
This paper is included in the Proceedings of the
34th USENIX Security Symposium.

August 13–15, 2025 • Seattle, WA, USA

978-1-939133-52-6

Open access to the Proceedings of the
34th USENIX Security Symposium is sponsored by USENIX.

DP-BREM: Differentially-Private and Byzantine-Robust
Federated Learning with Client Momentum

Xiaolan Gu and Ming Li, University of Arizona; Li Xiong, Emory University

https://www.usenix.org/conference/usenixsecurity25/presentation/gu-xiaolan

DP-BREM: Differentially-Private and Byzantine-Robust Federated Learning

with Client Momentum

Xiaolan Gu

University of Arizona

xiaolang@arizona.edu

Ming Li

University of Arizona

lim@arizona.edu

Li Xiong

Emory University

lxiong@emory.edu

Abstract

Federated Learning (FL) allows multiple participating clients

to train machine learning models collaboratively while keep-

ing their datasets local and only exchanging the gradient or

model updates with a coordinating server. Existing FL pro-

tocols are vulnerable to attacks that aim to compromise data

privacy and/or model robustness. Recently proposed defenses

focused on ensuring either privacy or robustness, but not both.

In this paper, we focus on simultaneously achieving differ-

ential privacy (DP) and Byzantine robustness for cross-silo

FL, based on the idea of learning from history. The robust-

ness is achieved via client momentum, which averages the

updates of each client over time, thus reducing the variance

of the honest clients and exposing the small malicious pertur-

bations of Byzantine clients that are undetectable in a single

round but accumulate over time. In our initial solution DP-

BREM, DP is achieved by adding noise to the aggregated

momentum, and we account for the privacy cost from the mo-

mentum, which is different from the conventional DP-SGD

that accounts for the privacy cost from the gradient. Since

DP-BREM assumes a trusted server (who can obtain clients’

local models or updates), we further develop the final solu-

tion called DP-BREM+, which achieves the same DP and

robustness properties as DP-BREM without a trusted server

by utilizing secure aggregation techniques, where DP noise

is securely and jointly generated by the clients. Both theoret-

ical analysis and experimental results demonstrate that our

proposed protocols achieve better privacy-utility tradeoff and

stronger Byzantine robustness than several baseline methods,

under different DP budgets and attack settings.

1 Introduction

Federated learning (FL) [25] is an emerging paradigm that

enables multiple clients to collaboratively learn models with-

out explicitly sharing their data. The clients upload their local

model updates to a coordinating server, which then shares

the global average with the clients in an iterative process.

This offers a promising solution to mitigate the potential

privacy leakage of sensitive information about individuals

(since the data stays local with each client), such as typing

history, shopping transactions, geographical locations, and

medical records. However, recent works have demonstrated

that FL may not always provide sufficient privacy and robust-

ness guarantees. In terms of privacy leakage, exchanging the

model updates throughout the training process can still reveal

sensitive information [4, 27] and cause deep leakage such

as pixel-wise accurate image recovery [41, 44], either to a

third-party (including other participating clients) or the cen-

tral server. In terms of robustness, the decentralization design

of FL systems opens up the training process to be manipulated

by malicious clients, aiming to either prevent the convergence

of the global model (a.k.a. Byzantine attacks) [3, 14, 38], or

implant a backdoor trigger into the global model to cause

targeted misclassification (a.k.a. backdoor attacks) [2, 37].

To mitigate the privacy leakage in FL, Differential Privacy

(DP) [12, 13] has been adopted as a rigorous privacy notion.

Existing frameworks [16, 24, 26] applied DP in FL to provide

client-level privacy under the assumption of a trusted server:

whether a client has participated in the training process cannot

be inferred by a third party from the released global model.

Other works in FL [24, 35, 39, 42] focused on record-level

privacy: whether a data record at a client has participated

during training cannot be inferred by the server or other ad-

versaries that have access to the model updates or the global

model. Record-level privacy is more relevant in cross-silo (as

versus cross-device) FL scenarios, such as multiple hospitals

collaboratively learn a prediction model for COVID-19, in

which case what needs to be protected is the privacy of each

patient (corresponding to each record in a hospital’s dataset).

In this paper, we focus on cross-silo FL with record-level DP,

where each client possesses a set of raw records, and each

record corresponds to an individual’s private data.

To defend against Byzantine attacks, robust FL proto-

cols are proposed to ensure that the training procedure is

robust to a fraction of potentially malicious clients. This

problem has received significant attention from the commu-

USENIX Association 34th USENIX Security Symposium 3065

nity. Most existing approaches replace the averaging step

at the server with a robust aggregation rule, such as the me-

dian [5, 9, 28, 40]. However, recent state-of-the-art attacks

[3, 33, 38] have demonstrated the failure of the above robust

aggregators. Furthermore, a recent work [20] shows that there

exist realistic scenarios where these robust aggregators fail to

converge, even if there are no Byzantine attackers and the data

distribution is identical (i.i.d.) across the clients, and proposed

a new solution called Learning From History (LFH) to address

this issue. LFH achieves robustness via client momentum with

the motivation of averaging the updates of each client over

time, thus reducing the variance of the honest clients and ex-

posing the small malicious perturbations of Byzantine clients

that are undetectable in a single round but accumulate over

time.

In this paper, we focus on achieving record-level DP and

Byzantine robustness simultaneously in cross-silo FL. Exist-

ing FL protocols with DP-SGD [1] do not achieve the robust-

ness property intrinsically. Directly implementing an existing

robust aggregator over the privatized client gradients will lead

to poor utility because these aggregators (such as median

[5, 28, 40]) usually have large sensitivity and require large

DP noise, leading to poor utility. It is desirable to achieve

DP guarantees based on average-based aggregators. Although

LFH [20] is an average-based Byzantine-robust FL protocol,

it aggregates client momentum instead of gradient, thus it

is non-trivial to achieve DP on top of LFH. We show that

a direct combination of LFH with DP-SGD momentum has

several limitations, leading to both poor utility and robustness.

Therefore, we aim to address these limitations in our solution.

To achieve an enhanced privacy-utility tradeoff, we start

our problem from an assumption that the server is trusted

and developed a Differentially-Private and Byzantine-Robust

fEderated learning algorithm with client Momentum (DP-

BREM), which essentially is a DP version of the Byzantine-

robust method LFH [20]. Instead of adding DP noise to the

gradient and then aggregating momentum as post-processing,

we add DP noise to the aggregated momentum with carefully

computed sensitivity to account for the privacy cost. Since

the noise is added to the final aggregate (instead of intermedi-

ate local gradient), our basic solution DP-BREM maintains

the non-private LFH’s robustness as much as possible, which

we show both theoretically (via convergence analysis) and

empirically (via experimental results). Then, we relax our

trust assumption to a malicious server (for privacy only) and

develop our final solution DP-BREM+. It utilizes secure mul-

tiparty computation (MPC) techniques, including secure ag-

gregation and secure noise generation, to achieve the same

DP and robustness guarantees as in DP-BREM. In Table 1,

we compare DP-BREM and DP-BREM+ with existing ap-

proaches (or the variants) that achieve both DP and Byzantine

robustness (DDP-RP [36] and DP-RSA [43] are described in

Sec. 7). These approaches will be evaluated and compared in

experiments. Our main contributions are:

1) We propose DP-BREM, a novel differentially private

and Byzantine-robust FL protocol that adds DP noise to ag-

gregated client momentum with computed sensitivity. Our

privacy analysis (Theorem 1) accounts for momentum, differ-

ing from conventional DP-SGD which accounts for gradient.

Our convergence analysis (Theorem 3) shows minimal con-

vergence rate sacrifice for DP compared to the baseline.

2) Considering that DP-BREM is developed under the as-

sumption of a trusted server, we propose the final solution

called DP-BREM+ (Section 5), which achieves the same pri-

vacy and robustness properties as DP-BREM, even under a

malicious server (for privacy only), using secure multiparty

computation techniques. DP-BREM+ is built based on the

framework of secure aggregation with verifiable inputs (SAVI)

[30], but extends it to guarantee the integrity of DP noise via

a novel secure distributed noise generation protocol. Our ex-

tended SAVI protocol is general enough to be applied to other

DP and robust FL protocols that are average-based.

3) We demonstrate our protocols’ effectiveness through

extensive experiments on MNIST, CIFAR-10, and FEMNIST

datasets (Section 6), showing improved utility with the same

record-level DP guarantees and strong robustness against

Byzantine clients under state-of-the-art attacks, compared

to baseline methods.

2 Preliminaries

2.1 Differential Privacy (DP)

Differential Privacy (DP) is a rigorous mathematical frame-

work for the release of information derived from private data.

Applied to machine learning, a differentially private training

mechanism allows the public release of model parameters

with a strong privacy guarantee: adversaries are limited in

what they can learn about the original training data based

on analyzing the parameters, even when they have access to

arbitrary side information. The formal definition is as follows:

Definition 1 ((ε,δ)-DP [12, 13]). For ε∈ [0,∞) and δ∈ [0,1),
a randomized mechanism M : D → R with a domain D (e.g.,

possible training datasets) and range R (e.g., all possible

trained models) satisfies (ε,δ)-Differential Privacy (DP) if

for any two neighboring datasets D,D′ ∈ D that differ in only

one record and for any subset of outputs S ⊆ R , it holds that

P[M (D) ∈ S]� eε ·P[M (D′) ∈ S]+δ

where ε and δ are privacy parameters (or privacy budget),

and a smaller ε and δ indicate a more private mechanism.

Gaussian Mechanism. A common paradigm for approxi-

mating a deterministic real-valued function f : D → R with

a differentially-private mechanism is via additive noise cali-

brated to f ’s sensitivity s f , which is defined as the maximum

of the absolute distance | f (D)− f (D′)|. The Gaussian Mech-

anism is defined by M (D) = f (D) +N (0,s2
f · σ2), where

3066 34th USENIX Security Symposium USENIX Association

N (0,s2
f ·σ2) is noise drawn from a Gaussian distribution. It

was shown that M satisfies (ε,δ)-DP if δ � 4
5
e−(σε)2/2 and

ε < 1 [13]. Note that we use an advanced privacy analysis

tool proposed in [11], which works for all ε > 0.

DP-SGD Algorithm. The most well-known differentially-

private algorithm in machine learning is DP-SGD [1], which

introduces two modifications to the vanilla stochastic gradient

descent (SGD). First, a clipping step is applied to the gradient

so that the gradient is in effect bounded for a finite sensitivity.

The second modification is Gaussian noise augmentation on

the summation of clipped gradients, which is equivalent to

applying the Gaussian mechanism to the updated iterates. The

privacy accountant of DP-SGD is shown in the Appendix of

our full-version paper [17].

2.2 Federated Learning (FL) with DP

Federated Learning (FL) [19, 25] is a collaborative learning

setting to train machine learning models. We consider the hor-

izontal cross-silo FL setting, which involves multiple clients,

each holding their own private dataset of the same set of fea-

tures, and a central server that implements the aggregation.

