Most phenological models predict the timing of a single seasonal 
event, or phenophase, in a single species. However, a handful of 
phenological indices exist, which strive to predict the timing of a com
munity- or ecosystem-level phenomenon (e.g., Jolly et al. 2005). The 
Spring Indices are a widely implemented set of phenology indices in the 
United States. The original Spring Indices (SI-o) were developed using 
observations of leafing and blooming in cloned lilac and honeysuckle 
plants, and incorporated chilling requirements (Ault et al. 2015a; 
Schwartz et al. 2006, 2012). Schwartz et al. (2013a) removed the 
chilling requirement, demonstrating that the “extended” models (SI-x) 
were equally valid, and able to be calculated across the entire conter
minous USA. The Spring Indices have been used to reveal past variations 
in the timing of spring growth (Schwartz 1994, 1998; Schwartz and 
Reiter 2000; Schwartz et al. 2006), document changes in spring 
phenology for horticulturally relevant woody perennials in the north
eastern U.S. (Wolfe et al. 2005), suggest potential advancements of 
spring onset timing for temperature-sensitive plants under future 
climate change scenarios (Li et al. 2023), and explore “false spring” 
frequency in the 21st century under projected climate change (Allstadt 
et al. 2015).

Two distinct indices comprise the Spring Indices: a Leaf Index and a 
Bloom Index. The Leaf Index reflects the average date leaves first emerge 
on the three plant species (two honeysuckles and a lilac), and the Bloom 
Index indicates the average date blooming begins in these plants. The 
output of each index is the day of year that a particular set of environ
mental conditions are reached. As such, each index can be viewed as 
reflecting a particular “moment” in the continuous progression of the 
spring season, related to when a quantity of thermal or photo/thermal 
energy accumulates to a fixed threshold. An even simpler example of a 
“moment” in spring is a particular number of growing degree-hours 
accumulated following a fixed start date.

The “moments” in the progression of the spring season captured by 
the Spring Leaf and Bloom Indices can be used to infer when other early- 
season species undergo seasonal events. The Spring Indices have proven 
capable of predicting leaf emergence and bloom with reasonable accu
racy for temperature-responsive early season trees and shrubs (Gerst 
et al. 2020; Schwartz et al. 2006; Schwartz et al. 2013a). However, these 
indices are based on only three genetically identical, or cloned, plant 
species. Natural (i.e., not cloned) species often exhibit varying responses 
to environmental variables across their ranges due to genetic variation, 
something that SI-x does not address (Liang and Schwartz 2014; Liang 
2019). Further, SI-x represents only two discrete moments that occur 
relatively early in the continuous progression of the spring season. And 
while these indices can be useful for indicating whether these early 
moments in spring are being reached earlier or later than normal in a 
given year, they offer only limited information regarding how the rest of 
the season may play out for other species undergoing leaf-out and bloom 
later in the season. As Crimmins and Crimmins (2019) have demon
strated, an early start to the season does not necessarily indicate a 
continuation of early activity throughout the season. To more fully 
characterize plant activity over the course of the spring season, and 
whether conditions associated with activity in plants are being reached 
earlier or later than average in a particular year, additional indices that 
use many species to encompass more of the spring season are needed.

In this study, we develop a new suite of phenological indices 
distributed temporally across the entirety of the spring season, using 
observations of natural (not cloned) plants. We follow the general 
approach undertaken in the development of SI-x, of first developing 
models predicting leaf budbreak and open flowers for individual species 
and then aggregating these models into synthetic indices. Indices 
represent when quantities of thermal or photo/thermal energy are 
accumulated to fixed thresholds that reflect conditions associated with a 
group of plants undergoing seasonal events at approximately the same 

time. Our approach to developing indices is comparable to an estab
lished technique referred to as a “phenological calendar” (Henniges 
et al. 2005; Nekovar et al. 2008). In that technique a small number of 
events like “breaking leaf buds” and “open flowers” are tracked for 
multiple species from the earliest to the latest part of the spring season. 
Rather than using additional phenological events such as fruit devel
opment and ripening within these same species to constitute the “pro
gression” of spring, this approach uses the differing timing of the same 
events for a larger pool of species. Thus, phenological calendars can 
establish the typical timing of spring plant development across the 
spring season calendar (and be sensitive to any changes), by employing 
observations of multiple species. Therefore, our new indices will 
encompass more of the span of time that comprises the spring calendar 
season. As such, these new indices will expand our ability to track 
annual spring development across a wider variety of species and eco
systems in North America and contribute to better understanding of the 
variable influences of climate change on spring plant growth.

2. Data and methodology

2.1. Data

In this study, we utilize observations of leaf and bloom activity 
contributed across the United States to the USA National Phenology 
Network’s Nature’s Notebook platform. These phenological observations 
are collected by professional and volunteer observers (Rosemartin et al. 
2018) following robust, scientifically vetted observation protocols 
(Denny and Crimmins 2023; Denny et al. 2014). Presently, 1458 species 
of plants are available for monitoring through Nature’s Notebook; 
approximately 40 % of these are deciduous trees and shrubs (USA-NPN 
2024).

