
Initialization of Monocular Visual Navigation for Autonomous Agents
Using Modified Structure from Small Motion

Juan-Diego Florez1, Mehregan Dor1, Panagiotis Tsiotras1

Abstract— We propose a standalone monocular visual Si-
multaneous Localization and Mapping (vSLAM) initialization
pipeline for autonomous space robots. Our method, a state-of-
the-art factor graph optimization pipeline, extends Structure
from Small Motion (SfSM) to robustly initialize a monoc-
ular agent in spacecraft inspection trajectories, addressing
visual estimation challenges such as weak-perspective projection
and center-pointing motion, which exacerbates the bas-relief
ambiguity, dominant planar geometry, which causes motion
estimation degeneracies in classical Structure from Motion, and
dynamic illumination conditions, which reduce the survivability
of visual information. We validate our approach on realistic,
simulated satellite inspection image sequences with a tumbling
spacecraft and demonstrate the method’s effectiveness over
existing monocular initialization procedures.

I. INTRODUCTION

A. Problem Statement

Accurate estimation of the relative pose and 3D map of
a non-cooperative resident space object (RSO) enables the
real-time guidance and control required for missions such
as satellite repair and active debris removal and is crucial
for safe inspection and proximity operations [1]–[5]. This
work addresses the initialization of a relative navigation
pipeline on an autonomous chaser spacecraft tracking a non-
cooperative RSO, without prior knowledge of the RSO’s
kinematics, dynamics, or 3D structure.

Monocular visual Simultaneous Localization and Mapping
(vSLAM) systems provide real-time estimates, remain ro-
bust in dynamic environments, and operate with low power
consumption and mass. Unlike other approaches, they do
not require ranging (LIDAR), time-of-flight detection or
structured light projection (RGB-D cameras), or specialized
calibration (stereo cameras). Although monocular vSLAM
systems are prone to scale and depth ambiguities, proper
initialization and use of advanced estimation algorithms
enable accurate relative motion, 3D mapping, and dynamic
motion characterization [6], [7].

Initializing RSO inspection trajectories is challenging due
to the weak-perspective projection caused by large operating
ranges [8], which limits depth variation and exacerbates
the bas-relief ambiguity. Under these conditions, small ro-
tations, small translations, and depth scaling yield similar
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2D projections, thereby complicating 3D mapping. The am-
biguity is further pronounced in center-pointing motions,
where reduced apparent lateral motion further complicates
the disambiguation of motion components.

Both feature-based and pixel-based detection approaches
face additional challenges. For instance, dynamic illumina-
tion conditions in space limit the survivability of tracked
features and reduce the reliability of photometric error in
pixel-based approaches. RSOs often have dominant planar
geometries (e.g., solar panel arrays), leading to degeneracies
in fundamental matrix estimation [9], and low-texture areas
that reduce pixel-intensity variation and hinder pixel-based
methods.

To address these challenges, we enhance the Structure
from Small Motion (SfSM) [10], [11] framework to develop
a monocular vSLAM initialization module that is robust to
the ambiguities and degeneracies of inspection trajectories,
enabling rapid convergence to accurate relative poses esti-
mates and a high quality 3D mapping solution.

B. Related Work

Sparse, feature-based visual estimation methods are well-
suited to online space-bound applications due to their com-
putational efficiency over dense methods and their robust-
ness to dynamic lighting conditions. Assuming a known
calibrated camera intrinsic matrix, the classical feature-
based initialization, often found in Structure from Motion
(SfM) schemes, involves estimating motion from two-view
geometry [12]. The 5-point algorithm [13], commonly used
in SLAM initialization, estimates the essential matrix for
relative pose estimation and is often paired with Random
Sample Consensus (RANSAC) for outlier rejection. The
essential matrix is decomposed into four possible relative
pose solutions, refined through 3D point triangulation and
cheirality checks. However, dominant planes in the scene
can cause degeneracies in fundamental and essential matrix
estimation [9], resulting in failed pose recovery and mapping
errors. In such cases, homography-based methods [8] are
preferred.

