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Abstract—Desktop applications represent one of today’s largest
software ecosystems, accounting for over 96% of workplace
computing and supporting essential operations across critical
sectors such as healthcare, commerce, industry, and government.
Though modern software is increasingly being vetted through
fuzzing—an automated testing technique for large-scale bug
discovery—a major component of desktop applications remains
universally under-vetted: the Graphical User Interface (GUI).
Existing desktop-based fuzzers like AFL++ and libFuzzer are
limited to non-GUI interfaces (e.g., file- or buffer-based inputs),
rendering them wholly incompatible with GUIs. Conversely,
mobile app GUI fuzzers like Android’s Monkey and iOS’s
XCMonkey rely on platform-specific SDKs and event-handling,
rendering them fundamentally unportable to the broader, more
complex landscape of desktop software. For these reasons, desk-
top GUI code remains largely under-tested, burdening users with
numerous GUI-induced errors that should, in principle, be just
as discoverable as any other well-fuzzed class of software bugs.

This paper introduces GUIFUZZ++: the first general-purpose
fuzzer for desktop GUI software. Unlike desktop fuzzers that
randomly mutate file- or buffer-based inputs, GUIFUZZ++
exclusively targets GUI interactions—clicks, scrolls, key presses,
window navigation, and more—to uncover complex event se-
quences triggering GUI-induced program errors. Central to our
approach is a novel GUI Interaction Interpreter: a middle-layer
translating fuzzer-generated random inputs into distinct GUI
operations, enabling successful non-GUI fuzzers like AFL++ to
be easily ported to testing GUIs. Beyond supporting today’s
most popular GUI development frameworks like QT, GTK, and
Xorg, we introduce a suite of enhancements capitalizing on ubiq-
uitous Software Accessibility Technologies, significantly boosting
GUI fuzzing precision as well as GUI bug-finding effectiveness.

We integrate GUIFUZZ++ as a prototype atop state-of-the-art
GUI-agnostic fuzzer AFL++, and perform a large-scale ablation
study of its fundamental components and enhancements. In an
evaluation across 12 popular, real-world GUI applications, GUI-
FUZZ++ uncovers 23 previously-unknown GUI-induced bugs—
with 14 thus far confirmed or fixed by developers.

I. INTRODUCTION

Desktop software—applications deployed on personal com-

puters or workstations—play an ever-growing role in our

modern digital age, representing over 96% of workplace

computing today [4]. As desktop software spans important

domains like healthcare, commerce, industry, and government,

its correctness directly impacts many of society’s most crit-

ical services. Unfortunately, program bugs remain a signifi-

cant challenge across today’s desktop computing ecosystems

(e.g., Linux, macOS, and Windows), burdening users with out-

right failures, and developers with costly remediation efforts.

In the race to proactively thwart bugs before they emerge post-

deployment, developers are increasingly turning to fuzzing:

an automated testing technique that scrutinizes software by

generating massive amounts of randomly-mutated test cases.

Fuzzers are uniquely engineered to target specific software

interfaces: the channels by which user input is passed into

a program—and ultimately triggers its bugs. For example,

popular fuzzer AFL [54] and its successor, AFL++ [10],

both focus on file-based interfaces, mutating on-disk files

and subsequently re-executing the target program on each

to uncover its aberrant runtime behaviors. Others, such as

libFuzzer [44] and Nyx [42], instead target memory-based

interfaces, such as API functions that consume buffered data.

As nearly all desktop software fuzzers are merely derivations

of these few “mother” fuzzers [37]—commonly AFL++ and

libFuzzer—they subsequently target the very same interfaces.

Yet, one crucial interface remains universally under-tested

across today’s ever-growing desktop software ecosystems:

the Graphical User Interface (GUI).

Given their prevalence among desktop software, GUIs un-

surprisingly are responsible for many program bugs. Public

issue trackers reveal numerous crashes stemming from unhan-

dled GUI-induced edge cases, plaguing applications as simple

as calculators [19] to those as complex as image editors [7],

3-D modeling tools [16], and web browsers [2]. Unfortunately,

existing desktop-based fuzzers like AFL++ are isolated to non-

GUI interfaces, with zero direct support for GUIs [10]. While

mobile SDKs offer built-in GUI testing (e.g., Android’s Mon-

key [24], iOS’s XCMonkey [22]), the diverse landscape of GUI

software in commodity desktop OSes—coupled with incom-

patible system-level event handling between these platforms—

impedes direct porting of mobile GUI fuzzers to desktop

ecosystems. Consequently, desktop GUI fuzzing currently

remains limited to cost-prohibitive commercial offerings (e.g.,

Ranorex [18], Squish [17]) or one-off, target-specific fuzzers

(e.g., GUIFuzz [9] for calc.exe), leaving an untold number of

GUI-induced bugs hidden among today’s critical desktop

GUI software ecosystems.

