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Abstract

Federated Learning (FL) allows multiple participating clients
to train machine learning models collaboratively while keep-
ing their datasets local and only exchanging the gradient or
model updates with a coordinating server. Existing FL. pro-
tocols are vulnerable to attacks that aim to compromise data
privacy and/or model robustness. Recently proposed defenses
focused on ensuring either privacy or robustness, but not both.
In this paper, we focus on simultaneously achieving differ-
ential privacy (DP) and Byzantine robustness for cross-silo
FL, based on the idea of learning from history. The robust-
ness is achieved via client momentum, which averages the
updates of each client over time, thus reducing the variance
of the honest clients and exposing the small malicious pertur-
bations of Byzantine clients that are undetectable in a single
round but accumulate over time. In our initial solution DP-
BREM, DP is achieved by adding noise to the aggregated
momentum, and we account for the privacy cost from the mo-
mentum, which is different from the conventional DP-SGD
that accounts for the privacy cost from the gradient. Since
DP-BREM assumes a trusted server (who can obtain clients’
local models or updates), we further develop the final solu-
tion called DP-BREM™, which achieves the same DP and
robustness properties as DP-BREM without a trusted server
by utilizing secure aggregation techniques, where DP noise
is securely and jointly generated by the clients. Both theoret-
ical analysis and experimental results demonstrate that our
proposed protocols achieve better privacy-utility tradeoff and
stronger Byzantine robustness than several baseline methods,
under different DP budgets and attack settings.

1 Introduction

Federated learning (FL) [25] is an emerging paradigm that
enables multiple clients to collaboratively learn models with-
out explicitly sharing their data. The clients upload their local
model updates to a coordinating server, which then shares
the global average with the clients in an iterative process.
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This offers a promising solution to mitigate the potential
privacy leakage of sensitive information about individuals
(since the data stays local with each client), such as typing
history, shopping transactions, geographical locations, and
medical records. However, recent works have demonstrated
that FL. may not always provide sufficient privacy and robust-
ness guarantees. In terms of privacy leakage, exchanging the
model updates throughout the training process can still reveal
sensitive information [4, 27] and cause deep leakage such
as pixel-wise accurate image recovery [41, 44], either to a
third-party (including other participating clients) or the cen-
tral server. In terms of robustness, the decentralization design
of FL systems opens up the training process to be manipulated
by malicious clients, aiming to either prevent the convergence
of the global model (a.k.a. Byzantine attacks) [3, 14, 38], or
implant a backdoor trigger into the global model to cause
targeted misclassification (a.k.a. backdoor attacks) [2, 37].

To mitigate the privacy leakage in FL, Differential Privacy
(DP) [12, 13] has been adopted as a rigorous privacy notion.
Existing frameworks [16, 24, 26] applied DP in FL to provide
client-level privacy under the assumption of a trusted server:
whether a client has participated in the training process cannot
be inferred by a third party from the released global model.
Other works in FL [24, 35, 39, 42] focused on record-level
privacy: whether a data record at a client has participated
during training cannot be inferred by the server or other ad-
versaries that have access to the model updates or the global
model. Record-level privacy is more relevant in cross-silo (as
versus cross-device) FL scenarios, such as multiple hospitals
collaboratively learn a prediction model for COVID-19, in
which case what needs to be protected is the privacy of each
patient (corresponding to each record in a hospital’s dataset).
In this paper, we focus on cross-silo FL with record-level DP,
where each client possesses a set of raw records, and each
record corresponds to an individual’s private data.

To defend against Byzantine attacks, robust FL proto-
cols are proposed to ensure that the training procedure is
robust to a fraction of potentially malicious clients. This
problem has received significant attention from the commu-
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nity. Most existing approaches replace the averaging step
at the server with a robust aggregation rule, such as the me-
dian [5, 9, 28, 40]. However, recent state-of-the-art attacks
[3, 33, 38] have demonstrated the failure of the above robust
aggregators. Furthermore, a recent work [20] shows that there
exist realistic scenarios where these robust aggregators fail to
converge, even if there are no Byzantine attackers and the data
distribution is identical (i.i.d.) across the clients, and proposed
anew solution called Learning From History (LFH) to address
this issue. LFH achieves robustness via client momentum with
the motivation of averaging the updates of each client over
time, thus reducing the variance of the honest clients and ex-
posing the small malicious perturbations of Byzantine clients
that are undetectable in a single round but accumulate over
time.

In this paper, we focus on achieving record-level DP and
Byzantine robustness simultaneously in cross-silo FL. Exist-
ing FL protocols with DP-SGD [1] do not achieve the robust-
ness property intrinsically. Directly implementing an existing
robust aggregator over the privatized client gradients will lead
to poor utility because these aggregators (such as median
[5, 28, 40]) usually have large sensitivity and require large
DP noise, leading to poor utility. It is desirable to achieve
DP guarantees based on average-based aggregators. Although
LFH [20] is an average-based Byzantine-robust FL protocol,
it aggregates client momentum instead of gradient, thus it
is non-trivial to achieve DP on top of LFH. We show that
a direct combination of LFH with DP-SGD momentum has
several limitations, leading to both poor utility and robustness.
Therefore, we aim to address these limitations in our solution.

To achieve an enhanced privacy-utility tradeoff, we start
our problem from an assumption that the server is trusted
and developed a Differentially-Private and Byzantine-Robust
fEderated learning algorithm with client Momentum (DP-
BREM), which essentially is a DP version of the Byzantine-
robust method LFH [20]. Instead of adding DP noise to the
gradient and then aggregating momentum as post-processing,
we add DP noise to the aggregated momentum with carefully
computed sensitivity to account for the privacy cost. Since
the noise is added to the final aggregate (instead of intermedi-
ate local gradient), our basic solution DP-BREM maintains
the non-private LFH’s robustness as much as possible, which
we show both theoretically (via convergence analysis) and
empirically (via experimental results). Then, we relax our
trust assumption to a malicious server (for privacy only) and
develop our final solution DP-BREM™. It utilizes secure mul-
tiparty computation (MPC) techniques, including secure ag-
gregation and secure noise generation, to achieve the same
DP and robustness guarantees as in DP-BREM. In Table 1,
we compare DP-BREM and DP-BREM™ with existing ap-
proaches (or the variants) that achieve both DP and Byzantine
robustness (DDP-RP [36] and DP-RSA [43] are described in
Sec. 7). These approaches will be evaluated and compared in
experiments. Our main contributions are:

1) We propose DP-BREM, a novel differentially private
and Byzantine-robust FL protocol that adds DP noise to ag-
gregated client momentum with computed sensitivity. Our
privacy analysis (Theorem 1) accounts for momentum, differ-
ing from conventional DP-SGD which accounts for gradient.
Our convergence analysis (Theorem 3) shows minimal con-
vergence rate sacrifice for DP compared to the baseline.

2) Considering that DP-BREM is developed under the as-
sumption of a trusted server, we propose the final solution
called DP-BREM™* (Section 5), which achieves the same pri-
vacy and robustness properties as DP-BREM, even under a
malicious server (for privacy only), using secure multiparty
computation techniques. DP-BREM™ is built based on the
framework of secure aggregation with verifiable inputs (SAVI)
[30], but extends it to guarantee the integrity of DP noise via
a novel secure distributed noise generation protocol. Our ex-
tended SAVI protocol is general enough to be applied to other
DP and robust FL protocols that are average-based.

3) We demonstrate our protocols’ effectiveness through
extensive experiments on MNIST, CIFAR-10, and FEMNIST
datasets (Section 6), showing improved utility with the same
record-level DP guarantees and strong robustness against
Byzantine clients under state-of-the-art attacks, compared
to baseline methods.

2 Preliminaries

2.1 Differential Privacy (DP)

Differential Privacy (DP) is a rigorous mathematical frame-
work for the release of information derived from private data.
Applied to machine learning, a differentially private training
mechanism allows the public release of model parameters
with a strong privacy guarantee: adversaries are limited in
what they can learn about the original training data based
on analyzing the parameters, even when they have access to
arbitrary side information. The formal definition is as follows:

Definition 1 ((g,8)-DP [12, 13]). Fore €[0,00) and 8 € [0,1),
a randomized mechanism M : D — R with a domain D (e.g.,
possible training datasets) and range R_(e.g., all possible
trained models) satisfies (€,8)-Differential Privacy (DP) if
for any two neighboring datasets D,D’ € D that differ in only
one record and for any subset of outputs S C R, it holds that

P[M (D) € §] < ¢ - P[M(D') € §] +8

where € and & are privacy parameters (or privacy budget),
and a smaller € and § indicate a more private mechanism.

Gaussian Mechanism. A common paradigm for approxi-
mating a deterministic real-valued function f : D — R with
a differentially-private mechanism is via additive noise cali-
brated to f’s sensitivity sy, which is defined as the maximum
of the absolute distance |f (D) — f(D’)|. The Gaussian Mech-
anism is defined by M (D) = f(D) + N(O,s? -6?%), where
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N(0,57-6%) is noise drawn from a Gaussian distribution. It

was shown that M satisfies (g,8)-DP if & > %e’(GE)Q/ 2 and
€ < 1 [13]. Note that we use an advanced privacy analysis
tool proposed in [11], which works for all € > 0.

DP-SGD Algorithm. The most well-known differentially-
private algorithm in machine learning is DP-SGD [1], which
introduces two modifications to the vanilla stochastic gradient
descent (SGD). First, a clipping step is applied to the gradient
so that the gradient is in effect bounded for a finite sensitivity.
The second modification is Gaussian noise augmentation on
the summation of clipped gradients, which is equivalent to
applying the Gaussian mechanism to the updated iterates. The
privacy accountant of DP-SGD is shown in the Appendix of
our full-version paper [17].