An overview of the data screening steps, and model construction 
process are diagramed in Fig. 1. Status observations of “breaking leaf 
buds” (leaf, USA-NPN Phenophase 371, referred to going forward as 
“leaf”) and “open flowers” (bloom, USA-NPN Phenophase 501, referred 
to going forward as “bloom”), over 2010–2021 were acquired from the 
USA National Phenology Network (USA-NPN, Schwartz et al. 2012; 
USA-NPN 2022). Notably, phenological data collected by the USA Na
tional Ecological Observation Network (NEON) sites are incorporated 
into the USA-NPN database (Elmendorf et al. 2016). We took three steps 
to improve the quality of the data used. First, all records were removed 
where a report of “yes” to “breaking leaf buds” or “open flowers” was not 
preceded by a "no" report in the preceding 14 days. Second, we removed 
observations with conflicting phenological status reports for the same 
individual plant on the same day and sites exhibiting >5 % of obser
vations in conflict. Lastly, we removed observations of leaf or bloom that 
occurred after day-of-year 200 (mid-summer, ~July 19) and those 
which belonged to non-woody species. We next took four steps (see 
Fig. 1) to improve the likelihood that each leaf or bloom species data set 
would be large and spatially distributed to support development of a 
model to be applied continent-wide. In this process we removed species 
with any of the following: 1) fewer than 100 total observations; 2) ob
servations at fewer than 10 sites; 3) observations spread over a total area 
of <100,000 km2; or 4) observations confined to a single climate region 
(Fig. 2a). After these filters, we retained 46 species with leaf data and 41 
species with bloom data (Fig 2a). Since leaf and bloom models for spe
cies were developed independently it was not necessary to have both 
leaf and bloom data for individual species.

For each observation location and date, we downloaded 4 km 
Parameter-elevation Regressions on Independent Slopes Model (PRISM) 
gridded daily weather datasets (Daly et al. 2008; Daly et al. 2021; PRISM 
Climate Group 2023; Stoklosa et al. 2015) over 1991–2022 for the 
following variables: mean, minimum, and maximum daily air temper
ature, minimum and maximum vapor pressure deficit, daily precipita
tion, and elevation. We used this longer time period (32 years compared 
to only 12 years of phenological data) to allow projection of our model 
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Fig. 1. Flow diagram of the species selection and construction processes for each final leaf or bloom species model (henceforth termed Species x phenophase models).
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results over the entire current standard 30-year climatological time 
period, as well as to the most recent PRISM data available. Daylength 
(photoperiod) was calculated for each day and location as a function of 
latitude and day of year (DOY), following Forsythe et al.’s (1995)
method. For purposes of validation and comparison, we also down
loaded the following gridded data sets (4km) from the USA-NPN Geo
server: extended Spring Indices – First Bloom (Using PRISM Data; 
USA-NPN 2023a) and extended Spring Indices – First Leaf (Using PRISM 
Data; USA-NPN 2023b) for the period Jan. 1, 1991, to Dec. 31, 2022.

2.2. Methodology

2.2.1. Species × phenophase model selection
We first randomly split our leaf and bloom data into training (60 %) 

and validation (40 %) datasets, which is a standard practice for model 
development (Joseph 2022). We then fitted the data to one of the four 
simplest model types available in the phenor package (Hufkens et al. 
2018) for R (R Core Team 2022): thermal time (TT), sequential (SQ), 
photothermal time (PTT), and M1 photothermal time (M1). These model 
types are well understood and tested, and all their parameters can be 
generated from daily maximum-minimum temperature and daylength 
data. The thermal time model calculated each phenophase occurrence as 
the day-of-year when the accumulated growing degree hours (Ault et al. 
2015b) reached a function-specific threshold (Réaumur 1735; Wang 

1960). The sequential model had a chilling requirement (accumulated 
chill units) that must be met before growing degree hours could begin to 
accumulate. Once growing degree hours began accumulating the phe
nophase date was considered the day-of-year when the function-specific 
threshold was met (Hänninen 1990; Kramer 1994). The photothermal 
time model resembled the thermal time model except growing degree 
hours were moderated by the fraction of daylight hours (Črepinšek et al. 
2006; Masle et al. 1989). The M1 photothermal time model was like the 
photothermal time model except the daylight parameter was one-tenth 
of the daylight hours raised to a function-specific parameter (Blümel 
and Chmielewski 2012). We chose to use phenor as it incorporates a 
generalized annealing process to optimize model type and parameter 
selection.

We next determined the best model for each species × phenophase 
(one with lowest mean absolute prediction error) and derived the cor
responding optimal parameters for that model using phenor. The pa
rameters optimized were the day when heat accumulation began (t0; 
days since Oct. 1), base temperature for growing degree hour calculation 
(Tbase in ◦C), day when chill unit accumulation began (t0, chill; days since 
Oct. 1), minimum, optimum, and maximum temperatures for plant 
growth (Tmin, Topt, and Tmax respectively, all in ◦C), required chill units 
to break dormancy (Creq in chill units), and power for daylight param
eter in the M1 photothermal model (f). It is worth noting that in our 
early experiments with phenor we discovered that if the start date of 

Fig. 2. Location of USA-NPN observation sites and the National Centers for Environmental Information (NCEI) Climate Regions of the conterminous USA, where the 
regions are Northwest (NW), West (W), West North Central (WNC), Southwest (SW), East North Central (ENC), Central (C), South (S), Northeast (NE), and Southeast 
(SE) (panel 2a). Number of leaf (yellow) and bloom (purple) observations available per year (panel 2b). Number of species available per year per lifeform type 
(Govaerts et al. 2021; Plants of the World Online 2023): tree (green), tree or shrub (dark yellow), shrub (dark blue) (panel 2c). Number of observation sites per year 
per climate region (panel 2d), with colors as in panel 2a.
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thermal accumulation was allowed to vary, the optimization process 
would often place it after the occurrence of some early phenophases. 
This reduced overall prediction error but excluded those events from 
consideration in model construction. To avoid this issue, we decided to 
use a fixed thermal accumulation start date of December 1st (t0 = 62) for 
all models which was early enough to ensure no phenophase data were 
excluded across the conterminous USA (CONUS) for any species. Next, 
using the selected model type equation and optimized parameters for 
each species × phenophase we calculated the accumulated thermal 
forcing as defined by Basler (2016), on the day of the phenophase, for 
every location and year (Fig. 1).