To overcome these challenges and unleash large-scale GUI

testing on desktop applications, this paper introduces GUI-

FUZZ++: the first general-purpose grey-box fuzzer for desk-

top GUI software. Unlike typical file- or buffer-mutating

fuzzers, GUIFUZZ++ systematically explores GUIs by mu-

tating its interactions—clicks, scrolls, key-presses, window

navigation, and more—facilitating discovery of complex GUI-

induced errors in diverse desktop applications. Central to GUI-

FUZZ++ is a novel Interaction Interpreter: a middle-layer for

translating fuzzers’ randomly-generated test cases into distinct



GUI operations, enabling conventional file- or buffer-mutating

fuzzers to be repurposed for desktop GUI fuzzing. We further

bolster GUIFUZZ++ by harnessing widely-available Software

Accessibility Technologies [13], significantly enhancing GUI

fuzzing precision and bug-finding effectiveness.

We implement GUIFUZZ++ atop today’s leading non-GUI

grey-box fuzzer, AFL++ [10], and evaluate its efficacy across

a diverse corpus of 12 real-world desktop applications on

Linux spanning popular GUI development frameworks such

as QT [6], GTK [12], and Xorg [15]. We empirically evaluate

GUIFUZZ++’s contributions and enhancements through a se-

ries of ablation studies, showing how its combined components

create an effective platform for discovering GUI bugs in desk-

top software. Notably, GUIFUZZ++ reveals 23 previously-

unknown GUI-induced bugs across 11 desktop applications,

of which 14 are so far confirmed or fixed by their developers.

Through the following contributions, this paper introduces

the first general approach for uncovering GUI-induced

bugs in today’s vast ecosystems of desktop GUI software:

• We examine the challenges of extending fuzzing to GUI-

based applications on desktop platforms such as Linux,

macOS, and Windows. We survey existing state-of-the-art

fuzzing approaches, and weigh their shortcomings with

respect to enabling systematic desktop app GUI fuzzing.

• We leverage our insights to design GUIFUZZ++: the

first general-purpose grey-box fuzzer for desktop GUI

software. We detail how GUIFUZZ++’s design facilitates

practical and far-reaching desktop GUI fuzzing, maintain-

ing high precision toward effective GUI bug discovery.

• We evaluate GUIFUZZ++’s capabilities through a series

of ablation studies across 12 popular Linux GUI ap-

plications spanning various software domains. We show

that GUIFUZZ++ enables effective GUI bug discovery,

culminating in the identification of 23 new GUI-induced

crashes, of which 14 are so far confirmed or fixed.

• We release GUIFUZZ++ in addition to all of our eval-

uation artifacts and benchmarks at the following URL:

https://github.com/FuturesLab/GUIFuzzPlusPlus.

II. BACKGROUND, RELATED WORK, AND MOTIVATION

This section introduces the fundamental topics related to

GUIFUZZ++: software GUIs, GUI-induced bugs, and the

challenges of fuzzing desktop GUI software.

A. GUIs: Graphical User Interfaces

Graphical User Interfaces (GUIs) are among the most

prevalent features in modern software, enabling complex ap-

plications to offer rich and intuitive user interactions: clicking,

dragging-and-dropping, scrolling, menu navigation, and much

more. Today’s GUI development market, valued at $885

million, is projected to surpass $2 billion by 2031 [47]. To

craft these interfaces, developers typically utilize dedicated

GUI development frameworks. Common examples include

cross-platform libraries like QT [6] and GTK [12], Android’s

Jetpack [26], and Apple’s UIkit [23].

Program Crash Type Brief Description Bug ID

Glaxnimate [3] Abort Text object properties #408

KolourPaint [30] Abort Double undo in new window #457915

LabPlot [31] Abort Fitting function data #372834

LibreCAD [36] Segfault Right click with move/copy #235

MATE-calc [38] Segfault “Not” on long hex value #114

PlotJuggler [8] Segfault Apply filter on curve #603

Umbrello [33] Segfault Cancelling seq diagram class #443580

TABLE I: Examples of known GUI-triggered bugs in desktop software.

Most GUI development frameworks employ a similar multi-

threaded architecture: a dedicated “main” thread updates the

user interface and dispatches GUI-issued events to the applica-

tion’s back-end, while one or more “worker” threads process

the application’s back-end operations. This separation is key

to ensuring that the interface remains responsive, even as

complex operations are handled in the background.

However, this design also brings unique challenges: thread

coordination can introduce subtle concurrency bugs [35], while

complex GUI component lifecycles can trigger temporal mem-

ory errors—both often surfacing only under specific interac-

tion sequences (Table I). Moreover, the inherent complexity

of GUIs, ranging from diverse user interactions and nested

sub-menus to transient pop-up screens and other application-

specific bottlenecks, poses major challenges to proactive bug

discovery. To address this, a substantial body of research

has emerged targeting GUI-induced errors in mobile app

ecosystems such as Android and iOS [24], [22]. Yet, while

these approaches have achieved great success in uncovering

GUI bugs within mobile apps, today’s ever-growing desktop

software ecosystems spanning Linux, macOS, and Windows

remain completely overlooked, with no comparable solutions

for discovering their GUI-related software defects.

