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Abstract—Desktop applications represent one of today’s largest
software ecosystems, accounting for over 96% of workplace
computing and supporting essential operations across critical
sectors such as healthcare, commerce, industry, and government.
Though modern software is increasingly being vetted through
Jfuzzing—an automated testing technique for large-scale bug
discovery—a major component of desktop applications remains
universally under-vetted: the Graphical User Interface (GUI).
Existing desktop-based fuzzers like AFL++ and libFuzzer are
limited to non-GUI interfaces (e.g., file- or buffer-based inputs),
rendering them wholly incompatible with GUIs. Conversely,
mobile app GUI fuzzers like Android’s Monkey and iOS’s
XCMonkey rely on platform-specific SDKs and event-handling,
rendering them fundamentally unportable to the broader, more
complex landscape of desktop software. For these reasons, desk-
top GUI code remains largely under-tested, burdening users with
numerous GUI-induced errors that should, in principle, be just
as discoverable as any other well-fuzzed class of software bugs.

This paper introduces GUIFUZZ++: the first general-purpose
fuzzer for desktop GUI software. Unlike desktop fuzzers that
randomly mutate file- or buffer-based inputs, GUIFUZZ++
exclusively targets GUI inferactions—clicks, scrolls, key presses,
window navigation, and more—to uncover complex event se-
quences triggering GUI-induced program errors. Central to our
approach is a novel GUI Interaction Interpreter: a middle-layer
translating fuzzer-generated random inputs into distinct GUI
operations, enabling successful non-GUI fuzzers like AFL++ to
be easily ported to testing GUIs. Beyond supporting today’s
most popular GUI development frameworks like QT, GTK, and
Xorg, we introduce a suite of enhancements capitalizing on ubiq-
uitous Software Accessibility Technologies, significantly boosting
GUI fuzzing precision as well as GUI bug-finding effectiveness.

We integrate GUIFUZZ++ as a prototype atop state-of-the-art
GUlI-agnostic fuzzer AFL++, and perform a large-scale ablation
study of its fundamental components and enhancements. In an
evaluation across 12 popular, real-world GUI applications, GUI-
Fuzz++ uncovers 23 previously-unknown GUI-induced bugs—
with 14 thus far confirmed or fixed by developers.

I. INTRODUCTION

Desktop software—applications deployed on personal com-
puters or workstations—play an ever-growing role in our
modern digital age, representing over 96% of workplace
computing today [4]. As desktop software spans important
domains like healthcare, commerce, industry, and government,
its correctness directly impacts many of society’s most crit-
ical services. Unfortunately, program bugs remain a signifi-
cant challenge across today’s desktop computing ecosystems
(e.g., Linux, macOS, and Windows), burdening users with out-
right failures, and developers with costly remediation efforts.
In the race to proactively thwart bugs before they emerge post-
deployment, developers are increasingly turning to fuzzing:
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an automated testing technique that scrutinizes software by
generating massive amounts of randomly-mutated test cases.

Fuzzers are uniquely engineered to target specific software
interfaces: the channels by which user input is passed into
a program—and ultimately triggers its bugs. For example,
popular fuzzer AFL [54] and its successor, AFL++ [10],
both focus on file-based interfaces, mutating on-disk files
and subsequently re-executing the target program on each
to uncover its aberrant runtime behaviors. Others, such as
libFuzzer [44] and Nyx [42], instead target memory-based
interfaces, such as API functions that consume buffered data.
As nearly all desktop software fuzzers are merely derivations
of these few “mother” fuzzers [37]—commonly AFL++ and
libFuzzer—they subsequently target the very same interfaces.
Yet, one crucial interface remains universally under-tested
across today’s ever-growing desktop software ecosystems:
the Graphical User Interface (GUI).

Given their prevalence among desktop software, GUIs un-
surprisingly are responsible for many program bugs. Public
issue trackers reveal numerous crashes stemming from unhan-
dled GUI-induced edge cases, plaguing applications as simple
as calculators [19] to those as complex as image editors [7],
3-D modeling tools [16], and web browsers [2]. Unfortunately,
existing desktop-based fuzzers like AFL++ are isolated to non-
GUI interfaces, with zero direct support for GUIs [10]. While
mobile SDKs offer built-in GUI testing (e.g., Android’s Mon-
key [24],10S’s XCMonkey [22]), the diverse landscape of GUI
software in commodity desktop OSes—coupled with incom-
patible system-level event handling between these platforms—
impedes direct porting of mobile GUI fuzzers to desktop
ecosystems. Consequently, desktop GUI fuzzing currently
remains limited to cost-prohibitive commercial offerings (e.g.,
Ranorex [18], Squish [17]) or one-off, target-specific fuzzers
(e.g., GUIFuzz [9] for calc.exe), leaving an untold number of
GUlI-induced bugs hidden among today’s critical desktop
GUI software ecosystems.

To overcome these challenges and unleash large-scale GUI
testing on desktop applications, this paper introduces GUI-
Fuzz++: the first general-purpose grey-box fuzzer for desk-
top GUI software. Unlike typical file- or buffer-mutating
fuzzers, GUIFUZZ++ systematically explores GUIs by mu-
tating its interactions—clicks, scrolls, key-presses, window
navigation, and more—facilitating discovery of complex GUI-
induced errors in diverse desktop applications. Central to GUI-
Fuzz++ is a novel Interaction Interpreter: a middle-layer for
translating fuzzers’ randomly-generated test cases into distinct



GUI operations, enabling conventional file- or buffer-mutating
fuzzers to be repurposed for desktop GUI fuzzing. We further
bolster GUIFUZZ++ by harnessing widely-available Software
Accessibility Technologies [13], significantly enhancing GUI
fuzzing precision and bug-finding effectiveness.

We implement GUIFUZZz++ atop today’s leading non-GUI
grey-box fuzzer, AFL++ [10], and evaluate its efficacy across
a diverse corpus of 12 real-world desktop applications on
Linux spanning popular GUI development frameworks such
as QT [6], GTK [12], and Xorg [15]. We empirically evaluate
GUIFuUzz++’s contributions and enhancements through a se-
ries of ablation studies, showing how its combined components
create an effective platform for discovering GUI bugs in desk-
top software. Notably, GUIFUZZ++ reveals 23 previously-
unknown GUI-induced bugs across 11 desktop applications,
of which 14 are so far confirmed or fixed by their developers.