2.2 Federated Learning (FL) with DP

Federated Learning (FL) [19, 25] is a collaborative learning
setting to train machine learning models. We consider the hor-
izontal cross-silo FL setting, which involves multiple clients,
each holding their own private dataset of the same set of fea-
tures, and a central server that implements the aggregation.
Unlike the traditional centralized approach, data is not stored
at a central server; instead, clients train models locally and
exchange updated parameters with the server, which aggre-
gates the received local model parameters and sends them to
the clients. Based on the participating clients and scale, fed-
erated learning can be classified into two types: cross-device
FL where clients are typically mobile devices and the client
number can reach up to a scale of millions; cross-silo FL (our
focus) where clients are organizations or companies and the
client number is relatively small (e.g., within hundreds).

FL with DP. In FL, the neighboring datasets D and D’ in
Definition | can be defined at two distinct levels: record-level
and client-level. In cross-device FL, each device usually stores
one individual’s data, and then the whole device’s data should
be protected. It corresponds to client-level DP, where D’ is
obtained by adding or removing one client/device’s whole
training dataset from D. In cross-silo FL, each record corre-
sponds to one individual’s data, then record-level DP should
be provided, where D’ is obtained by adding or removing a
single training record/example from D. Since we consider
cross-silo FL, achieving record-level DP is our privacy goal.

2.3 Byzantine Attacks and Defenses

In a Byzantine attack, the adversary aims to destroy the con-
vergence of the model. Due to the decentralization design, FLL
systems are vulnerable to Byzantine clients, who may not fol-
low the protocol and can send arbitrary updates to the server.
Also, they may have complete knowledge of the system and
can collude with each other. Most state-of-the-art defense
mechanisms [5, 9, 28, 40] play with median statistics of client

gradients. However, recent attacks [3, 38] have empirically
demonstrated the failure of the above robust aggregations.

LFH: Non-private Byzantine-Robust Defense. Recently,
Karimireddy et al. [20] showed that most state-of-the-art ro-
bust aggregators require strong assumptions and may not
converge even in the complete absence of Byzantine attackers.
Then, they proposed a new Byzantine-robust scheme called
"learning from history" (LFH) that essentially utilizes two
simple strategies: client momentum (during local update) and
centered clipping (during server aggregation). In each iter-
ation 7, client C; receives the global model parameter 0,
from the server, and computes the local gradient of the random
dataset batch D;; C D; by

1
8= T Yren, Vol(x.0: 1) (1)

where Vg/(x,0,_1) is the per-record gradient w.r.t. the loss
function £(+). The client momentum can be computed via

m;=(1- B)gt,i +Pmy—1i @)

where € [0,1). After receiving m,; from all clients, the
server implements aggregation with centered clipping via

1 .
my=myy+ 30 Clipe(m;—m ) 3)
where Clipc(-) with scalar C > 0 is the clipping function:
Clipc(x) == x-min{1, C/||x||} 4)

and ||x|| is the L2-norm of any vector x. The clipping op-
eration Clipc(m,; —m,_1) essentially bounds the distance
between client’s local momentum m, ; and the previous aggre-
gated momentum m;_1, thus restricts the impact from Byzan-
tine clients. Then, the global model 6, can be updated by
0; = 0, — n,m, with learning rate 1,. The convergence rate
under Byzantine attacks is shown by the following lemma.

Lemma 1 (Convergence Rate of LFH [20]). With some pa-
rameter tuning, the convergence rate of the Byzantine-robust
algorithm LFH is asymptotically (ignoring constants and
higher order terms) of the order

fz,zl E(IVe(8; 1) S T,
where £(-) is the loss function, T is the total number of training
iterations, |B| is the number of Byzantine clients, n is the
number of all clients, and p is a parameter that quantifies the

variance of honest clients’ stochastic gradients:
2 2
Ellg. . —Elg lI"<p (6)

Interpretation of Lemma 1. When there are no Byzantine
clients, LFH recovers the optimal rate of \/%. In the presence

(&)

of a |B|/n fraction of Byzantine clients, the rate has an ad-

ditional term p+/ %, which depends on the fraction |B|/n

but does not improve with increasing clients.
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3 Problem Statement and Motivation

3.1 Problem Statement

System Model. Our system model follows the general set-
ting of Fed-SGD [25]. There are multiple parties in the FL
system: one aggregation server and n participating clients
{Cy,---,C,}. The server holds a global model 8, € RY and
each client C;, i € {1,---,n} possesses a private training
dataset ;. The server communicates with each client through
a secure (private and authenticated) channel. During the itera-
tive training process, the server broadcasts the global model in
the current iteration to all clients and aggregates the received
gradient/momentum from all clients (or a subset of clients) to
update the global model until convergence. The final global
model is returned after the training process as the output.

Threat Model. The considered adversary aims to perform a
1) privacy attack and/or 2) Byzantine attack with the following
threat model, respectively.

1) Privacy Attack. Following the conventional FL setting,
we assume the server has no access to the client’s local train-
ing data, but may have an incentive to infer clients’ private
information. In our initial solution called DP-BREM, we
assume a trusted server that can obtain clients’ local mod-
els/updates. The adversary is a third party or the participating
clients (can be any set of clients) who have access to the in-
termediate and final global models and may use them to infer
the private data of an honest client C;. Hence, the privacy goal
is to ensure the global model (and its update) satisfies DP.
In our final solution DP-BREM™, in addition to third parties
and clients, the adversary also includes the server that tries
to infer additional information from the local updates (and
may deviate from the protocol for privacy inference). Such a
model is also adopted in previous work [30]. Following [30],
we assume a minority of malicious clients who can deviate
from the protocol arbitrarily.

2) Byzantine Attack. Recall that the goal of Byzantine
attacks is to destroy the convergence of the global model (dis-
cussed in Section 2.3). We only consider malicious clients
as the adversaries for Byzantine attacks because the server’s
primary goal is to train a robust model, thus no incentive to
implement Byzantine attacks. These malicious clients (as-
sumed to be a minority of all participating clients) can deviate
from the protocol arbitrarily and have full control of both their
local training data and their submission to the servers, but do
not influence other honest clients.

Objectives. The goal of this paper is to achieve both record-
level DP and Byzantine robustness at the same time. We
aim to provide high utility (i.e., high accuracy of the global
model) with the required DP guarantee under the existence
of Byzantine attacks from malicious clients. Our ultimate
privacy goal is to provide DP guarantees against an untrusted
server and other clients, but we start by assuming a trusted
server first in our initial solution.

3.2 Challenges and Baseline

Challenges. Replacing the average-based aggregator with
median-based or complex robust aggregators increases DP
sensitivity. Achieving both DP and Byzantine robustness with
high utility is challenging because these methods result in sig-
nificantly larger DP sensitivity than averaging, as illustrated
in Example 1.

Example 1 (Sensitivity Computation: Average vs. Median).
Consider a dataset with 5 samples: D = {1,3,5,7,9}, and
its neighboring dataset D' is obtained by changing one value
in D with at most 1, such as D' = {1,3,4,7,9}. Then, the
sensitivity of average-query is Iﬂl)lzg|avg(@) —avg(D)| =

1/5 = 0.2. However, the sensitivity of median-query is
rql)l%;ﬂmedian(i)) — median(2')| = 1. Moreover, when in-

creasing the size of the dataset, the sensitivity of the average
query will be reduced (and then less noise to be added), while
the sensitivity of the median query is the same.

DP-LFH: baseline via direct combination of LFH and
DP-SGD. As shown in Section 2.3, the Byzantine-robust
scheme LFH [20] utilizes an average-based aggregator, which
can be regarded as a non-private robust solution to address
the disadvantage of the median-based aggregator. A straight-
forward method to add DP protection on top of LFH is to
combine it with the DP-SGD algorithm. However, LFH re-
quires each client to compute the local momentum m; ; for
server aggregation, while DP-SGD aggregates gradients and
accounts for the privacy cost via the composition of itera-
tive gradient update. In LFH, since the gradient is computed
only on the client-side, a straightforward solution to integrate
DP is to use DP-SGD at each client to privatize the local
gradient, and then compute the momentum from the priva-
tized gradient (thus there is no additional privacy cost due to
post-processing). Formally, client C; computes

Y Clipg(Vol(x,6,-1)) + A(0,R*6°1y), (7)

xeD;;

1
gt,t |Q)i,t|

where 1, is an identity matrix with size d X d (d is the model
size, i.e., 8, € R?), the record-level clipping Clipg(+) restricts
the sensitivity when adding/removing one record from the
local dataset, and Gaussian noise A((0,R?>c6?1,) introduces
DP property on g, ;. Since DP is immune to post-processing,
the remaining stepé can follow the original LFH without addi-
tional privacy costs. This baseline solution DP-LFH achieves
record-level DP against an untrusted server but has limitations,
leading to poor privacy-utility tradeoff and robustness.
Limitation 1: large aggregated noise. Since each client
locally adds DP noise, the overall noise after aggregation
is larger than the case of the central setting under the same
privacy budget € since only the server adds noise in the central
setting. Therefore, DP-LFH has a poor privacy-utility tradeoff.
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Table 1: Comparison of FL approaches with DP and Byzantine-robustness

A N Differential Privacy (DP) ¥ Byzantine Robustness
pproaches Trust Assumption Noise Perturbation Standard Deviation Mechanism
of Server Generator Mechanism of Noise in Aggregate )
DP-FedSGD [26]
with both record and trusted server Y, g+ N(0,62) c client norm clipping
client norm clippings
Cl\glgi?gi:gth trusted server median({g:}"_,) +A(0,6?) c coordinate-wise median (CM)
: o ER— clients T o 7 .
DDP-RP [36] honest-but-curious (distributively) Yilei +N(0, %)) Ny element-wise range proof
DP-RSA [43] untrusted client Yi[sign(g:) + A(0,62)) n-c aggregation of sign-SGD
DP-LFH .
(baseline in Sec. 3.2) untrusted client Yilmi+N(0,6°)] Vn-c
DP-BREM LFH [20]: client momentum
(our initial solution) trusted Se.rver ¥mi+2((0,62) s and centered clipping
DP-BREM* trusted clients
(our final solution) " untruste (jointly)

§ We demonstrate the privacy-utility tradeoff by comparing the standard deviation of DP noise on the aggregation, with smaller values indicating less negative
impact on utility. Note that different approaches use different aggregation strategies, where g; is the local gradient and m; is the local momentum.