B. Why Fuzzers Fail on Desktop GUI Software

Among today’s most proven approaches for software bug

discovery is fuzzing: an automated software testing tech-

nique that uncovers bugs by generating and mutating massive

amounts of test cases. Despite the variety of fuzzing tech-

niques available currently [10], [44], desktop applications—

accounting for over 96% of workplace computing needs to-

day [4]—lack any practical fuzzing solutions for uncovering

GUI-induced bugs. In the following, we survey contemporary

fuzzing solutions, assessing their key shortcomings with re-

spect to supporting GUI fuzzing for desktop-based software

ecosystems.

Desktop Application Fuzzers: Popular application fuzzers

like AFL [54], AFL++ [10], and honggFuzz [50] all target

file interfaces, mutating test cases as on-disk files that are

subsequently each fed to the program under test. Others

such as libFuzzer [44] and Nyx [42] instead target memory-

based interfaces, mutating in-memory data that is ultimately

read by API functions, respectively. Despite their proven

success, these mainstream grey-box fuzzers—the foundational

frameworks for most modern fuzzers [37]—lack any support
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Fig. 1: High-level visualization of GUIFUZZ++’s core GUI fuzzing workflow.

for GUI testing, instead concentrating on traditional file- and

memory-based program interfaces. Though recent advance-

ments attempt to bypass GUIs via automated program slicing

(e.g., Winnie [28]), these methods merely redirect testing to

typical file- or buffer-based interfaces, leaving bugs caused

by GUI interactions still undiscoverable.

Desktop Environment Fuzzing: EnvFuzz [39], a recent

grey-box fuzzing approach, instead mutates desktop applica-

tions’ environment-level interfaces such as configuration files,

fonts, themes, and sockets. While EnvFuzz has indeed been

applied to desktop GUI applications (e.g., calculators [20]),

it inherits conventional desktop fuzzing’s [10] limitation of

supporting only data-level interfaces, leaving it unable to

explore GUI interactions whatsoever. This limitation is further

reflected in EnvFuzz’s failure to uncover any genuine GUI-

induced bugs across its tested GUI applications [39].

Mobile App GUI Fuzzers: Although GUI testing continues

to see adoption in mobile ecosystems, fundamental differences

between underlying GUI frameworks, event-handling models,

and application architectures leave mobile app GUI fuzzers

unusable on desktop software. Mobile platforms typically

offer well-defined UI lifecycles and standardized GUI devel-

opment APIs, and consequently, mobile GUI fuzzers remain

tightly coupled with platform-specific SDKs (e.g., Android’s

Monkey [24], iOS’s XCMonkey [22]). In contrast, desktop

environments are highly heterogeneous, with diverse GUI

frameworks (e.g., Qt [6], GTK [12]) and interaction paradigms

(e.g., first-party vs. third-party windows) that lack centralized

control mechanisms. Moreover, desktop applications often rely

on complex, multi-window workflows as well as non-touch-

based inputs, further complicating automated testing. For these

reasons, mobile app fuzzers are neither currently used—

nor practically adaptable—for testing desktop-based GUIs.

Motivation: the need for a desktop-based GUI fuzzer.

As today’s fuzzers are universally unable to test desktop

GUI software, we aim to bridge the gaps between widely-

successful fuzzing platforms and desktop GUI targets.

We envision a world where desktop application GUIs are

fuzzable just as any other software interface, and thus

design a fuzzer to meet these capabilities: GUIFUZZ++.

III. GUIFUZZ++: CHALLENGES AND SOLUTIONS

To bridge the long-standing gap between conventional fuzz-

ing and GUI-based software, we introduce GUIFUZZ++:

the first system to extend general-purpose desktop fuzzing

platforms to support today’s diverse and complex desktop

GUI application ecosystems. In the following, we outline

the fundamental challenges that motivate GUIFUZZ++’s core

design (Figure 1), along with our corresponding solutions

aimed at enabling effective and scalable GUI fuzzing.

A. Challenge 1: Making Desktop Fuzzers Interact with GUIs

Unlike prior GUI testing tools which are tied to specific

targets [9] or platforms [24], GUIFUZZ++ aims for breadth

in supporting a wide range of desktop GUI software and

ecosystems. To achieve this, we draw inspiration from main-

stream desktop-based fuzzers like AFL++ [10] which, while

incompatible with GUIs, are by far today’s most far-reaching

and ubiquitous desktop software fuzzing tools in practice [45].

Our goal, thus, is extending these general-purpose fuzzers to

desktop GUIs—with the least modification necessary—via a

novel mechanism for directly translating their random inputs

into concrete GUI events: our GUI Interaction Interpreter.