Through the following contributions, this paper introduces
the first general approach for uncovering GUI-induced
bugs in today’s vast ecosystems of desktop GUI software:

« We examine the challenges of extending fuzzing to GUI-
based applications on desktop platforms such as Linux,
macOS, and Windows. We survey existing state-of-the-art
fuzzing approaches, and weigh their shortcomings with
respect to enabling systematic desktop app GUI fuzzing.

o« We leverage our insights to design GUIFUZz++: the
first general-purpose grey-box fuzzer for desktop GUI
software. We detail how GUIFUZzz++’s design facilitates
practical and far-reaching desktop GUI fuzzing, maintain-
ing high precision toward effective GUI bug discovery.

o We evaluate GUIFUZZ++’s capabilities through a series
of ablation studies across 12 popular Linux GUI ap-
plications spanning various software domains. We show
that GUIFUZz++ enables effective GUI bug discovery,
culminating in the identification of 23 new GUI-induced
crashes, of which 14 are so far confirmed or fixed.

o We release GUIFUZZ++ in addition to all of our eval-
uation artifacts and benchmarks at the following URL:
https://github.com/FuturesLab/GUIFuzzPlusPlus.

II. BACKGROUND, RELATED WORK, AND MOTIVATION

This section introduces the fundamental topics related to
GUIFuzz++: software GUIs, GUI-induced bugs, and the
challenges of fuzzing desktop GUI software.

A. GUIs: Graphical User Interfaces

Graphical User Interfaces (GUIs) are among the most
prevalent features in modern software, enabling complex ap-
plications to offer rich and intuitive user interactions: clicking,
dragging-and-dropping, scrolling, menu navigation, and much
more. Today’s GUI development market, valued at $885
million, is projected to surpass $2 billion by 2031 [47]. To
craft these interfaces, developers typically utilize dedicated
GUI development frameworks. Common examples include
cross-platform libraries like QT [6] and GTK [12], Android’s
Jetpack [26], and Apple’s Ulkit [23].

Program Crash Type | Brief Description Bug ID
Glaxnimate [3] | Abort Text object properties #408
KolourPaint [30] | Abort Double undo in new window | #457915
LabPlot [31] Abort Fitting function data #372834
LibreCAD [36] | Segfault Right click with move/copy #235
MATE-calc [38] | Segfault “Not” on long hex value #114
PlotJuggler [8] | Segfault Apply filter on curve #0603
Umbrello [33] Segfault Cancelling seq diagram class | #443580

TABLE I: Examples of known GUI-triggered bugs in desktop software.

Most GUI development frameworks employ a similar multi-
threaded architecture: a dedicated “main” thread updates the
user interface and dispatches GUI-issued events to the applica-
tion’s back-end, while one or more “worker” threads process
the application’s back-end operations. This separation is key
to ensuring that the interface remains responsive, even as
complex operations are handled in the background.

However, this design also brings unique challenges: thread
coordination can introduce subtle concurrency bugs [35], while
complex GUI component lifecycles can trigger temporal mem-
ory errors—both often surfacing only under specific interac-
tion sequences (Table I). Moreover, the inherent complexity
of GUIs, ranging from diverse user interactions and nested
sub-menus to transient pop-up screens and other application-
specific bottlenecks, poses major challenges to proactive bug
discovery. To address this, a substantial body of research
has emerged targeting GUI-induced errors in mobile app
ecosystems such as Android and iOS [24], [22]. Yet, while
these approaches have achieved great success in uncovering
GUI bugs within mobile apps, today’s ever-growing desktop
software ecosystems spanning Linux, macOS, and Windows
remain completely overlooked, with no comparable solutions
for discovering their GUI-related software defects.

B. Why Fuzzers Fail on Desktop GUI Software

Among today’s most proven approaches for software bug
discovery is fuzzing: an automated software testing tech-
nique that uncovers bugs by generating and mutating massive
amounts of test cases. Despite the variety of fuzzing tech-
niques available currently [10], [44], desktop applications—
accounting for over 96% of workplace computing needs to-
day [4]—]lack any practical fuzzing solutions for uncovering
GUI-induced bugs. In the following, we survey contemporary
fuzzing solutions, assessing their key shortcomings with re-
spect to supporting GUI fuzzing for desktop-based software
ecosystems.

Desktop Application Fuzzers: Popular application fuzzers
like AFL [54], AFL++ [10], and honggFuzz [50] all target
file interfaces, mutating test cases as on-disk files that are
subsequently each fed to the program under test. Others
such as libFuzzer [44] and Nyx [42] instead target memory-
based interfaces, mutating in-memory data that is ultimately
read by API functions, respectively. Despite their proven
success, these mainstream grey-box fuzzers—the foundational
frameworks for most modern fuzzers [37]—lack any support
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Fig. 1: High-level visualization of GUIFUZZ++’s core GUI fuzzing workflow.

for GUI testing, instead concentrating on traditional file- and
memory-based program interfaces. Though recent advance-
ments attempt to bypass GUIs via automated program slicing
(e.g., Winnie [28]), these methods merely redirect testing to
typical file- or buffer-based interfaces, leaving bugs caused
by GUI interactions still undiscoverable.

Desktop Environment Fuzzing: EnvFuzz [39], a recent
grey-box fuzzing approach, instead mutates desktop applica-
tions’ environment-level interfaces such as configuration files,
fonts, themes, and sockets. While EnvFuzz has indeed been
applied to desktop GUI applications (e.g., calculators [20]),
it inherits conventional desktop fuzzing’s [10] limitation of
supporting only data-level interfaces, leaving it unable to
explore GUI interactions whatsoever. This limitation is further
reflected in EnvFuzz’s failure to uncover any genuine GUI-
induced bugs across its tested GUI applications [39].

Mobile App GUI Fuzzers: Although GUI testing continues
to see adoption in mobile ecosystems, fundamental differences
between underlying GUI frameworks, event-handling models,
and application architectures leave mobile app GUI fuzzers
unusable on desktop software. Mobile platforms typically
offer well-defined UI lifecycles and standardized GUI devel-
opment APIs, and consequently, mobile GUI fuzzers remain
tightly coupled with platform-specific SDKs (e.g., Android’s
Monkey [24], i0S’s XCMonkey [22]). In contrast, desktop
environments are highly heterogeneous, with diverse GUI
frameworks (e.g., Qt [6], GTK [12]) and interaction paradigms
(e.g., first-party vs. third-party windows) that lack centralized
control mechanisms. Moreover, desktop applications often rely
on complex, multi-window workflows as well as non-touch-
based inputs, further complicating automated testing. For these
reasons, mobile app fuzzers are neither currently used—
nor practically adaptable—for testing desktop-based GUIs.