Unlike the traditional centralized approach, data is not stored

at a central server; instead, clients train models locally and

exchange updated parameters with the server, which aggre-

gates the received local model parameters and sends them to

the clients. Based on the participating clients and scale, fed-

erated learning can be classified into two types: cross-device

FL where clients are typically mobile devices and the client

number can reach up to a scale of millions; cross-silo FL (our

focus) where clients are organizations or companies and the

client number is relatively small (e.g., within hundreds).

FL with DP. In FL, the neighboring datasets D and D′ in

Definition 1 can be defined at two distinct levels: record-level

and client-level. In cross-device FL, each device usually stores

one individual’s data, and then the whole device’s data should

be protected. It corresponds to client-level DP, where D′ is

obtained by adding or removing one client/device’s whole

training dataset from D. In cross-silo FL, each record corre-

sponds to one individual’s data, then record-level DP should

be provided, where D′ is obtained by adding or removing a

single training record/example from D. Since we consider

cross-silo FL, achieving record-level DP is our privacy goal.

2.3 Byzantine Attacks and Defenses

In a Byzantine attack, the adversary aims to destroy the con-

vergence of the model. Due to the decentralization design, FL

systems are vulnerable to Byzantine clients, who may not fol-

low the protocol and can send arbitrary updates to the server.

Also, they may have complete knowledge of the system and

can collude with each other. Most state-of-the-art defense

mechanisms [5, 9, 28, 40] play with median statistics of client

gradients. However, recent attacks [3, 38] have empirically

demonstrated the failure of the above robust aggregations.

LFH: Non-private Byzantine-Robust Defense. Recently,

Karimireddy et al. [20] showed that most state-of-the-art ro-

bust aggregators require strong assumptions and may not

converge even in the complete absence of Byzantine attackers.

Then, they proposed a new Byzantine-robust scheme called

"learning from history" (LFH) that essentially utilizes two

simple strategies: client momentum (during local update) and

centered clipping (during server aggregation). In each iter-

ation t, client Ci receives the global model parameter θθθt−1

from the server, and computes the local gradient of the random

dataset batch Di,t ⊆ Di by

gggt,i =
1

|Di,t | ∑xxx∈Di,t
∇θθθ�(xxx,θθθt−1) (1)

where ∇θθθ�(xxx,θθθt−1) is the per-record gradient w.r.t. the loss

function �(·). The client momentum can be computed via

mmmt,i = (1−β)gggt,i +βmmmt−1,i (2)

where β ∈ [0,1). After receiving mmmt,i from all clients, the

server implements aggregation with centered clipping via

mmmt = mmmt−1 +
1

n
∑

n

i=1
ClipC(mmmt,i −mmmt−1) (3)

where ClipC(·) with scalar C > 0 is the clipping function:

ClipC(xxx) := xxx ·min{1, C/‖xxx‖} (4)

and ‖xxx‖ is the L2-norm of any vector xxx. The clipping op-

eration ClipC(mmmt,i −mmmt−1) essentially bounds the distance

between client’s local momentum mmmt,i and the previous aggre-

gated momentum mmmt−1, thus restricts the impact from Byzan-

tine clients. Then, the global model θθθt can be updated by

θθθt = θθθt−1 −ηtmmmt with learning rate ηt . The convergence rate

under Byzantine attacks is shown by the following lemma.

Lemma 1 (Convergence Rate of LFH [20]). With some pa-

rameter tuning, the convergence rate of the Byzantine-robust

algorithm LFH is asymptotically (ignoring constants and

higher order terms) of the order

1

T
∑

T

t=1
E‖∇�(θθθt−1)‖2 �

√

ρ2

T

1+ |B|
n

(5)

where �(·) is the loss function, T is the total number of training

iterations, |B| is the number of Byzantine clients, n is the

number of all clients, and ρ is a parameter that quantifies the

variance of honest clients’ stochastic gradients:

E‖gggt,i −E[gggt,i]‖2 � ρ2 (6)

Interpretation of Lemma 1. When there are no Byzantine

clients, LFH recovers the optimal rate of
ρ√
nT

. In the presence

of a |B|/n fraction of Byzantine clients, the rate has an ad-

ditional term ρ

√

|B|/n

T
, which depends on the fraction |B|/n

but does not improve with increasing clients.

USENIX Association 34th USENIX Security Symposium 3067

3 Problem Statement and Motivation

3.1 Problem Statement

System Model. Our system model follows the general set-

ting of Fed-SGD [25]. There are multiple parties in the FL

system: one aggregation server and n participating clients

{C1, · · · ,Cn}. The server holds a global model θθθt ∈ R
d and

each client Ci, i ∈ {1, · · · ,n} possesses a private training

dataset Di. The server communicates with each client through

a secure (private and authenticated) channel. During the itera-

tive training process, the server broadcasts the global model in

the current iteration to all clients and aggregates the received

gradient/momentum from all clients (or a subset of clients) to

update the global model until convergence. The final global

model is returned after the training process as the output.

Threat Model. The considered adversary aims to perform a

1) privacy attack and/or 2) Byzantine attack with the following

threat model, respectively.

1) Privacy Attack. Following the conventional FL setting,

we assume the server has no access to the client’s local train-

ing data, but may have an incentive to infer clients’ private

information. In our initial solution called DP-BREM, we

assume a trusted server that can obtain clients’ local mod-

els/updates. The adversary is a third party or the participating

clients (can be any set of clients) who have access to the in-

termediate and final global models and may use them to infer

the private data of an honest client Ci. Hence, the privacy goal

is to ensure the global model (and its update) satisfies DP.

In our final solution DP-BREM+, in addition to third parties

and clients, the adversary also includes the server that tries

to infer additional information from the local updates (and

may deviate from the protocol for privacy inference). Such a

model is also adopted in previous work [30]. Following [30],

we assume a minority of malicious clients who can deviate

from the protocol arbitrarily.

2) Byzantine Attack. Recall that the goal of Byzantine

attacks is to destroy the convergence of the global model (dis-

cussed in Section 2.3). We only consider malicious clients

as the adversaries for Byzantine attacks because the server’s

primary goal is to train a robust model, thus no incentive to

implement Byzantine attacks. These malicious clients (as-

sumed to be a minority of all participating clients) can deviate

from the protocol arbitrarily and have full control of both their

local training data and their submission to the servers, but do

not influence other honest clients.

Objectives. The goal of this paper is to achieve both record-

level DP and Byzantine robustness at the same time. We

aim to provide high utility (i.e., high accuracy of the global

model) with the required DP guarantee under the existence

of Byzantine attacks from malicious clients. Our ultimate

privacy goal is to provide DP guarantees against an untrusted

server and other clients, but we start by assuming a trusted

server first in our initial solution.

3.2 Challenges and Baseline

Challenges. Replacing the average-based aggregator with

median-based or complex robust aggregators increases DP

sensitivity. Achieving both DP and Byzantine robustness with

high utility is challenging because these methods result in sig-

nificantly larger DP sensitivity than averaging, as illustrated

in Example 1.

Example 1 (Sensitivity Computation: Average vs. Median).

Consider a dataset with 5 samples: D = {1,3,5,7,9}, and

its neighboring dataset D ′ is obtained by changing one value

in D with at most 1, such as D ′ = {1,3,444,7,9}. Then, the

sensitivity of average-query is max
D,D ′

|avg(D)− avg(D ′)| =
1/5 = 0.2. However, the sensitivity of median-query is

max
D,D ′

|median(D) −median(D ′)| = 1. Moreover, when in-

creasing the size of the dataset, the sensitivity of the average

query will be reduced (and then less noise to be added), while

the sensitivity of the median query is the same.

DP-LFH: baseline via direct combination of LFH and

DP-SGD. As shown in Section 2.3, the Byzantine-robust

scheme LFH [20] utilizes an average-based aggregator, which

can be regarded as a non-private robust solution to address

the disadvantage of the median-based aggregator. A straight-

forward method to add DP protection on top of LFH is to

combine it with the DP-SGD algorithm. However, LFH re-

quires each client to compute the local momentum mmmt,i for

server aggregation, while DP-SGD aggregates gradients and

accounts for the privacy cost via the composition of itera-

tive gradient update. In LFH, since the gradient is computed

only on the client-side, a straightforward solution to integrate

DP is to use DP-SGD at each client to privatize the local

gradient, and then compute the momentum from the priva-

tized gradient (thus there is no additional privacy cost due to

post-processing). Formally, client Ci computes

gggt,i =
1

|Di,t | ∑
xxx∈Di,t

ClipR(∇θθθ�(xxx,θθθt−1))+N (0,R2σ2Id), (7)

where Id is an identity matrix with size d ×d (d is the model

size, i.e., θθθt ∈ R
d), the record-level clipping ClipR(·) restricts

the sensitivity when adding/removing one record from the

local dataset, and Gaussian noise N (0,R2σ2Id) introduces

DP property on gggt,i. Since DP is immune to post-processing,

the remaining steps can follow the original LFH without addi-

tional privacy costs. This baseline solution DP-LFH achieves

record-level DP against an untrusted server but has limitations,

leading to poor privacy-utility tradeoff and robustness.

Limitation 1: large aggregated noise. Since each client

locally adds DP noise, the overall noise after aggregation

is larger than the case of the central setting under the same

privacy budget ε since only the server adds noise in the central

setting. Therefore, DP-LFH has a poor privacy-utility tradeoff.

3068 34th USENIX Security Symposium USENIX Association

Table 1: Comparison of FL approaches with DP and Byzantine-robustness

Approaches
Differential Privacy (DP) § Byzantine Robustness

Trust Assumption

of Server

Noise

Generator

Perturbation

Mechanism

Standard Deviation

of Noise in Aggregate
Mechanism

DP-FedSGD [26]

with both record and

client norm clippings

trusted server ∑i gi +N (0,σ2) σ client norm clipping

CM [40] with

DP noise
trusted server median({gi}n

i=1)+N (0,σ2) σ coordinate-wise median (CM)

DDP-RP [36] � honest-but-curious
clients

(distributively)
∑i[gi +N (0, σ2

τ)]
√

n
τ ·σ element-wise range proof

DP-RSA [43] untrusted client ∑i[sign(gi)+N (0,σ2)]
√

n ·σ aggregation of sign-SGD

DP-LFH

(baseline in Sec. 3.2)
untrusted client ∑i[mi +N (0,σ2)]

√
n ·σ

LFH [20]: client momentum

and centered clipping
DP-BREM

(our initial solution)
trusted server

∑i mi +N (0,σ2) σ
DP-BREM+

(our final solution) † untrusted
clients

(jointly)

§ We demonstrate the privacy-utility tradeoff by comparing the standard deviation of DP noise on the aggregation, with smaller values indicating less negative

impact on utility. Note that different approaches use different aggregation strategies, where gi is the local gradient and mi is the local momentum.
� DDP-RP assumes an honest-but-curious server and ensures distributed DP (DDP) with secure aggregation. Clients add partial noise with a smaller standard

deviation based on the number of honest clients, τ, resulting in a better privacy-utility tradeoff than local DP (LDP).
† DP-BREM+ matches DP-BREM’s DP and robustness guarantees with a different server trust assumption. It achieves central DP without a trusted server, as

clients securely generate and add noise using the proposed noise generation and secure aggregation protocols.

Limitation 2: large impact on Byzantine robustness.