Interpreting Fuzzer Inputs as GUI Events: Contemporary

desktop fuzzers such as AFL++ [10] and libFuzzer [44] oper-

ate at the byte level, generating a continuously-growing corpus

of random, string-based inputs. Using widely-available GUI

automation APIs [49], we thus see an opportunity to reinterpret

these inputs as sequences of GUI operations, analogous to



Op Structure Description of GUI Interaction

00 FF FF Close currently-active window, ignoring the last two operands.

01 CC FF Input the key press corresponding to the extended ASCII encod-
ing of primary operand CC, ignoring the second operand.

Ex: 01 7F FF → input extended ASCII key press “DEL”.

02 XX YY Click the location (X%, Y%) relative to the current window’s
dimensions, offset from its bottom-left coordinate (0,0).

Ex: 02 A0 1B → click relative position (62.5%, 10.5%).

03 XX YY Drag the cursor from its current position to the new position
(X%, Y%) relative to the current window’s dimensions, offset from
its bottom-left coordinate (0,0).

Ex: 03 00 80 → drag to relative position (0%, 50%).

NN AA BB All higher opcodes (i.e., 04–FF): normalize the opcode via
(NN % 4), reinterpreting the transformed opcode accordingly.

Ex: B2 2C 9F → reinterpret as click operation 02 2C 9F .

TABLE II: Overview of GUIFUZZ++’s core GUI operation grammar.

the randomized “monkey”-style GUI interaction testing that

has historically proven effective in mobile GUI fuzzing [24].

To enable this, we formalize fundamental GUI actions via a

minimal grammar of three-byte instructions, shown in Table II.

Upon receiving an input from the fuzzer, GUIFUZZ++

invokes its Interaction Interpreter—a component fully indepen-

dent of the fuzzer—parsing the input bytes according to our

GUI event grammar and dispatching corresponding actions. To

keep our grammar compact, our instruction set (Table II) de-

fines four core opcodes (i.e., 00–03), with any higher opcodes

normalized via modulo and mapped back into this defined

range. For instance, a three-byte sequence beginning with

opcode 06 is normalized to 02, and thus interpreted as a click

event. This simple normalization enables seamless integration

with the random byte sequences produced by existing fuzzers,

requiring no changes to their input generation logic.

Facilitating GUI Interaction: Central to our approach is

leveraging existing GUI automation and introspection capa-

bilities. Because many Table II instructions require window-

relative positioning, GUIFUZZ++ first queries the target ap-

plication’s window dimensions using native windowing APIs

provided by the host OS (e.g., x11-utils [14] on Linux). It

then executes the parsed GUI actions using cross-platform

automation libraries (e.g., PyAutoGUI [49]), which expose

generic primitives for mouse, keyboard, and window man-

agement. These readily available APIs allow GUIFUZZ++

to issue platform-agnostic GUI interactions, including higher-

level actions such as spawning or closing windows, without

the need for any application-specific instrumentation.

Breadth of GUI Interactions: Because GUIFUZZ++ aims

to avoid the overhead of program-specific static analysis or

tailoring, it operates using a minimal yet expressive set of core

events: window-closing, key presses, clicks, and drags. These

primitives form a functional superset capable of emulating a

wide range of GUI element-specific interactions. For example,

scrolling through a menu can be accomplished entirely via a

drag operation, allowing GUIFUZZ++ to explore substantial

interface behavior using just these basic inputs. Moreover,

our Interaction Interpreter is designed for easy extensibility

with new opcodes—and, as we demonstrate in § III-C—it

readily supports the integration of more targeted, element-

specific mutators toward higher-precision GUI exploration.

Solution 1: GUIFUZZ++ introduces a GUI Interaction In-

terpreter that enables conventional, GUI-agnostic desktop-

based fuzzers like AFL++ to be fully repurposed for GUI

fuzzing—without any need for costly reengineering.

B. Challenge 2: Handling Desktop-specific Window Obstacles

Unlike mobile platforms, desktop GUI fuzzing faces signifi-

cantly more obstacles from the proliferation of unwanted third-

and first-party windows, which disrupt fuzzing workflows and

pollute the interaction space. On mobile OSes, apps are typ-

ically sandboxed with strict lifecycle control [1], where only

one app is active in the foreground at a time, and popups or

overlays are generally constrained by platform-level guidelines

and permission models. In contrast, desktop environments

allow multiple overlapping windows from different processes

(e.g., update dialogs, crash reporters, or unrelated apps). Even

within a single program, modal dialogs, system alerts, and

nested windows may appear unpredictably. These extraneous

windows can intercept input, obscure the target interface, or

cause unintended side effects during fuzzing. In the following,

we detail GUIFUZZ++’s mechanisms for mitigating unwanted

third- and first-party windows to ensure interactions remain

focused on the intended application GUI.