Motivation: the need for a desktop-based GUI fuzzer.
As today’s fuzzers are universally unable to test desktop
GUI software, we aim to bridge the gaps between widely-
successful fuzzing platforms and desktop GUI targets.
We envision a world where desktop application GUIs are
fuzzable just as any other software interface, and thus
design a fuzzer to meet these capabilities: GUIFUZZ++.

III. GUIFUZZ++: CHALLENGES AND SOLUTIONS

To bridge the long-standing gap between conventional fuzz-
ing and GUI-based software, we introduce GUIFUZZ++:
the first system to extend general-purpose desktop fuzzing
platforms to support today’s diverse and complex desktop
GUI application ecosystems. In the following, we outline
the fundamental challenges that motivate GUIFUZZ++’s core
design (Figure 1), along with our corresponding solutions
aimed at enabling effective and scalable GUI fuzzing.

A. Challenge 1: Making Desktop Fuzzers Interact with GUIs

Unlike prior GUI testing tools which are tied to specific
targets [9] or platforms [24], GUIFUZZ++ aims for breadth
in supporting a wide range of desktop GUI software and
ecosystems. To achieve this, we draw inspiration from main-
stream desktop-based fuzzers like AFL++ [10] which, while
incompatible with GUISs, are by far today’s most far-reaching
and ubiquitous desktop software fuzzing tools in practice [45].
Our goal, thus, is extending these general-purpose fuzzers to
desktop GUIs—with the least modification necessary—via a
novel mechanism for directly translating their random inputs
into concrete GUI events: our GUI Interaction Interpreter.

Interpreting Fuzzer Inputs as GUI Events: Contemporary
desktop fuzzers such as AFL++ [10] and libFuzzer [44] oper-
ate at the byre level, generating a continuously-growing corpus
of random, string-based inputs. Using widely-available GUI
automation APIs [49], we thus see an opportunity to reinterpret
these inputs as sequences of GUI operations, analogous to




Op Structure Description of GUI Interaction

Close currently-active window, ignoring the last two operands.

Input the key press corresponding to the extended ASCII encod-
ing of primary operand CC, ignoring the second operand.

Ex: 01 7F FF — input extended ASCII key press “DEL”.

02 XX Y Click the location (X%, Y%) relative to the current window’s
dimensions, offset from its bottom-left coordinate (0, 0).
Ex: 02 A0 1B — click relative position (62.5%, 10.5%)
03 XX YY Drag the cursor from its current position to the new position

(X%, Y%) relative to the current window’s dimensions, offset from
its bottom-left coordinate (0, 0).

Ex: 03 00 80

— drag to relative position (0%,

All higher opcodes (i.e., 04-FF): normalize the opcode via
(NN % 4), reinterpreting the transformed opcode accordingly.

Ex: B2 2C 9F — reinterpret as click operation 02 2C 9F .

TABLE II: Overview of GUIFUZZ++’s core GUI operation grammar.

the randomized “monkey”’-style GUI interaction testing that
has historically proven effective in mobile GUI fuzzing [24].
To enable this, we formalize fundamental GUI actions via a
minimal grammar of three-byte instructions, shown in Table II.
Upon receiving an input from the fuzzer, GUIFUzz++
invokes its Interaction Interpreter—a component fully indepen-
dent of the fuzzer—parsing the input bytes according to our
GUI event grammar and dispatching corresponding actions. To
keep our grammar compact, our instruction set (Table II) de-
fines four core opcodes (i.e., 00—03), with any higher opcodes
normalized via modulo and mapped back into this defined
range. For instance, a three-byte sequence beginning with
opcode 06 is normalized to 02, and thus interpreted as a click
event. This simple normalization enables seamless integration
with the random byte sequences produced by existing fuzzers,
requiring no changes to their input generation logic.
Facilitating GUI Interaction: Central to our approach is
leveraging existing GUI automation and introspection capa-
bilities. Because many Table II instructions require window-
relative positioning, GUIFUZZ++ first queries the target ap-
plication’s window dimensions using native windowing APIs
provided by the host OS (e.g., x11-utils [14] on Linux). It
then executes the parsed GUI actions using cross-platform
automation libraries (e.g., PyAutoGUI [49]), which expose
generic primitives for mouse, keyboard, and window man-
agement. These readily available APIs allow GUIFuzz++
to issue platform-agnostic GUI interactions, including higher-
level actions such as spawning or closing windows, without
the need for any application-specific instrumentation.
Breadth of GUI Interactions: Because GUIFUZZ++ aims
to avoid the overhead of program-specific static analysis or
tailoring, it operates using a minimal yet expressive set of core
events: window-closing, key presses, clicks, and drags. These
primitives form a functional superset capable of emulating a
wide range of GUI element-specific interactions. For example,
scrolling through a menu can be accomplished entirely via a
drag operation, allowing GUIFUZz++ to explore substantial
interface behavior using just these basic inputs. Moreover,
our Interaction Interpreter is designed for easy extensibility

with new opcodes—and, as we demonstrate in § III-C—it
readily supports the integration of more targeted, element-
specific mutators toward higher-precision GUI exploration.

Solution 1: GUIFUZZz++ introduces a GUI Interaction In-
terpreter that enables conventional, GUI-agnostic desktop-
based fuzzers like AFL++ to be fully repurposed for GUI
fuzzing—without any need for costly reengineering.

B. Challenge 2: Handling Desktop-specific Window Obstacles

Unlike mobile platforms, desktop GUI fuzzing faces signifi-
cantly more obstacles from the proliferation of unwanted third-
and first-party windows, which disrupt fuzzing workflows and
pollute the interaction space. On mobile OSes, apps are typ-
ically sandboxed with strict lifecycle control [1], where only
one app is active in the foreground at a time, and popups or
overlays are generally constrained by platform-level guidelines
and permission models. In contrast, desktop environments
allow multiple overlapping windows from different processes
(e.g., update dialogs, crash reporters, or unrelated apps). Even
within a single program, modal dialogs, system alerts, and
nested windows may appear unpredictably. These extraneous
windows can intercept input, obscure the target interface, or
cause unintended side effects during fuzzing. In the following,
we detail GUIFUZZ++’s mechanisms for mitigating unwanted
third- and first-party windows to ensure interactions remain
focused on the intended application GUIL.