The Spring Indices (SI-x) form for each species × phenophase 
equation was then derived (Ault et al. 2015a,b; Schwartz 1990; 
Schwartz et al. 2006; Schwartz et al. 2013a) to make predictions and 
evaluate model errors. This involved using accumulated thermal forcing 
(Sfrc) as the independent variable, and phenophase (T) days since Oct. 1 
as the dependent variable in a simple linear regression: 

1000
T

= α + β
Sfrc

T
, (1) 

Where 1000 is an arbitrary constant (Ault et al. 2015b) and α and β are 
regression coefficients. Once the regression coefficients were calculated, 
the equation was rearranged to estimate daily thermal forcing (Ĉ) as: 

Ĉ(t) = αt + β
Sfrc

T
t, (2) 

Where t is the current number of days since Oct. 1. The estimated 
number of days since Oct. 1 for the phenophase (Sp; model prediction) 
was then defined as the number of days since Oct. 1 when the cumula
tive thermal forcing exceeded 1000: 

Sp =

{
t,

undefined,

∑

t=0
Ĉ(t) ≥ 1000

otherwise
(3) 

Finally, we converted the days from days since Oct. 1 (used in phe
nor) to days since Jan. 1 (DOY) to get the calendar dates for the phe
nophases. We used the SI-x framework because it offered several useful 
features. First, unlike conventional regression, it allowed day-of-year 
dates to be used directly as dependent variables at locations across 
large areas with different phenological dates, but the same expected 
independent variable accumulations (in this case 1000). Second, it 
provided more precision when calculating model error (mean absolute 
error, MAE and mean bias error, MBE) over the conventional regression 
approach (such as used in phenor). Conventional regression evaluates 
error by using accumulated independent variable values all at the time 
of each individual phenophase date (dependent variable) to produce 
predictions. In contrast, the SI-x framework (moving forward from the 
start date, see Eq. (2) above) more realistically incorporates new inde
pendent variable value accumulations each day, until the model pre
diction time is reached. Thus, predictions are determined without 
directly involving phenophase dates, and model errors calculated using 
independent variable (accumulated thermal forcing) values on the 
actual day of each prediction, rather than only at all the phenophase 
times (Ault et al. 2015b; Schwartz 1997; Schwartz et al. 2013a). The 
models produced to this point are called “basic”, as they use the same 
model form, parameters, and regression coefficients for all locations 
across the entire CONUS (Fig. 1).

We were interested in testing for variations in the most accurate 
species model forms and parameters that could be developed for 
different regions across the CONUS. To evaluate this influence of ge
ography on model accuracy we created two additional SI-form model 
types for each species × phenophase: “split” models and “spatially 
adjusted” models. The split model procedure divided the CONUS into 
multiple regions, but then used the same model form, parameters, and 
regression coefficients for all locations within each region. The process 

involved prior to estimating parameters in phenor, spliting the CONUS- 
wide datasets into regions based on the following observation site spe
cific variables: 30-year mean (1991–2020) annual site temperature 
(MAT), and site latitude (LAT). We use both two (MAT2; MAT < 13∘C 
and MAT ≥ 13∘C) and three (MAT3; MAT < 10∘C, 10∘C ≤ MAT ≤ 16∘C, 
MAT > 16∘C) groups for MAT and two (LAT2; LAT < 40∘ N and 
LAT ≥ 40∘ N) and four (LAT4; LAT ≤ 32∘ N, 32∘ N < LAT ≤ 37∘ N, 
37∘ N < LAT ≤ 42∘ N, LAT > 42∘ N) groups for LAT. We then derived 
the optimal parameter types for the regression models from phenor, as 
before, for each region and then created the corresponding SI-x model 
forms (Fig. 1).

For the spatially adjusted models, we used 30-year mean 
(1991–2020) annual site temperature (MAT), site latitude (LAT), and 
site elevation (ELEV). We first calculated bias (B) and then related it to 
one of the site variables (X) through a second regression: 

B = γ + δX, (4) 

where γ and δ are regression coefficients. Once the regression co
efficients were calculated, we calculated the final phenophase date as 
follows: 

Ŝp = Sp − B̂ (5) 

where B̂ is the estimated bias after correction. The spatially adjusted 
approach allowed the basic (CONUS-wide) and split (regional groups) 
models output to be improved by spatial corrections to all the point 
locations. This yielded 20 SI-form models for each phenor model type, 
phenophase, and species.

To test the capability of each model to produce CONUS-wide output 
we first resampled the long-term annual average (1991–2022) PRISM 
raster data sets through bilinear interpolation to a coarser resolution of 
15 km. We then used each model to estimate the long-term annual 
average phenophase date for each grid point as well as the mean phe
nophase date for the entire CONUS and discarded all models that had 
any grid points with undefined phenophase dates. We also discarded any 
model that had any parameters that were not significant (α>0.05). 
Model selection was based on lowest mean absolute error (MAE), which 
is well regarded for its ability to comparatively assess model perfor
mance (Willmott and Matsuura 2005; Willmott et al., 2017).

From this point, we began the selection process with only the basic 
and split model versions for each species x phenophase (Fig. 1). We then 
grouped the uncorrected SI-form models by species, phenological event, 
and model group and selected the model with the lowest MAE.

Next, we estimated the phenophase date for each validation dataset 
for each model (averaging together results for the split model types 
across all regions) and determined MAE for each model’s entire vali
dation dataset. Fig. 3 shows the latitude zones across the conterminous 
USA (Fig. 3a) as a visual example of the accuracy of a model split by 
latitude for red maple (Acer rubrum; Figs. 3b-c). Finally, we selected the 
model with the lowest MAE from among the basic model, MAT split 
models, and LAT split models for each species × phenophase. To help 
ensure that adding additional complexity to the models improved them, 
we required that the split models show reduced MAE, over the basic 
model, by at least a half day (Fig. 1). If the split models performed worse 
or reduced the MAE by less than this, we selected the basic model, 
otherwise we selected the best split model. Next, we considered the 
spatially adjusted models and compared their MAEs to the best model 
chosen in the previous step. As before, if the spatial adjustment process 
improved the MAE by at least half a day we selected the best spatially 
adjusted model, otherwise we stuck with the previously selected base or 
split model (Fig. 1). As a last step, we felt it necessary to place an upper 
limit on the MAE and MBE thresholds, so as to not retain models with 
excessive errors. Given the scarcity of comparable continental-wide 
modeling studies, there is no consensus on the level of acceptable 
model error at this scale. So based on the MAE and MBE distributions of 
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our selected species x phenophase model, and previous modeling 
experience in the development of SI, we arbitrarily removed any models 
with either an MAE greater than 14 days or mean bias error (MBE) less 
than −3.5 days or greater than 3.5 days. This yielded 24 leaf models and 
27 final bloom models for use in the development of indices.