¢ DDP-RP assumes an honest-but-curious server and ensures distributed DP (DDP) with secure aggregation. Clients add partial noise with a smaller standard
deviation based on the number of honest clients, T, resulting in a better privacy-utility tradeoff than local DP (LDP).

* DP-BREM* matches DP-BREM’s DP and robustness guarantees with a different server trust assumption. It achieves central DP without a trusted server, as
clients securely generate and add noise using the proposed noise generation and secure aggregation protocols.

Limitation 2: large impact on Byzantine robustness.
Since the DP noise is added locally to each client’s gradient be-
fore momentum-based clipping, it leads to a negative impact
on Byzantine robustness: the noisy client momentum m; ; has
larger variance than the noise-free one, which leads to larger
bias and variance on the clipping step Clipc(m; ; —m;_,). Fur-
thermore, this impact will be enlarged when there are more
Byzantine clients, which is explained as follows. Since the
parameter p> defined in (6) quantifies the variance of client’s
gradient, and the DP noise is added to the local gradient in
(7), the parameter p of the convergence rate shown in (5) is
replaced by p + v/do (ignoring constants) for DP-LFH, i.e.,
the convergence rate of DP-LFH is asymptotic of the order

| —
T EIVE®, )P

do)? 1+|B
(p+fo6) 3l g

n

Therefore, either a large d (i.e., large model) or a large o (i.e.,
small privacy budget €) will enlarge the impact from Byzan-
tine clients due to the order O(1/dc?|B|) of convergence rate.
We note that Guerraoui et al.’s work [18] also shares a similar
insight: they show that DP with local noise and Byzantine
robustness are incompatible, especially when the dimension
of model parameters d is large.

Limitation 3: no privacy amplification from client-level
sampling due to momentum. According to the recursive rep-
resentation m; ; = (1 —P)g, ;+Pm;_1 ;, client C;’s momentum
in z-th iteration m ; is essentially a weighted summation of
all previous privatized client gradients:

m; = (1—PB)(g;+Pg-_1,;+ -+ Btizgz,i) + Btilgl,i )

where g, ;,8, ;" & ; are already privatized via local noise.
Assume the server samples a subset of clients for aggregation
in each iteration. If client C;’s momentum m; ; is not selected
in the #-th iteration, the aggregate is independent of g, ;. How-
ever, in a later iteration (i.e., T > t), if client C;’s momentum
m.; is included, it depends on 8. according to (9). Thus,
we must account for the privacy cost of g, ; in all iterations.
Sampling clients offers no privacy ampliﬁcétion, resulting in
high privacy costs or low utility.

4 DP-BREM

To address DP-LFH’s limitations, we propose DP-BREM, a
differentially-private LFH variant assuming a trusted server
that generates DP noise. DP-BREM maintains robustness of
LFH and uses a different privacy accountant (Theorem 1) than
DP-SGD. We also provide convergence analysis (Theorem 3)
showing minimal deviation from LFH. We further relax the
server trust assumption in DP-BREM™* (Section 5) by using
secure multiparty computation for secure aggregation and
joint noise generation, achieving the same DP and robustness
guarantees without a trusted server.

4.1 Algorithm Design

The illustration of our design is shown in Figure 1, and the
algorithm is shown in Algorithm 1, where all clients need
to implement local updates (in Line-3), but only a subset of
their momentum vectors are aggregated by the server (in Line-
4). The details of client updates and server aggregation are
described below.
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global model 8, @ Server broadcasts model parameter 6,
@ @ Clients compute gradient and momentum

+/\ [DP design: record-level gradient clipping]
@ Selected clients send momentum to server
@ @ Server aggregates momentum to update model
[DP design: adding noise on the aggregate]
@3 R
@g Clients might be malicious to
1) infer other’s private data
ggzﬁeg)l Client CZ ggg‘:feg) 2) implement Byzantine attack

Figure 1: Illustration of our DP-BREM algorithm.

@

Privacy analysis challenge: clipping on gradient
while adding noise on aggregated momentum

Client Updates. The client C; first samples a random batch
D;; from the local dataset D; with sampling rate p;, clips the
per-record gradient Vg/f(x,0,_) by R and multiplies the sum

by a constant factor ooy to get the averaged gradient

gt,i - |Q) | erg) CI|pR(Ve€(x ef 1)) (10)

where Clipg(+) is the clipping function defined in (4), but is
used here to bound the sensitivity for DP (refer to DP-SGD
discussed in Section 2.1). D;; represents a random subset
obtained via subsampling from client C;’s dataset. This sub-
sampling is essential to apply privacy amplification, enabling
the privacy accountant to derive a tight privacy budget €. Note
that the batch size |D;;| is random and E[|D;,|| = pi| D]
Then, the local momentum can be computed by

8 ift =1
e ' (11)
’ (1—-B)&;+PBmy_1;, ift>1

where B € [0, 1) is the momentum parameter.

Server Aggregation. The server implements centered clip-
ping with clipping parameter C > 0 to bound the difference
between client momentum 7, ; and the previous noisy global
momentum 72, for robustness. Then, it adds Gaussian noise
with standard deviation Ro (thus the variance is R262) to the
sum of clipped terms to get the noisy global momentum 7,

my =+ 7 {Zieb C“pc('ht,i_’ht—l)'f'N(OaRszId)}
(12)

where I; is an identity matrix with size d X d, and only the
sampled clients in [, (which is obtained in Line-2 of Algo-
rithm | with sampling rate g) are aggregated in ¢-th itera-
tion. Note that adding noise A((0,R*c’I,) to the summa-
tion of clipped client momentum Y, ;, Clipc(/;; —m; 1) is
equivalent to adding noise ‘}TlN(O,chzld) to the average
result ﬁ Yicy, Clipc(m;; —m; _1). Then, the server updates
the global model O, with learning rate 1,

0, =0,_1 —n:my (13)

Remark: clipping bounds and sampling rates. In our al-
gorithm, we use two clipping bounds and two sampling rates.

Algorithm 1 DP-BREM

Input: Initialization 8y € R?, clipping bounds R and C, learning
rate 1, of the global model, total number of iterations 7', client-
level sampling rate ¢, record-level sampling rate p;.

1: fort=1,---,T do

2:  The server broadcasts the previous model 6;_ to all clients
{Ci}1_, and selects a subset of client index I; C {1,---,n},
where each client is selected with probability g.

3:  Eachclient C; fori € {1,--- ,n} implements the local updates
via (10) and (11), while only selected clients need to send the
local momentum m; ; (for i € I;) to the server.

4:  The server aggregates received clients’ momentum (only for
i € I;) with centered clipping and DP noise via (12), then
updates the global model 6; via (13).

5: end for

Output: The final model parameter 07.

For clipping bounds, each client uses record-level bound R
to bound the per-record gradient in (10) for a finite sensi-
tivity in record-level DP; while the server uses client-level
bound C to bound the difference between client momentum
m; ; and the previous noisy global momentum 7,1 in (12),
which achieves Byzantine robustness as in LFH. For sampling
rates, the client C; samples a batch of records 2;; from the
local dataset D; with sampling rate p;, which provides privacy
amplification for DP from record-level sampling; while the
server samples a subset of clients with sampling rate ¢ (where
the sampled clients set is denoted by [;), which provides pri-
vacy amplification for DP from client-level sampling.
Remark: comparison with non-private LFH. Comparing
with the original non-private Byzantine-robust method LFH
[20] (see Section 2.3), our differentially-private version has
three differences. First, comparing with (1), the client gradi-
ent in (10) is computed by averaging the clipped per-record
gradient (with clipping bound R), which bounds the sensitiv-
ity of final aggregation when adding/removing one record
from the local dataset. Second, comparing with (3), the server
adds Gaussian noise when computing the aggregated global
momentum 7, in (12) to guarantee DP. Third, instead of ag-
gregating all clients’ momentum, our method also considers
aggregating a subset of them, reflected by the index set [; in
(12). It provides additional privacy amplification from client-
level sampling with sampling rate g. Note that the original
privacy amplification is provided by record-level sampling.