Tackling Third-party Window Interference: To ensure
that GUI fuzzing remains confined to the intended application
window, GUIFUZZ++ records the target process’s PID, and
initiates GUI interactions only when the currently displayed
window matches that PID. Once a test case completes its
sequence of interactions, GUIFUZz++ sends an interrupt
signal (SIGINT) to terminate the window, returning control to
the fuzzer to begin the next iteration. If the target or OS spawns
unwanted third-party windows (e.g., an update dialog or the
web browser), GUIFUZZ++ collects their PIDs and similarly
terminates each via SIGINT. Nearly all of GUIFUZZ++’s
window management logic resides within the GUI Interaction
Interpreter, with only two additional lines of code added to
AFL++ to capture the target application’s PID.

Tackling First-party Window Interference: While third-
party interference accounts for the majority of window-related
disruptions, we also observe several cases where first-party
windows—those spawned by the fuzzed application itself—
can impede fuzzing. Unlike third-party windows, these orig-
inate from the target process, and thus cannot be filtered out
using our PID-based third-party window filtering. The most
common example involves file browser dialogs, which are
often triggered by GUI actions such as clicking a SAVE or
OPEN button. These dialogs pose a particularly dangerous risk:
if the fuzzer inadvertently interacts with them, it may initiate
unintended operations on the host file system.

To mitigate this, we extend our use of GUI introspection
APIs (§ III-A) to heuristically detect and suppress such di-



alogs. Specifically, we scan for window fitles containing com-
mon file-related keywords like LOAD, SAVE, and FILE, allow-
ing us to identify and preemptively close or bypass most file-
browser windows before they interfere with fuzzing execution.
As with our third-party window filtering, this mechanism
resides entirely within GUIFUZZ++’s Interaction Interpreter,
requiring no additional customization to the fuzzer itself.

Solution 2: GUIFUZZ++ mitigates unwanted window in-
terference with minimal changes to the underlying fuzzer,
leveraging its core window introspection APIs to find and
suppress signs of disruptive or extraneous GUI activity.

C. Challenge 3: Maintaining Precise Desktop GUI Interaction

A key challenge in GUI fuzzing is the disconnect between
screen coordinates and interactive elements, making arbitrary
interaction likely to miss actionable GUI components. While
mobile platforms aid fuzzers [24], [22] with built-in GUI
introspection APIs (e.g., Android’s AccessibilityService [25]),
desktop OSes lack such centralized mechanisms for intro-
specting GUI elements, leaving GUIFUZZ++’s interactions
unlikely to drive meaningful fuzzing progress. To overcome
this, we introduce a suite of enhancements leveraging emerg-
ing desktop-based Software Accessibility Technologies [13],
providing GUIFUZz++ with a powerful means of directly
targeting GUI components toward more effective fuzzing.

Achieving GUI Introspection via AT-SPI: To meet the
needs of assistive devices such as screen readers, magnifiers,
and braille displays, recent years have seen the widespread
adoption of the Assistive Technology Service Provider Inter-
face (AT-SPI) [13]—the primary accessibility framework for
Linux desktop environments, with emerging support extending
to platforms like macOS. At a high level, AT-SPI exposes a hi-
erarchical view of an application’s GUI elements (e.g., buttons,
menus, and text fields), enabling accessibility tools to support
meaningful, non-visual navigation. With built-in support for
popular GUI toolkits such as GTK and Qt, AT-SPI offers a
robust foundation for external tools to inspect and reason about
interface structure—making it a natural fit for introspection-
driven enhancements within GUIFUZz++.

Leveraging AT-SPI in GUI Fuzzing: To improve GUI-
Fuzz++’s GUl-interaction precision, we leverage AT-SPI’s
built-in recognition of standard GUI elements [13]. Accord-
ingly, we extend our GUI Interaction Interpreter with 11 new
operators targeting the fundamental classes of interactable
GUI elements (Table II): toggleables, selections, movables,
as well as general push buttons and user-controllable text
fields. Continuing from Table II, we assign each of these
11 new instructions a unique opcode, with normalization
similarly applied via modulo to bring any fuzzer-generated
higher-opcode instructions (e.g., 17) within GUIFUZZ++’s
full expanded instruction opcode range (i.e., 00—14).

Although GUIFuUzz++’s core clicking operation (Table II)
relies on window-relative positioning to find where to click,
AT-SPI exposes a deterministic tree of all currently-visible

Category Op Structure Element Type Visual Example
General 04 AA BB Pushable Button Submit
05 AA BB Text Entry Field Find ...
Toggleables 06 AA BB Checkbox Button (4 App ly ?
07 AA BB On/Off Button a Off
. . @ Use Option 1
Selections 08 AA BB Radio Button O Use Option 2
Width: 4px M
09 AA BB Spinner Button 1 . X -
10 AA BB Table Cell Button +/=- O/o B
v
11 AA BB Drop-down Item Option 2
v
12 AA BB Combination Box
Option width
Field 2: value 2
Movable 13 AA BB Scrollable Field Field 3: value 3
Field 4: value 4
o ) o123 46 7
14 AA BB Sliding Selection

TABLE III: GUIFuUzz++’s AT-SPI enhanced interactions. As in Ta-
ble II, every operation is mapped to a three-byte structure: a sin-
gle opcode, followed by two operands AA and BB that reference
the GUI element’s position within the type-specific element list that
is exposed by AT-SPI and updated alongside the GUI. Similarly,
higher opcodes are normalized to range 00-14 via (NN % 15).
For example, sequence 58 00 04 isnormalizedto 13 00 04 , and thus
interpreted as an interaction on the fourth-indexed scrollable field element.

Draw App (Frame)

T - i o

Brush Tools Main Toolbar
(Table) (Toolbar)
File  Edit  View Help \ |
File (Menu Item) Pen (Table Cell) New (Push Button)
@ New E Open 20% Edit (Menu Item) Brush (Table Cell) | |Open (Push Button)
View (Menu Item) Eraser (Table Cell) (Separator)
,‘ q Help (Menu Item) Dipper (Table Cell) 20% (Combo Box)
e p Donate (Push Button)

Fig. 2: Example visualization of an AT-SPI [13] dynamically-generated GUI
element tree for a simple drawing app. In order to use the AT-SPI tree,
GUIFuzz++ flattens it into a list of each type of element (e.g., push button
and menu item from Table III). Different operators select different types of
elements, and the operands are subsequently used to index into the list.