2.2.2. Indices construction
The process used to build our new indices is shown in Fig. 4. We used 

partitioning about medoids (PAM) clustering (Kaufman and Rousseeuw 
1990), to create temporal clusters for the candidate leaf and bloom 
models: very early, early, middle, and late, and the “elbow” or 
within-sums-of-squares (WSS) method (Thorndike 1953) to choose the 
number of clusters (4). This approach allows the clusters to be evenly 
spread across the temporal range of species x phenophase model out
puts, and provide maximum spring coverage. As a final cluster selection 
criterion, we first performed Pearson’s correlation among all the mean 
annual phenophase x species dates over the entire CONUS between 1991 
and 2022 within clusters and each average cluster date. In order to 
reduce internal dissimilarities, we removed any phenophase x species 
models from each cluster that had a correlation to the cluster average 
value of <0.9. This resulted in a final set of leaf models for 21 species 
and bloom models for 20 species. As with SI-x, we defined our new 
indices, named Spring Development Indices (SDIs), as the multi-species 
mean model date for each cluster of models (Schwartz 1997). For 
example, if one index was comprised of five species models then the 

index date would be the average of the five individual model dates.

2.2.3. Spring development indices performance, separability tests, and trend 
analyses

Given the lack of comparable continental scale models for compar
ison, we opted to evaluate SDI performance by comparing them to both 
their component species × phenophase model predictions and as 
spatially corresponding values of the two SI-x indices. We first reused 
the averaged 15 km yearly species × phenophase model dates for the 
entire CONUS over 1991–2022. We then collected the modeled dates for 
every species belonging to the same cluster at the same location and year 
and calculated the SDI date as the mean of all index member model dates 
for that location and year. Next, we calculated the SI-x indices DOY 
value for the same phenophase, location, and time. We then compared 
the species x phenophase model, SI-x, and SDI values (as predictions), to 
the available actual species x phenophase values (all species did not 
have data at all locations) and calculated initial MAE and MBE values.

While the species x phenophase models were calibrated directly by 
the multiple regression, and therefore average values were estimated 
based on species-level data, average values for the SI-x and SDI indices 
were based on multi-species mean dates for model clusters; therefore, 
temporal biases needed to be corrected prior to direct comparison of 
these outputs. This correction was accomplished by subtracting the 
calculated original overall average bias error from the original indi
vidual SI-x and SDI predictions at each location and year over the entire 

Fig. 3. Panel (a) shows the latitude zones and station locations within the conterminous USA. Predicted versus observed bloom dates are shown for the high latitude 
zone (LAT ≥ 40◦ N, panel b), and low latitude zone (LAT < 40◦ N, panel c), for Acer rubrum bloom models.
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CONUS and then recalculating the mean absolute error. These error 
comparisons were completed for the entire CONUS, as well as within 
each of the nine climate regions (Fig. 2a). Additionally, we calculated 
the CONUS-wide and regional (for each of the nine climate regions) 
mean annual phenophase dates for each index (SDI and SI-x) for each 
year over the comparison/evaluation period (1991–2022).

Our initial comparisons showed that all ten indices (eight SDI + two 
SI-x) were moderately to highly correlated. We wanted to determine 
which of these indices were the most different from the others, given 
that the use of such a large number presents computation issues, as well 
as likely less useful duplication. Thus, we undertook an ad hoc combi
nation of three exploratory analyses to better understand and discern the 
separability and degree of independence of the ten indices. First, we 
visually examined the correlation matrices for the ten indices across the 
entire CONUS and in each of the nine climate regions. Second, we used 
principal component analysis (PCA) to probe the indices interrelation
ships, again for the entire CONUS and in each of the nine climate re
gions. Our research into PCA suggested that for exploratory analyses, 
any of the orthogonal rotations are considered comparable (Kim and 
Mueller 1978). Further, our initial tests showed that the first three 
components accounted for nearly 99 % of the total variance and were 

the only ones with eigenvalues greater than one, which is the maximum 
number that should be retained according to the widely used 
Kaiser-Guttman criterion. Additionally, the first component was excep
tionally dominant (~90 % of total variance) and highly correlated with 
all indices, suggesting it concentrated the variance all the indices had in 
common. We hypothesized that examination of the correlations of the 
individual indices with the second and third components would give an 
indication of those that likely displayed the most differences. We 
developed an ad hoc analysis to count the number of times each index 
was among the top four indices with the highest correlations to these 
second and third PCA components from two orthogonal rotations (var
imax and quartimax) and the unrotated components. Lastly, we 
employed a third set of tests to assess the statistical difference (p ≤ 0.05) 
of the ten indices via ANOVA and post hoc Tukey Honestly Significant 
Difference (HSD) tests (Tukey 1949).

In order to reveal any trends in the time series, we performed Mann- 
Kendall trend tests (Mann 1945; Kendall 1975) on each index plus the 
average January-June and March-May temperatures over the CONUS as 
well as in each of the nine climate regions during the 1991–2022 period. 
We also produced detailed graphics for each index showing the linear 
trends and significance (p ≤ 0.05) at each grid point (reduced 15 km 
resolution) over the CONUS during the period to identify internal vari
ations within the regions.