Since the DP noise is added locally to each client’s gradient be-

fore momentum-based clipping, it leads to a negative impact

on Byzantine robustness: the noisy client momentum mmmt,i has

larger variance than the noise-free one, which leads to larger

bias and variance on the clipping step ClipC(mmmt,i−mmmt−1). Fur-

thermore, this impact will be enlarged when there are more

Byzantine clients, which is explained as follows. Since the

parameter ρ2 defined in (6) quantifies the variance of client’s

gradient, and the DP noise is added to the local gradient in

(7), the parameter ρ of the convergence rate shown in (5) is

replaced by ρ+
√

dσ (ignoring constants) for DP-LFH, i.e.,

the convergence rate of DP-LFH is asymptotic of the order

1

T
∑

T

t=1
E‖∇�(θθθt−1)‖2 �

√

(ρ+
√

dσ)2

T

1+ |B|
n

(8)

Therefore, either a large d (i.e., large model) or a large σ (i.e.,

small privacy budget ε) will enlarge the impact from Byzan-

tine clients due to the order O(
√

dσ2|B|) of convergence rate.

We note that Guerraoui et al.’s work [18] also shares a similar

insight: they show that DP with local noise and Byzantine

robustness are incompatible, especially when the dimension

of model parameters d is large.

Limitation 3: no privacy amplification from client-level

sampling due to momentum. According to the recursive rep-

resentation mmmt,i = (1−β)gggt,i+βmmmt−1,i, client Ci’s momentum

in t-th iteration mmmt,i is essentially a weighted summation of

all previous privatized client gradients:

mmmt,i = (1−β)(gggt,i +βgggt−1,i + · · ·+βt−2ggg2,i)+βt−1ggg1,i (9)

where ggg1,i,ggg2,i, · · · ,gggt,i are already privatized via local noise.

Assume the server samples a subset of clients for aggregation

in each iteration. If client Ci’s momentum mmmt,i is not selected

in the t-th iteration, the aggregate is independent of gggt,i. How-

ever, in a later iteration (i.e., τ > t), if client Ci’s momentum

mmmτ,i is included, it depends on gggt,i according to (9). Thus,

we must account for the privacy cost of gggt,i in all iterations.

Sampling clients offers no privacy amplification, resulting in

high privacy costs or low utility.

4 DP-BREM

To address DP-LFH’s limitations, we propose DP-BREM, a

differentially-private LFH variant assuming a trusted server

that generates DP noise. DP-BREM maintains robustness of

LFH and uses a different privacy accountant (Theorem 1) than

DP-SGD. We also provide convergence analysis (Theorem 3)

showing minimal deviation from LFH. We further relax the

server trust assumption in DP-BREM+ (Section 5) by using

secure multiparty computation for secure aggregation and

joint noise generation, achieving the same DP and robustness

guarantees without a trusted server.

4.1 Algorithm Design

The illustration of our design is shown in Figure 1, and the

algorithm is shown in Algorithm 1, where all clients need

to implement local updates (in Line-3), but only a subset of

their momentum vectors are aggregated by the server (in Line-

4). The details of client updates and server aggregation are

described below.

USENIX Association 34th USENIX Security Symposium 3069

ÿ1
ÿ2 ÿ

n

θ
tθ

t

Figure 1: Illustration of our DP-BREM algorithm.

Client Updates. The client Ci first samples a random batch

Di,t from the local dataset Di with sampling rate pi, clips the

per-record gradient ∇θθθ�(xxx,θθθt−1) by R and multiplies the sum

by a constant factor 1
pi|Di| to get the averaged gradient

ḡggt,i =
1

pi|Di| ∑xxx∈Di,t
ClipR(∇θθθ�(xxx,θθθt−1)) (10)

where ClipR(·) is the clipping function defined in (4), but is

used here to bound the sensitivity for DP (refer to DP-SGD

discussed in Section 2.1). Di,t represents a random subset

obtained via subsampling from client Ci’s dataset. This sub-

sampling is essential to apply privacy amplification, enabling

the privacy accountant to derive a tight privacy budget ε. Note

that the batch size |Di,t | is random and E[|Di,t |] = pi|Di|.
Then, the local momentum can be computed by

m̄mmt,i =

{

ḡggt,i, if t = 1

(1−β)ḡggt,i +βm̄mmt−1,i, if t > 1
(11)

where β ∈ [0,1) is the momentum parameter.

Server Aggregation. The server implements centered clip-

ping with clipping parameter C > 0 to bound the difference

between client momentum m̄mmt,i and the previous noisy global

momentum m̃mmt−1 for robustness. Then, it adds Gaussian noise

with standard deviation Rσ (thus the variance is R2σ2) to the

sum of clipped terms to get the noisy global momentum m̃mmt

m̃mmt = m̃mmt−1 +
1

|It |
[

∑i∈It
ClipC(m̄mmt,i − m̃mmt−1)+N (0,R2σ2Id)

]

(12)

where Id is an identity matrix with size d ×d, and only the

sampled clients in It (which is obtained in Line-2 of Algo-

rithm 1 with sampling rate q) are aggregated in t-th itera-

tion. Note that adding noise N (0,R2σ2Id) to the summa-

tion of clipped client momentum ∑i∈It
ClipC(m̄mmt,i − m̃mmt−1) is

equivalent to adding noise 1
|It |N (0,R2σ2Id) to the average

result 1
|It | ∑i∈It

ClipC(m̄mmt,i − m̃mmt−1). Then, the server updates

the global model θθθt with learning rate ηt

θθθt = θθθt−1 −ηtm̃mmt (13)

Remark: clipping bounds and sampling rates. In our al-

gorithm, we use two clipping bounds and two sampling rates.

Algorithm 1 DP-BREM

Input: Initialization θθθ0 ∈ R
d , clipping bounds R and C, learning

rate ηt of the global model, total number of iterations T , client-

level sampling rate q, record-level sampling rate pi.

1: for t = 1, · · · ,T do

2: The server broadcasts the previous model θθθt−1 to all clients

{Ci}n
i=1 and selects a subset of client index It ⊆ {1, · · · ,n},

where each client is selected with probability q.

3: Each client Ci for i ∈ {1, · · · ,n} implements the local updates

via (10) and (11), while only selected clients need to send the

local momentum mmmt,i (for i ∈ It) to the server.

4: The server aggregates received clients’ momentum (only for

i ∈ It) with centered clipping and DP noise via (12), then

updates the global model θθθt via (13).

5: end for

Output: The final model parameter θθθT .

For clipping bounds, each client uses record-level bound R

to bound the per-record gradient in (10) for a finite sensi-

tivity in record-level DP; while the server uses client-level

bound C to bound the difference between client momentum

m̄mmt,i and the previous noisy global momentum m̃mmt−1 in (12),

which achieves Byzantine robustness as in LFH. For sampling

rates, the client Ci samples a batch of records Di,t from the

local dataset Di with sampling rate pi, which provides privacy

amplification for DP from record-level sampling; while the

server samples a subset of clients with sampling rate q (where

the sampled clients set is denoted by It), which provides pri-

vacy amplification for DP from client-level sampling.

Remark: comparison with non-private LFH. Comparing

with the original non-private Byzantine-robust method LFH

[20] (see Section 2.3), our differentially-private version has

three differences. First, comparing with (1), the client gradi-

ent in (10) is computed by averaging the clipped per-record

gradient (with clipping bound R), which bounds the sensitiv-

ity of final aggregation when adding/removing one record

from the local dataset. Second, comparing with (3), the server

adds Gaussian noise when computing the aggregated global

momentum m̃mmt in (12) to guarantee DP. Third, instead of ag-

gregating all clients’ momentum, our method also considers

aggregating a subset of them, reflected by the index set It in

(12). It provides additional privacy amplification from client-

level sampling with sampling rate q. Note that the original

privacy amplification is provided by record-level sampling.

4.2 Privacy Analysis

Before presenting the final privacy analysis of DP-BREM, we

first show how we compute the sensitivity for the summation

of clipped client momentum in (12) for privacy analysis of

one iteration, shown in Lemma 2. We note that clients may

have different sizes of local datasets Di and can use different

record-level sampling rates pi, thus the record-level sensitivity

(denoted by Si) for different clients can be different.

3070 34th USENIX Security Symposium USENIX Association

Lemma 2 (DP Sensitivity). We use ‖ · ‖ to denote L2-

norm ‖ · ‖2. In the t-th round, denote the query function

Qt(D) := ∑ j∈It
ClipC(mmmt, j − m̃mmt−1), where m̃mmt−1 is public

and D = {D j} j∈It . Consider the neighboring dataset D ′ =
{D j} j 	=i, j∈It

∪D ′
i that differs in one record from client Ci’s

local data (i ∈ It), i.e., |Di −D ′
i |= 1, then the sensitivity with

respect to client Ci is

Si := max
D,D′

‖Qt(D)−Qt(D
′)‖= min

{

2C,
R

pi|Di|

}

(14)

Proof. (Sketch) According to (10), the sensitivity of ḡggt,i is
R

pi|Di| because each clipped term ClipR(·) has bounded L2-

norm, i.e., ‖ClipR(·)‖� R. Then, due to the recursive repre-

sentation of local momentum in (11), the sensitivity of mmmt,i

is R
pi|Di| . Finally, the client-level clipping ClipC(·) introduces

another upper bound for the sensitivity. Refer to the Appendix

of our full-version paper [17] for detailed proof.

Remark: comparison with the privacy accountant of

DP-SGD momentum. As discussed in Section 3.2, the pri-

vacy accountant of DP-SGD with momentum (i.e., account for

privacy cost of gradient, then do post-processing for momen-

tum) requires clients to add noise in the local gradients, which

leads to poor utility especially when Byzantine attacks exist.

In Lemma 2, we account for the privacy cost of aggregated

momentum, where the sensitivity is carefully computed from

the bounded record-level gradient. Therefore, our scheme

solves the three limitations shown in Section 3.2, which is

explained as follows. First, only the server adds noise (which

is the same as the central setting), thus the privacy-utility

tradeoff is not impacted. Second, the noise is added after the

centered clipping ClipC(m̄mmt,i − m̃mmt−1), thus it only introduces

unbiased error. We also show that (in Section 4.3) the im-

pact from the added noise is separate from the impact from

Byzantine attacks, as versus the impact from the local noise

is enlarged with Byzantine attacks in DP-LFH (see Section

3.2). Third, since privacy is accounted on momentum, and

only the aggregated momentum leaks privacy, our solution

enjoys privacy amplification from client-level sampling.

The final privacy analysis of DP-BREM is shown in Theo-

rem 1. It presents how to compute the privacy budget ε and

privacy parameter δ when the parameters (such as T , σ, q,

etc.) of the algorithm are given. We use an advanced privacy

accountant tool called Gaussian DP (GDP) [11], then con-

vert it to (ε,δ)-DP. Note that in our privacy analysis, clients

can use different record-level sampling rates pi, thus differ-

ent sensitivity Si shown in (14). Therefore, the final privacy

budget (denoted by εi) of DP-BREM may be different for

different clients, which provides personalized privacy if these

parameters are different for each client.