GUI elements, enabling operand-guided targeting for GUI-
Fuzz++’s enhanced interactions as well. Namely, each el-
ement type in Table IIl is accessed via a click, with the



instruction’s final two operands used to index into a type-
specific list of matching elements (Figure 2). GUIFUZZ++
constructs these lists dynamically—re-polling AT-SPI’s tree
of GUI elements after each dispatched GUI interaction—and
flattening all same-type nodes from the AT-SPI tree, enabling
fast, deterministic element selection. If the resulting index
exceeds the list’s bounds, GUIFUZZ++ wraps it via modulo
to ensure a valid target. This design allows GUIFUZzZ++ to
precisely fetch specific GUI elements even as the interface
evolves at runtime, offering far more fruitful GUI fuzzing
compared to blind, on-screen pixel clicking.

Solution 3: GUIFUZZ++ overcomes GUI interaction im-
precision through a suite of AT-SPI-assisted operations,
enabling fargeted, element-aware interactions that signifi-
cantly improve the effectiveness of desktop GUI fuzzing.

IV. IMPLEMENTATION

We implement GUIFUZZ++ atop state-of-the-art grey-box
fuzzer AFL++ [10] v4.21c, enabling GUIFUZZ++’s inheriting
of AFL++’s rich ecosystem of fuzzing enhancements. Below,
we detail the technical integration of GUIFUZZ++’s core
components within the AFL++ platform.

A. Fuzzing Process Execution

Like all AFL-based fuzzers, GUIFUZZ++ resets the tar-
get process for new test cases via forkserver-based pro-
cess cloning [53], enabling higher fuzzing throughput than
slower from-scratch process creation [46]. Beyond executing
the target, we configure AFL++ to additionally launch our
GUI Interaction Interpreter (§ III-A), which we implement
via Python’s PyAutoGUI framework [49]. All other fuzzer
execution steps—code coverage collection, crash recognition,
and inter-process communication—are left as-is in AFL++’s
core, underscoring GUIFUZZz++’s lightweight design. In total,
our changes to AFL++’s core span just eight lines of code.

Importantly, GUIFUZZ++ supports any AFL-compatible
bug oracle (e.g., flagging error-revealing process signals like
SIGFPE) or sanitizer (e.g., AddressSanitizer [43]), following
the same compile-time instrumentation and target preparation
steps as conventional non-GUI fuzzing workflows [10], [44].

B. Test Case Mutation and Trimming

Since AFL++’s [10] in-house mutators modify test cases
at bit- and byte-level, they will overwhelmingly break the
three-byte structure of our GUI operations (§ III-A), leading
to invalid interactions—and fruitless fuzzing. To address this,
we implement a GUI-aware mutator, ensuring that mutations
(e.g., modifications, insertions, and splices) occur strictly on
well-formed GUI interactions. We further extend this to test
case frimming, ensuring that incremental deletions similarly
preserve GUI operation structures. As GUIFUZz++’s muta-
tion and trimming are both implemented via AFL++’s Custom
Mutator API [10], no changes are needed to AFL++ itself.

C. Supported Software and Desktop Platforms

While our current prototype of GUIFUZzZ++ targets GUI
software in Linux environments, we anticipate its portability
to other platforms supportive of AFL++ and PyAutoGUI [49]
such as macOS, and extensible to AFL-like fuzzers on plat-
forms not directly supported by AFL++, such as WinAFL [55]
for Windows. We posit that the only platform-specific compo-
nent of GUIFUZZ++ is the retrieval of the active window’s
PID and dimensions. Fortunately, nearly all modern OSes
expose APIs for this functionality via their respective window-
ing subsystems (e.g., x11-utils on Linux [14], PyObjC/Quartz
on macOS [40], and PyWin32 on Windows [21]), enabling
GUIFuUzz++ to merely swap-out these components.

Although the accessibility framework driving GUI-
Fuzz++’s higher-precision fuzzing (§ II-C), AT-SPI [13],
sees best support for GTK- [12] and QT-based [6] GUISs,
GUIFUZZz++ remains fully functional without it. This allows
grey-box GUI fuzzing to be deployed across a wider range
of targets—even in the absence of accessibility integration.

V. EVALUATION

Our evaluation of GUIFUzZZ++’s desktop GUI fuzzing
capabilities is guided by the following fundamental questions:

Q1:
Q2:

How does GUIFUzz++’s grey-box fuzzing compare to
traditional black-box GUI fuzzing?

To what extent does GUIFUZZ++’s AT-SPI-enhanced
interaction improve GUI fuzzing?

Is GUIFuzz++ effective at finding new GUI-induced
bugs in desktop GUI software?

Q3:

Benchmarks: Table IV shows our evaluation benchmarks.
We evaluate GUIFUZZ++ on 12 open-source Linux-based
GUI programs spanning a variety of application domains. To
assess GUIFUzz++’s support across today’s diverse desktop
GUI ecosystems, we include benchmarks spanning three dis-
tinct GUI development frameworks: Qt [6], GTK [12], as well
as Xorg [15]. We compile all applications with AFL++’s built-
in source-level compilers (e.g., afl-clang-fast).

Program Description Base GUI
Dia [27] Graphic Design GTK
Glaxnimate [3] Animation Qt
KCalc [29] Calculator Qt
KolourPaint [30] | Image Editor Qt
LabPlot [31] Data Plotting Qt
LibreCAD [36] 3-D Modeling Qt
MATE-calc [38] | Calculator GTK
PlotJuggler [8] Data Plotting Qt
QCAD [41] 3-D Modeling Qt
Skrooge [32] Finance Qt
Umbrello [33] UML Editor Qt
XCalc [52] Calculator Xorg

TABLE IV: Our desktop-based GUI fuzzing evaluation benchmarks.