Tackling Third-party Window Interference: To ensure

that GUI fuzzing remains confined to the intended application

window, GUIFUZZ++ records the target process’s PID, and

initiates GUI interactions only when the currently displayed

window matches that PID. Once a test case completes its

sequence of interactions, GUIFUZZ++ sends an interrupt

signal (SIGINT) to terminate the window, returning control to

the fuzzer to begin the next iteration. If the target or OS spawns

unwanted third-party windows (e.g., an update dialog or the

web browser), GUIFUZZ++ collects their PIDs and similarly

terminates each via SIGINT. Nearly all of GUIFUZZ++’s

window management logic resides within the GUI Interaction

Interpreter, with only two additional lines of code added to

AFL++ to capture the target application’s PID.

Tackling First-party Window Interference: While third-

party interference accounts for the majority of window-related

disruptions, we also observe several cases where first-party

windows—those spawned by the fuzzed application itself—

can impede fuzzing. Unlike third-party windows, these orig-

inate from the target process, and thus cannot be filtered out

using our PID-based third-party window filtering. The most

common example involves file browser dialogs, which are

often triggered by GUI actions such as clicking a SAVE or

OPEN button. These dialogs pose a particularly dangerous risk:

if the fuzzer inadvertently interacts with them, it may initiate

unintended operations on the host file system.

To mitigate this, we extend our use of GUI introspection

APIs (§ III-A) to heuristically detect and suppress such di-



alogs. Specifically, we scan for window titles containing com-

mon file-related keywords like LOAD, SAVE, and FILE, allow-

ing us to identify and preemptively close or bypass most file-

browser windows before they interfere with fuzzing execution.

As with our third-party window filtering, this mechanism

resides entirely within GUIFUZZ++’s Interaction Interpreter,

requiring no additional customization to the fuzzer itself.

Solution 2: GUIFUZZ++ mitigates unwanted window in-

terference with minimal changes to the underlying fuzzer,

leveraging its core window introspection APIs to find and

suppress signs of disruptive or extraneous GUI activity.

C. Challenge 3: Maintaining Precise Desktop GUI Interaction

A key challenge in GUI fuzzing is the disconnect between

screen coordinates and interactive elements, making arbitrary

interaction likely to miss actionable GUI components. While

mobile platforms aid fuzzers [24], [22] with built-in GUI

introspection APIs (e.g., Android’s AccessibilityService [25]),

desktop OSes lack such centralized mechanisms for intro-

specting GUI elements, leaving GUIFUZZ++’s interactions

unlikely to drive meaningful fuzzing progress. To overcome

this, we introduce a suite of enhancements leveraging emerg-

ing desktop-based Software Accessibility Technologies [13],

providing GUIFUZZ++ with a powerful means of directly

targeting GUI components toward more effective fuzzing.

Achieving GUI Introspection via AT-SPI: To meet the

needs of assistive devices such as screen readers, magnifiers,

and braille displays, recent years have seen the widespread

adoption of the Assistive Technology Service Provider Inter-

face (AT-SPI) [13]—the primary accessibility framework for

Linux desktop environments, with emerging support extending

to platforms like macOS. At a high level, AT-SPI exposes a hi-

erarchical view of an application’s GUI elements (e.g., buttons,

menus, and text fields), enabling accessibility tools to support

meaningful, non-visual navigation. With built-in support for

popular GUI toolkits such as GTK and Qt, AT-SPI offers a

robust foundation for external tools to inspect and reason about

interface structure—making it a natural fit for introspection-

driven enhancements within GUIFUZZ++.

Leveraging AT-SPI in GUI Fuzzing: To improve GUI-

FUZZ++’s GUI-interaction precision, we leverage AT-SPI’s

built-in recognition of standard GUI elements [13]. Accord-

ingly, we extend our GUI Interaction Interpreter with 11 new

operators targeting the fundamental classes of interactable

GUI elements (Table III): toggleables, selections, movables,

as well as general push buttons and user-controllable text

fields. Continuing from Table II, we assign each of these

11 new instructions a unique opcode, with normalization

similarly applied via modulo to bring any fuzzer-generated

higher-opcode instructions (e.g., 17) within GUIFUZZ++’s

full expanded instruction opcode range (i.e., 00–14).

Although GUIFUZZ++’s core clicking operation (Table II)

relies on window-relative positioning to find where to click,

AT-SPI exposes a deterministic tree of all currently-visible

Category Op Structure Element Type Visual Example

General 04 AA BB Pushable Button Submit

05 AA BB Text Entry Field Find ...

Toggleables 06 AA BB Checkbox Button Apply?7

07 AA BB On/Off Button On Off

Selections 08 AA BB Radio Button
Use Option 1
Use Option 2

09 AA BB Spinner Button Width: 4px
+
-

10 AA BB Table Cell Button % ÷+/-

11 AA BB Drop-down Item
Option 1 ½
Option 2
Option 3

12 AA BB Combination Box
Search: "width" ½

Option 2: Width
Option 1: Height

Movable 13 AA BB Scrollable Field
Field 2: value 2 
Field 3: value 3
Field 4: value 4 =

14 AA BB Sliding Selection
4 5 60 1 2 73

TABLE III: GUIFUZZ++’s AT-SPI enhanced interactions. As in Ta-
ble II, every operation is mapped to a three-byte structure: a sin-
gle opcode, followed by two operands AA and BB that reference
the GUI element’s position within the type-specific element list that
is exposed by AT-SPI and updated alongside the GUI. Similarly,
higher opcodes are normalized to range 00–14 via (NN % 15).