Model selection strategies can enhance the robustness of
visual estimation pipelines. For example, ORB-SLAM [14]
solves for both fundamental matrix and homography trans-
formation during initialization, using an error metric to
select the best-fitting model. Similarly, the USAC FM 8PTS
algorithm [15], [16] applies DEGENSAC [9], [17] to detect
planar degeneracies and select the most appropriate model,
and uses LOSAC [18] to refine the model through local
optimization. However, defining a unified metric to compare
different models can yield inconsistent results [19], as higher



degree-of-freedom (DoF) models may produce lower errors
than simpler models without necessarily providing accurate
motion recovery, particularly in noisy conditions.

Model-based methods require sufficient parallax between
queried frames to generate accurate estimates. Consequently,
pipelines using this approach delay initialization until enough
parallax is present to resolve depth, necessitating a wide
baseline for estimation; hence, they are known as “delayed
initialization” and ”wide-baseline” methods. However, at
operating ranges with weak-perspective projection, achiev-
ing sufficient parallax requires significant relative motion
between successive camera frames. Accordingly, delayed
initialization faces a timing dilemma—delaying too long
risks losing feature tracks due to changing illumination
conditions over a large baseline motion, while initializing
early without sufficient parallax leads to unreliable estimates.
Thus, wide-baseline approaches are not amenable to small-
motion image sequences [20].

Sensor-fusion approaches, like visual-inertial SLAM [21],
[22], may mitigate some limitations of purely visual methods.
However, inertial measurements are ineffective for estimat-
ing motion in free-fall—typical of un-powered inspection
orbits [7]—and therefore do not provide useful cues for pose
initialization in RSO inspection trajectories.

Structure from Small Motion (SfSM) [10] offers a non-
delayed, purely visual approach that leverages small apparent
motion between consecutive frames. Rather than waiting for
large baselines to accumulate, SfSM utilizes the available
visual information early, thereby reducing the risk of losing
track of critical features to changing illumination conditions
and motion. Thus, SfSM is especially effective for early ini-
tialization, where the robust feature tracking is crucial. SfSM
is well-suited to handle small-motion scenarios, avoiding the
dependence on wide-baseline parallax and enabling faster,
more reliable initialization in spacecraft inspection arcs.

To improve the robustness of SfSM under the small-
motion, small-angle rotation assumption, Ha et al. [11] pro-
pose a three-step estimation pipeline: first, camera rotations
are recovered using RANSAC; second, camera translations
and 3D point inverse depths are estimated through a restricted
bundle adjustment (BA); and finally, a full BA is performed.
Hence, the required initialization to the full BA optimization
is recovered through the first two steps, enabling reliable con-
vergence in favorable image sequences. Our work extends the
three-step SfSM framework to robustly initialize under the
challenging visual estimation conditions of RSO inspection
trajectories.

C. Contributions

In this work, we develop a three-step SfSM monocular
initialization pipeline that modifies the small-motion as-
sumption to achieve a robust and accurate initial map and
relative trajectory solution for space vSLAM applications.
We extend the approach in [11] to ensure robust initialization
in RSO inspection trajectories, which are challenged by
weak-perspective projection, center-pointing motion, domi-
nant planar geometry, and dynamic illumination. We validate

the performance of our initialization method using realistic
simulated image sets.

Our specific contributions to the SfSM procedure are as
follows:

• We redefine the small-motion, small-angle rotation
assumptions of previous SfSM pipelines to address
weak-perspective projection and center-pointing motion,
where the apparent motion of small translations is
comparable to that of small rotations.

• We re-parameterize inverse depth to guarantee the
cheirality condition and ensure numerical stability.

• We reformulate 3D landmarks to account for image fea-
ture quantization by allowing in-camera-plane variation
of their coordinates.

