
BIN2WRONG: a Unified Fuzzing Framework for

Uncovering Semantic Errors in Binary-to-C Decompilers

Zao Yang

University of Utah

Stefan Nagy

University of Utah

Abstract

Binary decompilation is central to many systems tasks that

rely on analyzing or modifying closed-source software, such

as debugging, performance tuning, and security hardening.

Decompilers translate executables into C code with the goal of

reconstructing a semantically-equivalent form of the original

program’s source. Unfortunately, when challenged by intri-

cate program logic, data structures, and diverse executable

layouts, decompilers often produce semantically-wrong code.

Proactively detecting such decompilation defects is critical

for ensuring the success of downstream tasks that depend on

precise binary analysis. Yet, current methods for assessing

decompiler correctness only narrowly explore the variety of

source constructs, compilers, optimization levels, executable

formats, and combinations thereof that influence binary code.

Fully guaranteeing decompilation precision—and, by exten-

sion, supporting all tasks that hinge on accurate binary-to-

source recovery—demands a testing approach that unifies all

factors affecting binary code, extending practical, systematic

correctness testing to all decompilers today.

To accelerate discovery of decompilation defects, this pa-

per introduces BIN2WRONG: a general-purpose decompiler

fuzzer combining systematic binary mutation with practi-

cal, decompiler-agnostic support. Our approach coalesces

all factors of binary generation—source, compiler, optimiza-

tion, and executable format—into a novel, unified testcase

structure for mutation. Beyond enabling deeper exploration

along these individual dimensions, BIN2WRONG finds unique

combinations exposing complex, multi-dimensional errors

that elude prior decompiler testing approaches. In evaluating

BIN2WRONG alongside state-of-the-art decompiler fuzzers

Cornucopia and DecFuzzer across seven free and commercial

decompilers, BIN2WRONG achieves upwards of 10.39× and

17.18× higher binary diversity and 1.16× and 1.32× more

decompiler code coverage, respectively, whilst uncovering

the most decompilation bugs. Beyond finding 48 new bugs,

with 30 confirmed, BIN2WRONG spurred a major redesign of

the commercial decompiler Binary Ninja—showing its utility

in uncovering critical defects in mainstream decompilers.

1 Introduction

Binary decompilers are crucial for analyzing, maintaining, and

modifying modern systems software, translating raw machine

code into more human-readable higher-level representations,

most commonly C. By bridging this gap, decompilers become

indispensable for tasks that must proceed without a program’s

original source, such as performance tuning of closed-source

components [37], malware analysis [136], security assess-

ment of proprietary kernels [34], and third-party patching of

production systems [40]. Popular decompilers today include

Binary Ninja [108], Angr [132], Ghidra [78], and RetDec [6].

Decompilers’ ultimate goal is recovering code identical

or semantically-equivalent to the program’s original source.

Recent advancements are vastly improving decompilation

accuracy through neural networks [30, 141], LLMs [5, 135],

and heuristic code restructuring [15, 33]. Yet in practice, de-

compilers face steep challenges due to the lossy nature of

compilation, which strips source-level semantics like type

information, function and variable names, and high-level pro-

gram structures. Moreover, diverse executable formats (e.g.,

ELF, PE, Mach-O), compiler-specific code layout patterns

(e.g. variable arrangement, function ordering), and optimiza-

tions (e.g., inlining, loop jamming, dead code elimination)

further impede precise decompilation, requiring significant

specialized handling. As even subtle mistakes (e.g., a mis-

recovered branch condition) cause trickle-down failures (e.g.,

incorrect control flow) in downstream binary analysis tasks,

vetting decompilers’ correctness is critical to the success

of many systems engineering and reliability efforts today.

Inspired by the success of automated testing—namely

fuzzing—in other software domains, recent works propose

testing strategies specially tailored to finding semantic er-

rors in decompilers [20, 54, 89, 142]. While such approaches

have historically uncovered bugs, they are overwhelmingly

ineffective at finding the vast majority of decompiler de-

fects today. Executables are influenced by four key dimen-

sions: (1) source, the fundamental blueprint behind binary

generation; (2) compilers, which emit and structure the bi-

nary’s code; (3) optimizations, which restructure, expand, or

trim the binary accordingly; and (4) the executable format,

which encapsulates platform-specific code layout and call-

ing conventions. Yet, despite the equal importance of each

of these aspects, current decompiler fuzzers fail to explore

them comprehensively—hardcoding themselves to only spe-

cific, narrow subsets that ultimately highly overlap with those

already-covered by past testing efforts. Worse yet, these re-

strictive approaches cannot reveal the many decompiler bugs

caused by specific source and compilation parameter combi-

nations—leaving these edge-case errors unlikely to be found

until they inevitably confront decompilers’ own users. Thus,

preventing the failure of critical efforts reliant on precise

decompilation demands a systematic correctness-testing ap-

proach spanning all aspects of binary generation—whilst

supporting all of today’s diverse decompiler ecosystem.

To accelerate discovery of decompiler errors pro-

ducing semantically-wrong code, this paper introduces

BIN2WRONG: a general-purpose fuzzer that explores all as-

pects of binary generation—source, compiler, optimizations,

and executable formats—in a synergistic and decompiler-

agnostic manner. Unlike prior decompiler fuzzers that view

these dimensions individually, BIN2WRONG unifies and mu-

tates them altogether, facilitating more flexible and thorough

exploration of diverse binary semantics as well as the unique

interplay arising from distinct combinations of all four factors.

When applied to state-of-the-art decompilers, BIN2WRONG

reveals many more decompilation errors than prior overly-

restrictive approaches, assisting decompiler developers in

strengthening their tools against complex edge-cases that oth-

erwise derail their users with real-world inaccuracies.

We evaluate BIN2WRONG alongside the state-of-the-art

decompiler fuzzers DecFuzzer [54] and Cornucopia [89] on

seven free and industrial x86 decompilers: Binary Ninja, Angr,

Radare2/Ghidra, Reko, Relyze, RetDec, and Rev.Ng. Over-

all, BIN2WRONG’s holistic, binary-centric mutation strategy

vastly outperforms DecFuzzer and Cornucopia in generated

binary diversity by upwards of 10.39× and 17.18×, respec-

tively. When used to test decompilers, BIN2WRONG’s higher-

diversity binaries achieve a mean 1.16× and 1.32× decom-

piler code coverage relative to DecFuzzer and Cornucopia—

while uncovering 38 and 48 more decompilation seman-

tic errors, respectively. After analyzing BIN2WRONG’s 48

newly-found bugs and reporting them to their decompilers’

developers, 30 are so far confirmed or fixed. Importantly,

BIN2WRONG uniquely discovered many critical bugs, in-

cluding one that prompted a total overhaul of the industrial

decompiler Binary Ninja’s core code structuring techniques.

In summary, our paper makes the following contributions:

• Insights: We analyze and categorize 64 publicly-reported

decompiler semantic defects; and are the first to shed

light on the importance of all four factors behind binary

generation—source, compiler, optimization, and executable

format—in facilitating decompiler defect discovery.

• Challenges: We weigh the limitations of prior decompiler

testing efforts in considering our aforementioned four fac-

tors of binary generation; as well as their capability of

supporting all of today’s diverse decompiler ecosystem

spanning both free and industrial decompilers.

• Solutions: We design BIN2WRONG: the first general-

purpose decompiler fuzzer to balance automated, large-

scale exploration of diverse binary semantics stemming

from distinct source code and compilation parameter

combinations—in a fully decompiler-agnostic manner. Be-

yond supporting virtually all of C’s control and data con-

structs (e.g., floating-point and string literals, switch-case

statements, goto branches, etc.), BIN2WRONG integrates

six different C compilers, three binary executable formats,

and 5,183 distinct compiler optimizations.

• Results: In an evaluation of BIN2WRONG versus state-of-

the-art decompiler fuzzers Cornucopia and DecFuzzer, we

show that BIN2WRONG achieves the highest-overall binary

diversity, code coverage, and semantic bug discovery across

seven mainstream binary-to-C decompilers: Binary Ninja,

Angr, Radare2/Ghidra, Reko, Relyze, RetDec, and Rev.Ng.

Moreover, while prior decompiler testing works explore

only limited sets of compilers and optimizations, we present

the first comprehensive study of the distinct impacts of

varying source code—combined with the largest-ever tested

set of compilers, executable formats, optimizations, and

their combinations—on the discovery of semantic errors

within contemporary binary decompilers.

• Impacts: We report all discovered bugs to their respec-

tive decompiler developers. So far, 30 of 48 BIN2WRONG-

found bugs are confirmed, with many since fixed. Sev-

eral BIN2WRONG-uncovered bugs motivated significant

changes to mainstream decompilers, including a major re-

structuring of the commercial decompiler Binary Ninja.

We will publicly release BIN2WRONG, as well as all eval-

uation artifacts and uncovered bugs at the following URL:

https://github.com/FuturesLab/Bin2Wrong.

2 Background

This section provides a brief overview of the process of binary

decompilation, as well as the most common classes of cor-

rectness defects affecting today’s various binary decompilers.

2.1 An Overview of Binary Decompilation

Decompilers’ goal is inverting program compilation: consum-

ing a pre-built executable and recovering its source code [22].

For systems, decompilers critically facilitate human under-

standing and reasoning about software whose source is un-

available, such as legacy or proprietary components, and ob-

fuscated malware. In the following, we outline and discuss

the four main steps central to virtually all decompilers today:

(1) Control Flow Recovery, (2) Control Flow Analysis,

(3) Data Flow Analysis, and (4) Code Generation.

1. Control Flow Recovery. Control Flow Recovery aims

to understand programs’ underlying flow of execu-

tion. Instruction disassemblers (e.g., Capstone [3], Intel

XED [39]) are used to translate raw binary code into

machine instructions—and further—group them into ba-

sic blocks: sequences of consecutive instructions both

targeted-by and terminating-in a control-flow transfer (i.e.,

branches, fall-throughs, calls, or returns). Additional anal-

yses are performed to group basic blocks into functions,

culminating in the overall program Control-flow Graph

(CFG), where nodes and edges denote basic blocks and

control-flow transfers between them, respectively.

2. Control Flow Analysis. With the CFG in-hand, decom-

pilers begin abstracting basic block groupings into higher-

level control structures like loops, switch-cases, and dis-

patch tables. Critical to CFG analysis is recognizing high-

level structures via known patterns: for example, standard

techniques for loop identification leverage control-flow

dominance between basic blocks to determine the loop’s

overarching header [90]. Ultimately, recovery of higher-

level control structures offers a richer understanding of

program semantics, forming the backbone of decompilers’

subsequent data flow recovery and code generation steps.

3. Data Flow Analysis. Following control structure recovery,

decompilers shift focus to examining how data is read,

written, and propagated throughout program execution.

Primary goals of these analyses include identifying distinct

data objects, such as function arguments, return values, and

both local and global variables, along with determining

their associated data types. These elements are critical to

decompilers’ final code generation phase as they directly

impact virtually all aspects of program semantics: control-

flow logic, data expressions, and more.

4. Code Generation. Decompilers’ final stage leverages all

collected control- and data-flow artifacts to generate the

program’s final source representation. Yet, as all prior steps

are inherently undecidable, decompilers’ generated code

is unlikely to be identical to the program’s original source.

To this end, decompilers still aim to yield semantically-

equivalent source representations which—while visually

different from the original—behaves the same.

2.2 Semantics-affecting Decompilation Defects

Decompiler defects range from cosmetic inconsistencies af-

fecting human readability of decompiled code—for example,

haphazard ordering of switch-case labels (Binary Ninja

issue [113])—to insidious semantics-affecting errors that

completely misrepresent program behavior. Semantics-

affecting defects uniquely burden decompiler users with in-

correct results, thus impeding the success of downstream

systems-oriented binary analysis tasks. To better understand

these obstacles, we review public issue trackers of mainstream

decompilers and distill reported bugs into four high-level

categories of semantics-affecting defects shown in Table 1:

(1) Data Expressions, (2) Control-flow Logic & Structures,

(3) Data Objects, Types, & Values, and (4) Compilation-

specific Defects. We briefly discuss these below.