For example, sequence 58 00 04 is normalized to 13 00 04 , and thus
interpreted as an interaction on the fourth-indexed scrollable field element.
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Fig. 2: Example visualization of an AT-SPI [13] dynamically-generated GUI
element tree for a simple drawing app. In order to use the AT-SPI tree,
GUIFUZZ++ flattens it into a list of each type of element (e.g., push button
and menu item from Table III). Different operators select different types of
elements, and the operands are subsequently used to index into the list.

GUI elements, enabling operand-guided targeting for GUI-

FUZZ++’s enhanced interactions as well. Namely, each el-

ement type in Table III is accessed via a click, with the



instruction’s final two operands used to index into a type-

specific list of matching elements (Figure 2). GUIFUZZ++

constructs these lists dynamically—re-polling AT-SPI’s tree

of GUI elements after each dispatched GUI interaction—and

flattening all same-type nodes from the AT-SPI tree, enabling

fast, deterministic element selection. If the resulting index

exceeds the list’s bounds, GUIFUZZ++ wraps it via modulo

to ensure a valid target. This design allows GUIFUZZ++ to

precisely fetch specific GUI elements even as the interface

evolves at runtime, offering far more fruitful GUI fuzzing

compared to blind, on-screen pixel clicking.

Solution 3: GUIFUZZ++ overcomes GUI interaction im-

precision through a suite of AT-SPI–assisted operations,

enabling targeted, element-aware interactions that signifi-

cantly improve the effectiveness of desktop GUI fuzzing.

IV. IMPLEMENTATION

We implement GUIFUZZ++ atop state-of-the-art grey-box

fuzzer AFL++ [10] v4.21c, enabling GUIFUZZ++’s inheriting

of AFL++’s rich ecosystem of fuzzing enhancements. Below,

we detail the technical integration of GUIFUZZ++’s core

components within the AFL++ platform.

A. Fuzzing Process Execution

Like all AFL-based fuzzers, GUIFUZZ++ resets the tar-

get process for new test cases via forkserver-based pro-

cess cloning [53], enabling higher fuzzing throughput than

slower from-scratch process creation [46]. Beyond executing

the target, we configure AFL++ to additionally launch our

GUI Interaction Interpreter (§ III-A), which we implement

via Python’s PyAutoGUI framework [49]. All other fuzzer

execution steps—code coverage collection, crash recognition,

and inter-process communication—are left as-is in AFL++’s

core, underscoring GUIFUZZ++’s lightweight design. In total,

our changes to AFL++’s core span just eight lines of code.

Importantly, GUIFUZZ++ supports any AFL-compatible

bug oracle (e.g., flagging error-revealing process signals like

SIGFPE) or sanitizer (e.g., AddressSanitizer [43]), following

the same compile-time instrumentation and target preparation

steps as conventional non-GUI fuzzing workflows [10], [44].

B. Test Case Mutation and Trimming

Since AFL++’s [10] in-house mutators modify test cases

at bit- and byte-level, they will overwhelmingly break the

three-byte structure of our GUI operations (§ III-A), leading

to invalid interactions—and fruitless fuzzing. To address this,

we implement a GUI-aware mutator, ensuring that mutations

(e.g., modifications, insertions, and splices) occur strictly on

well-formed GUI interactions. We further extend this to test

case trimming, ensuring that incremental deletions similarly

preserve GUI operation structures. As GUIFUZZ++’s muta-

tion and trimming are both implemented via AFL++’s Custom

Mutator API [10], no changes are needed to AFL++ itself.

C. Supported Software and Desktop Platforms

While our current prototype of GUIFUZZ++ targets GUI

software in Linux environments, we anticipate its portability

to other platforms supportive of AFL++ and PyAutoGUI [49]

such as macOS, and extensible to AFL-like fuzzers on plat-

forms not directly supported by AFL++, such as WinAFL [55]

for Windows. We posit that the only platform-specific compo-

nent of GUIFUZZ++ is the retrieval of the active window’s

PID and dimensions. Fortunately, nearly all modern OSes

expose APIs for this functionality via their respective window-

ing subsystems (e.g., x11-utils on Linux [14], PyObjC/Quartz

on macOS [40], and PyWin32 on Windows [21]), enabling

GUIFUZZ++ to merely swap-out these components.

Although the accessibility framework driving GUI-

FUZZ++’s higher-precision fuzzing (§ III-C), AT-SPI [13],

sees best support for GTK- [12] and QT-based [6] GUIs,

GUIFUZZ++ remains fully functional without it. This allows

grey-box GUI fuzzing to be deployed across a wider range

of targets—even in the absence of accessibility integration.