Theorem 1 (Privacy Analysis). DP-BREM (in Algorithm 1)

satisfies record-level (εi,δ)-DP for an honest client Ci with εi

and δ satisfying

δ = Φ

(

− εi

µi

+
µi

2

)

− eεi ·Φ
(

− εi

µi

− µi

2

)

, (15)

where Φ(·) denotes the cumulative distribution function

(CDF) of standard normal distribution, and µi is defined by

µi = qpi

√

T (e1/(2σ2
i)−1), with σi = σ ·max

{

R

2C
, pi|Di|

}

(16)

Proof. This result is obtained by the composition of multiple

iterations and the privacy amplification from sampling. See

Appendix A for the detailed proof.

4.3 Convergence Analysis

Before presenting the final convergence analysis of our solu-

tion, we first show the aggregation error for one iteration in

Theorem 2.

Theorem 2 (Aggregation Error). Denote mmm∗
t := 1

|H | ∑i∈H mmmt,i

as the ground truth aggregated raw momentum, where mmmt,i is

the client momentum computed from gradient without record-

level clipping. Assume the local momentum of all honest

clients {mmmt,i}i∈H are i.i.d. with expectation µµµ := E[mmmt,i], and

the variance is bounded (in terms of L2-norm)

E‖mmmt,i −µµµ‖2 � ρ2 (17)

After the following parameter tuning of the clipping bounds:

R ∝ O

(

ρ

√

n/(|B|+
√

dσ/q)

)

, C ∝ O(R) (18)

we have the following aggregation error due to clipping, DP

noise, and Byzantine clients:

E‖m̃mmt −mmm∗
t ‖2 � O

(

ρ2(|B|+
√

dσ/q)

n

)

(19)

where |B| is the number of Byzantine clients, d is the dimen-

sion of model parameter θθθt , σ is the noise multiplier (for DP)

shown in (12), q is the client-level sampling rate shown in

Line-2 of Algorithm 1, and ρ is defined in (17).

Proof. (Sketch) Directly bounding E‖m̃mmt −mmm∗
t ‖2 is not easy,

thus we utilize the upper bounds of E‖m̃mmt −µµµ‖2 and E‖µµµ−
mmm∗

t ‖2 to get the final result, where µµµ := E[mmmt,i] is the expected

local momentum (we assume clients’ local momentum are

i.i.d.). When upper bounding E‖m̃mmt − µµµ‖2, we decompose

errors into three types: honest clients’ error (from clipping

randomness and bias), Byzantine clients’ error (from pertur-

bation), and DP noise error. Optimizing parameters C and R

minimizes the total error. See the Appendix of our full-version

paper [17] for the detailed proof and the formal version of

(18) and (19).

USENIX Association 34th USENIX Security Symposium 3071

Interpretation of Theorem 2. The value of E‖m̃mmt −mmm∗
t ‖2

quantifies the aggregation error, i.e., how the aggregated priva-

tized momentum m̃mmt (with clipping, DP noise, and Byzantine

clients’ impact) differs from the "pure" momentum aggrega-

tion mmm∗
t , where only honest clients participate and without

clipping and DP noise. According to (19), the aggregation

error is proportional to ρ2 and
|B|
n
+

√
dσ

nq
, where ρ2 quanti-

fies the variance of honest clients’ local momentum,
|B|
n

is

the fraction of Byzantine clients, and σ
nq

= O(1/ε) for ε-DP.

In other words, the aggregation error will be enlarged when:

honest clients’ variance is large, or the Byzantine attacker cor-

rupts more clients, or the training model is complex (i.e., the

model dimension d is large), or we need stronger privacy (i.e.,

a smaller ε), or the number of clients n is small. Furthermore,

due to the format of
|B|
n
+

√
dσ

nq
, the impact from DP noise is

independent of the increase of Byzantine clients |B| (versus

Limitation 2 of DP-LFH in Section 3.2). On the other hand,

according to the parameter tuning in (18), we could theoreti-

cally set a smaller record-level clipping bound R when σ, d,

and |B| are large, or ρ and n are small. The tuning of client-

level clipping bound C should be adjusted according to the

value of R. Recall that R is for DP, while C is for robustness.

By following the convergence analysis in [20] and using

the result in (19), we have the convergence rate shown below.

Theorem 3 (Convergence Rate of DP-BREM). The conver-

gence rate of DP-BREM in Algorithm 1 is asymptotically

(ignoring constants and higher order terms) of the order

1

T
∑

T

t=1
E‖∇�(θθθt−1)‖2 �

√

ρ2

T

|B|+(1+
√

dσ)/q

n
(20)

where �(·) is the loss function, T is the total number of training

iterations, and other parameters are the same as in (19).

Proof. See Appendix B.

Remark: comparison with LFH and DP-LFH. The con-

vergence rate of the non-private LFH, DP-LFH, and the pro-

posed solution DP-BREM, showing in (5), (8), and (20) re-

spectively, are summarized in Table 2. Though both DP-LFH

and DP-BREM pay an additional term of
√

dσ/q to get the

DP property, they have different impacts on the convergence.

As discussed in Limitation 2 of Section 3.2, the additional

term
√

dσ/q of DP-LFH (due to DP noise added to clients’

gradient) is on the term ρ, thus it will enlarge the impact of

Byzantine clients (i.e., the term |B|). However, the additional

term
√

dσ/q of our solution DP-BREM (due to DP noise

added to the aggregated momentum) is on the term 1+ |B|,
which has a squared-root order. Therefore, DP noise only has

a limited impact on the convergence of DP-BREM when there

are Byzantine clients. We will validate the above theoretical

analysis via experimental results in Section 6.

Table 2: Comparison of Convergence Rate
Where to add noise Convergence Rate

LFH [20] None O(ρ
√

1+ |B|)
DP-LFH Clients’ gradients O

(

(ρ+
√

dσ)
√

1+ |B|
)

DP-BREM Aggregated momentum O

(

ρ

√

1+ |B|+
√

dσ

)

5 DP-BREM+ with Secure Aggregation

The private and robust FL solution DP-BREM (in Section 4)

assumes a trusted server which can access clients’ momentum.

In this section, we propose DP-BREM+, which assumes a

malicious server and utilizes secure aggregation techniques,

achieving the same DP and robustness guarantees as DP-

BREM. As discussed in Section 3.1, we consider the server

as malicious only for data privacy, while clients are malicious

for both data privacy and Byzantine attacks.

5.1 Challenges

Considering the server is malicious for data privacy, the noisy

aggregate of momentum with centered clipping shown in (12)

must be implemented securely with the goals of 1) privacy,

i.e., each party, including clients and the server, learns nothing

but the differentially-private output; and 2) integrity, i.e., the

output is correctly computed. Since the noisy aggregated

momentum of the previous iteration m̃mmt−1 already satisfies DP,

we can regard it as public information and only need to focus

on securely computing the term ∑i∈It
ClipC(m̄mmt,i − m̃mmt−1) +

N (0,R2σ2Id) in (12).

Secure Aggregation with Verified Inputs (SAVI). The

key crypto technique we leverage to achieve the above objec-

tives is SAVI [30], which is a type of protocols that securely

aggregate only well-formed inputs. The security goals include

both privacy and integrity. Specifically, privacy means that no

party should be able to learn anything about the raw input of

an honest client, other than what can be learned from the final

aggregation result. Integrity means that the output of the proto-

col returns the correct aggregate of well-formed input, where

1) an input u passes the input integrity check with a public

validation predicate Valid(·) if and only if Valid(u) = 1, and

2) the aggregation is correctly computed. An instantiation of

the SAVI protocol is EIFFeL [30] (described in the Appendix

of our full-version paper [17]).

Challenge: Secure Generation of Gaussian Noise. A

SAVI protocol can potentially solve the problem of securely

aggregating the clipped vectors (by enforcing a norm-bound

on the client momentum difference). However, the Gaussian

noise N (0,R2σ2Id) needs to be securely generated and ag-

gregated as well. In DP-BREM with a trusted server, the

Gaussian noise N (0,R2σ2Id) is generated by the server to

guarantee DP. However, when the server is assumed as ma-

licious, the added Gaussian noise for DP cannot be directly

3072 34th USENIX Security Symposium USENIX Association

generated by the server.

A straightforward approach is to use a semi-honest server,

as proposed in [31], to generate DP noise and manage the

privacy engine. However, relying on another non-colluding

server may be impractical, so we assume only a single server.

An alternative is Distributed DP [34], where clients locally

generate Gaussian noise. The aggregated noise follows a

Gaussian distribution with an enlarged standard deviation,

ensuring DP through cryptographic techniques. This method,

however, has two limitations: it requires more noise to achieve

the same privacy level due to potential collusion among mali-

cious clients, and the robustness is compromised as malicious

clients can generate arbitrary local noise.

A possible solution to address the first limitation is to

jointly generate Gaussian noise as in [29], where no party

learns or controls the true value of the noise (or a portion of

the noise). However, the protocol in [29] is designed only for

additive secret sharing schemes, which only works for honest-

but-curious parties and does not tolerate malicious parties.

Moreover, in [29], the Gaussian noise is jointly generated by

honest-but-curious and non-colluding parties, which does not

address the second limitation as the clients can be malicious

in our threat model discussed in Section 3.1.

Overview of DP-BREM+. To achieve secure aggregation

with verified inputs and secure Gaussian noise generation

under the threat model of a malicious server and malicious

minority of clients, our DP-BREM+ 1) leverages an existing

SAVI protocol called EIFFeL [30] to achieve secure input

validation; and 2) introduces a new protocol to achieve secure

noise generation that is compatible with EIFFeL. The idea of

jointly generating Gaussian noise in DP-BREM+ is inspired

by [29], but our design is based on Shamir’s secret sharing

[32] with robust reconstruction by following the design in

EIFFeL, thus guarantees security under malicious minority.

We present the preliminaries of Shamir’s secret sharing and

EIFFeL protocol in the Appendix of our full-version paper

[17].

5.2 Design of DP-BREM+

As discussed in Section 5.1, the main task of DP-BREM+

is to securely compute the term ∑i∈It
ClipC(m̄mmt,i − m̃mmt−1) +

N (0,R2σ2Id) shown in (12). After computing local momen-

tum m̄mmt,i via (11), each client Ci first implements centered

clipping to get zzzi := ClipC(m̄mmt,i − m̃mmt−1), which is the private

input for validation and aggregation.

Three-Phase Design. In DP-BREM+, clients and the server

jointly implement three phases: 1) secure input validation to

validate the client momentum is properly centered clipped by

C, 2) secure noise generation, where clients generate shares

of Gaussian noise which can be aggregated in Phase 3 to

ensure DP, and 3) aggregation of valid inputs and noise to

obtain the noisy global model. We assume the arithmetic

circuit is computed over a finite field F2K . The illustration of

ýÿýÿý(⋅)

Σ

Figure 2: Illustration of DP-BREM+ (see Appendix C for

detailed steps 1©- 7©)

DP-BREM+ is shown in Figure 2. Due to limited space, we

present the detailed steps 1©- 7© in Appendix C.