3. Results

3.1. Final species x phenophase models

We produced 41 final species × phenophase models of spring 
phenology, including leaf models for 21 species (Tables 1 and S1) and 
bloom models for 20 species (Tables 2 and S2). Among these 41 models, 
59 % (24) were geographically dependent, meaning that adding vari
ables that changed by location improved the mean absolute error [MAE] 
of the models by at least 0.5 days. Two of these models were dependent 
upon elevation alone, one upon latitude and elevation, seven upon 
latitude alone, and 14 upon long-term mean (1991–2020) annual tem
perature. These dependences were incorporated by splitting the model 
training data into two latitudinal groups for three models, while 20 
models used spatial adjustment across the entire CONUS, and one used 
both split training data and spatial adjustment (model specifications are 
available in Tables S1 [leaf models] and S2 [bloom models] while the 
parameters extracted from phenor are in Tables S3 [leaf] and S4 
[bloom]).

3.2. Spring development indices

The final species × phenophase models were combined into four leaf 
indices and four bloom indices based on when the events occurred 
within the spring season: Very Early leaf (VEL), Early leaf (EL), Middle 
leaf (ML), Late leaf (LL), Very Early bloom (VEB), Early bloom (EB), 
Middle bloom (MB), and Late bloom (LB, Tables 1 and 2). The best 
performing SDI (lowest MAE) was MB (MAE = 7.39) while the poorest 
performing was VEL (MAE = 10.02; Table 1).

3.3. Spring development indices (SDI) performance comparisons

The individual species × phenophase models performed better than 
all Spring Development Indices (lower MAE) both when the validation 
data were grouped by index alone (across the entire CONUS, Table 3) 
and region alone (Tables S5 and S6) as well as when the data were 
ungrouped. When the data were grouped by both region and index, the 
SDI performed better than the species × phenophase models for six 
groups (Tables S5 and S6). The SDIs performed better than SI-x when the 
validation data were grouped by region alone (Tables S5 and S6) as well 
as when the data were ungrouped (Table 3) and for all indices except for 
VEB (Table 3). When the data were grouped by region and temporal 

Fig. 4. Flow diagram of the spring development indices (SDIs) construc
tion process.
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cohort, SI-x performed better than SDI for six groups (Tables S5 and S6).
Observed interannual variation, as measured by standard deviation, 

averaged nine days and ranged from five days (ML and MB) to 18 days 
(VEL). Simulated variation for both the species × phenophase models 
and Spring Development Indices were smaller (six days for species ×

phenophase models and seven days for SDI). The SI-x models had the 
largest variation with an average of 11 days and a maximum variation of 
20 days (Fig. 5).

The point-wise simulated grid (CONUS-wide) mean annual date for 
the leaf indices varied from DOY 78 (2016 Mar. 18; VEL) to DOY 109 
(1993 Apr. 19; LL) while the bloom indices varied from DOY 84 (2012 
Mar. 24; VEB) to DOY 148 (1993 May 28; LB; Fig. 6). For comparison, 
the simulated grid point-wise mean annual date for the SI-x Leaf (SIL) 
varied between DOY 69 (2012 Mar. 9) and DOY 86 (2008 Mar. 26) while 
SI-x Bloom (SIB) varied between DOY 102 (2012 Apr. 11) and DOY 118 
(2008 Apr. 27; Fig. 6).

The regional mean annual date for the leaf indices varied from day 
50 (2017 Feb. 19) for VEL in the SE region to day 126 (2011 May 6) for 
LL in the WNC region while the bloom indices varied from day 58 (2017 
Feb. 27) for VEB in the SE region to day 178 (2011 Jun. 27) for LB in the 
NW region (Figure S1). The standard deviation varied from 3 days (EL in 
the ENC and WNC regions) to 23 days (VEL in the W region) for the leaf 
indices and from 2 days (EB in the ENC region) to 28 days (LB in the W 
and SW regions).

For comparison, the simulated regional mean annual date for SIL 
varied between day 34 (2017 Feb. 3) in the SE region and day 119 (2008 
Apr. 28) in the WNC region while SIB varied between day 68 (2017 Mar. 
9) in the SE region and day 157 (2011 Jun. 6) in the NW region 
(Figure S1). The standard deviation varied from 5 days (in the ENC 

region) to 38 days (in the W region) for the SIL and 6 days (in the ENC 
region) to 46 days (in the W region) for SIB.

Across the entire CONUS, species × phenophase models had an 
average error (MAE) of 8.55 days, while the SDIs ranged from 7.39 to 
10.02 days of error, demonstrating that the indices, in general, perform 
nearly as well as the individual species models at reflecting the timing of 
activity in their component species. Our indices exhibited an increase of 
<1 day in error between the SDI (CONUS-wide) and species × pheno
phase models, demonstrating their utility both as synthetic indices and 
as proxies for individual species. As a second form of evaluation, we 
compared SDI performance to that of the SI-x Leaf and Bloom Indices. 
Overall, SDI predictions averaged more than two days better than SI-x, 
confirming their increased precision in representing expanded species 

Table 1 
Spring Development Indices for leaf models, their component species x phe
nophse models, mean absolute (MAE), and mean bias (MBE) errors.

Index Species × Phenophase Models

Index MAE MBE Species Name MAE MBE

Very Early 
leaf

10.02 −1.30 common snowberry 
(Symphoricarpos albus)

13.50 1.54

northern spicebush (Lindera 
benzoin)

8.51 −2.54

Early leaf 9.48 −0.22 American hornbeam 
(Carpinus caroliniana)

9.69 −0.99

boxelder (Acer negundo) 9.64 1.31
chokecherry (Prunus 
virginiana)

11.08 0.49

forsythia (Forsythia spp.) 10.06 −0.36
tuliptree (Liriodendron 
tulipifera)

9.06 −0.42

Middle leaf 9.07 −0.06 black cherry (Prunus serotina) 9.75 0.41
flowering dogwood (Cornus 
florida)

9.00 1.34

quaking aspen (Populus 
tremuloides)

10.20 −1.23

red maple (Acer rubrum) 9.55 −0.51
sugar maple (Acer saccharum) 8.84 0.43
sweetgum (Liquidambar 
styraciflua)

6.37 0.38

Late leaf 8.10 0.68 American beech (Fagus 
grandifolia)

8.22 0.07

eastern cottonwood (Populus 
deltoides)

8.85 0.78

eastern redbud (Cercis 
canadensis)

9.37 2.35

green ash (Fraxinus 
pennsylvanica)

7.38 0.47

northern red oak (Quercus 
rubra)

8.33 −0.24

striped maple (Acer 
pensylvanicum)

5.73 1.51

white oak (Quercus alba) 8.81 1.44
yellow birch (Betula 
alleghaniensis)

8.32 0.58

Table 2 
Spring Development Indices for bloom models, their component species ×

phenophase models, mean absolute (MAE), and mean bias (MBE) errors.