V. EVALUATION

Our evaluation of GUIFUZZ++’s desktop GUI fuzzing

capabilities is guided by the following fundamental questions:

Q1: How does GUIFUZZ++’s grey-box fuzzing compare to

traditional black-box GUI fuzzing?

Q2: To what extent does GUIFUZZ++’s AT-SPI-enhanced

interaction improve GUI fuzzing?

Q3: Is GUIFUZZ++ effective at finding new GUI-induced

bugs in desktop GUI software?

Benchmarks: Table IV shows our evaluation benchmarks.

We evaluate GUIFUZZ++ on 12 open-source Linux-based

GUI programs spanning a variety of application domains. To

assess GUIFUZZ++’s support across today’s diverse desktop

GUI ecosystems, we include benchmarks spanning three dis-

tinct GUI development frameworks: Qt [6], GTK [12], as well

as Xorg [15]. We compile all applications with AFL++’s built-

in source-level compilers (e.g., afl-clang-fast).

Program Description Base GUI

Dia [27] Graphic Design GTK

Glaxnimate [3] Animation Qt

KCalc [29] Calculator Qt

KolourPaint [30] Image Editor Qt

LabPlot [31] Data Plotting Qt

LibreCAD [36] 3-D Modeling Qt

MATE-calc [38] Calculator GTK

PlotJuggler [8] Data Plotting Qt

QCAD [41] 3-D Modeling Qt

Skrooge [32] Finance Qt

Umbrello [33] UML Editor Qt

XCalc [52] Calculator Xorg

TABLE IV: Our desktop-based GUI fuzzing evaluation benchmarks.

Experiment Setup & Infrastructure: As there are zero

fuzzers broadly supportive of desktop GUI software today, our

evaluation seeks to understand the influence of GUIFUZZ++’s



Program C1: Grey-box w/ AT-SPI C2: Grey-box w/o AT-SPI C3: Black-box w/ AT-SPI C4: Black-box w/o AT-SPI

Speed CodeCov Bugs Speed CodeCov Bugs Speed CodeCov Bugs Speed CodeCov Bugs

Dia 2491.2 12990.4 0 1631.6 12074.8 1 3154.0 12101.4 0 3047.0 11364.8 0

Glaxnimate 2562.6 34312.2 2 2850.2 30537.2 0 6625.6 30890.0 0 7374.0 29405.3 0

KCalc 2546.8 8013.8 1 2914.5 7616.4 1 7212.6 6625.0 1 6364.6 5473.8 2

KolourPaint 1859.8 5845.2 3 2019.4 4880.0 1 5579.4 5615.2 2 7595.8 4988.8 1

LabPlot 2190.0 25170.6 3 2588.8 25114.0 2 4647.8 26402.6 2 6037.0 27732.2 1

LibreCAD 2001.6 39613.6 1 2453.3 38703.3 1 6760.2 39076.8 0 8453.4 36529.4 0

MATE-calc 1989.0 1196.6 0 2421.0 1349.0 0 5542.8 1353.4 0 6490.0 1359.6 2

PlotJuggler 2411.2 17979.8 1 1968.2 16342.2 1 5389.2 17083.6 1 5697.6 16201.0 1

QCAD 2647.0 61598.0 0 3020.2 61568.4 1 7075.6 61734.2 0 6928.2 61626.4 0

Skrooge 1754.8 33794.2 0 1575.0 34052.6 0 6040.4 33550.4 0 7822.2 32642.4 0

Umbrello 2279.0 23431.0 5 3243.4 17900.8 3 6854.0 20335.8 1 8110.0 16693.6 2

XCalc 6344.8 441.8 2 5560.0 441.4 2 28078.8 440.6 2 27887.2 439.8 2

GEOMEAN: 2431.4 12079.5 1.9 2536.9 11409.2 1.3 6572 11635.3 1.4 7555.6 10961 1.5

TABLE V: Per-configuration mean fuzzing speed (i.e., test case throughput), mean target code coverage (i.e., control-flow edges), and total manually-
deduplicated bugs per benchmark. Bolded values indicate the best-performing configuration with respect to each evaluated metric per benchmark.
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Fig. 3: Five-trial mean coverage over time for GUIFUZZ++’s four configurations. We normalize coverage based on the top-ranked competitor per benchmark.

key constituent parts. Accordingly, we set up GUIFUZZ++

in four fundamental configurations: (C1) grey-box mode with

AT-SPI, (C2) grey-box mode without AT-SPI, (C3) black-box

mode with AT-SPI, and (C4) black-box mode without AT-SPI.

We seed all fuzzing campaigns with a single sequence of 33

randomly-generated GUI interactions. Following the fuzzing

evaluation standard established by Klees et al. [34], we fuzz

each benchmark for five 24-hour trials per configuration. We

deploy all fuzzing experiments within 20 KVM-based Ubuntu

virtual machines, run atop a 24-core Ubuntu 22.04 workstation

with 64G RAM and an Intel i9-12900K CPU.