Category Origin(s) Decompilers and Examples of Relevant Defects

Instructions Ghidra [75], Radare2 [82], Reko [48], RetDec [7, 13]Data

Expression Refinement Angr [95, 106], Binary Ninja [120, 121, 125], RetDec [12]

If / Else Binary Ninja [114, 126, 130], Ghidra [65], RetDec [8, 9]

Loops Angr [94, 99, 103], Binary Ninja [112, 116], Reko [47]

Goto Angr [104, 105], Binary Ninja [122], Reko [44], RetDec [11]

Control

Logic,

Structures

Switches Binary Ninja [111, 115, 116], Radare2 [84], RetDec [10]

Arguments Angr [93, 101, 102], Binary Ninja [117, 123, 127, 129]

Variables Angr [97, 100], Binary Ninja [124], Ghidra [72–74]

Objects,

Types,

Values
Literals Angr [92], Binary Ninja [119], Ghidra [66, 77], Reko [46]

Code Opts Angr [91, 93, 98], Binary Ninja [110], Ghidra [71, 76]Compile

Configs Format Angr [96], Binary Ninja [118, 128, 131], Ghidra [68, 70]

Table 1: Reported semantic bugs in mainstream decompilers.

• Defects in Recovering Data Expressions. Errors in instruc-

tion disassembly or handling of instruction semantics often

lead to data inconsistencies in decompilers’ higher-level

code generation. For example, in Ghidra [75], incorrect han-

dling of x86’s FCOMP (floating-point comparison) results

in comparison operands being swapped; and as this com-

parison governs a conditional branch, the code guarded by

this branch ends up only being reachable under conditions

totally different from the original program’s. Additionally,

decompilers often refine data expressions using techniques

such as constant folding and propagation to enhance code

readability [33], conciseness [137], or better align with real-

world source code patterns [15]. However, subtle errors in

these optimizations also lead to incorrect data. For example,

in Binary Ninja [121], constant propagation for x86’s ROL

(rotate-left) and SHL (shift-left) instructions inaccurately

simulates 32-bit registers, yielding divergent expression

results when analyzed on 64-bit systems.

• Defects in Recovering Control Logic & Structures. In

addition to data expressions, we identify numerous in-

stances of semantics-affecting defects in decompilers re-

lated to the recovery of control logic and structures. These

include missing bodies for conditional branches (e.g., Ret-

Dec [9]); incorrect recovery of loop starting conditions

(e.g., Reko [47]); and missing, spurious, or misdirected

goto branches (e.g., Angr [105]). Handling of gotos is par-

ticularly contentious—and error-prone—in decompilation

research and design, with current decompilers employing

vastly different strategies for their recovery and structuring

(e.g., [15, 137]). Furthermore, we see that switch-case

statements remain one of the most universally-challenging

control structures across all decompilers, leading to down-

stream errors that result in unrecoverable code blocks (e.g.,

Radare2 [84], RetDec [10]), or complicating recovery of

other intermingled control logic (e.g., Binary Ninja [116]).

• Defects in Recovering Data Objects, Types, & Values.

While recovery and refinement of data expressions pose

challenges for decompilers, even identifying and recon-

structing their underlying data objects (e.g., string, integer,

and floating-point variables and literals)—along with their

corresponding types and values—presents significant dif-

ficulties that directly impact the accuracy of decompiled

code semantics. We observe many instances of functions

missing arguments (e.g., Angr [101], Binary Ninja [127]) or

return values (e.g., Angr [100]), as well as general type in-

compatibilities on local variables (e.g., Binary Ninja [124],

Ghidra [74]). Strings and floating-point literals also present

distinct challenges for decompilers, which commonly miss

(e.g., Binary Ninja [119]), truncate (e.g., Ghidra [77]), or

otherwise erroneously perturb them (e.g., Reko [45]).

• Defects from Specific Compilation Configurations.

Lastly, we see many issues stemming from compilation di-

versity, such as function recovery defects specific to MacOS

Mach-O (e.g., Angr [96], Ghidra [68]) and Windows PE

binaries (e.g., Binary Ninja [128]). Additional challenges

arise under certain compiler optimizations; for instance,

Ghidra [71] and Angr [93] face difficulties with calling

convention recovery under MSVC’s /LTCG (link-time code

generation) and GCC’s -Ofast optimizations, respectively.

Furthermore, we see source constructs present unique se-

mantic recovery challenges depending on the executable

format they are compiled into, as demonstrated by Binary

Ninja’s and Ghidra’s errors on floating-point function argu-

ments from PE binaries ([69] and [70], respectively).

As binary-oriented systems tasks such as malware analysis,

vulnerability discovery, and security hardening all depend

on accurate decompilation, decompiler developers are work-

ing aggressively to fix errors and prevent misleading their

users with inaccuracies or failures. However, the lack of a

systematic testing approach leaves today’s decompiler de-

velopers overwhelmingly relying on manual bug discovery

(e.g., Table 1), limiting their ability to proactively identify crit-

ical, semantics-affecting defects. Enhancing the reliability of

decompilers thus demands moving beyond cumbersome man-

ual bug-finding and adopting automated, practical testing

techniques that thoroughly explore the complex interplay

between source and compilation diversity in binary code.

3 Challenges of Testing Decompilers

To automate discovery of semantics-affecting decompiler de-

fects, a handful of decompiler testing efforts have emerged

over the years (Table 2): Cornucopia [89], DecFuzzer [54],

D-Helix [142], and DSmith [20]. Unfortunately, as we show

below, these approaches are fundamentally limited in achiev-

ing systematic, practical decompiler defect discovery. In the

following, we weigh their trade-offs with respect to address-

ing the three main challenges of automated decompiler defect

discovery: (1) source construct diversity, (2) compilation

diversity, and (3) supporting all decompilers.

Approach
Source Diversity Compilation Diversity Decomp.

Exprs Ctrl Data Comp Opts ELF PE Mach-O Agnostic

DecFuzzer 7 � � 1 : 7 : : 7

Cornucopia 7 7 7 2 7 7 : : 7

D-Helix 7 7 � 2 � 7 : : :

DSmith 7 � � 1 � 7 : : 7

BIN2WRONG 7 7 7 6 7 7 7 7 7

Table 2: Survey of state-of-the-art decompiler testing works.

7 = full support; : = no support; � = limited or poor support.

3.1 Challenge 1: Source Construct Diversity

Varying source constructs pose unique hurdles for decom-

pilation, complicating reconstruction of high-level program

logic and structure. For example, both switch-case and

if-else statements are often compiled-down into jump ta-

bles [80], challenging decompilers’ differentiation of the two.

To this end, modern decompilers devote significant analyses

and heuristics to recovery and refinement of distinct source

constructs [50]. Moreover, decompilers frequently differ in

handling specific constructs (e.g., gotos [15]), meaning that

the same source often produces disagreeing results among

decompilers. Thus, maximizing diversity of input source code

is crucial to scrutinizing decompilers’ underlying capabilities

and accuracy in handling real-world binaries.

Limitations: In examining today’s leading automated decom-

piler testing efforts (Table 2), we observe varying support

for many of today’s most common source code constructs.

Although each considers control-flow like loops, conditional

branches, function calls and returns, and gotos, both DSmith

and DecFuzzer entirely omit switch-case statements, limit-

ing their ability to thoroughly evaluate decompilers’ control-

flow recovery. Further, almost all exhibit limitations in sup-

porting various types of literals: DecFuzzer, DSmith, and

D-Helix all fail to support floating-point literals; while Dec-

Fuzzer and DSmith additionally exclude string literals be-

cause their underlying source code generation tooling does

not yet support them [139]. Omitting common source con-

structs drastically reduces the scope of previous methods,

leaving them unable to catch many critical decompiler

defects likely to emerge in practice.

3.2 Challenge 2: Compilation Diversity

Modern compilers have unique code generation strategies and

internal algorithms, creating vast differences in their result-

ing binary code. For example, virtual dispatch tables take on

fundamentally disparate forms when compiled by MSVC ver-

sus GCC [14]. As a result, identical source overwhelmingly

yields different binaries when compiled by multiple compilers.

This entropy is further increased by compiler optimizations,

which additionally obscure precise disambiguation of con-

trol and data constructs; for example, MSVC’s aggressive

data and code inlining [60]. Furthermore, platform-specific

executable file formats—Windows’ PE, Linux’s ELF, and Ma-

cOS’s Mach-O—have fundamentally unique binary layouts,

necessitating decompilers’ specialized handling of each [25].

Because reverse engineering—and thus, decompilers—targets

every software ecosystem, it is thus crucial to identify and

characterize the kinds of errors that decompilers encounter

across the vast space of possible compilation configurations.

Limitations: While prior decompiler testing works vary in

the diversity of the source constructs they examine, they are

even more restricted in their exploration of binary compilation

parameters—hardcoding themselves specific, hand-chosen

compilation configurations, making them unable to au-

tomatically explore others. All four cover no more than

two compilers: D-Helix and Cornucopia focus exclusively on

GCC and Clang, while DSmith and DecFuzzer limit them-

selves to only GCC. In terms of optimizations, Cornucopia

examines nearly all possible GCC and Clang optimization

levels, whereas the others are more constrained: D-Helix is

limited to O0 and O2-O3, D-Smith explores O0-O3 and Os, and

DecFuzzer omits optimizations altogether. Additionally, these

approaches consider only the Linux ELF executable format,

entirely neglecting PE and Mach-O binaries. Moreover, their

designs are rigid and hardcoded to specific compilation param-

eters, preventing them from automatically exploring the

diversity of binaries generated from a single input source

code—and the decompilation defects these variations might

introduce—without additional effort and re-engineering.

3.3 Challenge 3: Broad Decompiler Support

Modern binary decompilers exhibit considerable diversity

in their implementations, encompassing different program-

ming languages, internal code representations, and degrees of

transparency. While many are open-source (e.g., Angr [132],

Ghidra [78], and Rev.Ng [24]), some of today’s most widely-

used decompilers are commercial products and hence remain

fully or partially closed-source, limiting insight into their un-

derlying internals (e.g., Binary Ninja [108], IDA Pro [36], and

JEB3 [81]). Therefore, a comprehensive vetting approach is

required that is supportive of all decompilers—regardless of

their architectural design variations or transparency.

Limitations: Most previous approaches prioritize scalability

by treating decompilers as black-box systems, analyzing only

their output C code. In contrast, D-Helix operates directly

on the non-C Intermediate Representations (IRs) used inter-

nally by decompilers prior to final code generation. Yet, such

approach requires costly, per-instruction semantic modeling—

further burdened by the vast differences between decompiler-

specific IRs (e.g., Angr’s VEX vs. Binary Ninja’s LLIL, MLIL,

and HLIL IRs). Currently, D-Helix only supports Ghidra’s

P-code and Angr’s VEX IRs, leaving others (e.g., Rev.Ng’s

LLVM IR [24]) beyond its reach. According to its devel-

opers [142], extending D-Helix to other decompilers’ IRs—

which often differ significantly in semantics [42]—demands

considerable manual effort and domain expertise on the order

of 40 days’ time per unique decompiler integration.

Motivation: Thoroughly vetting binary decompilers requires

a multifaceted testing approach that accommodates all decom-

pilers whilst accounting for every factor influencing executable

code generation. We propose a holistic view of binary mutation—

integrating diverse source code, multiple compilers, and

varying optimizations and executable formats simultane-

ously—to maximize the detection of semantic decompilation

defects across different decompiler platforms, irrespective of

their internal differences or level of transparency.

4 BIN2WRONG: Systematic, Practical Fuzzing

for Binary Decompilers

To tackle the limitations of prior decompiler testing ap-

proaches, we present BIN2WRONG (Figure 1): a general-

purpose fuzzer for uncovering decompilation semantic bugs

whilst supporting any decompiler—irrespective of inter-

nals or transparency. We detail our high-level design of

BIN2WRONG’s key components below.

4.1 Mutation of Binary-affecting Dimensions

Recent work shows [57, 133] fuzzing is most effective when

mutation is maximized—randomly distributing mutations

across a target program’s entire input space rather than only

along a small portion. Yet, while binaries are distinctly in-

fluenced by source, compilers, optimizations, and executable

formats, current decompiler testing approaches limit ex-

ploration to only a small part of this vast input space.

DecFuzzer [54] focuses on source alone, eluding optimiza-

tions entirely; and similarly, prior approaches [20, 89, 142]

consider only GCC and/or Clang, excluding other compilers—

and consequently—other binary formats like PE and Mach-O.