Index Species × Phenophase Models

Index MAE MBE Species Name MAE MBE

Very Early 
bloom

7.96 0.16 beaked hazelnut (Corylus 
cornuta)

5.80 1.11

forsythia (Forsythia spp.) 10.00 0.79
northern spicebush (Lindera 
benzoin)

7.09 0.16

red maple (Acer rubrum) 8.06 −0.03
Early 

bloom
8.48 0.85 American hornbeam (Carpinus 

caroliniana)
13.20 1.68

autumn brilliance serviceberry 
(Amelanchier grandiflora-autumn 
brilliance)

5.73 0.60

boxelder (Acer negundo) 10.34 0.70
eastern cottonwood (Populus 
deltoides)

10.16 3.06

eastern redbud (Cercis 
canadensis)

8.69 2.42

paper birch (Betula papyrifera) 8.76 −2.09
sugar maple (Acer saccharum) 7.27 0.01

Middle 
bloom

7.39 1.39 American beech (Fagus 
grandifolia)

9.19 −1.07

chokecherry (Prunus virginiana) 7.81 −0.45
flowering dogwood (Cornus 
florida)

8.13 1.84

northern red oak (Quercus rubra) 6.92 2.1
striped maple (Acer 
pensylvanicum)

4.92 2.98

vine maple (Acer circinatum) 7.73 −1.00
white oak (Quercus alba) 8.37 1.46

Late 
bloom

8.86 1.17 black cherry (Prunus serotina) 7.59 1.70
common snowberry 
(Symphoricarpos albus)

11.47 0.08

Table 3 
Validation table for each SDI in the conterminous USA. Fields include total 
number of observations (# Obs), mean absolute error (MAE) for predictions 
using the species models (S × P), MAE for predictions using the corresponding 
SDI index, and predictions using leaf or bloom SI-x, as appropriate. Also includes 
the difference in MAE between the species × phenophase models and SDI as well 
as the difference between the SDI and SI-x. The final row is the validation for the 
entire dataset.

MAE Δ MAE

SDI # Obs S × P SDI SI-x S × P – SDI SDI – SI-x

VEL 158 10.02 11.77 12.72 −1.75 −0.95
EL 627 9.48 10.31 14.23 −0.84 −3.91
ML 2087 9.07 9.85 13.73 −0.78 −3.88
LL 1207 8.10 8.58 12.76 −0.48 −4.18
VEB 942 7.96 10.31 9.98 −2.35 0.33
EB 551 8.48 8.94 9.94 −0.46 −1.00
MB 694 7.39 7.71 8.49 −0.32 −0.78
LB 172 8.86 9.21 12.27 −0.36 −3.05
All SDI 6438 8.55 9.45 12.09 −0.89 −2.65
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phenological responses over a larger portion of the spring season.
Individual species × phenophase models and SDIs exhibited strong 

performance (70 and 57 percent respectively with MAEs <10 days) 
across climate regions (Fig. 2a, Tables S5 and S6), though this should be 
interpreted with caution. As noted earlier, the species are not present in 
all regions (no observations in the West and West North Central), some 
are missing from most regions, and only the Northeast region has all SDI 
component species present. Nevertheless, the results for the climate 
regions are quite consistent with those for the entire CONUS. Namely, 
the species × phenophase model’s MAE is around a day better than the 
SDI (range from 0.66 to 1.69) and the SDI MAE is just over two days 
better than the SI-x (range of 0.81 to 3.53). Not surprisingly, the regions 

with more of the species present do show lower MAEs overall, indicating 
regional variations have been able to improve model performance.

In general, individual species models and SDIs generally predicted 
leaf and bloom phenophasess somewhat earlier than they were observed 
(Fig. 5). This pattern is not surprising for multiple reasons. First, the 
observations had higher levels of variation than the model outputs, as it 
is expected that regression-based models tend to miss some of the 
extreme variations. Second, observations are expected to show 
decreasing variation later in the season, due to reductions in tempera
ture extremes and relative strength of the mid-latitude jet stream and 
associated weather systems (Schwartz and Marotz 1988). This reduction 
in variation is generally present in our results, although late-bloom SDI 

Fig. 5. Boxplot of mean phenophase dates at all plant observation sites. Observed values are compared to the simulated values from the species × phenophase 
models (Predicted S × P), Spring Development Indices (Predicted SDI), and extended Spring Leaf or Bloom Indices (Predicted SI). Solid lines represent median values 
while the dots represent outlier data beyond 1.5 x the interquartile range.
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is anomalously higher.
The interannual variation in the SI-x models is universally greater 

than that of SDIs, which is most likely related to the nature of these 
models. SI-x models are based on cloned plants, which are spatially in
dependent in their responses (i.e., very similar response to environ
mental variables at all locations), whereas all the SDI component species 
× phenophase models are based on natural plants, which show adap
tation to local conditions. Thus, it is not surprising that SI-x model re
sponses to extreme warm and cold temperatures are greater than those 
of the species × phenophase models and SDIs, which were constructed 
using observations from natural plants, which exhibit more genetic di
versity, and therefore, more diverse responses to environmental vari
ables. Further, more than half of the species × phenophase models 
underpinning the SDIs explicitly incorporate spatially dependent mod
ifications in environmental variables.