4.2 Privacy Analysis

Before presenting the final privacy analysis of DP-BREM, we
first show how we compute the sensitivity for the summation
of clipped client momentum in (12) for privacy analysis of
one iteration, shown in Lemma 2. We note that clients may
have different sizes of local datasets D; and can use different
record-level sampling rates p;, thus the record-level sensitivity
(denoted by S;) for different clients can be different.
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Lemma 2 (DP Sensitivity). We use || - || to denote L2-
norm || - ||2. In the t-th round, denote the query function
Q/(D) = Yjey, Clipc(m; j — my_1), where i,y is public
and D = {Dj} jey,. Consider the neighboring dataset D' =
{Dj}j+ijer, UD; that differs in one record from client C;’s
local data (i € L), i.e., |D; — Q)l’\ = 1, then the sensitivity with
respect to client C; is

. / : R

S = max 10.(D) ~ (2| =min{2¢, 14
Proof. (Sketch) According to (10), the sensitivity of g, ; is
ﬁ because each clipped term Clipg(-) has bounded L2-
norm, i.e., ||Clipg(+)|| < R. Then, due to the recursive repre-
sentation of local momentum in (1 1), the sensitivity of m; ;
is ﬁ@i‘. Finally, the client-level clipping Clip(-) introduces
another upper bound for the sensitivity. Refer to the Appendix
of our full-version paper [17] for detailed proof. O

Remark: comparison with the privacy accountant of
DP-SGD momentum. As discussed in Section 3.2, the pri-
vacy accountant of DP-SGD with momentum (i.e., account for
privacy cost of gradient, then do post-processing for momen-
tum) requires clients to add noise in the local gradients, which
leads to poor utility especially when Byzantine attacks exist.
In Lemma 2, we account for the privacy cost of aggregated
momentum, where the sensitivity is carefully computed from
the bounded record-level gradient. Therefore, our scheme
solves the three limitations shown in Section 3.2, which is
explained as follows. First, only the server adds noise (which
is the same as the central setting), thus the privacy-utility
tradeoff is not impacted. Second, the noise is added after the
centered clipping Clipc(; ; —m;—1), thus it only introduces
unbiased error. We also show that (in Section 4.3) the im-
pact from the added noise is separate from the impact from
Byzantine attacks, as versus the impact from the local noise
is enlarged with Byzantine attacks in DP-LFH (see Section
3.2). Third, since privacy is accounted on momentum, and
only the aggregated momentum leaks privacy, our solution
enjoys privacy amplification from client-level sampling.

The final privacy analysis of DP-BREM is shown in Theo-
rem 1. It presents how to compute the privacy budget € and
privacy parameter & when the parameters (such as T, G, g,
etc.) of the algorithm are given. We use an advanced privacy
accountant tool called Gaussian DP (GDP) [11], then con-
vert it to (g,8)-DP. Note that in our privacy analysis, clients
can use different record-level sampling rates p;, thus differ-
ent sensitivity S; shown in (14). Therefore, the final privacy
budget (denoted by €;) of DP-BREM may be different for
different clients, which provides personalized privacy if these
parameters are different for each client.

Theorem 1 (Privacy Analysis). DP-BREM (in Algorithm 1)
satisfies record-level (€;,8)-DP for an honest client C; with €;

and § satisfying

=0 (—’+“’> —efi. (—’ —“’) , (15
i 2 i 2

where ®(-) denotes the cumulative distribution function
(CDF) of standard normal distribution, and y; is defined by

R
Ui =qpi\/ T(el/(zciz) —1), witho;= G'max{zc,piﬂ)j}

(16)

Proof. This result is obtained by the composition of multiple
iterations and the privacy amplification from sampling. See
Appendix A for the detailed proof. O

4.3 Convergence Analysis

Before presenting the final convergence analysis of our solu-
tion, we first show the aggregation error for one iteration in
Theorem 2.

Theorem 2 (Aggregation Error). Denote m; := ﬁ Yicom;
as the ground truth aggregated raw momentum, where my ; is
the client momentum computed from gradient without record-
level clipping. Assume the local momentum of all honest
clients {my ;};c 4 are i.i.d. with expectation p = E[m, ;|, and
the variance is bounded (in terms of L2-norm)

E|m,; —p|* < p? (17)

After the following parameter tuning of the clipping bounds:

R0 (pn/(81+Vio[g)), colR)  ay)

we have the following aggregation error due to clipping, DP
noise, and Byzantine clients:

2
B —m | < 0 ("('B'”‘?“/")) 19)

where |B| is the number of Byzantine clients, d is the dimen-
sion of model parameter ©,, G is the noise multiplier (for DP)
shown in (12), q is the client-level sampling rate shown in
Line-2 of Algorithm 1, and p is defined in (17).

Proof. (Sketch) Directly bounding (|7, —m}||? is not easy,
thus we utilize the upper bounds of E||fi, — p||* and E||u —
m}||? to get the final result, where p := E[m, ;] is the expected
local momentum (we assume clients’ local momentum are
ii.d.). When upper bounding E||fi, — u||>, we decompose
errors into three types: honest clients’ error (from clipping
randomness and bias), Byzantine clients’ error (from pertur-
bation), and DP noise error. Optimizing parameters C and R
minimizes the total error. See the Appendix of our full-version
paper [17] for the detailed proof and the formal version of
(18) and (19). O

USENIX Association

34th USENIX Security Symposium 3071



Interpretation of Theorem 2. The value of E||r, —m] ||?
quantifies the aggregation error, i.e., how the aggregated priva-
tized momentum #, (with clipping, DP noise, and Byzantine
clients’ impact) differs from the "pure" momentum aggrega-
tion m;, where only honest clients participate and without
clipping and DP noise. According to (19), the aggregation
\%", where p? quanti-
fies the variance of honest clients’ local momentum, ‘nﬂ is
the fraction of Byzantine clients, and ;2 = O(1 /¢) for &-DP.
In other words, the aggregation error will be enlarged when:
honest clients’ variance is large, or the Byzantine attacker cor-
rupts more clients, or the training model is complex (i.e., the
model dimension d is large), or we need stronger privacy (i.e.,
a smaller €), or the number of clients n is small. Furthermore,

error is proportional to p? and ‘nﬂ +

due to the format of ‘nﬂ + ‘%’, the impact from DP noise is
independent of the increase of Byzantine clients | B| (versus
Limitation 2 of DP-LFH in Section 3.2). On the other hand,
according to the parameter tuning in (18), we could theoreti-
cally set a smaller record-level clipping bound R when o, d,
and |B| are large, or p and n are small. The tuning of client-
level clipping bound C should be adjusted according to the
value of R. Recall that R is for DP, while C is for robustness.

By following the convergence analysis in [20] and using
the result in (19), we have the convergence rate shown below.

Theorem 3 (Convergence Rate of DP-BREM). The conver-
gence rate of DP-BREM in Algorithm | is asymptotically
(ignoring constants and higher order terms) of the order

1

7 L EIVee )|

2
|25\/;>T|$|+<1Zﬁc>/q o0

where £(-) is the loss function, T is the total number of training
iterations, and other parameters are the same as in (19).

Proof. See Appendix B. O

Remark: comparison with LFH and DP-LFH. The con-
vergence rate of the non-private LFH, DP-LFH, and the pro-
posed solution DP-BREM, showing in (5), (8), and (20) re-
spectively, are summarized in Table 2. Though both DP-LFH
and DP-BREM pay an additional term of /do /q to get the
DP property, they have different impacts on the convergence.
As discussed in Limitation 2 of Section 3.2, the additional
term \/dc/q of DP-LFH (due to DP noise added to clients’
gradient) is on the term p, thus it will enlarge the impact of
Byzantine clients (i.e., the term |B|). However, the additional
term \/;lc/q of our solution DP-BREM (due to DP noise
added to the aggregated momentum) is on the term 1+ |B|,
which has a squared-root order. Therefore, DP noise only has
a limited impact on the convergence of DP-BREM when there
are Byzantine clients. We will validate the above theoretical
analysis via experimental results in Section 6.

Table 2: Comparison of Convergence Rate

Where to add noise Convergence Rate

LFH [20] None O(p\/1+]|8])
DP-LFH Clients® gradients 0 ((p-+/do)/T+8])

DP-BREM

Aggregated momentum O (p 1+|B|+ \/Ho)

5 DP-BREM™ with Secure Aggregation

The private and robust FL solution DP-BREM (in Section 4)
assumes a trusted server which can access clients” momentum.
In this section, we propose DP-BREM™*, which assumes a
malicious server and utilizes secure aggregation techniques,
achieving the same DP and robustness guarantees as DP-
BREM. As discussed in Section 3.1, we consider the server
as malicious only for data privacy, while clients are malicious
for both data privacy and Byzantine attacks.

5.1 Challenges

Considering the server is malicious for data privacy, the noisy
aggregate of momentum with centered clipping shown in (12)
must be implemented securely with the goals of 1) privacy,
i.e., each party, including clients and the server, learns nothing
but the differentially-private output; and 2) integrity, i.e., the
output is correctly computed. Since the noisy aggregated
momentum of the previous iteration fiz,_| already satisfies DP,
we can regard it as public information and only need to focus
on securely computing the term Y, Clipc(m,; — ;1) +
A(0,R*c?1,) in (12).

Secure Aggregation with Verified Inputs (SAVI). The
key crypto technique we leverage to achieve the above objec-
tives is SAVI [30], which is a type of protocols that securely
aggregate only well-formed inputs. The security goals include
both privacy and integrity. Specifically, privacy means that no
party should be able to learn anything about the raw input of
an honest client, other than what can be learned from the final
aggregation result. Integrity means that the output of the proto-
col returns the correct aggregate of well-formed input, where
1) an input u passes the input integrity check with a public
validation predicate Valid(-) if and only if Valid(u) = 1, and
2) the aggregation is correctly computed. An instantiation of
the SAVI protocol is EIFFeL [30] (described in the Appendix
of our full-version paper [17]).

Challenge: Secure Generation of Gaussian Noise. A
SAVI protocol can potentially solve the problem of securely
aggregating the clipped vectors (by enforcing a norm-bound
on the client momentum difference). However, the Gaussian
noise A((0,R?>6%1,) needs to be securely generated and ag-
gregated as well. In DP-BREM with a trusted server, the
Gaussian noise A(0,R*>c?1,) is generated by the server to
guarantee DP. However, when the server is assumed as ma-
licious, the added Gaussian noise for DP cannot be directly
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generated by the server.