Experiment Setup & Infrastructure: As there are zero
fuzzers broadly supportive of desktop GUI software today, our
evaluation seeks to understand the influence of GUIFUZZ++’s



Program C1: Grey-box w/ AT-SPI | C2: Grey-box w/o AT-SPI | C3: Black-box w/ AT-SPI | C4: Black-box w/o AT-SP1
Speed  CodeCov Bugs Speed  CodeCov Bugs Speed  CodeCov Bugs Speed  CodeCov Bugs
Dia 24912 12990.4 0 1631.6  12074.8 1 31540  12101.4 0 3047.0  11364.8 0
Glaxnimate 2562.6  34312.2 2 2850.2  30537.2 0 6625.6  30890.0 0 7374.0  29405.3 0
KCalc 2546.8 8013.8 1 2914.5 7616.4 1 7212.6 6625.0 1 6364.6 5473.8 2
KolourPaint 1859.8 5845.2 3 2019.4 4880.0 1 5579.4 5615.2 2 7595.8 4988.8 1
LabPlot 2190.0  25170.6 3 2588.8  25114.0 2 4647.8  26402.6 2 6037.0  27732.2 1
LibreCAD 2001.6  39613.6 1 24533  38703.3 1 6760.2  39076.8 0 84534 365294 0
MATE-calc 1989.0 1196.6 0 2421.0 1349.0 0 5542.8 1353.4 0 6490.0 1359.6 2
PlotJuggler 24112 17979.8 1 1968.2 163422 1 5389.2  17083.6 1 5697.6  16201.0 1
QCAD 2647.0  61598.0 0 30202 615684 1 7075.6  61734.2 0 69282 616264 0
Skrooge 1754.8 337942 0 1575.0  34052.6 0 6040.4 335504 0 7822.2 326424 0
Umbrello 2279.0  23431.0 5 32434 17900.8 3 6854.0  20335.8 1 8110.0  16693.6 2
XCalc 6344.8 441.8 2 5560.0 441.4 2 28078.8 440.6 2 27887.2 439.8 2
GEOMEAN: | 24314 120795 1.9 25369 114092 13 6572 11635.3 1.4 7555.6 10961 1.5

TABLE V: Per-configuration mean fuzzing speed (i.e., test case throughput), mean target code coverage (i.e., control-flow edges), and total manually-
deduplicated bugs per benchmark. Bolded values indicate the best-performing configuration with respect to each evaluated metric per benchmark.
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Fig. 3: Five-trial mean coverage over time for GUIFUZZ++’s four configurations. We normalize coverage based on the top-ranked competitor per benchmark.

key constituent parts. Accordingly, we set up GUIFUZZ++
in four fundamental configurations: (C1) grey-box mode with
AT-SPI, (C2) grey-box mode without AT-SPI, (C3) black-box
mode with AT-SPI, and (C4) black-box mode without AT-SPI.
We seed all fuzzing campaigns with a single sequence of 33
randomly-generated GUI interactions. Following the fuzzing
evaluation standard established by Klees et al. [34], we fuzz
each benchmark for five 24-hour trials per configuration. We
deploy all fuzzing experiments within 20 KVM-based Ubuntu
virtual machines, run atop a 24-core Ubuntu 22.04 workstation
with 64G RAM and an Intel i9-12900K CPU.

Post-processing Results: We evaluate all GUIFuzz++
configurations on the following metrics: speed via test case
throughput, depth via code coverage, and true GUI-induced
bugs uncovered. We measure code coverage as control-flow
edges via AFL++’s built-in af1-showmap tool [10], and fur-
ther plot mean normalized coverage in Figure 3. For bugs, we
perform manual analysis to deduplicate fuzzer-found crashes
into their per-configuration unique bugs. We calculate and
report all means as geometric means.

A. Ql: Grey-box vs. Black-box Desktop GUI Fuzzing

As GUI fuzzing has historically relied heavily on black-
box testing [24]—eschewing any target-level feedback about
test case significance (e.g., code coverage)—we evaluate GUI-
Fuzz++’s performance in both traditional black-box and more
modern grey-box (i.e., coverage-guided [10]) fuzzing modes.

Since GUIFUZZ++’s underlying fuzzer, AFL++, is inherently
not a black-box fuzzer, we modify it to emulate black-box
behavior by continuing to save all coverage-increasing test
cases on disk, but refraining from actually using that coverage
information during the fuzzing process. This strategy enables
us to accurately measure code coverage even in the absence
of coverage-guided exploration. Beyond code coverage, we
also compare both modes’ execution speeds (measured by test-
case throughput) and their total fuzzer-reported unique crashes.
Table V summarizes these results side-by-side per benchmark.

Outcomes: As shown in Table V, GUIFUzZz++’s black-box
configurations (C3 and C4) consistently achieve the highest
test case throughput across all benchmarks, with grey-box
configurations (C1 and C2) never surpassing them in speed.
However, this performance advantage does not translate to
effectiveness: black-box fuzzing yields lower code coverage—
outperformed in 9 of 12 benchmarks—and fewer bugs, with
grey-box mode discovering more issues in 7 of 12 applications.

Interestingly, we observe that the few cases where black-
box mode excels in bug discovery involve simpler applications
with more constrained interaction spaces: namely, the MATE-
calc [38] and KCalc [29] calculators. These results suggest
that black-box fuzzing’s speed is best suited for lightweight
GUIs, whereas grey-box fuzzing is better-equipped to navi-
gate complex, bug-prone paths in larger applications. Overall,
by supporting both modes, GUIFUZZ++ enables flexible,




target-tailored fuzzing strategies that adapt to the structure
and complexity of today’s diverse desktop GUI applications.

Q1: GUIFuzz++ adapts to target GUI complexity, fa-
cilitating black-box speed for simple apps, and grey-box
precision for deeper bug discovery in more complex ones.

B. Q2: Impact of GUIFUZZ++’s Enhanced GUI Interaction

To determine whether GUIFUzz++’s AT-SPI-enhanced
GUI interaction (§ III-C) improves desktop GUI fuzzing
effectiveness, we further evaluate GUIFuUzz++ both with
and without AT-SPI enabled. As in § V-A, the test case
throughput, code coverage, and fuzzer-reported unique crashes
per configuration—benchmark pairing are shown in Table V.

Outcomes: As Table V shows, GUIFuzz++’s AT-SPI-
assisted configurations (C1 and C3) face significant runtime
overhead—being outperformed in throughput by their AT-SPI-
agnostic counterparts (C2 and C4) on 8 of 12 benchmarks. We
posit this is expected, as AT-SPI integration incurs additional
costs from both rendering the accessibility tree as well as
invoking GUIFuzz++’s targeted GUI-aware mutators.

Despite this cost, AT-SPI-assisted fuzzing proves valuable:
it achieves higher code coverage in 9 of 12 applications—and
in many cases, seeing consistently-higher coverage throughout
fuzzing (Figure 3)—indicating that richer GUI introspection
enables exploration of deeper, more complex interaction paths
that are otherwise missed by GUI-agnostic modes. This benefit
extends to bug discovery as well: when paired with grey-box
guidance, AT-SPI-enhanced fuzzing finds the most bugs on
four benchmarks, surpassing the next-best configuration, grey-
box without AT-SPI (C2), which leads on only two. Altogether,
these results demonstrate that while AT-SPI slows execution,
it greatly boosts both code coverage and bug-finding
in interface-rich applications—solidifying GUIFUZzZ++’s
effectiveness in GUI-focused fuzzing campaigns.