II. METHODOLOGY

The proposed initialization pipeline takes as input a SLAM
front-end output consisting of feature-tracks that contain
the pixel coordinates of m point features tracked across n
frames, and processes them in a three-step pipeline compris-
ing:

1) Rotation and scaled translation estimation
2) Translation and inverse depth estimation
3) Bundle adjustment

A. Notation
For convenience, we set the 0-th camera frame as the

reference frame and align it with the world frame. The
camera motion from the reference frame to the i-th frame is
described by a rigid transformation consisting of a rotation
matrix Ri ∈ SO(3) and a translation vector ri ∈ R3. The
coordinates of the j-th 3D landmark expressed in the i-th
camera frame are denoted as yij , and follow the relation

yij = Riy0j + ri, (1)

where y0j ≜ [Xj , Yj , Zj ]
⊤ is the 3D coordinate vector of

the j-th landmark expressed in the reference frame (index 0).
For each j-th point and i-th image frame, we define

the homogeneous pixel coordinates pij = [uij , vij , 1]
⊤.

We transform these coordinates into the camera coordinate
frame using xij = K−1pij , where K is the pre-calibrated
intrinsic matrix and xij = [xij , yij , 1]

⊤. The projected and
normalized coordinate vector xij of the 3D landmark yij is
given by xij = ⟨yij⟩, where ⟨·⟩ denotes the normalization by
the third component, such that ⟨[x, y, z]⊤⟩ = [x/z, y/z, 1]

⊤

for z ̸= 0. Measured quantities are denoted using the hat
operator (̂·).

B. Step 1: Rotation and Scaled Translation Estimation
Given m sequences (p̂0j , p̂1j , . . . , p̂nj), j = 1, . . . ,m

of image point measurements p̂ij matched and tracked
across image frames i = 1, . . . , n, we apply the RANSAC
algorithm to obtain the best-fitting rotation estimate and the
corresponding inlier set between the reference frame and
each of the frames i = 1, . . . , n.

As in [11], we initially assume that the 3D coordinate of
each landmark lies at an unknown depth along the back-
projection of its corresponding image point. Consequently,



the j-th landmark, with expected coordinate vector y0j , is
parameterized by the camera frame coordinate measurement
x̂0j = K−1p̂0j and an estimated inverse depth wj , such that
y0j = x̂0j/wj . Thus, the inverse depth wj is the sole DoF
determining the landmark’s position. Using this inverse depth
parameterization, we rewrite Eq. (1), yielding

yij = Ri
x̂0j

wj
+ ri. (2)

Under the small motion assumption, we apply the first-order
approximation Ri ≈ I3 + [θi]× [10], where I3 is the 3 ×
3 identity matrix, [·]× denotes the skew-symmetric matrix
of a 3D vector, and θi = [θi1, θi2, θi3]

⊤ and represents the
rotation vector of the i-th camera frame. Hence,

Ri =

 1 −θi3 θi2
θi3 1 −θi1
−θi2 θi1 1

 . (3)

From Eq. (2), we obtain the expected normalized camera
frame coordinates xij = [xij , yij , 1]

⊤, which correspond to
the 3D point yij . Thus, xij = ⟨yij⟩, or, in scalar form,

xij =
x̂0j − θi3ŷ0j + θi2 + wjri1
−θi2x̂0j + θi1ŷ0j + 1 + wjri3

,

yij =
θi3x̂0j + ŷ0j − θi1 + wjri2
−θi2x̂0j + θi1ŷ0j + 1 + wjri3

.

(4)

By virtue of normalization and essential to the derivation of
Eq. (4), we have ⟨Ri

x̂0j

wj
+ ri⟩ = ⟨Rix̂0j + wjri⟩.

Applying the small-translation assumption from [11]—
where small rotations dominate apparent motion and scene
points are distant—we assume wjri ≈ 0, thereby simplifying
Eq. (4). However, the center-pointing motion of RSO inspec-
tion trajectories implies that both translation and rotation can
contribute similarly to the apparent motion of points in the
image. Consequently, Rix̂0j ∼ wjri, invalidating the small-
translation assumption.