To overcome these limitations, we propose a holistic ap-

proach to decompiler-oriented fuzzing, where source code and

compilation parameters are treated and mutated as a single,

unified testcase. Below, we describe BIN2WRONG’s overar-

ching unified binary testcase construction (Figure 2), and

explain how its components work together to enable a deeper

exploration of more diverse binary semantics—and more ef-

fective decompiler fuzzing—than previously possible.

4.1.1 Unifying Source and Compilation Mutation

With AFL++ [29] came new possibilities in implementing

domain-specific mutators through its versatile custom muta-

tor API (e.g., [86, 140]). Building on these capabilities, we

develop BIN2WRONG’s decompiler-oriented binary mutation

via a suite of custom AFL++ mutators targeting both source-

and compilation-level modifications, detailed below.

4.1.2 Mutating Compilation

As § 3.2 shows, different compilers, formats, and optimiza-

tions produce unique binaries even from identical source, chal-

ELF
(Linux)

PE32
(Windows)

Mach-O
(MacOS)

01. void func_1 (){
02. long v1 = 1234567;
03. goto LABEL_SWITCH;
04. LABEL_BRANCH:
05. if (v1 == 123)
06. v1--;
07. LABEL_SWITCH:
08. switch(v1){
09. case 13:
10. v1++;
11. }

01. void func_1 (){
02. long v1 = 0xFFFFF;
03. goto LABEL_BRANCH;
04. LABEL_BRANCH:
05. if (v1 <= 123)
06. v1--;
07. LABEL_SWITCH:
08. switch(13){
09. case 13:
10. v1 = v1%37;
11. }

Original Source Mutated Source

Mutated Opts SetMutated Compiler & Executable Format Selection

7

7 Rewrite Condition

Update Data Value

Source-level Mutators

7 -falign-functions

7 -falign-jumps
 -fassume-phsa
7 -fauto-inc-dec

7 -fcaller-saves

 -fcprop-registers

 -fconserve-stack

Decompile Binary, Fix Syntax, and Recompile Binary

libClang
AST API

Insert Loop Break

Orig Dec

Differential Testing via State Equivalence

Examine Data State Divergences and Minimize PoC

DEC

BIN

Source
Compiler
Opt Flags

0xEF

255

0x80 7

7
0xFF

255

0x80

v1

v2

v3

Figure 1: BIN2WRONG’s high-level fuzzing workflow in a setup targeting Binary Ninja.

01. void func_1 (){
02. long v1 = 1234567;
03. goto LABEL_SWITCH;
04. LABEL_BRANCH:
05. if (v1 == 123)
06. v1--;

✓ /fp:fast

05

FF

04

13

✗ /fp:precise

Compiler: MSVC

26

B0000:

B0001:
B0002:
B0003:

B2047:

B2048:

BNNNN:

FE

87

B0005:
B0004:

✓ /Qsafe_fp_loads

✗ /QIntel-jcc-erratum

✗ /Zc:wchar_t=+

✓ /jumptablerdata

... ...

Compiler

Opt Flags

C Source

Figure 2: Our unified testcase design.

lenging decompilers’ recovery of higher-level code from var-

ied binary structures (Table 1). Rather than restrictively hard-

code compilation parameters like prior approaches (Table 2),

BIN2WRONG reshapes compilation diversity as a fuzzing

mutation technique: randomly selecting the compiler—and

further—randomly toggling-on its available optimizations.

Accordingly, BIN2WRONG’s unified testcase construction

(Figure 2) dedicates the first 2048 bytes to encode the fuzzer-

mutated compilation parameters: byte 0 specifies the compiler,

while bytes 1-2047 are each mapped to individual optimiza-

tion flags specific to the chosen compiler. Upon selecting a

testcase from its queue, BIN2WRONG modifies the compiler

byte to one of its six supported compilers; while mutating

optimization bytes to either odd or even numbers, denoting

whether that optimization is enabled or disabled, respectively.

Compiler and Executable Format: Since BIN2WRONG is

built atop the Linux-based fuzzer AFL++ v4.09c [29], it natu-

rally supports Linux-native compilers such as GCC and Clang.

In further maximizing compilation diversity across Linux’s

ELF binary format, we incorporate several mainstream Linux

ELF compilers unexplored by prior decompiler testing

approaches: Tiny C (TCC) [17], which aims to speeds-up

compilation performance; as well as Intel’s oneAPI DPC++

(ICX) [38], which uses advanced x86-specific optimizations.

Unfortunately, no Linux-based compilers support non-

Linux formats MacOS’s Mach-O and Windows’ PE, leav-

ing such approach unable to find their related bugs (e.g.,

Angr [96], Ghidra [71]). Yet, we see opportunities in cross-

platform compatibility layers that run non-Linux code

on Linux (e.g., WINE [2], Darling [26]). We leverage

these tools to extend BIN2WRONG to non-ELF compilers—

Apple’s Xcode compiler (AppleClang) [4] for Mach-O, and

Microsoft’s Visual Studio Compiler (MSVC) [61] for PE—

making BIN2WRONG the first decompiler fuzzer spanning

ELF and non-ELF formats altogether.

Optimization Selection: After selecting a compiler for the

eventual binary, BIN2WRONG mutates its choice of the opti-

mization options specific to that compiler, spanning a total of

1,029 total options for GCC v11.4.0, 1,378 for Clang v18.0.0,

7 for TCC v0.9.27, 1,174 for ICX v2024.0.2, 217 for

MSVC v19.38.33134, and 1,378 for AppleClang v18.0.0.

Should BIN2WRONG’s compilation mutation later select a

different compiler (e.g., MSVC→ ICX), BIN2WRONG re-

maps its 2,047 optimization bytes to the corresponding set

for the new compiler. If incompatible optimizations result

that prevent compilation, BIN2WRONG defaults to one of the

compiler’s standard optimizations (e.g., -O1 to -O3 for ICX),

thus resolving 100% of optimization-related compile issues.

While BIN2WRONG’s high-level optimization mutation

is inspired by Cornucopia’s [89], Cornucopia is built to

explore only a single compiler’s optimization suite at a

time, and therefore cannot generalize across different com-

pilers and formats in any one campaign. Comparatively,

BIN2WRONG’s ability to explore multiple compilers’ op-

timizations simultaneously enables it to encompass 5,183 op-

timizations in total versus Cornucopia’s 892 explored Clang-

based optimizations—resulting in a far greater binary diver-

sity from BIN2WRONG’s inclusion of both ELF and non-

ELF compilers and their optimizations.

Our Approach: Framing compilation diversity as a fuzz-

ing mutation allows for dynamic exploration of varied,

compilation-dependent binary semantics—enabling

broader exploration than prior decompiler testing ap-

proaches that rely on hardcoded compilation parameters.

4.1.3 Mutating Source Code

Following compilation mutation, BIN2WRONG explores var-

ied code semantics through its source-level mutators. We

model BIN2WRONG’s testcases after those in prior com-

piler [139] and decompiler fuzzers [54], each consisting of

a single function targeted for source mutation. To minimize

risk of syntax-breaking mutations, we use the LLVM [52]

framework’s libClang abstract syntax tree (AST) API [56]

alongside our own suite of AFL++ custom mutators.

Informed by our survey of real-world semantic bugs (Ta-

ble 1), we implement the following expression-level mutators

to probe decompilers’ recovery of complex data-affecting

instruction sequences (e.g., Ghidra [75], Binary Ninja [121]):

• Expressions: Deleting an entire expression; or duplicating

it immediately after the original one:

e.g., v0 = v1++;→ v0 = v1++; v0 = v1++;

• Sub-expressions: Deleting or duplicating sub-expressions;

or expanding with an existing one:

e.g., v1/v4;→ v1/v4 + (v1%v2);

• Operators: Randomly replacing arithmetic/bitwise opera-

tors; or flipping increments/decrements:

e.g., (v1*v2)-(v3++);→ (v1/v2)*(v3-);

To test decompilers’ recovery of complex control-flow logic

(e.g., RetDec [9], Angr [105]), we additionally implement the

following control structure mutators:

• Loops: Inserting a conditional break or continue with a

random threshold at a random location:

e.g., for (i=0){}→ for (i=0){ if(i>37) break; }

• Conditional Branches: Replacing the condition with a

always-true or always-false condition:

e.g., if(v2/v3 == 0){} → if(1){}

• Unconditional Branches: Replacing a goto destination

with a randomly-chosen existing label:

e.g., goto LABEL_BRANCH;→ goto LABEL_SWITCH;

• Switch-Cases: Replacing the switch’s expression with a

randomly-selected existing case value:

e.g., switch(v1){ case 2: ... }→ switch(2){...}

Lastly, to find bugs stemming from imprecise data object, type,

and value recovery (e.g., Binary Ninja [119], Ghidra [74]),

we implement the following data-level mutators:

• String Literals: Replacing with a randomly-chosen string

literal; or flipping one or more bytes:

e.g., char *v0="Global";→ char *v0="0xFFFFal";

• Numerical Literals: Replacing with a random number; or

flipping its sign or one or more bytes:

e.g., (v1/55)+(0xFF*v2);→ (v1/-55)+(0x00*v2)

• Numerical Typecasts: Replacing with a random numerical

type (e.g., int, short, float, long):

e.g., (short) v3/25);→ (float) v3/25);

Preventing Semantically-invalid Mutations: To avoid the

risk of semantically-invalid mutations that lead to runtime

crashes when executing generated binaries, BIN2WRONG’s

source mutators are designed to operate conservatively—

deliberately avoiding injecting, deleting, or moving vari-

able declarations. Without such safeguards, BIN2WRONG

rapidly encounters semantics-related errors from missing or

erroneously-placed declarations. We further build our mu-

tators around AST-node-specific guardrails, such as plac-

ing continue or break statements only within loop bod-

ies. While we see opportunities for more guardrails—for

example, deliberately injecting source code that will not

be optimized-out by the corresponding optimization flags

selection—we posit that the runtime costs of additional checks

likely outweighs their benefits, and that mutation quality ulti-

mately does not hinder BIN2WRONG’s overall performance,

as shown by its strong results in our evaluation (§ 5).

Supported Constructs and Flexibility: While BIN2WRONG

supports common source constructs—expressions, control

logic and structures, and data objects, types, and values—

we see room for incorporating additional ones (e.g., union,

struct, and arrays). Whereas other fuzzers inherit limitations

from their bespoke, non-exhaustive AST manipulation tool-

ing (§ 3.1), an advantage of BIN2WRONG’s design is that its

source mutators operate directly on Clang’s robust AST in-

terface [56]. Adding new mutators targeting other AST node

types requires minimal engineering, as Clang’s AST already

provides access to these and all other AST nodes.

Our Approach: By bridging AST-level source mutations

with compilation mutations, general-purpose fuzzing can

explore the expansive range of diverse source and

compilation combinations—achieving unprecedented

binary diversity for systematic decompiler testing.

4.2 Decompiler-agnostic Semantic Testing

Following testcase mutation, BIN2WRONG compiles the bi-

nary according to the specified compilation parameters and

forwards it to the targeted decompiler. Drawing inspiration

from previous works [54, 139], BIN2WRONG employs differ-

ential testing to detect cases where decompiler-emitted code

semantics diverge from the original program’s. Below, we out-

line the core techniques enabling BIN2WRONG’s discovery

of semantics-affecting decompiler bugs.

4.2.1 Recompilation-oriented Syntax Patching

Since small syntactical errors prevent entire programs from

being recompilable, we perform minor syntax corrections

on decompiled code. Our high-level recompilation-oriented

syntax patching spans the following basic strategies:

• Resolving compilation-blocking variable type mismatches:

e.g., void* const str;→ char *str;

• Renaming objects that differ from their intended names;

e.g., void __cdecl func_1()→ void func_1()

• Injecting macros to resolve decompilers’ custom types:

e.g., word32 v0;→ typedef int32_t word32;

• Culling, replacing, or adding externs for decompiler-

introduced macros, symbols, and functions:

e.g., movss(a);→ extern float movss(float a);

While some recompilation failures are not easily solved via

basic syntax patching, we see a major improvement in post-

patching recompilation success, rising from 11.60% to 47.8%

on average—comparable to D-Helix’s reported 45% recompi-

lation rate for Angr [142]. Importantly, such failures do not

prevent BIN2WRONG’s finding of the most bugs in our eval-

uation (Table 6); and moreover, no developers reported any

false-positives caused by our syntax patching. We weigh addi-

tional strategies for improving recompilation success in § 6.2.