A straightforward approach is to use a semi-honest server,
as proposed in [31], to generate DP noise and manage the
privacy engine. However, relying on another non-colluding
server may be impractical, so we assume only a single server.
An alternative is Distributed DP [34], where clients locally
generate Gaussian noise. The aggregated noise follows a
Gaussian distribution with an enlarged standard deviation,
ensuring DP through cryptographic techniques. This method,
however, has two limitations: it requires more noise to achieve
the same privacy level due to potential collusion among mali-
cious clients, and the robustness is compromised as malicious
clients can generate arbitrary local noise.

A possible solution to address the first limitation is to
Jjointly generate Gaussian noise as in [29], where no party
learns or controls the true value of the noise (or a portion of
the noise). However, the protocol in [29] is designed only for
additive secret sharing schemes, which only works for honest-
but-curious parties and does not tolerate malicious parties.
Moreover, in [29], the Gaussian noise is jointly generated by
honest-but-curious and non-colluding parties, which does not
address the second limitation as the clients can be malicious
in our threat model discussed in Section 3.1.

Overview of DP-BREM™*. To achieve secure aggregation
with verified inputs and secure Gaussian noise generation
under the threat model of a malicious server and malicious
minority of clients, our DP-BREM™ 1) leverages an existing
SAVI protocol called EIFFeL [30] to achieve secure input
validation; and 2) introduces a new protocol to achieve secure
noise generation that is compatible with EIFFeL. The idea of
Jjointly generating Gaussian noise in DP-BREM™ is inspired
by [29], but our design is based on Shamir’s secret sharing
[32] with robust reconstruction by following the design in
EIFFeL, thus guarantees security under malicious minority.
We present the preliminaries of Shamir’s secret sharing and
EIFFeL protocol in the Appendix of our full-version paper
[17].

5.2 Design of DP-BREM*

As discussed in Section 5.1, the main task of DP-BREM™
is to securely compute the term Y ; Clipc(m, ; — ;1) +
AL(0,R?>6%1,) shown in (12). After computing local momen-
tum m;; via (11), each client C; first implements centered
clipping to get z; := Clipc(m; ; — i, —1), which is the private
input for validation and aggregation.

Three-Phase Design. In DP-BREM?, clients and the server
jointly implement three phases: 1) secure input validation to
validate the client momentum is properly centered clipped by
C, 2) secure noise generation, where clients generate shares
of Gaussian noise which can be aggregated in Phase 3 to
ensure DP, and 3) aggregation of valid inputs and noise to
obtain the noisy global model. We assume the arithmetic
circuit is computed over a finite field F,x. The illustration of
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Phase 1: Secure Phase 2: Secure  Phase 3: Aggregation of
Input Validation Noise Generation Valid Inputs and Noise
@ Proof and Shares Generation @ Random Numbers Generation
@ Proof Summary Generation ® Transformation to Gaussian Distribution
@ Proof Summary Verification ® Shares Aggregation

@ Noisy Aggregate Reconstruction

Figure 2: Tllustration of DP-BREM™* (see Appendix C for
detailed steps (D-))

DP-BREM™ is shown in Figure 2. Due to limited space, we
present the detailed steps ()-(7) in Appendix C.

Phase 1: Secure Input Validation. The validation func-
tion for an input z; considered in DP-BREM™ is defined as
Valid(z;) := 1(||zi|| < C), where Valid(z;) = 1 if and only if
the condition ||z;|| < C holds. Since honest clients compute
z; = Clipc(m; ; — i,y ), verifying whether z; is well-formed,
with bounded L2-norm via Valid(-), for all clients ensures
centered clipping of client momentum m; ; (to achieve robust-
ness as DP-BREM). We follow the design in EIFFeL [30]
for secure input validation, which returns the validation result
Valid(z;) (either 1 or 0) for client C;’s private input z;, cor-
responding to steps (1), 2), and (3) shown in Figure 2. Then,
clients and the server can jointly verify all inputs {z; };cy,, and
obtain the set of valid inputs Iy,jiq, where Valid(z;) = 1 for all
i € Ivaliq- In the later step, only inputs in Iy,jiq are aggregated.

Phase 2: Secure Noise Generation. We develop a new pro-
tocol for secure distributed Gaussian noise generation, which
returns the shares (held by each client) of a random vector &
of length d from the Gaussian distribution A((0, R*>6*1,), cor-
responding to steps @ and () shown in Figure 2. The shares
of noise can be reconstructed into a single Gaussian noise
(for ensuring DP) with the guarantee that no parties know or
control the generated noise, which protects the information
of private inputs after the noisy aggregate is released.

Phase 3: Aggregation of Valid Inputs and Noise. Finally,
the server and clients can aggregate the valid inputs (obtained
in Phase 1) and the generated Gaussian noise (obtained in
Phase 2) by implementing steps (6) and (7) shown in Figure 2,
ensuring nothing except the noisy aggregate can be learned.

Remark on Efficiency. DP-BREM™*’s usage of EIFFeL’s
secure input validation is due to efficiency considerations.
Instead of having clients perform clipping and using secure
input validation, one alternative is to use standard secure multi-
party computation (MPC) for the clipping and aggregation.
However, doing this under MPC would result in a very large
computation/communication overhead due to the multiplica-
tion, min-operation, division, and L2-norm computation in
the clipping operation Clip.(+) defined in (4). In contrast, the
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secure input validation protocol only requires the verifiers to
check all the multiplication gates very efficiently with just one
identity test. The compatibility with secure input validation is
one of the advantages of DP-BREM.

Complexity. According to EIFFeL [30], the compu-
tation/communication complexity of secure aggregation
with input validation is O(mnd) for clients and O(n® +
mdmin{n,m*}) for the server in terms of the number of
clients n, number of malicious clients m, and data dimen-
sion d. For the proposed secure noise generation (only clients
are involved), the computation/communication complexity
for total n clients is O(mnd).

5.3 Security Analysis

In comparison, EIFFeL [30] is a secure aggregation protocol
with verified inputs (without guaranteeing DP), while our
solution DP-BREM* is a secure noisy aggregation protocol
with verified inputs and jointly generated Gaussian noise,
which provides DP on the aggregated results. Therefore, the
only difference is the Gaussian noise that will be aggregated
to the final result. We show the formal security guarantee of
DP-BREM* in the following theorem.

Theorem 4 (Security Guarantees of DP-BREM™Y). For the
validation function Valid(-) considered in Section 5.2, given
a security parameter K, the secure noisy aggregation protocol
in DP-BREM™ satisfies:

1) Integrity. For a negligible function negl(+), the output of
the protocol returns the noisy aggregate of a subset of clients
Katig and Gaussian noise &, such that all clients in Lyajiq have
well-formed inputs:

Prloutput =Y | zi+&] > 1 —negl(x)

i€ Nalid
where random vector & ~ N (0, R*>6*1,), and Valid(z;) = 1
for all i € Iy,)ig. Note that the set Lajig contains all honest
clients (denoted by Iy ) and the malicious clients who submit-
ted well-formed input (denoted by I;), i.e., Najig = Ig U Iy;.

2) Privacy. For a set of malicious clients Iy; and a malicious
server S, there exists a probabilistic polynomial-time (P.P.T.)
simulator Sim(-) such that:

Real ({zi}ie gy, Rp,us) =c Sim (Z,EIH zi+§&, I, QIMUS>

where {z;}ic 1, denotes the input of all the honest clients, Real
denotes a random variable representing the joint view of all
the parties in the protocol’s execution, Qp,us indicates a
polynomial-time algorithm implementing the "next-message"
Sfunction of the parties in Iy US (see [30, Appendix 11.5]),
and =c denotes computational indistinguishability. In sum-
mary, the server and clients learn nothing besides the final
aggregated result.

Proof. See the Appendix of our full-version paper [17]. [

6 Experimental Evaluation

In this section, we demonstrate the effectiveness of the
proposed DP-BREM/DP-BREM™ on achieving both good
privacy-utility tradeoff and Byzantine robustness via exper-
imental results on MNIST [23], CIFAR-10 [22], and FEM-
NIST [8] datasets with non-IID setting (refer to Appendix
D for more details on the datasets and model architectures).
Note that MNIST and CIFAR-10 have 10 classes, while FEM-
NIST includes 62 classes. All experiments are developed via
PyTorch'.

Byzantine Attacks. We consider four existing Byzan-
tine attacks in our experiments, including ALIE ("a little
is enough") [3], IPM (inner-product manipulation) [38], LF
(label-flipping), and the state-of-the-art MTB ("manipulating-
the-Byzantine") [33]. Refer to Appendix D for more details.

Compared Methods. We compare the performance of six
approaches against Byzantine attacks, including DP-BREM/*
(our approach)’, a variant of DP-FedSGD [26] with both
record and client norm clipping, DDP-RP [36], DP-RSA
[43], a variant of CM [40] with DP noise, and DP-LFH. The
comparison (on trust assumption and mechanism overview)
of these approaches is provided in Table 1, and Appendix
D shows more details of each approach. In summary, DP-
BREM/*, DP-FedSGD, and DP-CM add central noise to the
aggregation, but DP-BREM™* does not require a trusted server
due to the secure aggregation technique. DDP-RP adds par-
tial local noise to the client’s update with secure aggregation.
DP-RSA and DP-LFH add local noise to the client’s update.
We fix § = 1076 for (¢,8)-DP in all experiments. For the
setting of other parameters, refer to Appendix E.