3.4. Identifying the most distinct spring development indices

All indices were highly correlated (Figs. 7a, S2); however, SIL, SIB, 
and LB consistently exhibited lower correlations with the other indices. 
Further, the three SDIs VEL, VEB, and EL (though highly correlated with 
each other) had consistently lower correlations with the previously 
stated three than any of the remaining indices. From our PCA analyses 
we found that averaged across the ten indices, the percentage variances 
explained by the first, second, and third components were 90.4, 6.4, and 
1.9 (total of 98.7). The first component concentrated the variance all 
indices had in common (i.e., highly correlated with all), so examination 
of the correlations of the individual indices with the second and third 
components was assumed to give an indication of those most likely to 
display differences.

Overall, SIL, SIB, LB, and EL showed the highest counts (i.e., the 

index was in the top four of the PCA, pooled across the unrotated and 
two rotated analyses) across the entire CONUS, with VEB showing a 
higher count among the nine regions than EL. Our ANOVA test showed 
that the CONUS-wide mean annual dates varied between indices (SDI 
and SI-x, F = 2006.4, p < 0.001). A post hoc Tukey HSD test showed that 
all combinations of SDI and SI-x indices had significant differences (p ≤
0.05) except for LL and EB (p = 0.19, Fig. 7b). Additional ANOVA tests 
showed that the regional mean annual dates for each region varied 
across the SDI and SI-x indices (p ≤ 0.05). A post hoc Tukey HSD test 
showed that most (378/405) combinations of indices had significant 
differences (p ≤ 0.05, Figure S3). ANOVA tests showed that the regional 
mean annual dates for each SDI and SI-x index varied across the climate 
regions (p ≤ 0.05). A post hoc Tukey HSD test showed that most com
binations of regions (at least 86 % for each index) showed significant 
differences (p ≤ 0.05) in the mean region-wide phenophase date (see 
Figure S4 and Figure S5). The regions between which the indices varied 
were regions with differing geographic or climatological features such as 
the west to east precipitation gradient (e.g. SW compared to C for EL), 
and mountains (e.g., ENC compared to WNC for VEL).

In summary, the novel SDIs created here show strong correlation 
with one another as well as with the SI-x indices. For most imple
mentations, utilizing all 10 indices would be excessive. As such, we 
opted to identify the most distinct indices that might collectively offer 
the most complete picture of how the full spring season progressed in a 
particular year at a location. Both SI-x indices (SIL and SIB) are distinct 
from the new SDIs. Of the SDIs, our comparisons clearly showed that at 
the CONUS-wide level the Late bloom (LB) and Early leaf (EL) indices 
were most distinct. At the regional level, Very Early bloom (VEB) also 
showed noted differences from the other SDIs.

Fig. 6. Mean modeled leaf and bloom dates over the CONUS for 1991 to 2022 for each Spring Development Index (SDI), including the extended Spring Indices Leaf 
and Bloom (SI-x) for comparison.
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3.5. Evaluating trends in the spring development indices

Mann-Kendall trend tests on each index plus the average January- 
June and March-May temperatures over the CONUS found no signifi
cant trends (p ≤ 0.05) over 1991–2022. There were also none in each of 
the nine climate regions, with one exception. There was a weak signif
icant trend (Kendall’s tau = 0.26, p = 0.036) in the SE region’s March- 
May temperatures. Maps showing the linear trends and significance (p ≤
0.05) for each index (15 km resolution) over the CONUS fell into two 
general patterns. Late bloom (Fig. 8) as well as EL/ML/LL/EB/MB have 
scattered significant (p ≤ 0.05) trends mostly in the SE, SW, and W re
gions (Figure S6). Whereas SI-x bloom (Fig. 9) as well as SIL/VEL/VEB 
have scattered significant (p ≤ 0.05) trends mostly in the SW and W 
regions (Figure S6).

4. Discussion and conclusions

4.1. Major contributions and limitations

In this study, we developed a new suite of synthetic phenological 
indices designed to predict biological activity at temporal “moments” 

when quantities of thermal or photo/thermal energy are accumulated to 
fixed thresholds throughout the spring season and across the CONUS. 
These new indices complement the widely adopted SI-x (Schwartz et al. 
2013a) and thereby can be similarly used to assess how different mo
ments within the season are occurring earlier or later than normal at a 
location as well as how the timing of these moments is shifting with 
rapidly changing climate conditions. The premise underpinning of these 
indices is that they can be used to represent phenological activity in a 
group of plants. The indices may also be used to reflect activity in insects 
and other animals that respond to the same sets of environmental con
ditions (e.g., Gerst et al. 2020).

This study developed leaf and bloom models for woody species that 
could be projected across the entire CONUS. Unlike the SI-x, which were 
developed using observations of cloned plants, the new models were 
constructed using observations of wild and planted individuals of nat
ural (not cloned) plants, which inherently exhibit greater genetic di
versity than cloned plants. To accommodate this genetic variation, these 
models were allowed to be “spatially dependent”, meaning their re
sponses to environmental drivers could vary across space. As previously 
noted, more than half of the models (59 %) exhibited improved per
formance with the inclusion of spatial variation, underscoring the 

Fig. 7. (a) Pearson’s Correlation (r) between mean annual CONUS-wide DOYs for indices and (b) Tukey mean differences between indices (colors) with p-value of 
difference for boxes that do not have significant differences.
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importance of this aspect in phenological models for non-cloned plants. 
Again, the most incorporated environmental driver with spatial vari
ability was the 1991–2020 site mean annual temperature. This inclusion 
is unsurprising, since spring phenology is largely shaped by local tem
perature conditions.