4.2.2 Bug-finding via Differential Execution

To uncover subtle semantic bugs (e.g., Table 1), we adopt

Csmith [139]’s approach of variable-level differential execu-

tion checking. Like other fuzzers’, BIN2WRONG’s generated

programs serve as the decompilers’ inputs and are designed to

be fully self-contained, requiring no external inputs. Each pro-

gram deterministically exercises its logic based solely on in-

ternal control and data flows, ensuring reliable and repeatable

semantic comparison across original and decompiled forms.

Accordingly, we modify BIN2WRONG-generated testcases’

source functions to initialize a suite of “placeholder” globals,

which eventually assume their values from the mutated test-

case’s local variables. Post-decompilation, we instrument all

globals in the original and recompiled programs to self-report

value-dependent checksums. After executing both, if the re-

compiled program’s checksum differs from the original’s, we

flag it as a semantics-affecting defect in the decompiled code.

By focusing solely on decompiler-emitted C code,

BIN2WRONG extends support to any C-targeting decom-

piler. In contrast, D-Helix’s [142] symbolic-execution-based

approach needs per-decompiler, per-instruction semantic

modeling for decompilers’ internal Intermediate Representa-

tions (IRs), requiring considerable retooling to support more

semantics, as evidenced by their lack of floating-point instruc-

tions (Table 2), and moreover, its estimated 40 days’ time to

support new decompilers. BIN2WRONG avoids invasive bug-

detection mechanisms, extending semantic correctness test-

ing to all C decompilers—both open- and closed-source—

whilst being the first to achieve systematic, unified mutation

across all major dimensions of binary generation.

Our Approach: Utilizing the original program as the cor-

rectness oracle allows for decompiler-agnostic testing,

eliminating any need for impractical tailoring to decom-

pilers’ dissimilar internal IRs—whilst enabling practical

testing of open- and closed-source decompilers.

4.2.3 Post-fuzzing Manual Bug Analysis

Like other fuzzers [29], BIN2WRONG offloads bug post-

processing to manual analysis. We spent about 10 minutes

manually minimizing each bug-exposing testcase, in-line with

the duration reported by DecFuzzer’s authors [54], before

deduplicating them into distinct unique bugs. While conven-

tional fuzzers benefit from a rich ecosystem of automated

fault localization tools (e.g., [87]), no analogous tools ex-

ist for binary decompilers; hence, we relegate fault localiza-

tion to the best-equipped domain experts—decompilers’ own

developers—and promptly report all bugs we find.

5 Evaluation

Our evaluation of BIN2WRONG is guided by the following

fundamental questions:

• Q1. Testing Depth: Is BIN2WRONG more effective at

exercising decompilers’ internals?

• Q2. Bug Discovery: Does BIN2WRONG reveal more de-

compiler semantic correctness bugs?

• Q3. New Results: Where do decompilers struggle in han-

dling source and compilation diversity?

5.1 Experimental Setup

We evaluate BIN2WRONG alongside state-of-the-art decom-

piler fuzzers Cornucopia and DecFuzzer across seven highly

popular decompilers: the free and open-source Angr [132],

R2Ghidra (Radare2+Ghidra) [1], Reko [49], Relyze [85], Ret-

Dec [6], and Rev.Ng [24]; as well as the commercially-sold

decompiler Binary Ninja [108]. We omit D-Helix [142] as it

unfortunately only supports two of our seven decompilers; as

well as DSmith [20] as its source diversity is far more con-

strained than DecFuzzer’s, excluding basic increment/decre-

ment operators, jumps, and many common numerical data

types [19]. As BIN2WRONG is built atop AFL++ v4.09c [29],

we configure it in grey-box mode for the five decompilers

supportive of its QEMU-based coverage tracing [16]—Binary

Ninja, R2Ghidra, Reko, RetDec, and Rev.Ng—and coverage-

agnostic black-box mode for Angr and Relyze.

We configure DecFuzzer’s and Cornucopia’s compilation

parameters according to their respective papers: DecFuzzer

with GCC and -O0, and Cornucopia with Clang and its full

optimization suite. Per DecFuzzer’s procedure [54], we seed

all fuzzers with a corpus of Csmith-generated C programs

(10 in total). Because Csmith omits certain constructs—most

notably string literals—we manually augment its generated

seed programs to include these elements. Following [43],

we repeat all experiments for five trials; and compute Mann-

Whitney U’s statistical test at p=0.05 significance in com-

paring BIN2WRONG to Cornucopia and DecFuzzer (with

statistically-significant p-values shown bolded). We perform

all experiments on Ubuntu 22.04 machines, each with an Intel

Core i9-12900K CPU and 64GB RAM.

5.2 Q1: Decompiler Testing Depth

In the following sections, we weigh BIN2WRONG’s effec-

tiveness in enabling in-depth decompiler testing through its

impact on binary diversity and decompiler code coverage.

5.2.1 Binary Diversity

Rigorously testing decompilers demands binaries that max-

imize internal diversity. To assess BIN2WRONG’s diversity,

we measure binary similarity scores against Cornucopia and

DecFuzzer using three industry-standard diffing algorithms:

DiffTool
BIN2WRONG Binary Diffing Scores per Dimension(s) of Source, Compiler, Optimization BIN2WRONG-ALL Relative Mean Diffing Score ∆

ALL THREE SRC+COM SRC+OPT COM+OPT ONLY SRC ONLY COM ONLY OPT over Cornucopia MWU p over DecFuzzer MWU p

BinDiff 0.627 0.544 0.332 0.623 0.321 0.539 0.326 10.398 × 0.009 17.189 × 0.011

Radiff2-M 0.490 0.368 0.096 0.489 0.086 0.366 0.094 9.119 × 0.010 16.941 × 0.007

Radiff2-L 0.572 0.437 0.120 0.571 0.107 0.436 0.116 7.131 × 0.009 16.089 × 0.011

Table 3: Comparison between BIN2WRONG’s mean binary diffing scores across all mutation dimension(s) for each diffing

algorithm; and BIN2WRONG’s overall scores relative to state-of-the-art decompiler fuzzers Cornucopia and DecFuzzer.

(1) Zynamics’ BinDiff [143]; (2) Radiff2’s Eugene W. Myers’

O(ND) Diffing Algorithm [62] (Radiff2-M); and (3) Rad-

iff2’s Levenshtein’s Edit Distance [53] (Radiff2-L). We con-

figure each to generate 1,000 testcases for each of their 10

Csmith-generated seed programs, totaling 10,000 testcases

per competitor. We compute all three diff scores per generated

binary relative to its seed binary, and report mean score across

all comparisons. Table 3 shows the five-trial mean diver-

sity per BIN2WRONG’s supported mutation configurations—

source, compiler, optimization, and all combinations thereof—

alongside those of Cornucopia and DecFuzzer.

Results: Overall, BIN2WRONG-generated programs achieve

7.13–10.39× and 16.08–17.18× binary diversity relative to

Cornucopia and DecFuzzer, respectively. In our ablation study

of BIN2WRONG’s full mutation modes, we see that mutating

across all dimensions—source, compiler, and optimizations

(column “ALL THREE” in Table 3)—yields the highest binary

diversity across all three diffing algorithms, underscoring that

systematic, unified mutation maximizes binary diversity.

5.2.2 Decompiler Code Coverage

As prior work shows [27], higher code coverage increases

the likelihood of finding semantics-affecting defects. To de-

termine whether BIN2WRONG’s high-diversity inputs yield

greater decompiler code coverage, we measure the coverage

of BIN2WRONG, Cornucopia, and DecFuzzer on all coverage-

tracing-compatible decompilers: Binary Ninja, R2Ghidra,

Reko, RetDec, and Rev.Ng. For tracing coverage, we utilize

the AFL-QEMU-Cov [28] tool, as it supports both open- and

closed-source decompilers; however, because AFL-QEMU-

Cov does not support Reko, we instead use AFL++’s built-in

AFL-Showmap [29] utility to trace Reko’s code coverage. We

report the mean edge coverage results across five 24-hour

trials per competitor, as shown in Table 4.

Decompiler
BIN2WRONG’s Relative Increase

over Cornucopia over DecFuzzer

∆ COV MWUp ∆ BIN MWUp ∆ COV MWUp ∆ BIN MWUp

Bin.Ninja 1.091 × 0.008 8.189 × 0.008 1.215 × 0.008 123.694 × 0.011

Reko 0.989 × 0.008 4.035 × 0.008 0.973 × 0.008 18.335 × 0.012

R2Ghidra 1.344 × 0.012 1.294 × 0.421 1.451 × 0.008 42.522 × 0.011

RetDec 1.341 × 0.008 0.798 × 0.222 1.704 × 0.008 26.201 × 0.007

Rev.Ng 1.073 × 0.008 16.836 × 0.008 1.395 × 0.008 297.763 × 0.011

GeoMean: 1.16 × 3.56 × 1.32 × 59.61 ×

Table 4: BIN2WRONG’s mean coverage (COV) and ratio of

coverage-increasing binaries (BIN) relative to competitors.

Results: BIN2WRONG achieves mean 1.16× and 1.32× code

coverage relative to Cornucopia and DecFuzzer, respectively,

with all improvements showing statistically-significant p-

values (< 0.05). Although BIN2WRONG shows statistically-

significant lower coverage on Reko, it demonstrates substan-

tially higher binary quality—the ratio of coverage-increasing

binaries to total binaries generated—with a mean 3.56× and

59.61× relative to Cornucopia’s and DecFuzzer’s, respec-

tively. This indicates that BIN2WRONG’s binaries exercise

considerably more decompiler internals compared to those

generated by prior, un-systematic decompiler fuzzers.

Decompiler
Coverage-increasing Binaries by Mutation Configuration

ALL

THREE

SRC

+COM

SRC

+OPT

COM

+OPT

ONLY

SRC

ONLY

COM

ONLY

OPT

Bin.Ninja 73.93% 0.04% 22.31% 3.26% 0.00% 0.00% 0.45%

Reko 82.47% 0.00% 16.64% 0.88% 0.00% 0.00% 0.00%

R2Ghidra 79.32% 0.02% 20.59% 0.07% 0.00% 0.00% 0.00%

RetDec 77.44% 0.00% 22.52% 0.03% 0.00% 0.00% 0.01%

Rev.Ng 68.56% 0.08% 30.96% 0.39% 0.00% 0.00% 0.00%

Mean: 76.34% 0.03% 22.61% 0.93% 0.00% 0.00% 0.09%

Table 5: BIN2WRONG’s mean distributions of coverage-

increasing binaries across all mutation dimension(s).

Furthermore, in an ablation study measuring the coverage

impacts of different mutation configurations (Table 5), we

observe that mutating source, compiler, and optimization al-

together consistently produces the most coverage-enhancing

binaries. Consequently, by maximizing binary diversity,

BIN2WRONG achieves the highest-overall coverage across

both open- and closed-source decompilers.

5.3 Q2: Decompiler Bug Discovery

We assess BIN2WRONG’s effectiveness in identifying seman-

tic decompilation errors across seven free and commercial

decompilers: Angr, Binary Ninja, R2Ghidra, Reko, Relyze,

RetDec, and Rev.Ng. We perform a subsequent manual root

cause analysis to deduplicate all fuzzers’ uncovered runtime

divergences into their unique semantics-affecting decompiler

defects. We report all identified decompiler correctness errors

(Table 6) to their respective developers and maintainers.

Results: Overall, BIN2WRONG uncovers a total of 48 se-

mantic decompilation bugs, 42 of which are uniquely found

by BIN2WRONG alone, with 30 confirmed by their re-

spective developers. Comparatively, mutation-restricted ap-

proaches Cornucopia and DecFuzzer reveal far fewer bugs—

ten and zero, respectively—demonstrating the advantages of

BIN2WRONG’s high-diversity, high-coverage systematic

binary mutation in thorough decompiler defect discovery.