Evaluation Metric. We evaluate the testing accuracy of the
global model within 7 iterations. Considering the accuracy
curve might be unstable under Byzantine attacks, we average
the accuracy between 0.97 and T as the final accuracy for
comparison. Note that both DP noise and Byzantine attacks
reduce the accuracy. A protocol achieves good Byzantine
robustness if its accuracy does not decrease too much with an
increased number of Byzantine clients.

6.1 Robustness Evaluation with DP

We consider a fixed privacy budget € and implement each at-
tack with different percentages of Byzantine clients 8 = |nﬂ
for the four attacks, and compare the accuracy among all ap-
proaches. We note that a complex dataset requires a more so-
phisticated model architecture and makes it more challenging
to maintain good utility in the presence of DP and Byzantine

attacks. Therefore, in our experiments with CIFAR-10 (which

'Our source code is available at https:/github.com/xiaolangu/DP-BREM

2Since DP-BREM™* achieves the same DP and robustness guarantees
as DP-BREM, we did not perform the empirical experiments with secure
aggregation because the accuracy results will be exactly the same as DP-
BREM. We use DP-BREM/* to denote both DP-BREM and DP-BREM*,
and the implementation follows Algorithm 1.
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Figure 3: With fixed privacy budget €, varying the percentage of Byzantine clients dp for three datasets.

has three color channels) and FEMNIST (which includes 62
classes), we use slightly larger € values and a smaller number
of Byzantine clients. These choices are still within a rea-
sonable range. Previous papers, such as [1] and [42], also
used larger privacy budgets for the CIFAR-10 dataset com-
pared to the MNIST dataset. The results for MNIST (with
€ = 3), CIFAR-10 (with € = 4), and FEMNIST (with € = 4)
datasets are shown in Figure 3. Compared to the results on the
MNIST dataset (with 10 classes), the accuracy on the FEM-
NIST dataset is lower due to the larger number of classes.
Though the detailed results vary under different attacks and
across three datasets, we have some general observations:

1) When there is no attack, i.e., 65 = 0, DP-BREM/*
achieves almost the same accuracy as DP-FedSGD, indicating
the Byzantine-robust design (client momentum with centered
clipping) has almost no impact on the utility in this case.

2) After increasing &g, our DP-BREM/* has the smallest
accuracy decrease, indicating its success in providing Byzan-
tine robustness. However, the accuracy of DP-LFH reduces
sharply, demonstrating that the large aggregated local DP
noise makes the robust aggregator more vulnerable to Byzan-
tine attacks, which is consistent with our discussions of Limi-
tation 2 in Section 3.2.

3) Though DP-FedSGD has client-level gradient clipping,
which can restrict malicious clients’” impact, it is still vulner-

able to some types of Byzantine attacks (such as IPM and
MTB) under larger dp values.

4) CM with DP noise (or DP-CM) has a relatively small
accuracy decrease for a relatively small dp. It is the benefit
of the median-based robust aggregator. But the sensitivity
is larger than the average-based aggregators, as discussed in
Example 1, the aggregated DP noise is too large to obtain a
high accuracy, even when 65 = 0

5) DDP-RP is more vulnerable to LF attack because it only
checks the element-wise range. Also, the model replacement
strategy in LF attack is more likely to change the positions
that have small values in benign gradient vectors.

6) DP-RSA has relatively poor accuracy compared to other
approaches, even when 8z = 0. This is caused by the sign-
SGD aggregator, which only aggregates element-wise signs
rather than the full precision gradient, leading to large infor-
mation loss. Moreover, the local DP noise makes Byzantine
attacks easier to succeed. We note that DP-RSA does not con-
verge for the FEMNIST dataset (possibly caused by the sign
aggregation), even without DP noise and Byzantine clients,
and thus we do not present the results for this dataset.

7) Under the ALIE attack, it is possible for a small number
of Byzantine clients to improve the accuracy of the model
compared to the scenario without any Byzantine clients. For
instance, an ALIE attack with 10% Byzantine clients can
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Figure 4: With fixed percentage of Byzantine clients 8z, varying privacy budget € for three datasets.

achieve higher accuracy than the case with 0% Byzantine
clients across all defense aggregators except DP-LFH. This
improvement occurs because the ALIE attack generates ma-
licious gradients that are close to the averaged good gradi-
ents but deviate slightly using a scaling factor. This factor is
determined based on the total number of clients and the pro-
portion of Byzantine clients, designed to bypass any anomaly
detection mechanisms employed by the central server. Conse-
quently, when the number of Byzantine clients is relatively
small, the malicious gradients can enhance model accuracy
compared to benign gradients, where the record-level clipping
is used to achieve DP.

6.2 Privacy-Ultility Tradeoff under Attack

We consider a fixed percentage of Byzantine clients g for
each attack under different values of privacy budget €, and
compare the accuracy of all approaches. The results for
MNIST (with 8 = 30%), CIFAR-10 (with 8 = 15%), and
FEMNIST (with 8p = 15%) datasets are shown in Figure
4. For all three datasets, we consider four different levels of
privacy, where € = inf means the standard deviation of DP
noise is 0. However, we still implement record-level clipping
to illustrate how the noise affects the results while keeping
other settings including the clipping step the same.

It’s essential to highlight that while the privacy-utility curve
is generally monotonic in the absence of Byzantine attacks,
this may not hold under Byzantine attacks due to two sources
of perturbation. When malicious perturbation dominates, the
impact of DP noise on utility is typically minimal. Addition-
ally, different defense aggregators exhibit varying sensitivi-
ties to malicious perturbation and DP noise across various
datasets, even when the number of malicious clients and € val-
ues are the same. Consequently, observations can vary across
defense aggregators, attacks, and datasets (with different pa-
rameters). For example, DP noise has a very small (or almost
negligible) impact on DP-FedSGD compared to DP-BREM.
This could be because DP-FedSGD aggregates more informa-
tion than the momentum-based solution, leading to a better
signal-to-noise ratio (SNR) and thus greater robustness to DP
noise. However, the attack has a more significant impact on
DP-FedSGD.

Though the detailed results vary under different attacks and
across the three datasets, DP-BREM/* generally achieves the
highest accuracy among almost all approaches, especially un-
der IPM and MTB attacks. The only exception is when € =2
for the FEMNIST dataset, where the accuracy of DP-BREM/*
is lower than that of DP-FedSGD. This is because the client
momentum in DP-BREM/* restricts the information that can
be learned from each new iteration, making the increased DP
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Figure 5: MNIST: Varying record-level clipping bound R for DP-BREM under different settings.

Table 3: Running time’ (in milliseconds) per round per client on

the MNIST dataset.
Batch | Baseline FedSGD+DP DP-BREM | FedSGD+DP
Size | (FedSGD) (efficient?) (DP+robust) (inefficient’)
30 11.80 13.31 13.72 41.06
60 18.23 19.79 20.27 76.70
120 31.22 33.18 33.70 149.32

I Our GPU device is NVIDIA Tesla P100-PCIE-16GB. Using other GPU
devices may have different results.

2 By default, our implementation uses efficient per-record gradient clipping
by following Opacus library’s implementation with parallel clipping and
optimized einsum (refer to https://opacus.ai/api/_modules/opacus/
optimizers/optimizer.html#DPOptimizer)

3 To illustrate the improvement of efficient clipping, we also show the results
of the inefficient implementation, which clips per-record gradient sequen-
tially and without using optimized einsum.

noise have a greater impact on the model’s accuracy.

Note that when 6 = 0 (i.e., € = inf), both DP-BREM/* and
DP-LFH reduce to LFH, thus they have the same results in
this case. We can observe that with a moderate privacy budget,
such as € > 2, DP noise only has a negligible impact on the
accuracy. But if € is too small, such as € = 1 for the MNIST
dataset in Figure 4, DP-BREM/* suffers a relatively larger im-
pact (but still acceptable) from DP noise. Note that when there
exist Byzantine attacks, reducing the DP noise to 6 =0 (i.e.,
€ = inf) does not significantly improve the accuracy of DP-
BREM/* compared with € < inf, because Byzantine clients’
perturbations largely impact the performance. However, the
accuracy of DP-LFH is greatly reduced when € < inf, since
the local DP noise impacts the robustness of the aggregator.
This observation is consistent with our theoretical analysis in
Limitation 2 of DP-LFH (Section 3.2).

6.3 Other Results

Efficiency Evaluation of DP and Byzantine Robustness.
We note that DP and Byzantine Robustness designs in our so-
lution only introduce a small computation overhead, because
1) the clipping step of DP can be implemented efficiently; 2)
our robustness is essentially a clipped summation of client
momentum without any complex computations. Due to lim-
ited resources, we implemented the distributed training of

Table 4: Model accuracy when varying C of DP-BREM/* with
€ =4 under IPM and MTB attacks on FEMNIST dataset.

op C=05 C=1 C=2 C=3 (C=4
0% 0.622 0.647 0.625 0.621 0.627
IPM 10% 0.407 0.524 0.555 0528 0.514
IPM 20% 0.060 0305 0436 0413 0.392
MTB 10% 0.591 0.605 0.535 0.525 0.545
MTB 20% 0.554 0.537 0477 0426 0.426

FL on a single machine (by running all the clients and the
server code sequentially). We evaluate the efficiency of DP-
BREM via the running time (per round per client) on the
MNIST dataset. The results shown in Table 3 indicate that
the DP noise and Byzantine robustness only incur 8% ~ 16%
additional running time (depending on batch size).