Phase 1: Secure Input Validation. The validation func-

tion for an input zzzi considered in DP-BREM+ is defined as

Valid(zzzi) := (‖zzzi‖�C), where Valid(zzzi) = 1 if and only if

the condition ‖zzzi‖�C holds. Since honest clients compute

zzzi = ClipC(m̄mmt,i − m̃mmt−1), verifying whether zzzi is well-formed,

with bounded L2-norm via Valid(·), for all clients ensures

centered clipping of client momentum m̄mmt,i (to achieve robust-

ness as DP-BREM). We follow the design in EIFFeL [30]

for secure input validation, which returns the validation result

Valid(zzzi) (either 1 or 0) for client Ci’s private input zzzi, cor-

responding to steps 1©, 2©, and 3© shown in Figure 2. Then,

clients and the server can jointly verify all inputs {zzzi}i∈It , and

obtain the set of valid inputs IValid, where Valid(zzzi) = 1 for all

i ∈ IValid. In the later step, only inputs in IValid are aggregated.

Phase 2: Secure Noise Generation. We develop a new pro-

tocol for secure distributed Gaussian noise generation, which

returns the shares (held by each client) of a random vector ξξξ
of length d from the Gaussian distribution N (0,R2σ2Id), cor-

responding to steps 4© and 5© shown in Figure 2. The shares

of noise can be reconstructed into a single Gaussian noise

(for ensuring DP) with the guarantee that no parties know or

control the generated noise, which protects the information

of private inputs after the noisy aggregate is released.

Phase 3: Aggregation of Valid Inputs and Noise. Finally,

the server and clients can aggregate the valid inputs (obtained

in Phase 1) and the generated Gaussian noise (obtained in

Phase 2) by implementing steps 6© and 7© shown in Figure 2,

ensuring nothing except the noisy aggregate can be learned.

Remark on Efficiency. DP-BREM+’s usage of EIFFeL’s

secure input validation is due to efficiency considerations.

Instead of having clients perform clipping and using secure

input validation, one alternative is to use standard secure multi-

party computation (MPC) for the clipping and aggregation.

However, doing this under MPC would result in a very large

computation/communication overhead due to the multiplica-

tion, min-operation, division, and L2-norm computation in

the clipping operation ClipC(·) defined in (4). In contrast, the

USENIX Association 34th USENIX Security Symposium 3073

secure input validation protocol only requires the verifiers to

check all the multiplication gates very efficiently with just one

identity test. The compatibility with secure input validation is

one of the advantages of DP-BREM.

Complexity. According to EIFFeL [30], the compu-

tation/communication complexity of secure aggregation

with input validation is O(mnd) for clients and O(n2 +
md min{n,m2}) for the server in terms of the number of

clients n, number of malicious clients m, and data dimen-

sion d. For the proposed secure noise generation (only clients

are involved), the computation/communication complexity

for total n clients is O(mnd).

5.3 Security Analysis

In comparison, EIFFeL [30] is a secure aggregation protocol

with verified inputs (without guaranteeing DP), while our

solution DP-BREM+ is a secure noisy aggregation protocol

with verified inputs and jointly generated Gaussian noise,

which provides DP on the aggregated results. Therefore, the

only difference is the Gaussian noise that will be aggregated

to the final result. We show the formal security guarantee of

DP-BREM+ in the following theorem.

Theorem 4 (Security Guarantees of DP-BREM+). For the

validation function Valid(·) considered in Section 5.2, given

a security parameter κ, the secure noisy aggregation protocol

in DP-BREM+ satisfies:

1) Integrity. For a negligible function negl(·), the output of

the protocol returns the noisy aggregate of a subset of clients

IValid and Gaussian noise ξξξ, such that all clients in IValid have

well-formed inputs:

Pr[output = ∑i∈IValid
zzzi +ξξξ]� 1−negl(κ)

where random vector ξξξ ∼ N (0,R2σ2Id), and Valid(zzzi) = 1

for all i ∈ IValid. Note that the set IValid contains all honest

clients (denoted by IH) and the malicious clients who submit-

ted well-formed input (denoted by I ∗
M), i.e., IValid = IH ∪ I ∗

M .

2) Privacy. For a set of malicious clients IM and a malicious

server S, there exists a probabilistic polynomial-time (P.P.T.)

simulator Sim(·) such that:

Real({zi}i∈IH
,ΩIM∪S)≡C Sim

(

∑i∈IH
zzzi +ξξξ,IH ,ΩIM∪S

)

where {zi}i∈IH
denotes the input of all the honest clients, Real

denotes a random variable representing the joint view of all

the parties in the protocol’s execution, ΩIM∪S indicates a

polynomial-time algorithm implementing the "next-message"

function of the parties in IM ∪S (see [30, Appendix 11.5]),

and ≡C denotes computational indistinguishability. In sum-

mary, the server and clients learn nothing besides the final

aggregated result.

Proof. See the Appendix of our full-version paper [17].

6 Experimental Evaluation

In this section, we demonstrate the effectiveness of the

proposed DP-BREM/DP-BREM+ on achieving both good

privacy-utility tradeoff and Byzantine robustness via exper-

imental results on MNIST [23], CIFAR-10 [22], and FEM-

NIST [8] datasets with non-IID setting (refer to Appendix

D for more details on the datasets and model architectures).

Note that MNIST and CIFAR-10 have 10 classes, while FEM-

NIST includes 62 classes. All experiments are developed via

PyTorch1.

Byzantine Attacks. We consider four existing Byzan-

tine attacks in our experiments, including ALIE ("a little

is enough") [3], IPM (inner-product manipulation) [38], LF

(label-flipping), and the state-of-the-art MTB ("manipulating-

the-Byzantine") [33]. Refer to Appendix D for more details.

Compared Methods. We compare the performance of six

approaches against Byzantine attacks, including DP-BREM/+

(our approach)2, a variant of DP-FedSGD [26] with both

record and client norm clipping, DDP-RP [36], DP-RSA

[43], a variant of CM [40] with DP noise, and DP-LFH. The

comparison (on trust assumption and mechanism overview)

of these approaches is provided in Table 1, and Appendix

D shows more details of each approach. In summary, DP-

BREM/+, DP-FedSGD, and DP-CM add central noise to the

aggregation, but DP-BREM+ does not require a trusted server

due to the secure aggregation technique. DDP-RP adds par-

tial local noise to the client’s update with secure aggregation.

DP-RSA and DP-LFH add local noise to the client’s update.

We fix δ = 10−6 for (ε,δ)-DP in all experiments. For the

setting of other parameters, refer to Appendix E.

Evaluation Metric. We evaluate the testing accuracy of the

global model within T iterations. Considering the accuracy

curve might be unstable under Byzantine attacks, we average

the accuracy between 0.9T and T as the final accuracy for

comparison. Note that both DP noise and Byzantine attacks

reduce the accuracy. A protocol achieves good Byzantine

robustness if its accuracy does not decrease too much with an

increased number of Byzantine clients.

6.1 Robustness Evaluation with DP

We consider a fixed privacy budget ε and implement each at-

tack with different percentages of Byzantine clients δB = |B|
n

for the four attacks, and compare the accuracy among all ap-

proaches. We note that a complex dataset requires a more so-

phisticated model architecture and makes it more challenging

to maintain good utility in the presence of DP and Byzantine

attacks. Therefore, in our experiments with CIFAR-10 (which

1Our source code is available at https://github.com/xiaolangu/DP-BREM
2Since DP-BREM+ achieves the same DP and robustness guarantees

as DP-BREM, we did not perform the empirical experiments with secure

aggregation because the accuracy results will be exactly the same as DP-

BREM. We use DP-BREM/+ to denote both DP-BREM and DP-BREM+,

and the implementation follows Algorithm 1.

3074 34th USENIX Security Symposium USENIX Association

Figure 3: With fixed privacy budget ε, varying the percentage of Byzantine clients δB for three datasets.

has three color channels) and FEMNIST (which includes 62

classes), we use slightly larger ε values and a smaller number

of Byzantine clients. These choices are still within a rea-

sonable range. Previous papers, such as [1] and [42], also

used larger privacy budgets for the CIFAR-10 dataset com-

pared to the MNIST dataset. The results for MNIST (with

ε = 3), CIFAR-10 (with ε = 4), and FEMNIST (with ε = 4)

datasets are shown in Figure 3. Compared to the results on the

MNIST dataset (with 10 classes), the accuracy on the FEM-

NIST dataset is lower due to the larger number of classes.

Though the detailed results vary under different attacks and

across three datasets, we have some general observations:

1) When there is no attack, i.e., δB = 0, DP-BREM/+

achieves almost the same accuracy as DP-FedSGD, indicating

the Byzantine-robust design (client momentum with centered

clipping) has almost no impact on the utility in this case.

2) After increasing δB, our DP-BREM/+ has the smallest

accuracy decrease, indicating its success in providing Byzan-

tine robustness. However, the accuracy of DP-LFH reduces

sharply, demonstrating that the large aggregated local DP

noise makes the robust aggregator more vulnerable to Byzan-

tine attacks, which is consistent with our discussions of Limi-

tation 2 in Section 3.2.

3) Though DP-FedSGD has client-level gradient clipping,

which can restrict malicious clients’ impact, it is still vulner-

able to some types of Byzantine attacks (such as IPM and

MTB) under larger δB values.

4) CM with DP noise (or DP-CM) has a relatively small

accuracy decrease for a relatively small δB. It is the benefit

of the median-based robust aggregator. But the sensitivity

is larger than the average-based aggregators, as discussed in

Example 1, the aggregated DP noise is too large to obtain a

high accuracy, even when δB = 0.

5) DDP-RP is more vulnerable to LF attack because it only

checks the element-wise range. Also, the model replacement

strategy in LF attack is more likely to change the positions

that have small values in benign gradient vectors.

6) DP-RSA has relatively poor accuracy compared to other

approaches, even when δB = 0. This is caused by the sign-

SGD aggregator, which only aggregates element-wise signs

rather than the full precision gradient, leading to large infor-

mation loss. Moreover, the local DP noise makes Byzantine

attacks easier to succeed. We note that DP-RSA does not con-

verge for the FEMNIST dataset (possibly caused by the sign

aggregation), even without DP noise and Byzantine clients,

and thus we do not present the results for this dataset.

7) Under the ALIE attack, it is possible for a small number

of Byzantine clients to improve the accuracy of the model

compared to the scenario without any Byzantine clients. For

instance, an ALIE attack with 10% Byzantine clients can

USENIX Association 34th USENIX Security Symposium 3075

Figure 4: With fixed percentage of Byzantine clients δB, varying privacy budget ε for three datasets.

achieve higher accuracy than the case with 0% Byzantine

clients across all defense aggregators except DP-LFH. This

improvement occurs because the ALIE attack generates ma-

licious gradients that are close to the averaged good gradi-

ents but deviate slightly using a scaling factor. This factor is

determined based on the total number of clients and the pro-

portion of Byzantine clients, designed to bypass any anomaly

detection mechanisms employed by the central server. Conse-

quently, when the number of Byzantine clients is relatively

small, the malicious gradients can enhance model accuracy

compared to benign gradients, where the record-level clipping

is used to achieve DP.

6.2 Privacy-Utility Tradeoff under Attack

We consider a fixed percentage of Byzantine clients δB for

each attack under different values of privacy budget ε, and

compare the accuracy of all approaches. The results for

MNIST (with δB = 30%), CIFAR-10 (with δB = 15%), and

FEMNIST (with δB = 15%) datasets are shown in Figure

4. For all three datasets, we consider four different levels of

privacy, where ε = inf means the standard deviation of DP

noise is 0. However, we still implement record-level clipping

to illustrate how the noise affects the results while keeping

other settings including the clipping step the same.