Accurately quantifying the rotation and translation con-
tributions to the apparent motion is crucial for overcoming
the bas-relief ambiguity. Under weak-perspective projection,
landmark depth variations are small compared to their av-
erage distance from the camera, allowing us to approximate
the individual inverse depths wj with their mean value w̄,
such that wj ≈ w̄ for each landmark j.

We further assume that, from the reference frame’s per-
spective, landmarks are tightly clustered at a large distance
along the camera’s boresight and are re-parameterized as

⟨yij⟩ = ⟨Rix̂0j + r̄i⟩, (5)

where r̄i ≜ [r̄i1, r̄i2, r̄i3] = w̄ri represents the scaled
translation. The uniform depth assumption serves as an
effective initialization strategy. We mitigate the degeneracy
in rotation estimation around the optical axis introduced
by the assumption by RANSAC for robust estimation and
explicit depth refinement in subsequent steps. Using this re-
parameterization, the expected projected landmark coordi-

nate xij has components:

xij =
x̂0j − θi3ŷ0j + θi2 + r̄i1
−θi2x̂0j + θi1ŷ0j + 1 + r̄i3

,

yij =
θi3x̂0j + ŷ0j − θi1 + r̄i2
−θi2x̂0j + θi1ŷ0j + 1 + r̄i3

.

(6)

Following a RANSAC iteration and given a predetermined
pixel distance threshold µ, we select the pair of rotation
and scaled translation vectors (θs

i , r̄
s
i) from the sample set

that best maximizes the cardinality of the inlier set Mi ⊂
{1, . . . ,m}, so that ∥p̂ij − Kxij∥ < µ for all j ∈ Mi.
Each step 1 optimizer pair (θ∗

i , r̄
∗
i ) minimizes the associated

cost
∑
j∈Mi

∥x̂ij − xij∥2, implying that x̂ij − xij = 0 for
all j ∈Mi by first-order optimality conditions. Substituting
the expected point xij using Eq. (6), we obtain a system of
equations linear in θi and r̄i, yielding

Aij
[
θi1 θi2 θi3 r̄i1 r̄i2 r̄i3

]⊤
=

[
x̂0j − x̂ij
ŷ0j − ŷij

]
, (7)

where

Aij ≜

[
x̂ij ŷ0j −x̂ij x̂0j − 1 ŷ0j −1 0 x̂ij

x̂ij ŷ0j + 1 −ŷij x̂0j −x̂0j 0 −1 ŷij

]
.

The system in Eq. (7) can be solved in a least-squares sense
using standard techniques such as matrix decomposition.

To achieve robust motion estimation, we perform
RANSAC between the reference frame and each subsequent
frame in the sequence to account for outliers. For each frame
pair, we solve Eq. (7) to estimate the relative rotations θi and
scaled translations r̄i. Our RANSAC procedure uses three
points for robust triangulation with an inlier-count selection
criterion, achieving 99.9% confidence in 52(n−1) iterations.

C. Step 2: Translation and Inverse Depth Estimation

We proceed by fixing the rotations θ∗
i , estimated in sec-

tion II-B, and initializing the translations as r
(0)
i ← r̄∗i /w̄

and the inverse depths as w(0)
j ← w̄. These initial estimates

are then refined by a BA procedure restricted to estimating
only translations and inverse depths. We utilize the Georgia
Tech Smoothing And Mapping Library (GTSAM) [23] to
implement and solve the restricted BA via factor graph
optimization and a Levenberg Marquardt (LM) solver. A
custom factor is defined to enable simultaneous optimization
of both ri and wj , encoding the image disparity residual.