While § 5.2 suggests many of BIN2WRONG’s binaries cover

much of the same underlying decompiler logic—a common

Decompiler

Total Bugs Found, Confirmed, and Unique per Approach

BIN2WRONG Cornucopia DecFuzzer

BUGS CONF UNIQ BUGS CONF UNIQ BUGS CONF UNIQ

Angr 9 9 8 2 2 1 0 0 0

BinaryNinja 11 11 11 0 0 0 0 0 0

Reko 6 6 4 3 2 1 0 0 0

R2Ghidra 2 2 1 1 1 0 0 0 0

Relyze 7 N/A 6 2 N/A 1 0 0 0

RetDec 11 N/A 10 2 N/A 1 0 0 0

Rev.Ng 2 2 2 0 0 0 0 0 0

Total: 48 30 42 10 5 4 0 0 0

Table 6: Total decompiler bugs found (BUGS), total confirmed

(CONF), and total unique (UNIQ) per each testing approach.

N/A = instances where our correspondence went unanswered.

phenomenon in fuzzing as a whole—BIN2WRONG’s broader

strength is in its surfacing of subtle semantic bugs triggered

by diverse source, compiler, optimization, and format com-

binations. Thus, we reason that BIN2WRONG’s higher bug

discovery is more directly related to its higher binary diversity

(Table 3), rather than its higher code coverage (Table 4).

5.4 Q3: Analysis of Uncovered Bugs

While prior works categorize decompiler bugs into broad high-

level classes (e.g., “Type Recovery” [54]), none delve into

the specific low-level causes—or their prevalence—behind

these critical failures. In the following, we conduct a com-

prehensive analysis of the semantics-affecting decompiler

defects uncovered by BIN2WRONG, identifying their distinct

source-related and compilation-related origins, supported by

case studies on unique bugs discovered by BIN2WRONG.

5.4.1 Causes of Source-related Defects

Among the 48 semantics-affecting bugs discovered by

BIN2WRONG, we identify data recovery as the most fre-

quent error source (68.75%), followed by expression recov-

ery (20.83%) and control structure recovery (10.42%).

Data Object, Type, and Value Recovery: Of the 33 data re-

covery bugs, we identify two involving incorrectly-recovered

data objects: the first stems from Binary Ninja erroneously

interpreting the truncf() function as taking multiple argu-

ments instead of one [58]; while the second arises from Reko

misordering function arguments, despite recovering them cor-

rectly otherwise. Table 7 presents a breakdown of the re-

maining 31 data-related bugs, categorized by type and value

errors across integer, float, and string variables and literals. Al-

though decompiler performance varies across data constructs,

BIN2WRONG reveals several type recovery issues specifically

related to floating-point data, which we discuss below.

Case Study: Floating-point Recovery. Figure 3 shows a

BIN2WRONG-found error in floating-point recovery affect-

ing Binary Ninja, Angr, and Reko. In binaries, floating-point

values follow the IEEE-754 format, with instructions like

movss for single-precision and movsd for double-precision,

distinct from those used for integers. Although decompilers

Integers Floats Strings

Value Type Value Type Value Type

VAR LIT VAR LIT VAR LIT VAR LIT VAR LIT VAR LIT

Angr 1 3 2 1 0 0 0 1 0 0 0 0

Bin.Ninja 0 0 1 2 0 0 0 1 0 1 0 0

Reko 0 0 0 0 0 1 0 0 0 2 0 0

R2Ghidra 0 1 0 0 0 0 0 0 0 0 0 0

Relyze 1 1 1 1 0 0 0 0 0 2 0 0

RetDec 1 4 2 0 0 0 0 1 0 0 0 0

Rev.Ng 0 0 0 0 0 0 0 0 0 0 0 0

Table 7: Summary of BIN2WRONG-uncovered data type and

value bugs spanning variables (VAR) and literals (LIT).

accurately recognize floating-point instructions in disassem-

bly (e.g., line#2 in Figure 3), they often fail to convert the

hexadecimal representation of floating-point values back to

their original form; instead, they output the hex form directly,

incorrectly interpreting these values as integers rather than

recovering them as floating-point numbers. These issues high-

light the critical need to consider diverse data constructs, un-

derscoring limitations of approaches like DecFuzzer, DSmith,

and D-Helix which fail to support floating-point data (§ 3.1).

1 movsd xmm0,[rbp];
2 double v0 = 1.0;

(a) Original

1 int64_t v1 =
2 0x3FF0000000000000;

(b) Decompiled

Figure 3: Erroneous type recovery of float-point data as inte-

gers, affecting Angr, Binary Ninja, and Reko.

Expression and Control Recovery: We analyze the eight

expression-related semantic errors identified by BIN2WRONG

and categorize them into two groups. Four involve mis-

recoveries of individual arithmetic operators: incorrect han-

dling of the modulo operator and interpreting signed compar-

isons as unsigned (Binary Ninja); unnecessary multiplication

symbols (Reko); and reversing arithmetic operators to their

opposites (RetDec). Our remaining four errors arise from mis-

handled parsing and refinement of data-affecting instruction

sequences, including: inaccurate propagation of modulo re-

sults (Angr); erroneous omission of instructions preceding

inlined function code (Binary Ninja); extraneous operations

(Relyze); missed constant-affecting operations (RetDec); and

functions that fail to parse correctly (both Reko and RetDec).

Of the five bugs arising from control structure recovery,

only one involves loops (R2Ghidra), while the remaining

four are related to switch-case structures (2×Binary Ninja,

2×Rev.Ng). Figure 4 presents a BIN2WRONG-uncovered bug

exposing switch-case recovery challenges uniquely faced

by commercial decompiler Binary Ninja.

Case Study: Switch-Case Logic Recovery. In programs

with switch-cases, Binary Ninja’s medium-level intermedi-

ate representation (IR) accurately translates case statements

into semantically-equivalent nested if-else statements, pre-

serving the intended logic. However, during translation to

higher-level IR, Binary Ninja incorrectly breaks these into

separate if statements. Although the conditions—the orig-

inal case values—remain correct, this restructuring makes

1 int var = 0;
2 switch(var){
3 case 0: Reached?

4 var = 5; 7

5 break;
6 case 1:
7 ...
8 case 2:
9 ...

10 default:
11 idx = 0; :

12 break;
13 } (a) Original

1 int var = 0;
2 if (var == 2)
3 ...
4 }
5 else{
6 if (var == 0) Reached?

7 var = 5; 7

8 if (var == 1)
9 ...

10 if (var > 2){
11 idx = 0; 7

12 }
13 } (b) Decompiled

Figure 4: Incorrect switch-case recovery, making the original

“case 0” and “default” blocks erroneously reachable.

multiple code blocks reachable, leading to divergent execu-

tion and incorrect program outputs. Binary Ninja’s developers

classified this bug as High Severity, indicating the need for a

substantial overhaul of their core control-flow restructuring—

underscoring the critical role of diverse control constructs

in BIN2WRONG’s systematic decompiler correctness testing.

5.4.2 Causes of Compilation-related Defects

We further examine the influence of different compilers, ex-

ecutable formats, and optimization flags on decompilation

defects. Table 8 details the compilation parameters for all of

BIN2WRONG’s 48 uncovered decompiler bugs.

Binary Formats & Associated Compiler(s)
Opts

ELF PE Mach-O

CLANG GCC TCC ICX MSVC APPLE 0 1 2+

Angr 9 7 7 9 4 9 9 0 0

Bin.Ninja 8 7 4 8 4 8 8 1 2

Reko 2 2 2 2 2 2 2 0 0

R2Ghidra 4 4 5 4 3 4 6 0 0

Relyze 7 5 5 6 3 0 7 0 0

RetDec 9 7 6 7 5 8 10 0 1

Rev.Ng 2 2 2 2 2 0 2 0 0

Table 8: High-level summary of the compilation parameters

for all BIN2WRONG-discovered semantic bugs.

Optimization-dependent Bugs. Although most bugs are not

directly caused by compiler optimizations, we observe that

various optimizations are key to exposing intricate edge cases.

We find three such bugs (2×Binary Ninja, 1×RetDec) from

combinations of two or more optimizations, where decom-

pilers produced only partial code and missed significant logic.

Additionally, one bug, triggered only by the -O1 optimization

level, led to errors in loop logic recovery (in Binary Ninja).

We detail the latter example below, shown in Figure 5.

1 while (v0!=11) { v0++ };

(a) Unoptimized code.

1 while (v0!=0xFFF5) { v0-- };

(b) Optimized & decompiled.

Figure 5: Binary Ninja bug stemming from the -O1 optimiza-

tion negating the loop constraint, causing divergent v0 values

in the original and decompiled programs post-loop-execution.

Case Study: Optimized Loop Recovery. Shown in Figure 5

is a while loop with counter incremented on each iteration,

breaking only on count 11. When compiled with -O0, the

binary closely resembles this original structure; however,

with -O1, the compiler replaces 11 with -11 and the incre-

ment operation with a decrement. As negative numbers are

stored in two’s complement, Binary Ninja incorrectly recovers

only this form, deviating from the original loop’s semantics.

BIN2WRONG caught this via the different v0 values seen in

the original and decompiled programs post-loop-execution

(i.e., 11 with -11, respectively). This issue reiterates the im-

portance of considering diverse optimizations—testing de-

compilers’ ability to handle each effectively.

Compiler- and Format-dependent Bugs. We identify eight

bugs uniquely stemming from a single executable format

(ELF). However, these bugs are triggered by different compil-

ers: four occur only in GCC-compiled binaries, one appears

solely in TCC-compiled binaries, and the remaining span two

or more compilers. Interestingly, we see the vast majority

of bugs span multiple—but not all—executable formats and

compilers: 14 appear in compilers other than GCC, 7 in ones

other than Clang, 17 in ones other than TCC, 24 in ones other

than MSVC, 10 in ones other than ICX, and 10 in ones other

than AppleClang. Figure 6 shows an example bug that eludes

PE binaries yet appears in both ELF and Mach-O formats.

1 mov r8, z
2 mov rdx, y
3 mov rcx, x
4 func(x, y, z);

(a) PE convention & code.

1 mov rdi, x
2 mov rsi, y
3 mov rdx, z
4 func(z , y, x);

(b) Mach-O & ELF decompiled.

Figure 6: Call convention bug in Reko on Mach-O & ELF

binaries (right) versus the analogous PE form (left).

Case Study: Calling Convention Recovery. In PE binaries,

Microsoft’s x64 conventions enforces that the first, second,

and third integer arguments of a function are passed via regis-

ters rcx, rdx, and r8, respectively. Yet for ELF and Mach-O,

AMD64’s System V ABI instead passes these via rdi, rsi,

and rdx, respectively. Shown in Figure 6, Reko’s call recovery

succeeds on PE binaries, yet fails on non-PE binaries’ con-

ventions, resulting in incorrect argument ordering. Ensuring

decompilers’ accuracy with these subtle differences reinforces

the need to explore both ELF and non-ELF formats.

1 0x100 → 0x200
2 0x200 → 0x4142
3 mov rsi, [0x100]
4 char ∗s ="AB";

(a) Clang convention (one-level indi-

rection) and original code.

1 0x100 → 0x150
2 0x150 → 0x200
3 0x200 → 0x4142
4 mov rax, [0x100]
5 mov rsi, [rax]
6 int64_t s =0x200;

(b) TCC convention (two-level indirec-

tion) and decompiled code.

Figure 7: TCC-specific string literal recovery bug in Reko.

Case Study: Compiler-specific String Recovery. Figure 7

depicts a compiler- and source-related bug in Reko. While

most compilers store the string’s direct memory address, al-

lowing retrieval with a single dereference, TCC introduces an

extra indirection—a pointer to an address holding the actual

location of the string, requiring two dereferences to access it.

This approach presents challenges for decompilers, as seen in

Reko, which retrieves only the first level of the memory ad-

dress, leaving the second dereference unresolved. As a result,

Reko fails to recognize the additional indirection, obscur-

ing the true content of the string literal—and the program’s

intended semantics. Such defects demonstrate how binary se-

mantics are uniquely influenced by variations in both source

and compilation, highlighting BIN2WRONG’s strengths over

prior approaches that largely overlook such diversity.

6 Discussion

Below we discuss potential limitations of this work and our

prototype decompiler fuzzer, BIN2WRONG.

6.1 Responses from Decompiler Developers

Developers of Angr, Binary Ninja, R2Ghidra, Reko, and

Rev.Ng promptly confirmed all of BIN2WRONG’s uncov-

ered issues as valid decompilation bugs. Unfortunately, our

attempts to contact developers of RetDec and Relyze went

unanswered. Fortunately, most developers responded and

quickly resolved many of our reported bugs, underscoring

the importance of these fixes on the reliability of their tools.