It’s essential to highlight that while the privacy-utility curve

is generally monotonic in the absence of Byzantine attacks,

this may not hold under Byzantine attacks due to two sources

of perturbation. When malicious perturbation dominates, the

impact of DP noise on utility is typically minimal. Addition-

ally, different defense aggregators exhibit varying sensitivi-

ties to malicious perturbation and DP noise across various

datasets, even when the number of malicious clients and ε val-

ues are the same. Consequently, observations can vary across

defense aggregators, attacks, and datasets (with different pa-

rameters). For example, DP noise has a very small (or almost

negligible) impact on DP-FedSGD compared to DP-BREM.

This could be because DP-FedSGD aggregates more informa-

tion than the momentum-based solution, leading to a better

signal-to-noise ratio (SNR) and thus greater robustness to DP

noise. However, the attack has a more significant impact on

DP-FedSGD.

Though the detailed results vary under different attacks and

across the three datasets, DP-BREM/+ generally achieves the

highest accuracy among almost all approaches, especially un-

der IPM and MTB attacks. The only exception is when ε = 2

for the FEMNIST dataset, where the accuracy of DP-BREM/+

is lower than that of DP-FedSGD. This is because the client

momentum in DP-BREM/+ restricts the information that can

be learned from each new iteration, making the increased DP

3076 34th USENIX Security Symposium USENIX Association

Figure 5: MNIST: Varying record-level clipping bound R for DP-BREM under different settings.

Table 3: Running time1 (in milliseconds) per round per client on

the MNIST dataset.

Batch

Size

Baseline

(FedSGD)

FedSGD+DP

(efficient2)

DP-BREM

(DP+robust)

FedSGD+DP

(inefficient3)

30 11.80 13.31 13.72 41.06

60 18.23 19.79 20.27 76.70

120 31.22 33.18 33.70 149.32

1 Our GPU device is NVIDIA Tesla P100-PCIE-16GB. Using other GPU

devices may have different results.
2 By default, our implementation uses efficient per-record gradient clipping

by following Opacus library’s implementation with parallel clipping and

optimized einsum (refer to https://opacus.ai/api/_modules/opacus/

optimizers/optimizer.html#DPOptimizer)
3 To illustrate the improvement of efficient clipping, we also show the results

of the inefficient implementation, which clips per-record gradient sequen-

tially and without using optimized einsum.

noise have a greater impact on the model’s accuracy.

Note that when σ = 0 (i.e., ε = inf), both DP-BREM/+ and

DP-LFH reduce to LFH, thus they have the same results in

this case. We can observe that with a moderate privacy budget,

such as ε � 2, DP noise only has a negligible impact on the

accuracy. But if ε is too small, such as ε = 1 for the MNIST

dataset in Figure 4, DP-BREM/+ suffers a relatively larger im-

pact (but still acceptable) from DP noise. Note that when there

exist Byzantine attacks, reducing the DP noise to σ = 0 (i.e.,

ε = inf) does not significantly improve the accuracy of DP-

BREM/+ compared with ε < inf, because Byzantine clients’

perturbations largely impact the performance. However, the

accuracy of DP-LFH is greatly reduced when ε < inf, since

the local DP noise impacts the robustness of the aggregator.

This observation is consistent with our theoretical analysis in

Limitation 2 of DP-LFH (Section 3.2).

6.3 Other Results

Efficiency Evaluation of DP and Byzantine Robustness.

We note that DP and Byzantine Robustness designs in our so-

lution only introduce a small computation overhead, because

1) the clipping step of DP can be implemented efficiently; 2)

our robustness is essentially a clipped summation of client

momentum without any complex computations. Due to lim-

ited resources, we implemented the distributed training of

Table 4: Model accuracy when varying C of DP-BREM/+ with

ε = 4 under IPM and MTB attacks on FEMNIST dataset.

δB C = 0.5 C = 1 C = 2 C = 3 C = 4

0% 0.622 0.647 0.625 0.621 0.627

IPM 10% 0.407 0.524 0.555 0.528 0.514

IPM 20% 0.060 0.305 0.436 0.413 0.392

MTB 10% 0.591 0.605 0.535 0.525 0.545

MTB 20% 0.554 0.537 0.477 0.426 0.426

FL on a single machine (by running all the clients and the

server code sequentially). We evaluate the efficiency of DP-

BREM via the running time (per round per client) on the

MNIST dataset. The results shown in Table 3 indicate that

the DP noise and Byzantine robustness only incur 8% ∼ 16%

additional running time (depending on batch size).

Impact of R in DP-BREM/+. Figure 5 shows how the

accuracy changes w.r.t. the record-level clipping bound R

in DP-BREM/+. The results demonstrate that when there

are fewer Byzantine clients (i.e., smaller δB) or the noise

multiplier σ is smaller (i.e., larger ε), we need to set a larger

R to obtain better accuracy. This observation is consistent

with the theoretical analysis of parameter tuning discussed in

Theorem 2 and its interpretation.

Impact of C in DP-BREM/+. We use the fixed client-level

clipping bound C for each dataset in previous experiments.

Table 4 illustrates how varying values of C (while keeping

the default and fixed R) can influence model accuracy. In the

absence of Byzantine attacks, the value of C has a relatively

small impact on the model accuracy. However, in the presence

of Byzantine attacks, the effect of C varies depending on the

nature of the attack. For instance, attacks like the IPM attack,

which deviate significantly from benign gradients, benefit

from a slightly larger C as it allows more useful information

(from benign clients) to be retained. Conversely, for attacks

like the MTB attack, which aim to evade detection by aligning

more closely with benign gradients, a slightly smaller C can

improve accuracy by reducing the impact of the attack on the

aggregated gradient.

Impact of q in DP-BREM/+. In previous experiments, we

set client-level sampling rate q = 1 by default. As discussed

USENIX Association 34th USENIX Security Symposium 3077

Table 5: Model accuracy when varying q of DP-BREM/+ with

ε = 2 under MTB attack on the CIFAR-10 dataset.

δB q = 1 q = 0.8 q = 0.6 q = 0.4 q = 0.2

0% 0.503 0.525 0.504 0.491 0.485

10% 0.435 0.434 0.465 0.449 0.438

20% 0.255 0.284 0.297 0.328 0.241

in Sec. 4.1, aggregating a subset It of clients in (12) is one

of the major differences from LFH. Table 5 demonstrates

the utility improvement by optimizing q under different at-

tack percentages δB. Intuitively, without attacks, a smaller q

enhances privacy amplification, reducing the required σ for

a given ε in DP; however, too small a q increases aggrega-

tion variance. Under Byzantine attacks, a smaller q mitigates

attack impact as only a subset of Byzantine clients are ag-

gregated. Thus, with higher δB the optimal q (highlighted in

Table 5) decreases.

7 Related Work

Due to limited space, we only discuss the most relevant de-

fenses below and put other related work in the Appendix of

our full-version paper [17]. Other works either only achieve

DP or Byzantine robustness (but not both), or combine secure

aggregation with Byzantine robustness without realizing DP.

Wang et al. [36] proposed DDP-RP, an FL scheme offering

Distributed DP (via encryption) and robustness (via range-

proof technologies). However, this scheme only verifies if

local model weights are within a bounded range, providing

weak robustness. Our solution, in contrast, employs client

momentum and centered clipping for Byzantine robustness

with provable convergence. Zhu et al. [43] uses sign aggrega-

tion for robustness, thus each client has limited impact, and

adds DP noise to local gradients before sign operations. This

method suffers from information loss, resulting in degraded

convergence, and only accounts for the privacy cost of one

iteration, underestimating the overall cost. Our solution, based

on original SGD with momentum, considers the privacy cost

of all iterations. Experimental results show that DP-BREM

outperforms both approaches.

8 Conclusions

This paper aims to achieve FL in the cross-silo setting with

both DP and Byzantine robustness. We first proposed DP-

BREM, a DP version of LFH-based FL protocol with a robust

aggregator based on client momentum, where the server adds

noise to the aggregated momentum. Then we further devel-

oped DP-BREM+ which relaxes the server’s trust assumption,

by combining secure aggregation techniques with verifiable

inputs and a new protocol for secure joint noise generation.

DP-BREM+ achieves the same DP and robustness guarantees

as DP-BREM, under a malicious server (for privacy) and ma-

licious minority clients. We theoretically analyze the error

and convergence of DP-BREM, and conduct extensive exper-

iments that empirically show the advantage of DP-BREM/+

in terms of privacy-utility tradeoff and Byzantine robustness

over five baseline protocols. In the future, we will extend our

work to other types of robust aggregators.

Acknowledgments

The authors would like to thank the anonymous reviewers and

the shepherd for their valuable comments and suggestions. Li

Xiong was partly supported by NSF grants CNS-2124104,

CNS-2125530, IIS-2302968, and NIH grants R01LM013712,

R01ES033241.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan

McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.

Deep learning with differential privacy. In ACM SIGSAC

Conference on Computer and Communications Security

(CCS), 2016.

[2] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deb-

orah Estrin, and Vitaly Shmatikov. How to backdoor

federated learning. In International Conference on Arti-

ficial Intelligence and Statistics (AISTATS), 2020.

[3] Gilad Baruch, Moran Baruch, and Yoav Goldberg. A

little is enough: Circumventing defenses for distributed

learning. In Neural Information Processing Systems

(NeurIPS), 2019.

[4] Abhishek Bhowmick, John Duchi, Julien Freudiger,

Gaurav Kapoor, and Ryan Rogers. Protection against

reconstruction and its applications in private federated

learning. arXiv preprint, 2018.

[5] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guer-

raoui, and Julien Stainer. Machine learning with adver-

saries: Byzantine tolerant gradient descent. In NeurIPS,

2017.

[6] George EP Box and Mervin E Muller. A note on the

generation of random normal deviates. The annals of

mathematical statistics, 1958.

[7] Zhiqi Bu, Jinshuo Dong, Qi Long, and Weijie J Su. Deep

learning with gaussian differential privacy. Harvard

Data Science Review, 2020(23), 2020.

[8] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu,

Tian Li, Jakub Konečnỳ, H Brendan McMahan, Virginia

Smith, and Ameet Talwalkar. Leaf: A benchmark for

federated settings. arXiv preprint, 2018.

[9] Yudong Chen, Lili Su, and Jiaming Xu. Distributed sta-

tistical machine learning in adversarial settings: Byzan-

tine gradient descent. In ACM on Measurement and

Analysis of Computing Systems, 2017.

3078 34th USENIX Security Symposium USENIX Association

[10] Henry Corrigan-Gibbs and Dan Boneh. Prio: Private,

robust, and scalable computation of aggregate statistics.

In USENIX Symposium on Networked Systems Design

and Implementation (NSDI), 2017.

[11] Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian

differential privacy. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 2019.

[12] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and

Adam Smith. Calibrating noise to sensitivity in private

data analysis. In Theory of Cryptography Conference

(TCC), 2006.