To ensure all landmarks satisfy the cheirality condition,
we reparameterize wj using the soft-plus function sp(x) =
ln (1 + exp (αx))/α, such that wj = sp(ωj), where ωj ∈ R
is now the landmark-related optimization variable, initialized
with ω(0)

j ← sp−1(w
(0)
j ). We enforce numerical stability by

applying the equation [24]

sp(x) = max{0, x}+ log1p(exp (−|αx|))
α

, (8)

where log1p(x) is a numerically stable implementation of
ln(1 + x), particularly for x→ 0+.

We incorporate Eq. (8) into a custom factor εstep2ij that
encodes, as residual, the 2D disparity between the measured



image point p̂ij and the expected projection of the corre-
sponding landmark. The residual is modeled as a function
of the parameters ri and ωj , while keeping θ∗

i fixed, as in

εstep2ij (ri, ωj) =

p̂ij − ⟨K ((I3 + [θ∗
i ]×) x̂0j + sp(ωj)ri)⟩ . (9)

We apply Eq. (9) to construct the restricted BA problem
for poses i = 1, . . . , n and landmarks j = 1, . . . ,m, as in

min
{ri}n

i=1,{ωj}m
j=1

n∑
i=1

m∑
j=1

Ω(∥εstep2ij (ri, ωj)∥2Σij
), (10)

where Ω(x) is the robust Huber cost, ∥ε∥Σ =
√
ε⊤Σ−1ε,

and Σij is the covariance of the measurement j taken at pose
i. We solve Eq. (10) using the LM iterative procedure.

The optimized ω∗
j values are converted to w∗

j us-
ing Eq. (8), ensuring positive inverse depths. The minimizers(
{r∗i }ni=1, {w∗

j }mj=1

)
resulting from Eq. (10) are used to

initialize the procedure in Section II-D. The procedures
in Sections II-B and II-C collectively avoid the solution
ambiguity associated with pose estimation from essential
matrix decomposition [13].

D. Step 3: Full Bundle Adjustment

Equipped with estimates for all parameters θ∗
i , r∗i , and w∗

j ,
we solve a full BA to compute the camera trajectory and the
coordinates of the landmarks.

Landmark j

y
0j

m
j

pm
0j

pm
ij

Frame 0

Frame i

ψj

ϕj 1/ρ
j

Fig. 1. Landmark parameterization using inverse depth w, azimuth ψ, and
elevation ϕ.

Deviating from the landmark definition in Sections II-
B and II-C, we reformulate the parameterization of the
expected landmark coordinates to account for image feature
quantization by introducing variables for in-camera-plane
variation of the coordinates instead of directly exploiting
the reference camera frame’s image feature measurement.
We adopt the inverse depth approach in [25], Fig. 1, re-
parameterizing the 3D point y0j as y0j = mj/ρj , where
mj = m(ψj , ϕj) is a unit directional vector from the
reference camera frame to the j-th landmark. Here, m(ψ, ϕ)
is defined as m(ψ, ϕ) = [cosϕ sinψ,− sinϕ, cosϕ cosψ]⊤,
and ρj = 1/∥y0j∥ is the inverse depth, replacing the prior
definition wj = 1/Zj . Accordingly, mj is parameterized by
the azimuth angle ψj and the elevation angle ϕj , which, for
y0j = [Xj , Yj , Zj ]

⊤, are computed as ψj = arctan(Xj/Zj)

Fig. 2. Realistic synthetic images of the Hubble Space Telescope exhibiting
specular and diffuse reflections and moving shadows.

and ϕj = arctan(−Yj/
√
X2
j + Z2

j ). As in Section II-C, we
apply Eq. (8) in ρj = sp(ωj) to ensure ρj remains strictly
positive, guaranteeing the cheirality condition.

We define a custom factor εstep3ij that encodes the residual
described in Section II-C; however, the residual is now
modeled as a function of the camera’s rotation R ∈ SO(3),
the camera’s translation r ∈ R3, and the landmark parameters
ω, ψ, ϕ ∈ R, such that

εstep3ij (R, r, ω, ψ, ϕ) =

p̂ij − ⟨K (Rm(ψ, ϕ) + sp(ω)r)⟩ .
(11)

Thus, ρj , ψj , and ϕj determine the 3D location of landmark
y0j .