We see that Binary Ninja is the only decompiler whose

developers disclose severity scores of publicly-reported bugs,

classifying eight of BIN2WRONG’s found defects as follows:

three low severity, four as medium, and one as high sever-

ity. These errors spanned all three of Binary Ninja’s internal

stages: one in its medium-level intermediate language (IL)

generation, two in high-level IL, and five in final C code gener-

ation. BIN2WRONG’s discovered high-severity bug (Figure 4)

drew significant attention in particular, prompting a total

overhaul of Binary Ninja’s core control-flow structuring tech-

niques. This bug was later featured in a blog post detailing

the efforts taken to improve the soundness of Binary Ninja’s

decompilation—further highlighting BIN2WRONG’s real-

world impacts in uncovering critical semantic errors in even

mainstream, commercially-sold decompilers.1

6.2 Reliance on Recompilation

BIN2WRONG’s differential testing (§ 4.2.2) relies on re-

compiling decompiled code, with minor patching applied to

fix common decompiler syntax errors. As BIN2WRONG’s

post-patch recompilation rate averages 47.8%—in-line with

D-Helix’s own 45% post-patching recompilation rate for

Angr [142]—many syntax errors remain unresolvable by

our current patches. We observe 84.03% result from un-

declared identifiers, 7.51% from incompatible type conver-

sions (e.g., pointers → integers), 6.24% from extraneous ar-

1https://binary.ninja/2024/06/19/restructuring-the-decompiler.html

guments, 1.49% from extraneous symbols (e.g., code com-

ments), and 0.52% from patch conflicts (e.g., BIN2WRONG

adding extern within expressions). While more advanced

program repair will improve recompilation, we posit its over-

head will greatly reduces BIN2WRONG’s total throughput.

Thus, as research suggests faster fuzzing is better [63], we

prioritize speed over 100% recompilation. Interestingly, the

remaining 0.21% of issues stem from compiler errors, typi-

cally with Clang or ICX crashing under certain optimization

sets. Given their infrequency, we consider identifying and

culling these specific conflicts outside our current scope.

6.3 Other Potential Binary Dimensions

Binary obfuscation—such as control-flow flattening, opaque

predicates, and virtual-machine-based obfuscation—are often

employed to hinder decompilers, typically to protect intellec-

tual property or complicate reverse engineering [23, 107].

BIN2WRONG currently deliberately excludes such tech-

niques, as contemporary decompilers tend to delegate de-

obfuscation tasks to specialized tools and plugins [35, 109].

However, BIN2WRONG easily supports incorporating obfus-

cation with minor adjustments, though we leave the explo-

ration and requisite reevaluation of this to future work.

While we also considered linkers in BIN2WRONG’s muta-

tion space, our investigation found no prior decompiler bugs

where the linker was the true root cause of semantic recov-

ery errors. All linker-related issues we found were limited to

syntactic or format-specific parsing failures—e.g., malformed

headers or symbol resolution issues that simply prevented

the binary from being fully analyzed at all (e.g., [64, 67, 83]).

We believe this is unsurprising, as linkers must conform to

OS-level specifications (e.g., System V ABI), and thus typi-

cally do not touch control/data semantics. As such, we scoped

linking out of BIN2WRONG’s design, though we anticipate

this could be explored in future work focusing on malformed

binaries or toolchain robustness.

6.4 Search Space and Bug Discovery Cost

While BIN2WRONG’s combined source/compiler/format/op-

timization search space currently spans 6 compilers, 3 for-

mats, 5,183 optimizations, and dozens of source constructs—

easily amounting to trillions of unique binary generation

configurations—BIN2WRONG’s goal is not to exhaustively

search this space, but to sample it broadly and systemati-

cally. Inspired by mutation-based fuzzers like AFL++ [29],

we find that even simple, random mutations across multiple

dimensions are highly effective at uncovering semantic bugs

missed by prior tools limited to one or two axes (Table 2).

BIN2WRONG’s novelty thus lies in unifying diverse mutation

dimensions into a single framework—showing that breadth

alone, when systematically applied, surfaces impactful bugs

that dimension-isolated fuzzers cannot reach. While we en-

vision opportunities to more directly target distinct elements

of this search space that hinder decompilation (e.g., specific

source and optimization combinations guaranteed to produce

interesting machine code), we leave this to future work.

7 Related Work

Below we discuss recent related research in the areas of binary

decompilation, as well as the use of program generation and

mutation in other applications of automated testing.

7.1 Recent Advancements in Decompilation

Several works are leveraging advances in machine learning to

enhance the recovery of variable type information: Coda [30]

employs neural networks, while Slade [5] and ReSym [135]

utilize large language models. Machine learning is also seeing

use in improving recovery of variable names, further boost-

ing the human readability of decompiled code. DIRE [51],

DIRTY [21], and TYGR [141] all utilize neural networks,

whereas VarBERT [79] incorporates additional pre-training

on human-written source code to produce more intuitive vari-

able names. Many efforts are also enhancing restructuring

and optimization of decompiler-generated code—particularly

for gotos: Phoenix [18], Rev.Ng [24,33], and DREAM [137]

aggressively cull gotos, while SAILR [15] instead introduces

compiler-specific heuristics for eliminating only spurious

ones. Though these recent advancements largely exist as sepa-

rate from mainstream decompiler platforms, we expect that fu-

ture efforts will bridge the gap between academically-sourced

decompilation enhancements and industrial decompilers. We

foresee BIN2WRONG playing a key role in enabling auto-

mated semantic testing of decompilers—and accelerating dis-

covery of their bugs—as these platforms continue to evolve

with increasing sophistication each year.

7.2 Program Generation and Mutation

A cornucopia of program generation and mutation tech-

niques have emerged from the field of compiler fuzzing:

Csmith [139], Rustsmith [88], and YARPGen [55] randomly

generate grammar-conforming programs, while GrayC [27]

mutates existing ones via Clang’s AST API. More recently,

Whitefox [138], GoFuzz [32], and Fuzz4All [134] instead use

LLMs to explore more diverse source code constructs. As

BIN2WRONG builds upon the program generation and muta-

tion popularized by compiler fuzzing, we expect future syner-

gistic approaches to extend BIN2WRONG’s to other compiled

languages. For instance, incorporating other language-specific

AST APIs will help BIN2WRONG test emergent decompilers

targeting non-C code, such as Go [41] and Rust [59].

7.3 Grey-box Fuzzers

BIN2WRONG’s overall design inherits many design advan-

tages from its core grey-box fuzzer, AFL++ [29]—which

itself is one of many mainstream general-purpose fuzzers see-

ing large-scale adoption today [31]. Yet, standard grey-box

fuzzers are not built to find semantic bugs such as decompila-

tion recovery errors, and instead only look for crashing signals

(e.g, SIGSEGV). While semantic bug-finding is not a new con-

cept [55, 139], to our knowledge, BIN2WRONG is the first

system to extend AFL++ with this capability in fuzzing de-

compilers. We anticipate these components of BIN2WRONG

could likely be repurposed for similar semantics-related bug

domains (e.g., compiler fuzzing, transpiler fuzzing).

8 Conclusion

Current decompiler testing approaches broadly overlook how

source code, compilers, optimizations, executable formats,

and combinations thereof collectively shape binary exe-

cutable code. In this work, we show that giving equal con-

sideration to these factors yields significantly more diverse

binaries, enabling far more effective testing of decompilers’

correctness. Beyond attaining the highest-overall code cov-

erage across seven free and industrial decompilers, our pro-

totype BIN2WRONG reveals the most semantic errors of all

decompiler testing approaches—the vast majority of which

remain undetectable by prior state-of-the-art methods. At the

time of writing, 30 out of 48 decompiler errors found by

BIN2WRONG are confirmed by developers, with several

prompting major changes in real-world decompilers.

By embracing principles that make conventional mutation-

based application fuzzing successful—namely, maximizing

testcase diversity through pursuing as broad of mutation as

possible—we show that complex decompiler semantic er-

rors are easily discovered in as little as 24 hours. We thus

envision an era where holistic, automated techniques help

improve the accuracy of today’s many critical binary analysis

tools—facilitating faster and more reliable completion of the

downstream tasks that rely on these tools’ precision.

Acknowledgments

We thank our reviewers for helping us improve the paper.

This material is based upon work supported by the National

Science Foundation under Grant No. 2419798.

References

[1] Sergi Alvarez. Radare2: Libre Reversing Framework

for Unix Geeks. https://github.com/radareorg/

radare2, 2024.

[2] Bob Amstadt, Eric Youngdale, and Alexandre Julliard.

Wine: Run Windows applications on Linux, BSD, So-

laris and macOS. https://www.winehq.org/, 2024.

[3] Quynh Nguyen Anh. Capstone: Next Generation

Disassembly Framework. https://www.capstone-

engine.org/, 2024.

[4] Apple. Apple xcode: C++ language support. https:

//developer.apple.com/xcode/cpp/, 2024.

[5] Jordi Armengol-Estapé, Jackson Woodruff, Chris Cum-

mins, and Michael F.P. O’Boyle. SLaDe: A Portable

Small Language Model Decompiler for Optimized As-

sembly. In IEEE/ACM International Symposium on

Code Generation and Optimization, CGO, 2024.

[6] Avast. Retdec: A retargetable machine-code decom-

piler based on LLVM. https://github.com/avast/

retdec, 2024.

[7] Avast Software. RetDec issue #293: Code with fdivr

decompiled wrong. https://github.com/avast/

retdec/issues/293, 2018.

[8] Avast Software. RetDec issue #375: Incorrect

decompile. https://github.com/avast/retdec/

issues/375, 2018.

[9] Avast Software. RetDec issue #83: Avoid creating

an empty if block. https://github.com/avast/

retdec/issues/83, 2018.

[10] Avast Software. RetDec issue #669: Switch-cases

wrongly deleted, indirect jump not reconstructed

correctly. https://github.com/avast/retdec/

issues/669, 2019.

[11] Avast Software. RetDec issue #673: label

lab_generated_0 not declared and goto referencing it

in decompile inner worlds. https://github.com/

avast/retdec/issues/673, 2019.

[12] Avast Software. RetDec issue #717: Constants error

on simpilify load instruction. https://github.com/

avast/retdec/issues/717, 2020.

[13] Avast Software. RetDec issue #724: Incorrect trans-

lation:assembly to c. https://github.com/avast/

retdec/issues/724, 2020.

[14] Avast Software. RetDec: Vtable-handling heuris-

tics. https://github.com/avast/retdec/

blob/master/src/rtti-finder/vtable/

vtable_finder.cpp, 2024.

[15] Zion Leonahenahe Basque, Ati Priya Bajaj, Wil Gibbs,

Jude O’Kain, Derron Miao, Tiffany Bao, Adam Doupé,

Yan Shoshitaishvili, and Ruoyu Wang. Ahoy SAILR!

There is No Need to DREAM of C: A Compiler-aware

Structuring Algorithm for Binary Decompilation. In

USENIX Security Symposium, SEC, 2024.

[16] Fabrice Bellard. QEMU, a Fast and Portable Dynamic

Translator. In USENIX Annual Technical Conference,

ATC, 2005.

[17] Fabrice Bellard. TCC: the Tiny C Compiler. https:

//bellard.org/tcc/, 2024.

[18] David Brumley, JongHyup Lee, Edward J Schwartz,

and Maverick Woo. Native x86 Decompilation using

{Semantics-Preserving} Structural Analysis and Itera-

tive {Control-Flow} Structuring. In USENIX Security

Symposium, SEC, 2013.

[19] Ying Cao, Runze Zhang, Ruigang Liang, and Kai Chen.

Dsmith artifact. 2024.

[20] Ying Cao, Runze Zhang, Ruigang Liang, and Kai Chen.

Evaluating the Effectiveness of Decompilers. In ACM

SIGSOFT International Symposium on Software Test-

ing and Analysis, ISSTA, 2024.

[21] Qibin Chen, Jeremy Lacomis, Edward J Schwartz,

Claire Le Goues, Graham Neubig, and Bogdan

Vasilescu. Augmenting Decompiler Output with

Learned Variable Names and Types. In USENIX Secu-

rity Symposium, SEC, 2022.

[22] Cristina Cifuentes. Reverse Compilation Techniques.

PhD thesis, Queensland University of Technology,

1994.