[13] Cynthia Dwork, Aaron Roth, et al. The algorithmic

foundations of differential privacy. Now Publishers,

2014.

[14] Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil

Gong. Local model poisoning attacks to byzantine-

robust federated learning. In USENIX Security Sympo-

sium, 2020.

[15] Paul Feldman. A practical scheme for non-interactive

verifiable secret sharing. In IEEE Annual Symposium on

Foundations of Computer Science (SFCS), pages 427–

438, 1987.

[16] Robin C Geyer, Tassilo Klein, and Moin Nabi. Differen-

tially private federated learning: A client level perspec-

tive. arXiv preprint, 2017.

[17] Xiaolan Gu, Ming Li, and Li Xiong. DP-BREM:

differentially-private and byzantine-robust federated

learning with client momentum. arXiv preprint, 2023.

[18] Rachid Guerraoui, Nirupam Gupta, Rafaël Pinot,

Sébastien Rouault, and John Stephan. Differential pri-

vacy and byzantine resilience in sgd: Do they add up?

In ACM Symposium on Principles of Distributed Com-

puting, 2021.

[19] Peter Kairouz, H Brendan McMahan, Brendan Avent,

Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,

Kallista Bonawitz, Zachary Charles, Graham Cormode,

Rachel Cummings, et al. Advances and open problems

in federated learning. Foundations and Trends in Ma-

chine Learning, 14(1–2), 2021.

[20] Sai Praneeth Karimireddy, Lie He, and Martin Jaggi.

Learning from history for byzantine robust optimiza-

tion. In International Conference on Machine Learning

(ICML), 2021.

[21] Marcel Keller. MP-SPDZ: A versatile framework for

multi-party computation. In CCS, 2020.

[22] Alex Krizhevsky, Geoffrey Hinton, et al. Learning mul-

tiple layers of features from tiny images. 2009.

[23] Yann LeCun. The mnist database of handwritten digits.

1998.

[24] Jeffrey Li, Mikhail Khodak, Sebastian Caldas, and

Ameet Talwalkar. Differentially private meta-learning.

In International Conference on Learning Representa-

tions (ICLR), 2020.

[25] Brendan McMahan, Eider Moore, Daniel Ramage, Seth

Hampson, and Blaise Aguera y Arcas. Communication-

efficient learning of deep networks from decentralized

data. In AISTATS, 2017.

[26] H Brendan McMahan, Daniel Ramage, Kunal Talwar,

and Li Zhang. Learning differentially private recurrent

language models. In ICLR, 2018.

[27] Luca Melis, Congzheng Song, Emiliano De Cristofaro,

and Vitaly Shmatikov. Exploiting unintended feature

leakage in collaborative learning. In IEEE Symposium

on Security and Privacy (S&P), 2019.

[28] El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien

Rouault. The hidden vulnerability of distributed learning

in byzantium. In ICML, 2018.

[29] Sikha Pentyala, Davis Railsback, Ricardo Maia, Rafael

Dowsley, David Melanson, Anderson Nascimento, and

Martine De Cock. Training differentially private models

with secure multiparty computation. arXiv preprint,

2022.

[30] Amrita Roy Chowdhury, Chuan Guo, Somesh Jha, and

Laurens van der Maaten. EIFFeL: Ensuring integrity

for federated learning. In CCS, 2022.

[31] Amrita Roy Chowdhury, Chenghong Wang, Xi He, Ash-

win Machanavajjhala, and Somesh Jha. Crypte: Crypto-

assisted differential privacy on untrusted servers. In

ACM Special Interest Group on Management of Data

(SIGMOD), 2020.

[32] Adi Shamir. How to share a secret. Communications of

the ACM, 22(11):612–613, 1979.

[33] Virat Shejwalkar and Amir Houmansadr. Manipulat-

ing the byzantine: Optimizing model poisoning attacks

and defenses for federated learning. In Network and

Distributed System Security (NDSS), 2021.

[34] Elaine Shi, TH Hubert Chan, Eleanor Rieffel, Richard

Chow, and Dawn Song. Privacy-preserving aggregation

of time-series data. In NDSS, 2011.

[35] Stacey Truex, Nathalie Baracaldo, Ali Anwar, Thomas

Steinke, Heiko Ludwig, Rui Zhang, and Yi Zhou. A

hybrid approach to privacy-preserving federated learn-

ing. In ACM Workshop on Artificial Intelligence and

Security, 2019.

[36] Fayao Wang, Yuanyuan He, Yunchuan Guo, Peizhi Li,

and Xinyu Wei. Privacy-preserving robust federated

learning with distributed differential privacy. In IEEE

International Conference on Trust, Security and Privacy

in Computing and Communications (TrustCom), 2022.

[37] Hongyi Wang, Kartik Sreenivasan, Shashank Rajput,

Harit Vishwakarma, Saurabh Agarwal, Jy-yong Sohn,

Kangwook Lee, and Dimitris S Papailiopoulos. Attack

of the tails: Yes, you really can backdoor federated learn-

ing. In NeurIPS, 2020.

[38] Cong Xie, Oluwasanmi Koyejo, and Indranil Gupta. Fall

of empires: Breaking byzantine-tolerant sgd by inner

USENIX Association 34th USENIX Security Symposium 3079

product manipulation. In Uncertainty in Artificial Intel-

ligence, 2020.

[39] Runhua Xu, Nathalie Baracaldo, Yi Zhou, Ali Anwar,

and Heiko Ludwig. Hybridalpha: An efficient approach

for privacy-preserving federated learning. In ACM Work-

shop on Artificial Intelligence and Security, 2019.

[40] Dong Yin, Yudong Chen, Ramchandran Kannan, and

Peter Bartlett. Byzantine-robust distributed learning:

Towards optimal statistical rates. In ICML, 2018.

[41] Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M Al-

varez, Jan Kautz, and Pavlo Molchanov. See through

gradients: Image batch recovery via gradinversion. In

IEEE / CVF Computer Vision and Pattern Recognition

Conference (CVPR), 2021.

[42] Qinqing Zheng, Shuxiao Chen, Qi Long, and Weijie Su.

Federated f-differential privacy. In AISTATS, 2021.

[43] Heng Zhu and Qing Ling. Bridging differential privacy

and byzantine-robustness via model aggregation. In

International Joint Conference on Artificial Intelligence

(IJCAI), 2022.

[44] Ligeng Zhu, Zhijian Liu, and Song Han. Deep leakage

from gradients. In NeurIPS, 2019.

A Proof of Theorem 1 (Privacy Analysis)

Proof. Since the added Gaussian noise in (12) has standard

deviation Rσ, and the aggregation sensitivity is shown in

(14), then the noise multiplier (defined by the ratio between

Gaussian noise’s standard deviation and the sensitivity) is

σi =
Rσ

Si

= max

{

Rσ

2C
,σpi|Di|

}

= σ ·max

{

R

2C
, pi|Di|

}

Also, due to the client-level sampling (i.e., each client was

selected by the server w.p. q) and record-level sampling (i.e.,

each record was selected by client Ci w.p. pi), the overall

sampling rate is qpi. Then, by applying the privacy accountant

of Gaussian DP [11] (also shown in the Appendix of our

full-version paper [17]), DP-BREM satisfies µi-GDP with µi

shown in (16). Finally, by converting µi-GDP to (εi,δ)-DP,

we get (15), which finishes the proof.

Remark: privacy accountant in practice. Eq. (15) pro-

vides the formula of δ when εi is given and µi is computed

from (16). In practice, however, we need to compute the value

of privacy budget εi with a fixed δ, where δ is convention-

ally set to be less than 1/n. In our experiments, we utilize

the computation tool3 in [7] to solve εi from (15). For the

value of σi in (16), we usually have pi|Di|> R
2C

in practice,

then σi = σpi|Di|. In this case, the clipping bounds R and

C are just hyperparameters that may affect the utility of the

algorithm, but has no influence on the privacy analysis.

3https://github.com/woodyx218/Deep-Learning-with-GDP-Pytorch

B Proof of Theorem 3 (Convergence Rate)

Proof. The proof of DP-BREM’s convergence rate is based

on the result of DP-BREM’s aggregation error shown in The-

orem 2, and LFH’s convergence rate derived from LFH’s ag-

gregation error. Note that all differences between DP-BREM

and LFH, including per-record clipping and the DP noise, are

reflected by the aggregation error. Comparing with the ag-

gregation error of O(ρ2|B|/n) (ignoring constants and higher

order terms) in LFH [20, Lemma 9], our aggregation error

shown in (19) replaces the term |B| by |B|+
√

dσ/q, which

means a slower convergence due to DP noise. Then, following

the result in [20, Theorem VI] and its informal version in (5),

we get the convergence rate of our algorithm as in (20). Note

that our aggregation utilizes a client-level sampling rate q,

i.e., approximate nq clients participate in the aggregation for

one iteration. We need to replace the term of 1
n

in (5) by 1
nq

in

(20).

C Detailed Steps of DP-BREM+ in Figure 2

1© Proof and Shares Generation: zzzi,Valid(·) →
[zzzi] j, [πi] j (∀ j 	= i). For generating the proof, client Ci

first evaluates the circuit Valid(·) on its private input zzzi

to obtain the value of every wire in the arithmetic circuit

corresponding to the computation of Valid(zzzi), then uses

these wire values to generate the proof πi (refer to [10, 30] for

the detailed format). Then, client Ci splits the private input

zzzi and proof πi to generate shares [zzzi] j and [πi] j (∀ j 	= i),
and send them to other clients {C j}∀ j 	=i via Shamir’s secret

sharing.

2© Proof Summary Computation: [zzzi] j, [πi] j (∀ j 	= i) →
[σi] j (∀ j 	= i). Each client exceptCi first verifies the validity of

the received secret shares via verifiable secret shares [15], and

then locally constructs the shares of every wire in Valid(zzzi)
via affine operations on the shares [zzzi] j and[πi] j to get the

shares of proof summary [σi] j (refer to [30] for the detailed

format), which will be sent to the server.

3© Proof Summary Verification: [σi] j (∀ j 	= i)→ Valid(zzzi).
After receiving shares of proof summary [σi] j(∀ j 	= i) from

clients {C j}∀ j 	=i, the server recovers the value of σi via robust

reconstruction, which is resilient to incorrect shares submitted

by the malicious clients, and then checks the values in proof

summaries. Finally, the validation result Valid(zzzi) = 1 if and

only if σi has the correct value.

4© Random Numbers Generation: l,d →
{([uk] j, [vk] j)}�d/2�

k=1 (∀ j). In this step, clients jointly

generate the shares of �d/2�-pairs of random numbers

{(uk,vk)}�d/2�
k=1 , where all of them are i.i.d. from uniform

distribution in the range [0,1]. Denote l as the fractional

precision of the power 2 ring representation of real numbers.

To obtain the share of one random number u, each client

Ci (∀i) generates l random bits in the binary filed F2,

3080 34th USENIX Security Symposium USENIX Association

denoted by a binary vector bbbi with length l, then generate

and distributes the shares [bbbi] j to other clients (via Shamir’s

secret sharing). After receiving all shares from other

clients, each client C j (∀ j) locally adds these shares to get

[bbb] j = [∑i bbbi] j ∈ F
l
2, where vector bbb ∈ F

l
2 is actually the

bitwise XOR of vectors {bbbi}∀i because the computation is

implemented in the binary field F
l
2. We define the binary

vector bbb as the binary representation of the fractional part of

u ∈ [0,1]. Note that the Shamir’s secret sharing scheme of

Phase 1 is implemented in a finite filed F2K , where K > l.