Q2: GUIFuzz++’s AT-SPI integration trades raw speed
for deeper exploration—unearthing more bugs and behav-
iors invisible to GUI-agnostic desktop GUI fuzzing.

C. Q3: Discovery of GUI-induced Bugs in Desktop Apps

Lastly, we manually deduplicate all fuzzer-reported unique
crashes per each of GUIFUZZ++’s evaluated configurations,
obtaining the final set of real-world bugs uncovered by GUI-
Fuzz++. We follow standard practice in fuzzing literature
for crash deduplication [34], employing AddressSanitizer-
based [43] stack-trace bucketing. Table VI lists all GUI-
induced bugs found in our evaluation, alongside their revealing
GUIFuUZz++ configuration and current reporting status.

Outcomes: As shown in Table VI, GUIFUZZ++ uncovers
a total of 25 GUI-induced bugs across 11 real-world desktop
GUI applications, with 23 being previously-unreported GUI-
induced errors. Figure 4 breaks down the distribution of unique
bugs across different fuzzing configurations, highlighting that

ID | Program Bug Type | Brief Desc. New | Status
01 | Dia Bad Free | Color area (transient) 4 a
02 | Glaxnimate | Segfault | Improper closing 4

03 | Glaxnimate | Segfault | Invalid cut/pastes v

04 | KCalc Invalid Ptr | Inserting open parent v ol
05 | KCalc Segfault | Left bit shift overflow

06 | KolourPaint | Heap UAF| Specific tools with undo 4 ol
07 | KolourPaint | Segfault | Buggy bug report menu 4

08 | KolourPaint | Segfault | Shortcut settings dropdowns | ¢/

09 | KolourPaint | Segfault | Print preview zooming v

10 | LabPlot Invalid Ptr | Invalid column insert v a
11 | LabPlot Heap UAF| Pinning spreadsheets 4 a
12 | LabPlot Heap UAF | Pinning matrices v a
13 | LibreCAD | Heap UAF| Invalid plugin usage v a
14 | LibreCAD | Heap UAF| Consecutive points v a
15 | MATE-calc | Bad Free | Invalid square roots

16 | MATE-calc | Bad Free | Empty inverse trig functions | ¢/ a
17 | PlotJuggler | Segfault | Quickly close button docker | ¢/

18 | QCAD Segfault | Tool use in multiple sheets v

19 | Umbrello Segfault | Birds eye after discard 4 a
20 | Umbrello Heap UAF | Multiple sequence diagrams | ¢/ a
21 | Umbrello Heap UAF| Undo after discard 4 a
22 | Umbrello | Segfault | Print Preview after discard v a
23 | Umbrello Segfault | Cut on empty diagram v a
24 | XCalc FPE Invalid modulus v

25 | XCalc FPE Invalid modulus v

TABLE VI: All GUI-induced bugs uncovered by GUIFUzZ++, alongside
a brief description of their bug-triggering semantics and reporting statuses
(@ = fixed by developers, s = confirmed and waiting fixing, = = pending).
For brevity, we classify bugs #04 and #10 as “Invalid Pointer” errors, and
follow AddressSanitizer’s [43] crash taxonomy for all remaining bugs.

each configuration surfaces distinct issues—and underscoring
the importance of GUIFUZZ++’s support for tailoring fuzzing
strategies to the characteristics of the target application.

Fig. 4: Per-configuration GUI bugs found by GUIFUZZ++. Bug IDs corre-
spond to those listed in Table VI (C1 = Grey-box w/ AT-SPI, C2 = Grey-box
w/o AT-SPI, C3 = Black-box w/ AT-SPI, C4 = Black-box w/o AT-SPI).

In the remainder of this section, we present several represen-
tative case studies that showcase the depth and diversity of
bugs exposed by GUIFUZZ++.

Case Study 1: LibreCAD (bug #13). GUIFUZZ++ un-
covered a heap user-after-free in LibreCAD [36] triggered
by the following high-level operations: selecting the “Same
Properties” plugin from the P1lugins menu, placing an angle
on the canvas using the Angle tool, and then beginning a two-
point line with the Two Points tool, spanning a total of eight
distinct GUI interactions (Figure 5).

This bug was confirmed and patched by developers on
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Fig. 5: LibreCAD crash from an eight-sequence interaction: (1) Plugins
(click), (2) Same Properties (click), (3) Lines Menu (click), (4)
Select Angle (click), (5) Place Angle (drag), (6) Lines Menu (click),
(7) Select Two Points (click), and (8) Place Two Points (drag).

the same day it was reported. The root cause lies in the
“Same Properties” plugin, which attempts to copy attributes
from one diagram entity to another. A call to the plugin’s
finish () method triggers a segfault, as it prematurely deal-
locates objects still in use by the partially drawn two-point line.
Because this line is incomplete, the plugin encounters invalid
state during cleanup. Notably, this bug was only exposed
under GUIFUZZ++’s AT-SPI-enhanced configuration. This is
likely due to the need for precise sequencing of submenu
interactions—such as selecting transient plugin entries—which
are rarely triggered through random UI exploration alone.

Case Study 2: LabPlot (bug #11). GUIFuzz++ finds
another use-after-free in LabPlot [31] triggered by the
following four-sequence interaction (Figure 6): clicking
Pin Active Tab, opening the Spreadsheet menu, and
selecting column #2 in the data browser. This bug, confirmed
by the LabPlot developers one week after reporting, stems
from incorrect usage of the Qt [6] docking API. When a dock
widget is pinned, it is removed from its parent QDockArea.
If this removal leaves the dock area empty, the area itself is
destroyed. Later, when interacting with the spreadsheet col-
umn, LabPlot attempts to access this now-destroyed dock area,
resulting in a segmentation fault. This issue was uncovered
only in GUIFUZZ++’s grey-box configuration, suggesting that
coverage-guided exploration was necessary to navigate the
specific conditions leading to the crash.