[23] Christian Collberg. The Tigress C Obfuscator. https:

//tigress.wtf/introduction.html, 2024.

[24] Alessandro Di Federico, Mathias Payer, and Giovanni

Agosta. Rev.Ng: a Unified Binary Analysis Frame-

work to Recover CFGs and Function Boundaries. In

International Conference on Compiler Construction,

CC, 2017.

[25] Alessandro Di Federico, Mathias Payer, and Gio-

vanni Agosta. Rev.Ng: Mach-O module. https:

//github.com/revng/revng/blob/develop/lib/

Model/Importer/Binary/MachOImporter.cpp,

2024.

[26] Luboš Doležel. Darling: a translation layer that

lets you run macOS software on Linux. https:

//www.darlinghq.org/, 2024.

[27] Karine Even-Mendoza, Arindam Sharma, Alastair F.

Donaldson, and Cristian Cadar. GrayC: Greybox Fuzz-

ing of Compilers and Analysers for C. In ACM SIG-

SOFT International Symposium on Software Testing

and Analysis, ISSTA, 2023.

[28] Andrea Fioraldi. AFL-QEMU-Cov: Measure ba-

sic blocks coverage of all testcases in the afl queue

using a patched QEMU. https://github.com/

andreafioraldi/afl-qemu-cov, 2024.

[29] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and

Marc Heuse. AFL++: Combining Incremental Steps of

Fuzzing Research. In USENIX Workshop on Offensive

Technologies, WOOT, 2020.

[30] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen,

Yuandong Tian, Farinaz Koushanfar, and Jishen Zhao.

Coda: An End-to-End Neural Program Decompiler. In

Advances in Neural Information Processing Systems,

NeurIPS, 2019.

[31] Google. ClusterFuzz, 2018.

[32] Qiuhan Gu. LLM-Based Code Generation Method for

Golang Compiler Testing. In ACM Joint European

Software Engineering Conference and Symposium on

the Foundations of Software Engineering, ESEC/FSE,

2023.

[33] Andrea Gussoni, Alessandro Di Federico, Pietro Fez-

zardi, and Giovanni Agosta. A Comb for Decompiled

C Code. In ACM Asia Conference on Computer and

Communications Security, ASIACCS, 2020.

[34] HyungSeok Han, JeongOh Kyea, Yonghwi Jin, Jinoh

Kang, Brian Pak, and Insu Yun. QueryX: Symbolic

Query on Decompiled Code for Finding Bugs in COTS

Binaries. In IEEE Symposium on Security and Privacy,

Oakland, 2023.

[35] Hex-Rays. gooMBA: a Hex-Rays Decompiler plu-

gin that simplifies Mixed Boolean-Arithmetic (MBA)

expressions. https://github.com/HexRaysSA/

goomba, 2024.

[36] Hex-Rays. IDA Pro: A Powerful Disassembler, De-

compiler and a Versatile Debugger. https://hex-

rays.com/ida-pro, 2024.

[37] Harshada Hole. Microsoft: Discover Hidden Insights

with Profiler’s External Code Decompilation. https:

//devblogs.microsoft.com/visualstudio/

discover-hidden-insights-with-profilers-

external-code-decompilation/, 2024.

[38] Intel. oneAPI DPC++/C++ Compiler: a

Standards-based, Cross-architecture Compiler.

https://www.intel.com/content/www/us/en/

developer/tools/oneapi/dpc-compiler.html,

2024.

[39] Intel Corporation. The X86 Encoder Decoder. https:

//intelxed.github.io, 2024.

[40] Internet Archive. Windows XP Unofficial Ser-

vice Pack 4. https://archive.org/details/xp-

unofficial-sp4-jan2022_20220113, 2016.

[41] Joakim Kennedy. Go Reverse Engineering Tool Kit.

https://github.com/goretk, 2024.

[42] Soomin Kim, Markus Faerevaag, Minkyu Jung,

Seungll Jung, DongYeop Oh, JongHyup Lee, and

Sang Kil Cha. Testing Intermediate Representations for

Binary Analysis. In IEEE/ACM International Confer-

ence on Automated Software Engineering, ASE, 2017.

[43] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei,

and Michael Hicks. Evaluating Fuzz Testing. In ACM

SIGSAC Conference on Computer and Communica-

tions Security, CCS, 2018.

[44] John Källén. Reko issue #529: Short circuit expres-

sions not detected. https://github.com/uxmal/

reko/issues/529, 2018.

[45] John Källén. Reko issue #543: Should encode

chars >0x7f correctly in string literals. https://

github.com/uxmal/reko/issues/543, 2018.

[46] John Källén. Reko issue #1114: Multiple issues in

andn. https://github.com/uxmal/reko/issues/

1114, 2021.

[47] John Källén. Reko issue #1149: Wrong decompi-

lation of loop start. https://github.com/uxmal/

reko/issues/1149, 2022.

[48] John Källén. Reko issue #1152: Wrong decompilation

of movi/mvni. https://github.com/uxmal/reko/

issues/1152, 2022.

[49] John Källén. Reko: a general purpose decompiler.

https://github.com/uxmal/reko, 2024.

[50] John Källén. Reko: Control structure heuris-

tics. https://github.com/uxmal/reko/tree/

master/src/Decompiler/Structure, 2024.

[51] Jeremy Lacomis, Pengcheng Yin, Edward Schwartz,

Miltiadis Allamanis, Claire Le Goues, Graham Neubig,

and Bogdan Vasilescu. Dire: A Neural Approach to

Decompiled Identifier Naming. In IEEE/ACM Interna-

tional Conference on Automated Software Engineering,

ASE, 2019.

[52] Chris Lattner and Vikram Adve. LLVM: A Compi-

lation Framework for Lifelong Program Analysis &

Transformation. In IEEE/ACM International Sympo-

sium on Code Generation and Optimization, CGO,

2004.

[53] Vladimir I Levenshtein. Binary Codes Capable of

Correcting Deletions, Insertions, and Reversals. Soviet

Physics Doklady, 10(8), 1966.

[54] Zhibo Liu and Shuai Wang. How Far We Have Come:

Testing Decompilation Correctness of C Decompilers.

In ACM SIGSOFT International Symposium on Soft-

ware Testing and Analysis, ISSTA, 2020.

[55] Vsevolod Livinskii, Dmitry Babokin, and John Regehr.

Random Testing for C and C++ Compilers with YARP-

Gen. In ACM SIGPLAN International Conference on

Object-Oriented Programming, Systems, Languages,

and Applications, OOPSLA, 2020.

[56] LLVM. libClang. https://clang.llvm.org/docs/

LibClang.html, 2024.

[57] Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li,

Wei-Han Lee, Yu Song, and Raheem Beyah. {MOPT}:

Optimized Mutation Scheduling for Fuzzers. In

USENIX Security Symposium, SEC, 2019.

[58] POSIX Programmer’s Manual. Truncf man-

page. https://man7.org/linux/man-pages/man3/

truncf.3p.html, 2024.

[59] Dhruv Maroo. GhidRust: Rust decompiler plugin for

Ghidra. https://github.com/DMaroo/GhidRust,

2024.

[60] Microsoft. MSVC: Inlining Decisions in Visual Stu-

dio. https://devblogs.microsoft.com/cppblog/

inlining-decisions-in-visual-studio/, 2024.

[61] Microsoft. Visual Studio Code: De-

velop C and C++ applications. https:

//visualstudio.microsoft.com/vs/features/

cplusplus/, 2024.

[62] Eugene W. Myers. AnO(ND) Difference Algorithm

and its Variations. Algorithmica, 1(1), 1986.

[63] Stefan Nagy and Matthew Hicks. Full-speed Fuzzing:

Reducing Fuzzing Overhead through Coverage-guided

Tracing. In IEEE Symposium on Security and Privacy,

Oakland, 2019.

[64] National Security Agency. Ghidra issue #1054: Does

not detect dos executables. https://github.com/

NationalSecurityAgency/ghidra/issues/1054,

2019.

[65] National Security Agency. Ghidra issue #288: Invalid

decompilation of cmpxchg instruction on x86_64.

https://github.com/NationalSecurityAgency/

ghidra/issues/288, 2019.

[66] National Security Agency. Ghidra issue #778:

Decompiled f64 literals lack precision (e.g.

for 1/4294967296.0). https://github.com/

NationalSecurityAgency/ghidra/issues/778,

2019.

[67] National Security Agency. Ghidra issue #1054: 9.2:

createinitializedblock() no longer supports memory

region names with spaces. https://github.com/

NationalSecurityAgency/ghidra/issues/1054,

2020.

[68] National Security Agency. Ghidra issue #3146:

Mach-o library calls not handled properly.

https://github.com/NationalSecurityAgency/

ghidra/issues/3146, 2021.

[69] National Security Agency. Ghidra issue #3191:

Incorrect packing in structures with unions.

https://github.com/NationalSecurityAgency/

ghidra/issues/3191, 2021.

[70] National Security Agency. Ghidra issue #4708:

Ghidra doesn’t handle floats in the msvc x86-64

calling convention properly. https://github.com/

NationalSecurityAgency/ghidra/issues/4708,

2022.

[71] National Security Agency. Ghidra issue #4983:

Improving work with function arguments.

https://github.com/NationalSecurityAgency/

ghidra/issues/4983, 2023.

[72] National Security Agency. Ghidra issue #5900:

Incorrect sizing of data type in assignment lead-

ing to bad c output. https://github.com/

NationalSecurityAgency/ghidra/issues/5900,

2023.

[73] National Security Agency. Ghidra issue

#6119: Decompiler: double casting of variables.

https://github.com/NationalSecurityAgency/

ghidra/issues/6119, 2024.

[74] National Security Agency. Ghidra issue #6488:

Missing and incorrrect variable assignments result-

ing from function calls. https://github.com/

NationalSecurityAgency/ghidra/issues/6488,

2024.

[75] National Security Agency. Ghidra issue #6528:

Decompiler erroneously swapping operators

without changing the operand in floating-point

comparisons where data is marked constant (x86).

https://github.com/NationalSecurityAgency/

ghidra/issues/6528, 2024.

[76] National Security Agency. Ghidra issue #6648:

Sequence of rule applied affects the size ouput.

https://github.com/NationalSecurityAgency/

ghidra/issues/6648, 2024.

[77] National Security Agency. Ghidra issue #6708:

[floats] truncated precision in decompiler view.

https://github.com/NationalSecurityAgency/

ghidra/issues/6708, 2024.

[78] National Security Agency. Ghidra Software Re-

verse Engineering Framework. https://ghidra-

sre.org/, 2024.

[79] Kuntal Kumar Pal, Ati Priya Bajaj, Pratyay Baner-

jee, Audrey Dutcher, Mutsumi Nakamura, Zion Leon-

ahenahe Basque, Himanshu Gupta, Saurabh Arjun

Sawant, Ujjwala Anantheswaran, Yan Shoshitaishvili,

et al. len or index or count, anything but v1”: Pre-

dicting Variable Names in Decompilation Output with

Transfer Learning. In IEEE Symposium on Security

and Privacy, Oakland, 2024.

[80] Chengbin Pang, Ruotong Yu, Yaohui Chen, Eric Kosk-

inen, Georgios Portokalidis, Bing Mao, and Jun Xu.

SoK: All You Ever Wanted to Know About x86/x64

Binary Disassembly But Were Afraid to Ask. In IEEE

Symposium on Security and Privacy, Oakland, 2021.

[81] PNF Software. JEB3: Reverse Engineering for Profes-

sionals. https://www.pnfsoftware.com/, 2024.

[82] radareorg. Radare2 issue #4422: Incorrect value of rax

after xor eax,eax. https://github.com/radareorg/

radare2/issues/4422, 2016.

[83] radareorg. Radare2 issue #9420: Some combo

of a linkerscript, minimal sections copied, and a

.eh_frame section cause r2 to see file as only 0xff

bytes. https://github.com/radareorg/radare2/

issues/9420, 2018.

[84] radareorg. Radare2 issue #17036: Incorrect detection

of jump table’s ending causing incorrect disassem-

blies in middle of opcodes (x86/64). https://

github.com/radareorg/radare2/issues/17036,

2020.

[85] Relyze Software Limited. Relyze: Interactive Software

Reverse Engineering. https://www.relyze.com/,

2024.