Impact of R in DP-BREM/*. Figure 5 shows how the
accuracy changes w.r.t. the record-level clipping bound R
in DP-BREM/*. The results demonstrate that when there
are fewer Byzantine clients (i.e., smaller dz) or the noise
multiplier ¢ is smaller (i.e., larger €), we need to set a larger
R to obtain better accuracy. This observation is consistent
with the theoretical analysis of parameter tuning discussed in
Theorem 2 and its interpretation.

Impact of C in DP-BREM/*. We use the fixed client-level
clipping bound C for each dataset in previous experiments.
Table 4 illustrates how varying values of C (while keeping
the default and fixed R) can influence model accuracy. In the
absence of Byzantine attacks, the value of C has a relatively
small impact on the model accuracy. However, in the presence
of Byzantine attacks, the effect of C varies depending on the
nature of the attack. For instance, attacks like the IPM attack,
which deviate significantly from benign gradients, benefit
from a slightly larger C as it allows more useful information
(from benign clients) to be retained. Conversely, for attacks
like the MTB attack, which aim to evade detection by aligning
more closely with benign gradients, a slightly smaller C can
improve accuracy by reducing the impact of the attack on the
aggregated gradient.

Impact of ¢ in DP-BREM/*. In previous experiments, we
set client-level sampling rate ¢ = 1 by default. As discussed
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Table 5: Model accuracy when varying ¢ of DP-BREM/* with
€ =2 under MTB attack on the CIFAR-10 dataset.

o | g=1 ¢q=08 ¢g=06 ¢g=04 ¢g=02
0% | 0.503 0.525 0.504 0.491 0.485
10% | 0.435 0.434 0.465 0.449 0.438
20% | 0.255 0.284 0.297 0.328 0.241

in Sec. 4.1, aggregating a subset /; of clients in (12) is one
of the major differences from LFH. Table 5 demonstrates
the utility improvement by optimizing g under different at-
tack percentages Op. Intuitively, without attacks, a smaller ¢
enhances privacy amplification, reducing the required ¢ for
a given € in DP; however, too small a g increases aggrega-
tion variance. Under Byzantine attacks, a smaller g mitigates
attack impact as only a subset of Byzantine clients are ag-
gregated. Thus, with higher g the optimal ¢ (highlighted in
Table 5) decreases.

7 Related Work

Due to limited space, we only discuss the most relevant de-
fenses below and put other related work in the Appendix of
our full-version paper [17]. Other works either only achieve
DP or Byzantine robustness (but not both), or combine secure
aggregation with Byzantine robustness without realizing DP.

Wang et al. [36] proposed DDP-RP, an FL scheme offering
Distributed DP (via encryption) and robustness (via range-
proof technologies). However, this scheme only verifies if
local model weights are within a bounded range, providing
weak robustness. Our solution, in contrast, employs client
momentum and centered clipping for Byzantine robustness
with provable convergence. Zhu et al. [43] uses sign aggrega-
tion for robustness, thus each client has limited impact, and
adds DP noise to local gradients before sign operations. This
method suffers from information loss, resulting in degraded
convergence, and only accounts for the privacy cost of one
iteration, underestimating the overall cost. Our solution, based
on original SGD with momentum, considers the privacy cost
of all iterations. Experimental results show that DP-BREM
outperforms both approaches.

8 Conclusions

This paper aims to achieve FL in the cross-silo setting with
both DP and Byzantine robustness. We first proposed DP-
BREM, a DP version of LFH-based FL protocol with a robust
aggregator based on client momentum, where the server adds
noise to the aggregated momentum. Then we further devel-
oped DP-BREM* which relaxes the server’s trust assumption,
by combining secure aggregation techniques with verifiable
inputs and a new protocol for secure joint noise generation.
DP-BREM* achieves the same DP and robustness guarantees

as DP-BREM, under a malicious server (for privacy) and ma-
licious minority clients. We theoretically analyze the error
and convergence of DP-BREM, and conduct extensive exper-
iments that empirically show the advantage of DP-BREM/*
in terms of privacy-utility tradeoff and Byzantine robustness
over five baseline protocols. In the future, we will extend our
work to other types of robust aggregators.
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A Proof of Theorem 1 (Privacy Analysis)

Proof. Since the added Gaussian noise in (12) has standard
deviation Ro, and the aggregation sensitivity is shown in
(14), then the noise multiplier (defined by the ratio between
Gaussian noise’s standard deviation and the sensitivity) is

Ro Ro R
Gi=— ZmaX{ZC,GPi|@i|} =G'max{2C,Pi|@i|}

Also, due to the client-level sampling (i.e., each client was
selected by the server w.p. ¢) and record-level sampling (i.e.,
each record was selected by client C; w.p. p;), the overall
sampling rate is gp;. Then, by applying the privacy accountant
of Gaussian DP [11] (also shown in the Appendix of our
full-version paper [17]), DP-BREM satisfies y;-GDP with y;
shown in (16). Finally, by converting 1;-GDP to (g;,8)-DP,
we get (15), which finishes the proof. O

Remark: privacy accountant in practice. Eq. (15) pro-
vides the formula of 8 when ¢€; is given and y; is computed
from (16). In practice, however, we need to compute the value
of privacy budget €; with a fixed 8, where 8 is convention-
ally set to be less than 1/n. In our experiments, we utilize
the computation tool’ in [7] to solve g; from (15). For the
value of o; in (16), we usually have p;|D;| > % in practice,
then 6; = 6p;|D;|. In this case, the clipping bounds R and
C are just hyperparameters that may affect the utility of the
algorithm, but has no influence on the privacy analysis.

3https://github.com/woodyx2 18/Deep-Learning-with-GDP-Pytorch

B Proof of Theorem 3 (Convergence Rate)

Proof. The proof of DP-BREM’s convergence rate is based
on the result of DP-BREM’s aggregation error shown in The-
orem 2, and LFH’s convergence rate derived from LFH’s ag-
gregation error. Note that all differences between DP-BREM
and LFH, including per-record clipping and the DP noise, are
reflected by the aggregation error. Comparing with the ag-
gregation error of O(p?|B|/n) (ignoring constants and higher
order terms) in LFH [20, Lemma 9], our aggregation error
shown in (19) replaces the term | B| by | B| + v/dc /g, which
means a slower convergence due to DP noise. Then, following
the result in [20, Theorem VI] and its informal version in (5),
we get the convergence rate of our algorithm as in (20). Note
that our aggregation utilizes a client-level sampling rate ¢,
i.e., approximate ng clients participate in the aggregation for
one iteration. We need to replace the term of % in (5) by % in
(20).

C Detailed Steps of DP-BREM™ in Figure 2

(D Proof and Shares Generation: z;,Valid(-) —
[zi]j,[m];j (Vj # i). For generating the proof, client C;
first evaluates the circuit Valid(-) on its private input z;
to obtain the value of every wire in the arithmetic circuit
corresponding to the computation of Valid(z;), then uses
these wire values to generate the proof ; (refer to [10, 30] for
the detailed format). Then, client C; splits the private input
z; and proof m; to generate shares [z;|; and [m;]; (V) # i),
and send them to other clients {C;}y;; via Shamir’s secret
sharing.

@ Proof Summary Computation: [z;];,[m]; (Vj # i) —
[6i]; (Vj #1). Each client except C; first verifies the validity of
the received secret shares via verifiable secret shares [15], and
then locally constructs the shares of every wire in Valid(z;)
via affine operations on the shares [z;]; and[m;]; to get the
shares of proof summary [o;] j (refer to [30] for the detailed
format), which will be sent to the server.

@ Proof Summary Verification: [6;]; (Vj # i) — Valid(z;).
After receiving shares of proof summary [c;];(V; # i) from
clients {C;}y .., the server recovers the value of G; via robust
reconstruction, which is resilient to incorrect shares submitted
by the malicious clients, and then checks the values in proof
summaries. Finally, the validation result Valid(z;) = 1 if and
only if 6; has the correct value.

@  Random  Numbers l,d —
{([ux] j» vl j) ,[i/lz] (Vj). In this step, clients jointly
generate the shares of [d/2]-pairs of random numbers

Generation:

{(uge, vi) ,[i/lz], where all of them are i.i.d. from uniform
distribution in the range [0, 1]. Denote / as the fractional
precision of the power 2 ring representation of real numbers.
To obtain the share of one random number u, each client
C; (Vi) generates [ random bits in the binary filed Fa,
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denoted by a binary vector b; with length /, then generate
and distributes the shares [b;]; to other clients (via Shamir’s
secret sharing). After receiving all shares from other
clients, each client C; (V) locally adds these shares to get
[b]; = [X:bi]; € Fh, where vector b € F} is actually the
bitwise XOR of vectors {b; }y; because the computation is
implemented in the binary field Flz We define the binary
vector b as the binary representation of the fractional part of
u € [0, 1]. Note that the Shamir’s secret sharing scheme of
Phase 1 is implemented in a finite filed F,x, where K > [.
Therefore, the client C; can locally compute the arithmetic
share [u]; € Fox from the share of binary representation
[b]; € F',. Since all possible discrete values with power 2
ring representation evenly span the range [0, 1], the generated
random real number « is uniformly distributed in [0, 1].

(®  Transformation to  Gaussian  Distribution:
(bl )R (%) — (8], (V). For cach
pair of (ug,vi), clients can jointly compute a se-
cret sharing of a; = /—2In(u) - cos(2mv;) and of
by = \/—21In(uy) - sin(2mvy) by utilizing Secure Multiparty
Computation (MPC) protocols [21] that guarantees security
(i.e., privacy and integrity) with malicious minority. Accord-
ing to Box and Muller Transformation [6], a; and b are
1.i.d. random variables from the Gaussian distribution with
mean 0 and variance 1. Then, by locally implementing secure
multiplication with a constant (i.e., RG), a; and by are i.i.d
random numbers following a Gaussian distribution with the
desired standard deviation of Rc. Finally, by concatenating
shares of d numbers in {(ax,by) ,[i/lz], clients obtains the
shares of random vector § with length d from Gaussian
distribution A((0, R*6°1,).