Across the entire CONUS, species × phenophase models had an 
average error (MAE) of 8.55 days, while the SDIs ranged from 7.39 to 
10.02 days of error, demonstrating that the indices, in general, perform 
nearly as well as the individual species models at reflecting the timing of 
activity in their component species. These values are in line with what 
other similar studies report. For example, Kalvāns et al. (2015) reported 
errors of 2 to 6 days for modeled leaf and bloom phenophasess in silver 
birch and bird cherry trees in Latvia; Taylor and White (2020) found 
average errors of 18 to 20 days when developing an ensemble phenology 
forecasting system using USA-NPN observations, Melaas et al. (2016)
used USA-NPN leaf emergence observations to produce models with 
errors of 6.4 to 10.9 days; Fitzpatrick et al. (2021) developed budburst 
and leaf out models for a variety of species at one site in Illinois, using 
USA-NPN data, and found errors of 13 to 23 days and 13 to 19 days 

respectively; and Crimmins et al. (2017a) found errors ranging from 3.9 
(3.5) to 14.1 (18.3) days for leaf (bloom) models of many species when 
using USA-NPN leaf and bloom observations. In comparison, the 
generally better performance exhibited by our models likely stems from 
larger sample sizes and from the inclusion of site-specific information.

The Spring Development Indices showed no widespread significant 
trends toward an earlier spring onset during the 1991–2022 period, in 
line with no evidence of significant warming trends in January-June or 
March-May (except the SE region) over this period in the PRISM tem
perature data we used. Further, simple regression analyses of average 
temperature data posted by the U.S. Environmental Protection Agency 
show the same lack of significant winter and spring trends during our 
study period (U.S. Environmental Protection Agency 2024). While many 
studies have shown an overall trend towards an earlier spring: 2.7 to 4.2 
days per decade earlier in Europe (Chmielewski and Rötzer 2001; Fu 
et al. 2014), 5.5 days per decade earlier in China (Ge et al. 2015), and 
0.5 to 0.9 days per decade earlier in the US ( Piao et al. 2019; Wolfe et al. 
2005; Schwartz et al. 2013b;Schwartz and Crimmins 2024) , these 
studies encompass the mid-1980s, when a global regime shift in 

Fig. 8. Trend analysis (linear regression) for Late bloom (LB) index. Background colors correspond to the decadal change in day of bloom. Hatched areas correspond 
to grid points where the trend is significant (p ≤ 0.05).

Fig. 9. Trend analysis (linear regression) for extended Spring bloom index (SIB). Background colors correspond to the decadal change in day of bloom. Hatched areas 
correspond to grid points where the trend is significant (p ≤ 0.05).
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temperature occurred (Reid et al. 2016). There is also a known hiatus in 
global warming which occurred between 1998 and 2012 (Hu and 
Fedorov 2017; Medhaug et al. 2017) slowing or stopping any changes in 
spring phenology (Wang et al. 2019; Su et al. 2022; Yan et al. 2022; 
Xiong et al. 2023).

4.2. Advice for using models and indices for phenological analyses

The species leaf and bloom models developed in this study were 
constructed from a database that included at most twelve different 
years. Further, none of the species’ observations extended over the 
entire CONUS. Still, a few of the species such as red maple exhibited a 
wide distribution across much of the CONUS, which may compensate to 
some degree for the short time period. Nevertheless, both limitations 
should be kept in mind if employing these models to directly predict the 
phenology of any individual species, especially outside the range of our 
original data. Importantly, however, that was not our goal. Instead, we 
produced the species models to combine them into indices, which are 
not designed to replicate individual species, but broader plant groups. 
Following Schwartz et al. (2006), our aim was not to reproduce the 
specific phenology of some types of plants, nor all the details of multi
species phenological data at any site, but instead to process weather data 
into indices directly related to growth and development of many plants. 
These indices thus provide baseline assessment of each location’s gen
eral phenological response over a standard period, supplying a needed 
context for comparing and evaluating local or regional-scale studies. 
Thus, SI-x is not most useful as models of lilacs and honeysuckle 
phenology, but as consistent calculations of accumulated measures of 
thermal or photo/thermal energy to fixed thresholds (calibrated to plant 
development stages). For example, indices have been used to predict 
individual species responses (Gerst et al. 2020), to evaluate the general 
impacts of climate change on broad groups of plant across the CONUS 
(Monahan et al. 2016), and to detect modifications in the spring energy 
balance of the lower atmosphere due to moisture additions from the 
onset of plant transpiration across many species (Schwartz and Crawford 
2001). In summary, indices are specifically designed to be useful for 
analyses during times and in places where conventional phenological 
data are not available.

4.3. Applying the spring development indices

The novel Spring Development Indices have strong potential for 
characterizing a large portion of the spring season, capturing not only 
whether the start of the season is earlier or later than normal, but also 
when various moments within the season are met, and whether they are 
consistently ahead or behind schedule or drift back and forth in response 
to warm and cool spells. This information can be estimated in real time 
and can also be calculated for past periods and used to evaluate changes 
in the timing of spring (e.g., Ault et al. 2015a; Schwartz et al. 2013a). 
The component 41 species × phenophase models also may have utility 
for predicting the timing of leaf-out or bloom of individual species, 
which can be useful in tourism, forestry, and recreation applications as 
well as ecological and carbon cycle studies. A subset of the new SDIs will 
be added to the suite of real-time map and short-term forecast products 
offered by the USA National Phenology Network (Crimmins et al. 
2017b). The new indices will eventually also form the basis of long-lead 
forecasts for the entire CONUS.

4.4. Conclusions

In this study, we established a novel suite of phenological indices. 
These SDI are comprised of several individual species models that were 
created using observations of leaf and bloom across the conterminous U. 
S. These new indices follow the structure and motivation that led to the 
establishment of SI-x, a pair of widely implemented indices used to 
characterize springtime plant and animal activity across space and 

through time. These SDIs represent a greater breadth of the spring sea
son, expanding their utility for both indicating in real time how the 
season is unfolding, and for characterizing how various “moments” in 
the spring season have changed through time.
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