[86] Michael Rodler, David Paaßen, Wenting Li, Lukas

Bernhard, Thorsten Holz, Ghassan Karame, and Lu-

cas Davi. EF/CF: High Performance Smart Contract

Fuzzing for Exploit Generation. In IEEE European

Symposium on Security and Privacy, EuroS&P, 2023.

[87] Konstantin Serebryany, Derek Bruening, Alexander

Potapenko, and Dmitry Vyukov. AddressSanitizer:

A Fast Address Sanity Checker. In USENIX Annual

Technical Conference, ATC, 2012.

[88] Mayank Sharma, Pingshi Yu, and Alastair F Donaldson.

Rustsmith: Random Differential Compiler Testing for

Rust. In ACM SIGSOFT International Symposium on

Software Testing and Analysis, ISSTA, 2023.

[89] Vidush Singhal, Akul Abhilash Pillai, Charitha

Saumya, Milind Kulkarni, and Aravind Machiry. Cor-

nucopia: A Framework for Feedback Guided Genera-

tion of Binaries. In IEEE/ACM International Confer-

ence on Automated Software Engineering, ASE, 2022.

[90] Robert Tarjan. Testing Flow Graph Reducibility. In

ACM Symposium on Theory of Computing, STOC,

1973.

[91] The angr Project. Angr issue #2454: Inconsistent

call graphs when resolving indirect calls. https:

//github.com/angr/angr/issues/2454, 2021.

[92] The angr Project. Angr issue #2911: Decompilation is

not valid when there is double quote in string. https:

//github.com/angr/angr/issues/2911, 2021.

[93] The angr Project. Angr issue #2914: x86: Calling

convention recovery is broken when multiple sizes of

the same register are used. https://github.com/

angr/angr/issues/2914, 2021.

[94] The angr Project. Angr issue #2915: x86: decom-

pilation is missing exit condition of rep. https:

//github.com/angr/angr/issues/2915, 2021.

[95] The angr Project. Angr issue #3271: Ail optimiza-

tion may incorrectly collapse converts. https://

github.com/angr/angr/issues/3271, 2022.

[96] The angr Project. Angr issue #3377:

test_decompilation_excessive_condition_removal is

failing. https://github.com/angr/angr/issues/

3377, 2022.

[97] The angr Project. Angr issue #3432: Return value type

becomes int rather than long. https://github.com/

angr/angr/issues/3432, 2022.

[98] The angr Project. Angr issue #3512: Failed switch-case

identification. https://github.com/angr/angr/

issues/3512, 2022.

[99] The angr Project. Angr issue #3702: Cfg incor-

rectly recovered? https://github.com/angr/angr/

issues/3702, 2022.

[100] The angr Project. Angr issue #3703: Calling con-

vention recovery. https://github.com/angr/angr/

issues/3703, 2022.

[101] The angr Project. Angr issue #3737: Decompiler bug:

incorrect arguments for xstrtol function call. https:

//github.com/angr/angr/issues/3737, 2023.

[102] The angr Project. Angr issue #3992: Calling con-

vention gives wrong registers for arguments. https:

//github.com/angr/angr/issues/3992, 2023.

[103] The angr Project. Angr issue #4082: Incorrect loop

ending under phonenix. https://github.com/angr/

angr/issues/4082, 2023.

[104] The angr Project. Angr issue #4358: Incorrect goto

edges reported from region simplifier. https://

github.com/angr/angr/issues/4358, 2023.

[105] The angr Project. Angr issue #4420: Decompiler test

test_decompiling_incorrect_duplication_chcon_main

should have less gotos. https://github.com/angr/

angr/issues/4420, 2024.

[106] The angr Project. Angr issue #4573: Expression in-

correctly moved to lhs and not eliminated. https:

//github.com/angr/angr/issues/4573, 2024.

[107] Romain Thomas. Open-Obfuscator: O-MVLL & dPro-

tect. https://obfuscator.re/, 2024.

[108] Vector 35. Binary Ninja: An interactive decom-

piler, disassembler, debugger, and binary analysis plat-

form built by reverse engineers, for reverse engineers.

https://binary.ninja/, 2024.

[109] Vector 35. Opaque Predicate Patcher. https://

github.com/Vector35/OpaquePredicatePatcher,

2024.

[110] Vector35. Binary Ninja issue #1074: Analy-

sis seems to ignore tailcalls in doing possible

value analysis. https://github.com/Vector35/

binaryninja-api/issues/1074, 2018.

[111] Vector35. Binary Ninja issue #1434: Incorrect

jump table values. https://github.com/Vector35/

binaryninja-api/issues/1434, 2019.

[112] Vector35. Binary Ninja issue #1581: Hlil incor-

rect control flow. https://github.com/Vector35/

binaryninja-api/issues/1581, 2020.

[113] Vector35. Binary Ninja issue #1627: Sort hlil cases in

switch statements. https://github.com/Vector35/

binaryninja-api/issues/1627, 2020.

[114] Vector35. Binary Ninja issue #1789: Hlil

confusing/incorrect if statement conditions.

https://github.com/Vector35/binaryninja-

api/issues/1789, 2020.

[115] Vector35. Binary Ninja issue #1791: Lookup table

calculation fails. https://github.com/Vector35/

binaryninja-api/issues/1791, 2020.

[116] Vector35. Binary Ninja issue #2824: continue state-

ment wrongly optimized out during optimizations/lift-

ing within a jump table. https://github.com/

Vector35/binaryninja-api/issues/2824, 2022.

[117] Vector35. Binary Ninja issue #3186: Lifting llil->mlil

shift value lifted incorrectly. https://github.com/

Vector35/binaryninja-api/issues/3186, 2022.

[118] Vector35. Binary Ninja issue #3191: Shortcomings

of bn’s handling of float/vector values in the win-

dows x64 calling convention. https://github.com/

Vector35/binaryninja-api/issues/3191, 2022.

[119] Vector35. Binary Ninja issue #3719: Binja

does not define second string when comparing.

https://github.com/Vector35/binaryninja-

api/issues/3719, 2022.

[120] Vector35. Binary Ninja issue #4110: Problems

with decompiler splitting a 64-bit store into stores of

two 32-bit floats. https://github.com/Vector35/

binaryninja-api/issues/4110, 2023.

[121] Vector35. Binary Ninja issue #4252: Hlil gener-

ating constant if-condition. https://github.com/

Vector35/binaryninja-api/issues/4252, 2023.

[122] Vector35. Binary Ninja issue #4368: Function ...

hlil has invalid goto targets. https://github.com/

Vector35/binaryninja-api/issues/4368, 2023.

[123] Vector35. Binary Ninja issue #4692: Don’t display

integer arguments as strings. https://github.com/

Vector35/binaryninja-api/issues/4692, 2023.

[124] Vector35. Binary Ninja issue #4800: Wrong cast.

https://github.com/Vector35/binaryninja-

api/issues/4800, 2023.

[125] Vector35. Binary Ninja issue #3081: Placeholder ti-

tle. https://github.com/Vector35/binaryninja-

api/issues/3081, 2024.

[126] Vector35. Binary Ninja issue #4223: Placeholder ti-

tle. https://github.com/Vector35/binaryninja-

api/issues/4223, 2024.

[127] Vector35. Binary Ninja issue #4971: Function

is called without a parameter even though its type

requires one. https://github.com/Vector35/

binaryninja-api/issues/4971, 2024.

[128] Vector35. Binary Ninja issue #4977: Incorrect

main function detection in pe, pdb causes duplicate.

https://github.com/Vector35/binaryninja-

api/issues/4977, 2024.

[129] Vector35. Binary Ninja issue #5009: Cannot

figure out the parameter of the call if the parame-

ters are moved into the stack rather than pushed.

https://github.com/Vector35/binaryninja-

api/issues/5009, 2024.

[130] Vector35. Binary Ninja issue #5030: Inconsistent

display of bool values in conditional statements.

https://github.com/Vector35/binaryninja-

api/issues/5030, 2024.

[131] Vector35. Binary Ninja issue #5650: No-return

not being treated as such if the call instruciton

has unresolved stack usage. https://github.com/

Vector35/binaryninja-api/issues/5650, 2024.

[132] Fish Wang and Yan Shoshitaishvili. Angr - The Next

Generation of Binary Analysis. In IEEE Cybersecurity

Development, SecDev, 2017.

[133] Mingyuan Wu, Ling Jiang, Jiahong Xiang, Yanwei

Huang, Heming Cui, Lingming Zhang, and Yuqun

Zhang. One Fuzzing Strategy to Rule Them All. In

International Conference on Software Engineering,

ICSE, 2022.

[134] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian,

Michael Pradel, and Lingming Zhang. Fuzz4All: Uni-

versal Fuzzing with Large Language Models. In

IEEE/ACM International Conference on Software En-

gineering, ICSE, 2024.

[135] Danning Xie, Zhuo Zhang, Nan Jiang, Xiangzhe Xu,

Lin Tan, and Xiangyu Zhang. ReSym: Harnessing

LLMs to Recover Variable and Data Structure Sym-

bols from Stripped Binaries. In ACM SIGSAC Con-

ference on Computer and Communications Security,

CCS, 2024.

[136] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-

Padilla, and Matthew Smith. Helping Johnny to Ana-

lyze Malware: A Usability-Optimized Decompiler and

Malware Analysis User Study. In IEEE Symposium on

Security and Privacy, Oakland, 2016.

[137] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-

Padilla, and Matthew Smith. No More Gotos: De-

compilation Using Pattern-Independent Control-Flow

Structuring and Semantic-Preserving Transformations.

In Network and Distributed System Security Sympo-

sium, NDSS, 2015.

[138] Chenyuan Yang, Yinlin Deng, Runyu Lu, Jiayi Yao, Ji-

awei Liu, Reyhaneh Jabbarvand, and Lingming Zhang.

WhiteFox: White-Box Compiler Fuzzing Empowered

by Large Language Models. In ACM SIGPLAN In-

ternational Conference on Object-Oriented Program-

ming, Systems, Languages, and Applications, OOP-

SLA, 2024.

[139] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.

Finding and Understanding Bugs in C Compilers. In

ACM SIGPLAN conference on Programming Language

Design and Implementation, PLDI, 2011.

[140] Yupeng Yang, Yongheng Chen, Rui Zhong, Jizhou

Chen, and Wenke Lee. Towards Generic Database

Management System Fuzzing. In USENIX Security

Symposium, SEC, 2024.

[141] Chang Zhu, Ziyang Li, Anton Xue, Ati Priya Bajaj,

Wil Gibbs, Yibo Liu, Rajeev Alur, Tiffany Bao, Hanjun

Dai, Adam Doupé, et al. {TYGR}: Type Inference on

Stripped Binaries using Graph Neural Networks. In

USENIX Security Symposium, SEC, 2024.

[142] Muqi Zou, Arslan Khan, Ruoyu Wu, Han Gao, Antonio

Bianchi, and Dave Jing Tian. {D-Helix}: A Generic

Decompiler Testing Framework Using Symbolic Dif-

ferentiation. In USENIX Security Symposium, SEC,

2024.

[143] Zynamics. Bindiff: a comparison tool for binary files.

https://www.zynamics.com/bindiff.html, 2024.

	Introduction
	Background
	An Overview of Binary Decompilation
	Semantics-affecting Decompilation Defects

	Challenges of Testing Decompilers
	Challenge 1: Source Construct Diversity
	Challenge 2: Compilation Diversity
	Challenge 3: Broad Decompiler Support

	Bin2Wrong: Systematic, Practical Fuzzing for Binary Decompilers
	Mutation of Binary-affecting Dimensions
	Unifying Source and Compilation Mutation
	Mutating Compilation
	Mutating Source Code

	Decompiler-agnostic Semantic Testing
	Recompilation-oriented Syntax Patching
	Bug-finding via Differential Execution
	Post-fuzzing Manual Bug Analysis

	Evaluation
	Experimental Setup
	Q1: Decompiler Testing Depth
	Binary Diversity
	Decompiler Code Coverage

	Q2: Decompiler Bug Discovery
	Q3: Analysis of Uncovered Bugs
	Causes of Source-related Defects
	Causes of Compilation-related Defects

	Discussion
	Responses from Decompiler Developers
	Reliance on Recompilation
	Other Potential Binary Dimensions
	Search Space and Bug Discovery Cost

	Related Work
	Recent Advancements in Decompilation
	Program Generation and Mutation
	Grey-box Fuzzers

	Conclusion