® Shares Aggregation: {[z];}icr.q.[6]; (Vi) —
[Yic i 2i + &l (V)). Due to the linearity of Shamir’s se-
cret sharing scheme, each client C; can locally compute the
share of the noisy aggregate by adding the shares of all valid
inputs and the share of Gaussian noise: [Y;cp,.,, 2 +&]; =
Yicn.i2ilj + (€] and sends that share to the server.

(D Noisy Aggregate Reconstruction: [Y;c Raig & T+
€l; (Vi) = Yicn.,2zi + & After receiving all shares of
the noisy aggregate, the server recovers it using robust
reconstruction.

D Experimental Setup

FL Implementation. Due to limited resources, we simulate
the distributed training of FL by running a single machine
sequentially for clients and the server. The real-world imple-
mentation of FL is out of the scope of this paper.

Datasets (non-IID) and Model Architecture. We use
three datasets for our experiments: MNIST [23] CIFAR-10
[22] and FEMNIST [8], where the number of total clients is
n = 100 for the former two datasets, and n = 400 for FEM-
NIST dataset. Note that the MNIST and CIFAR-10 datasets

only have 10 classes, while the FEMNIST dataset has 62
classes (including 10 digits, 26 lowercase letters, and 26 up-
percase letters). For the MNIST dataset, we use the CNN
model from PyTorch example*. For the CIFAR-10 dataset,
we use the CNN model from the TensorFlow tutorial®, like
the previous works [26, 42]. To simulate the heterogeneous
data distributions, we make non-i.i.d. partitions of the datasets,
which is a similar setup as [42] and is described below. For the
FEMNIST dataset, we use a CNN model with 2 convolution
layers and 2 fully connected layers.

1) Non-IID MNIST: The MNIST dataset contains 60,000
training images and 10,000 testing images of 10 classes. There
are 100 clients, each holds 600 training images. We sort the
training data by digit label and evenly divide it into 400 shards.
Each client is assigned four random shards of the data, so that
most of the clients have examples of three or four digits.

2) Non-IID CIFAR-10: The CIFAR-10 dataset contains
50,000 training images and 10,000 test images of 10 classes.
There are 100 clients, each holds 500 training images. We
sample the training images for each client using a Dirichlet
distribution with hyperparameter 0.9.

3) Non-IID FEMNIST: The FEMNIST dataset is pre-
partitioned based on the writer of the characters, simulating
a non-IID scenario. Each client’s local dataset consists of
samples written by individual users, introducing variability in
handwriting styles. We use the TensorFlow-Federated API°
to load the first 400 partitions, representing data from 400
clients. Unlike the MNIST dataset, which includes only digits,
FEMNIST includes both digits and uppercase and lowercase
letters, spanning 62 classes (10 digits + 52 letters).

Byzantine Attacks. We consider four different Byzantine
attacks in our experiments.

1) ALIE ("a little is enough") [3]. The attacker uses the em-
pirical variance (estimated from the data of corrupted clients)
to determine the perturbation range, in which the attack can
deviate from the mean without being detected or filtered out.

2) IPM (inner-product manipulation) [38]. The attacker
manipulates the submitted gradient to be the negative direc-
tion of the mean of other honest clients’ gradients, thus the
negative inner-product of the true gradient and the aggrega-
tion prevents the descent of the loss. Note that the original
IPM attack assumes the omniscient attacker (i.e., knows the
data/gradient of all other clients), which is contradicted to our
assumption that the attacker only has access to the data of the
corrupted clients (otherwise, the privacy is already leaked and
no need to provide DP). Thus, in the experiments, we use the
data of corrupted clients to estimate the aggregated gradient
of honest clients, and then manipulate the inner-product (i.e.,
non-omniscient attack).

3) LF (label-flipping). The attacker modifies the labels of

4https://github.com/pytorch/opacus

Shttps://www.tensorflow.org/tutorials/images/cnn

Ohttps://www.tensorflow.org/federated/api_docs/python/
tff/simulation/datasets/emnist/load_data
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all examples of corrupted clients’ data and computes a new
gradient, then uses a gradient replacement strategy (similar to
[2]) to enhance the impact on the global model. Specifically,
the attacker computes a benign gradient gpenign With non-
flipped labels and also a bad gradient gp,q With flipped labels.
Finally, each malicious client submits the difference gp,q —
Shenign (O the server to achieve the goal that the aggregated
global gradient (averaged over all clients) is close to paq.

4) MTB ("manipulating-the-Byzantine") [33]. The attacker
computes a benign reference aggregate using some benign
data samples obtained from corrupted clients, then computes a
malicious perturbation vector, and an optimized scaling factor
to get the malicious update with the goal of evading detection
by robust aggregation algorithms. The optimization of the
scaling factor can be tailored or agnostic to the aggregator.
Considering our scheme and the baselines do not detect mali-
cious clients, we use the agnostic setting (including min-max
and min-sum) for simplicity because tailoring MTB attack to
all defense aggregators is nontrivial. In our experiments, we
implement the min-max attack since it has a larger impact on
the global model.

Byzantine Defenses with DP. We compare the perfor-
mance of our approaches with the following five competitors
against Byzantine attacks. All of them satisfy record-level
DP via record-level clipping and DP noise added to the local
gradient/momentum. Note that privacy budget € in Theorem |
is the same for different clients because clients have the same
size of local datasets | D;| and same record-level sampling rate
(i.e., same |2;] and p; for different clients C;).

1) DP-FedSGD. Note that the original DP-FedSGD in [26]
clips the client gradient to achieve client-level DP. For a fair
comparison, we also implement record-level gradient clipping
on top of the original DP-FedSGD to guarantee record-level
DP. Though DP-FedSGD is not designed for robustness, its
client-level clipping can restrict malicious clients’ capability,
thus providing some level of Byzantine robustness. We take
this as a baseline to illustrate that client-level clipping can
provide some level of robustness, but may not be enough
to defend against strong attackers (either advanced attack
strategy or a larger number of malicious clients).

2) DP-CM. As a baseline that adds DP to median-based ro-
bust aggregators (discussed in Section 3.2), we implement the
Byzantine-robust aggregator Coordinate-wise Median (CM)
[40] with DP noise added to the median result. Note that only
DP-CM uses median-based aggregation, while other meth-
ods use average-based aggregation. As discussed in Section
3.1 and Example |, the median-based aggregation has large
sensitivity and poor privacy-utility tradeoff.

3) DDP-RP [36]. By leveraging encryption techniques,
DDP-RP guarantees Distributed DP with secure aggregation.
It allows clients to add smaller noise in the local gradient
than the Local DP, with the knowledge of the lower bound of
trusted clients, thus providing enhanced privacy-utility trade-
off than local DP protocols. To guarantee Byzantine robust-

ness, DDP-RP uses range-proof (RP) technologies to securely
verify whether the local model/gradient weights are in a (pre-
defined) bounded range.

4) DP-RSA [43]. It replaces the value aggregation to sign
aggregation, which provides robustness because each client
has limited impact on the aggregation. The DP noise is added
to the local gradient before the sign operation.

5) DP-LFH. The baseline (Section 3.2) directly combines
DP-SGD based momentum with LFH. Each client adds DP
noise to the local gradient, and then computes the local mo-
mentum to be aggregated with centered clipping by the server.

E Parameters in Experiments

Basic Parameters.

¢ Total number of iterations 7: 1000 for MNIST and FEM-
NIST; 2000 for CIFAR-10.

* Learning rate 1,: For MNIST and FEMNIST datasets, 1,
is linearly reduced from 0.1 to 0.01 w.r.t. iterations. For
CIFAR-10 dataset, 1, is linearly reduced from 0.05 to
0.0025 w.r.t. iterations.

DP-related Parameters.

* Record-level sampling rate p;: 0.05 for all i on MNIST and
CIFAR-10; 0.1 for all i on FEMNIST (because each client
has fewer data records).

* Client-level sampling rate g: the default value is 1. We
evaluate the influence of g (from 0.2 to 1) on the accuracy
in Table 5.

* Record-level clipping bound R: linearly reduced from Ry to
0.3R( w.r.t. iterations. Note that in Figure 5, the different
value of R in x-axis is the value of the above Ry. For MNIST
and FEMNIST, we set Ry = 10 by default. For CIFAR-10,
we set Ry = 20 by default, but Ry = 15 only for the case of
€ =2 in Figure 4.

* Privacy parameter & in DP: 10°

e Noise multiplier 6: For MNIST (with 7 = 1000 and
each client has |D|; = 60000/100 = 600 examples),
6 € {0.15,0.06,0.029,0} for € € {1,3,8,inf}. For CIFAR-
10 (with T = 2000 and each client has |D|; = 50000,/100 =
500 examples), ¢ € {0.14,0.077,0.042,0} for
€ € {2,4,9,inf}. For FEMNIST (with T = 1000 and each
client has around 300 examples), ¢ € {0.16,0.09,0.047,0}
for € € {2,4,9,inf}.

Robustness-related Parameters.

* Client-level clipping bound C (only for DP-BREM and DP-
LFH): linearly reduced from Cy to 0.3Cyp w.r.t. iterations,
where Cy = 1 for MNIST, Cy = 5 for CIFAR-10, and Cy =2
for FEMNIST.

¢ Momentum parameter B = 0.9 for all three datasets.
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