Meanwhile, we maintain the reference frame at a fixed
pose with R0 = I3 and r0 = 0. Reformulating Eq. (11),
for each reference frame measurement x0j , j = 1, . . . ,m,
we constrain ψj and ϕj to yield an additional factor εprior0j .
The factor encodes the residual described in Section II-C as
a function of ψj and ϕj , as in

εprior0j (ψj , ϕj) = p̂0j − ⟨Km(ψj , ϕj)⟩ . (12)

We use Eq. (11) and Eq. (12) to construct the BA problem
for poses i = 1, . . . , n and landmarks j = 1, . . . ,m, as in

min
{(Ri,ri)}n

i=1

{(ωj ,ψj ,ϕj)}m
j=1

m∑
j=1

Ω(∥εprior0j (ψj , ϕj)∥2Σ0j
)

+
n∑
i=1

Ω(∥εstep3ij (Ri, ri, ωj , ψj , ϕj)∥2Σij
),

(13)

where Ω(x), ∥ ∗ ∥Σ and Σij are described in Section II-C.
The minimizers

(
{(R∗∗

i , r
∗∗
i )}ni=1, {(ω∗∗

j , ψ
∗∗
j , ϕ

∗∗
j )}mj=1

)
to

problem Eq. (13) serve as the vSLAM initialization solution.

III. EXPERIMENTS

We evaluated our initialization pipeline on 101 synthetic
small-motion image sequences generated in a custom simu-
lation platform in Unreal Engine 5 [26]. Each sequence rep-
resents a weak-perspective, center-pointing RSO inspection
trajectory and consists of 12 images captured at 10 frames
per second using a simulated camera with a 14.9-degree field
of view. The RSO is a tumbling, highly-detailed model of the
Hubble Space Telescope (HST), positioned 100 meters from
the camera. The simulated images of the tumbling HST, as



shown in Fig. 2, exhibit dynamic illumination conditions that
closely mimic the challenges of inspection in the vicinity of
a non-cooperative RSO.

Fig. 3. The estimated landmark depths superimposed on the depth map of
the HST model. The proposed method’s depths (left) are estimated closer
to the ground truth than the depths estimated by the method in [11].

We compare the proposed method with the SfSM pipeline
developed by Ha et al. [11] and the USAC FM 8PTS algo-
rithm [15]. For consistency, we align the reference frame
of the estimated trajectory with that of the ground truth
trajectory, and we normalize the estimated translations and
depths by the magnitude of the n-th frame translation.

For each sequence, we compute (a) the absolute trajectory
error after aligning estimated and ground truth trajectories,
given by eATE = 1

N

∑N
i=1 ∥xi − xtrue

i ∥2 after finding
the optimal rigid alignment between trajectories; (b) the
relative pose error between consecutive frames, consisting
of translational error eRPEt =

1
N−1

∑N−1
i=1 ∥ti,i+1−ttruei,i+1∥2

and rotational error eRPEr =
1

N−1

∑N−1
i=1 ∠(Ri,i+1, R

true
i,i+1);

and (c) the depth error ϵdepthj = Zj −Ztrue
j at the reference

frame across all landmarks. The depth error is obtained by
comparing the estimated depths with the scale-normalized
depth map of the simulated RSO, shown in Fig. 3. To
represent data trends across all sequences, we compute the
mean of the root-mean-square of each error metric.

All evaluated methods were implemented in C++ using the
GTSAM library and OpenCV [16]. We provide the pipelines
with the same ORB [27] feature tracks from a shared front-
end. Furthermore, both SfSM methods use identical LM
optimizer parameters. The experiments were conducted on
a machine equipped with an AMD Ryzen 7800X3D CPU
and 32 GB of DDR5 RAM.