Case Study 3: Umbrello (bugs #19,#21, #22). GUI-
Fuzz++ revealed a series of Umbrello [33] crashes during
fuzzing, triggered by different UI actions following diagram
deletion. These crashes stem from a missing null check: when
a user discards changes, Umbrello deletes the active diagram
but fails to update or reset internal state, leaving no valid
diagram selected. Triggering sequences include when the user
opens a new diagram and makes a change (e.g., adds a line
or class), then clicks New and chooses to discard the current
changes, and finally attempts to invoke actions such as Print
Preview (e.g., Figure 7), Bird’ s Eye View, Undo, or
interacts with the Command History.
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Fig. 6: LabPlot crash stemming from a four-sequence interaction: (1) Pin
(click), (2) Mat rix (click), (3) Column 1 (click), then (4) Cell 2, 2 (click).
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Fig. 7: Umbrello crash with root cause stemming from a six-sequence GUI
interaction: (1) Canvas (click), (2) Canvas (click), (3) Ok (click), (4) Open
(click), (5) Discard (click), (6) Print Preview (click).

Each of these operations assumes a valid diagram is present,
triggering distinct SIGSEGV faults when dereferencing the
null pointer. The exact crash varies by action, revealing a
broader flaw in Umbrello’s state management following di-
agram disposal. While these bugs were discovered across all
configurations, a greater number surfaced during grey-box runs
(Table V), suggesting that coverage-guided exploration is more
effective at uncovering deeper, state-dependent bugs.

Developer Responses: While several bugs remain under
review at the time of writing (Table VI, many were acknowl-
edged and confirmed by developers within days to a week
of reporting—underscoring their reproducibility and practi-
cal significance. Collectively, these case studies showcase
GUIFuzz++’s effectiveness at surfacing real, high-impact
GUI bugs in desktop applications, many of which stem
from complex GUI interaction sequences that GUIFUZZ++’s
supported fuzzing modes are uniquely equipped to explore.

Q3: GUIFuUzz++’s structured GUI interactions and ap-
plication introspection enables its discovery of non-trivial
GUI bugs—broadening the reach of fuzzing into the rich,
event-driven behaviors of modern desktop applications.



VI. DISCUSSION & THREATS TO VALIDITY

In the following, we weigh several limitations of our pro-
totype implementation of GUIFUZZ++.

Improving Runtime Throughput: While conventional
grey-box application fuzzing has seen numerous advancements
for increasing speed toward accelerating bug discovery [46],
[56], GUI fuzzing is inescapably much slower due to GUI-
specific bottlenecks—namely, the high resource cost from
rendering the GUI itself. Though some application-specific
runtime bottlenecks seem mitigable (e.g., on-launch splash
screens), we posit there is non-trivial engineering needed
to build a generalizable way of (1) pinpointing and (2)
successfully cutting-out these components without breaking
the overall application. As such, we leave exploring potential
optimizations for desktop GUI fuzzing to future work.

Supporting Other Interactions: Our current prototype’s
click-oriented GUI interactions (e.g., Table III) currently focus
on left-clicks, though extending GUIFUZz++ to right-clicks
is straightforward. However in practice, we observe right-
click menus largely expose redundant functionality (e.g., Cut,
Copy, Paste) that is already accessible through Ileft-
click—navigable menus (e.g., Edit — Cut), so omitting right-
clicking does not meaningfully impact most GUI fuzzing.
Likewise, while GUIFUZZ++’s key-pressing interactions cur-
rently issue just single-key presses, extending support to multi-
key combinations requires only minimal modification. We plan
to explore these in future extensions to GUIFUZZ++.

Generality to Other Platforms: Although GUIFuUZz++’s
current prototype remains Linux-specific, many of its com-
ponents already are cross-platform—or are easily swapped-
out with their platform-specific counterparts—as we discuss in
§ IV-C. Importantly, GUIFUZZz++ specifically targets desktop-
based OSes, and intentionally avoids mobile OSes (e.g., An-
droid, iOS) or tablet ones (e.g., iPadOS), as we expect that
these platforms’ already-mature GUI fuzzing tools [22], [24]
remain a better fit for their respective GUI app ecosystems.
While we do plan to explore GUIFUZZ++’s porting to other
desktop platforms like macOS and Windows, we leave this
engineering and requisite re-evaluation to future work.

Generality to Other Applications: To mitigate risk of
bias and overfitting, we evaluate GUIFUZZ++ across a wide
range of targets (Table IV) spanning diverse types of GUI
applications: calculators, multimedia, financial, data analysis,
and computer modeling. Additionally, these applications are
built atop three of today’s most popular GUI development
frameworks—Qt [6], GTK [12], and Xorg [15]—further under-
scoring the generality of GUIFUZzz++’s fundamental approach
across diverse ecosystems of desktop GUI software.

Since GUIFuUzz++ builds on existing fuzzing frame-
works [10], it can be applied to closed-source GUI binaries
as well (e.g., Tesla’s Qt-based infotainment software [51]),
provided that the base fuzzer and underlying program in-
strumentation supports them. However, we expect certain
GUIFuUzz++ modes (e.g., grey-box mode, AT-SPI [13]) likely
require additional adaptation to work on closed-source targets.

Further, while we foresee many opportunities in extending
GUIFuzz++ to other GUI-based application domains be-
yond our present evaluation set—such as video games, web
browsers, or an aircraft avionics software—many domain-
specific orthogonal challenges need solving first. For example,
web browsers are large, multi-threaded codebases, yet multi-
threading often deteriorates the stability of general grey-
box fuzzing [5]. Similarly, video games likely require many
new game-tailored bug oracles for non-crashing bugs (e.g.,
glitching-into Super Mario’s “Minus World” [11], [48]). Oth-
ers, such as avionics software, call for porting from their
niche platforms (e.g., PowerPC) to more tool-friendly ones
like Linux. Nonetheless, with solutions to these obstacles, we
anticipate that GUIFUZZ++ and future follow-on solutions
will be ready to fuzz these and other important GUI domains.

VII. CONCLUSION

In this work, we introduce GUIFUZZ++, a general-purpose
framework that bridges the longstanding disconnect between
modern grey-box fuzzing and desktop GUI software. While
traditional fuzzers operate primarily over byte-level or spa-
tial input domains, GUIFuUzz++ formalizes GUI interac-
tions as operand-driven instructions, systematically translating
random bytes into actionable, logic-exercising GUI events.
Through a minimal yet expressive core instruction set and
integration with accessibility frameworks such as AT-SPI,
GUIFuzz++ supports both pixel-based and element-aware
interaction modes, along with built-in mechanisms to iso-
late fuzzing to the intended application context. Altogether,
GUIFuUzz++ enables mainstream fuzzers like AFL++ to
be seamlessly extended to GUI fuzzing—with negligible
intervention—providing the first scalable platform for effec-
tively uncovering GUI-induced defects in today’s rapidly-
evolving desktop software ecosystems, as demonstrated by
the 23 previously-unknown bugs it has discovered thus far.
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