Therefore, the client C j can locally compute the arithmetic

share [u] j ∈ F2K from the share of binary representation

[bbb] j ∈ F
l
2. Since all possible discrete values with power 2

ring representation evenly span the range [0,1], the generated

random real number u is uniformly distributed in [0,1].
5© Transformation to Gaussian Distribution:

{([uk] j, [vk] j)}�d/2�
k=1 (∀ j) → [ξξξ] j (∀ j). For each

pair of (uk,vk), clients can jointly compute a se-

cret sharing of ak =
√

−2ln(uk) · cos(2πvk) and of

bk =
√

−2ln(uk) · sin(2πvk) by utilizing Secure Multiparty

Computation (MPC) protocols [21] that guarantees security

(i.e., privacy and integrity) with malicious minority. Accord-

ing to Box and Muller Transformation [6], ak and bk are

i.i.d. random variables from the Gaussian distribution with

mean 0 and variance 1. Then, by locally implementing secure

multiplication with a constant (i.e., Rσ), ak and bk are i.i.d

random numbers following a Gaussian distribution with the

desired standard deviation of Rσ. Finally, by concatenating

shares of d numbers in {(ak,bk)}�d/2�
k=1 , clients obtains the

shares of random vector ξξξ with length d from Gaussian

distribution N (0,R2σ2Id).
6© Shares Aggregation: {[zzzi] j}i∈IValid , [ξξξ] j (∀ j) →

[∑i∈IValid
zzzi + ξξξ] j (∀ j). Due to the linearity of Shamir’s se-

cret sharing scheme, each client C j can locally compute the

share of the noisy aggregate by adding the shares of all valid

inputs and the share of Gaussian noise: [∑i∈IValid
zzzi + ξξξ] j =

∑i∈IValid
[zzzi] j +[ξξξ] j, and sends that share to the server.

7© Noisy Aggregate Reconstruction: [∑i∈IValid
zzzi +

ξξξ] j (∀ j) → ∑i∈IValid
zzzi + ξξξ. After receiving all shares of

the noisy aggregate, the server recovers it using robust

reconstruction.

D Experimental Setup

FL Implementation. Due to limited resources, we simulate

the distributed training of FL by running a single machine

sequentially for clients and the server. The real-world imple-

mentation of FL is out of the scope of this paper.

Datasets (non-IID) and Model Architecture. We use

three datasets for our experiments: MNIST [23] CIFAR-10

[22] and FEMNIST [8], where the number of total clients is

n = 100 for the former two datasets, and n = 400 for FEM-

NIST dataset. Note that the MNIST and CIFAR-10 datasets

only have 10 classes, while the FEMNIST dataset has 62

classes (including 10 digits, 26 lowercase letters, and 26 up-

percase letters). For the MNIST dataset, we use the CNN

model from PyTorch example4. For the CIFAR-10 dataset,

we use the CNN model from the TensorFlow tutorial5, like

the previous works [26, 42]. To simulate the heterogeneous

data distributions, we make non-i.i.d. partitions of the datasets,

which is a similar setup as [42] and is described below. For the

FEMNIST dataset, we use a CNN model with 2 convolution

layers and 2 fully connected layers.

1) Non-IID MNIST: The MNIST dataset contains 60,000

training images and 10,000 testing images of 10 classes. There

are 100 clients, each holds 600 training images. We sort the

training data by digit label and evenly divide it into 400 shards.

Each client is assigned four random shards of the data, so that

most of the clients have examples of three or four digits.

2) Non-IID CIFAR-10: The CIFAR-10 dataset contains

50,000 training images and 10,000 test images of 10 classes.

There are 100 clients, each holds 500 training images. We

sample the training images for each client using a Dirichlet

distribution with hyperparameter 0.9.

3) Non-IID FEMNIST: The FEMNIST dataset is pre-

partitioned based on the writer of the characters, simulating

a non-IID scenario. Each client’s local dataset consists of

samples written by individual users, introducing variability in

handwriting styles. We use the TensorFlow-Federated API6

to load the first 400 partitions, representing data from 400

clients. Unlike the MNIST dataset, which includes only digits,

FEMNIST includes both digits and uppercase and lowercase

letters, spanning 62 classes (10 digits + 52 letters).

Byzantine Attacks. We consider four different Byzantine

attacks in our experiments.

1) ALIE ("a little is enough") [3]. The attacker uses the em-

pirical variance (estimated from the data of corrupted clients)

to determine the perturbation range, in which the attack can

deviate from the mean without being detected or filtered out.

2) IPM (inner-product manipulation) [38]. The attacker

manipulates the submitted gradient to be the negative direc-

tion of the mean of other honest clients’ gradients, thus the

negative inner-product of the true gradient and the aggrega-

tion prevents the descent of the loss. Note that the original

IPM attack assumes the omniscient attacker (i.e., knows the

data/gradient of all other clients), which is contradicted to our

assumption that the attacker only has access to the data of the

corrupted clients (otherwise, the privacy is already leaked and

no need to provide DP). Thus, in the experiments, we use the

data of corrupted clients to estimate the aggregated gradient

of honest clients, and then manipulate the inner-product (i.e.,

non-omniscient attack).

3) LF (label-flipping). The attacker modifies the labels of

4https://github.com/pytorch/opacus
5https://www.tensorflow.org/tutorials/images/cnn
6https://www.tensorflow.org/federated/api_docs/python/

tff/simulation/datasets/emnist/load_data

USENIX Association 34th USENIX Security Symposium 3081

all examples of corrupted clients’ data and computes a new

gradient, then uses a gradient replacement strategy (similar to

[2]) to enhance the impact on the global model. Specifically,

the attacker computes a benign gradient gbenign with non-

flipped labels and also a bad gradient gbad with flipped labels.

Finally, each malicious client submits the difference gbad −
gbenign to the server to achieve the goal that the aggregated

global gradient (averaged over all clients) is close to gbad.

4) MTB ("manipulating-the-Byzantine") [33]. The attacker

computes a benign reference aggregate using some benign

data samples obtained from corrupted clients, then computes a

malicious perturbation vector, and an optimized scaling factor

to get the malicious update with the goal of evading detection

by robust aggregation algorithms. The optimization of the

scaling factor can be tailored or agnostic to the aggregator.

Considering our scheme and the baselines do not detect mali-

cious clients, we use the agnostic setting (including min-max

and min-sum) for simplicity because tailoring MTB attack to

all defense aggregators is nontrivial. In our experiments, we

implement the min-max attack since it has a larger impact on

the global model.

Byzantine Defenses with DP. We compare the perfor-

mance of our approaches with the following five competitors

against Byzantine attacks. All of them satisfy record-level

DP via record-level clipping and DP noise added to the local

gradient/momentum. Note that privacy budget ε in Theorem 1

is the same for different clients because clients have the same

size of local datasets |Di| and same record-level sampling rate

(i.e., same |Di| and pi for different clients Ci).

1) DP-FedSGD. Note that the original DP-FedSGD in [26]

clips the client gradient to achieve client-level DP. For a fair

comparison, we also implement record-level gradient clipping

on top of the original DP-FedSGD to guarantee record-level

DP. Though DP-FedSGD is not designed for robustness, its

client-level clipping can restrict malicious clients’ capability,

thus providing some level of Byzantine robustness. We take

this as a baseline to illustrate that client-level clipping can

provide some level of robustness, but may not be enough

to defend against strong attackers (either advanced attack

strategy or a larger number of malicious clients).

2) DP-CM. As a baseline that adds DP to median-based ro-

bust aggregators (discussed in Section 3.2), we implement the

Byzantine-robust aggregator Coordinate-wise Median (CM)

[40] with DP noise added to the median result. Note that only

DP-CM uses median-based aggregation, while other meth-

ods use average-based aggregation. As discussed in Section

3.1 and Example 1, the median-based aggregation has large

sensitivity and poor privacy-utility tradeoff.

3) DDP-RP [36]. By leveraging encryption techniques,

DDP-RP guarantees Distributed DP with secure aggregation.

It allows clients to add smaller noise in the local gradient

than the Local DP, with the knowledge of the lower bound of

trusted clients, thus providing enhanced privacy-utility trade-

off than local DP protocols. To guarantee Byzantine robust-

ness, DDP-RP uses range-proof (RP) technologies to securely

verify whether the local model/gradient weights are in a (pre-

defined) bounded range.

4) DP-RSA [43]. It replaces the value aggregation to sign

aggregation, which provides robustness because each client

has limited impact on the aggregation. The DP noise is added

to the local gradient before the sign operation.

5) DP-LFH. The baseline (Section 3.2) directly combines

DP-SGD based momentum with LFH. Each client adds DP

noise to the local gradient, and then computes the local mo-

mentum to be aggregated with centered clipping by the server.

E Parameters in Experiments

Basic Parameters.

• Total number of iterations T : 1000 for MNIST and FEM-

NIST; 2000 for CIFAR-10.

• Learning rate ηt : For MNIST and FEMNIST datasets, ηt

is linearly reduced from 0.1 to 0.01 w.r.t. iterations. For

CIFAR-10 dataset, ηt is linearly reduced from 0.05 to

0.0025 w.r.t. iterations.

DP-related Parameters.

• Record-level sampling rate pi: 0.05 for all i on MNIST and

CIFAR-10; 0.1 for all i on FEMNIST (because each client

has fewer data records).

• Client-level sampling rate q: the default value is 1. We

evaluate the influence of q (from 0.2 to 1) on the accuracy

in Table 5.

• Record-level clipping bound R: linearly reduced from R0 to

0.3R0 w.r.t. iterations. Note that in Figure 5, the different

value of R in x-axis is the value of the above R0. For MNIST

and FEMNIST, we set R0 = 10 by default. For CIFAR-10,

we set R0 = 20 by default, but R0 = 15 only for the case of

ε = 2 in Figure 4.

• Privacy parameter δ in DP: 10−6

• Noise multiplier σ: For MNIST (with T = 1000 and

each client has |D|i = 60000/100 = 600 examples),

σ ∈ {0.15,0.06,0.029,0} for ε ∈ {1,3,8, inf}. For CIFAR-

10 (with T = 2000 and each client has |D|i = 50000/100 =
500 examples), σ ∈ {0.14,0.077,0.042,0} for

ε ∈ {2,4,9, inf}. For FEMNIST (with T = 1000 and each

client has around 300 examples), σ ∈ {0.16,0.09,0.047,0}
for ε ∈ {2,4,9, inf}.

Robustness-related Parameters.

• Client-level clipping bound C (only for DP-BREM and DP-

LFH): linearly reduced from C0 to 0.3C0 w.r.t. iterations,

where C0 = 1 for MNIST, C0 = 5 for CIFAR-10, and C0 = 2

for FEMNIST.

• Momentum parameter β = 0.9 for all three datasets.

3082 34th USENIX Security Symposium USENIX Association