The results, summarized in Table I, demonstrate that the
proposed method is significantly more robust than the other
methods when initializing from realistic inspection trajec-
tories that emulate a tumbling RSO. The proposed method
successfully initialized in 77.2% of the sequences—a 47%
improvement over Ha’s approach, which only initialized in
52.5% of the sequences. Furthermore, in Fig. 4, the smaller
height of the box plots for the proposed method compared
to Ha’s method indicates a lower spread in error across
all SLAM variables, demonstrating more reliable and robust
performance. Thus, we are able to overcome the bas-relief
ambiguity more effectively and consistently when initializing
in RSO inspection trajectories, as seen in Fig. 5.

Fig. 4. Error-value distribution, means (black lines), and medians (red
lines) for the error metrics comparing the proposed, Ha et al. [11], and
USAC FM 8PTS [15] methods. The image is cropped to show major data
trends.

(a) Pose trajectory (b) 3D reconstruction

Fig. 5. SLAM solution one step after initialization, with estimated poses
(RGB) closely aligned with ground truth poses (CYM) and estimated
landmarks (cyan) coinciding with the ground truth HST object.

The USAC FM 8PT method had the most favorable depth
estimates in the 7% of the sequences in which it was able
to initialize. Its success was limited to sequences featuring
favorable illumination and high depth-of-field, highlighting
why wide-baseline approaches, discussed in I-B, are ill-
suited for initialization in small-motion RSO inspection
sequences, particularly when compared to methods that ex-
plicitly account for weak-perspective projection and small
apparent motion.

Although more robust and accurate, the proposed algo-
rithm achieves its estimation improvements at the cost of an
average 8.9 second increase in computation time compared
to the competing SfSM method. The inverse depth and land-
mark re-parameterizations in step 3 enhance the robustness of
the solution, but also introduce additional variables to the op-
timization, increasing the dimensionality of the search space.
A key challenge arises from the vanishing gradient issue,
which hinders convergence [28]. The problem is exacerbated
by ambiguous observations and scale differences between
the optimization variables. However, when considering the



TABLE I
COMPARISON OF INITIALIZATION METHODS ON 101 WEAK-PERSPECTIVE, CENTER-POINTING, SMALL-MOTION SEQUENCES

Method Success ATE (m) RPEt (m) RPEr (m) Norm. Depth Error Comp. Time
Rate (%) RMSE Median RMSE Median RMSE Median RMSE Median (s)

Proposed 77.2 0.096 0.067 0.105 0.105 0.349 0.274 0.789 0.813 29.9
Ha et. al. 52.5 0.176 0.130 0.162 0.133 0.693 0.165 0.684 0.758 21.0
USAC 7.00 0.261 0.203 0.162 0.137 0.595 0.154 0.646 0.778 0.126

scale and range of RSO inspection trajectories, the added
computation time is less impactful.

IV. CONCLUSIONS

In this work, we present a monocular initialization pipeline
that extends the Ha et al. three-step SfSM method [11]
to address visual estimation in RSO inspection trajecto-
ries, which are characterized by weak-perspective projection,
center-pointing trajectories, dominant planar geometry, and
dynamic illumination conditions. We demonstrate improved
accuracy and robustness over both Ha’s approach and the
USAC FM 8PTS wide-baseline method when evaluating on
realistic simulated image sets.

Future work for the proposed method should focus on
improving the computation time and robustness of the initial-
izer, enabling its integration into monocular SLAM pipelines
for real-time, time-critical applications. For instance, variable
pre-conditioning may be used to increase the rate of conver-
gence of step 3 of the pipeline, addressing the vanishing
Jacobian issue. Other potential improvements include using
simulated annealing [29] for better local minima exploration
and applying convex relaxation methods [30] to improve
nonlinear program initialization. Incorporating motion con-
straints for different RSO motion paradigms may also help
further constrain the problem.
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