Post-processing Results: We evaluate all GUIFUZZ++

configurations on the following metrics: speed via test case

throughput, depth via code coverage, and true GUI-induced

bugs uncovered. We measure code coverage as control-flow

edges via AFL++’s built-in afl-showmap tool [10], and fur-

ther plot mean normalized coverage in Figure 3. For bugs, we

perform manual analysis to deduplicate fuzzer-found crashes

into their per-configuration unique bugs. We calculate and

report all means as geometric means.

A. Q1: Grey-box vs. Black-box Desktop GUI Fuzzing

As GUI fuzzing has historically relied heavily on black-

box testing [24]—eschewing any target-level feedback about

test case significance (e.g., code coverage)—we evaluate GUI-

FUZZ++’s performance in both traditional black-box and more

modern grey-box (i.e., coverage-guided [10]) fuzzing modes.

Since GUIFUZZ++’s underlying fuzzer, AFL++, is inherently

not a black-box fuzzer, we modify it to emulate black-box

behavior by continuing to save all coverage-increasing test

cases on disk, but refraining from actually using that coverage

information during the fuzzing process. This strategy enables

us to accurately measure code coverage even in the absence

of coverage-guided exploration. Beyond code coverage, we

also compare both modes’ execution speeds (measured by test-

case throughput) and their total fuzzer-reported unique crashes.

Table V summarizes these results side-by-side per benchmark.

Outcomes: As shown in Table V, GUIFUZZ++’s black-box

configurations (C3 and C4) consistently achieve the highest

test case throughput across all benchmarks, with grey-box

configurations (C1 and C2) never surpassing them in speed.

However, this performance advantage does not translate to

effectiveness: black-box fuzzing yields lower code coverage—

outperformed in 9 of 12 benchmarks—and fewer bugs, with

grey-box mode discovering more issues in 7 of 12 applications.

Interestingly, we observe that the few cases where black-

box mode excels in bug discovery involve simpler applications

with more constrained interaction spaces: namely, the MATE-

calc [38] and KCalc [29] calculators. These results suggest

that black-box fuzzing’s speed is best suited for lightweight

GUIs, whereas grey-box fuzzing is better-equipped to navi-

gate complex, bug-prone paths in larger applications. Overall,

by supporting both modes, GUIFUZZ++ enables flexible,



target-tailored fuzzing strategies that adapt to the structure

and complexity of today’s diverse desktop GUI applications.

Q1: GUIFUZZ++ adapts to target GUI complexity, fa-

cilitating black-box speed for simple apps, and grey-box

precision for deeper bug discovery in more complex ones.

B. Q2: Impact of GUIFUZZ++’s Enhanced GUI Interaction

To determine whether GUIFUZZ++’s AT-SPI-enhanced

GUI interaction (§ III-C) improves desktop GUI fuzzing

effectiveness, we further evaluate GUIFUZZ++ both with

and without AT-SPI enabled. As in § V-A, the test case

throughput, code coverage, and fuzzer-reported unique crashes

per configuration–benchmark pairing are shown in Table V.

Outcomes: As Table V shows, GUIFUZZ++’s AT-SPI-

assisted configurations (C1 and C3) face significant runtime

overhead—being outperformed in throughput by their AT-SPI-

agnostic counterparts (C2 and C4) on 8 of 12 benchmarks. We

posit this is expected, as AT-SPI integration incurs additional

costs from both rendering the accessibility tree as well as

invoking GUIFUZZ++’s targeted GUI-aware mutators.

Despite this cost, AT-SPI-assisted fuzzing proves valuable:

it achieves higher code coverage in 9 of 12 applications—and

in many cases, seeing consistently-higher coverage throughout

fuzzing (Figure 3)—indicating that richer GUI introspection

enables exploration of deeper, more complex interaction paths

that are otherwise missed by GUI-agnostic modes. This benefit

extends to bug discovery as well: when paired with grey-box

guidance, AT-SPI-enhanced fuzzing finds the most bugs on

four benchmarks, surpassing the next-best configuration, grey-

box without AT-SPI (C2), which leads on only two. Altogether,

these results demonstrate that while AT-SPI slows execution,

it greatly boosts both code coverage and bug-finding

in interface-rich applications—solidifying GUIFUZZ++’s

effectiveness in GUI-focused fuzzing campaigns.

Q2: GUIFUZZ++’s AT-SPI integration trades raw speed

for deeper exploration—unearthing more bugs and behav-

iors invisible to GUI-agnostic desktop GUI fuzzing.

C. Q3: Discovery of GUI-induced Bugs in Desktop Apps

Lastly, we manually deduplicate all fuzzer-reported unique

crashes per each of GUIFUZZ++’s evaluated configurations,

obtaining the final set of real-world bugs uncovered by GUI-

FUZZ++. We follow standard practice in fuzzing literature

for crash deduplication [34], employing AddressSanitizer-

based [43] stack-trace bucketing. Table VI lists all GUI-

induced bugs found in our evaluation, alongside their revealing

GUIFUZZ++ configuration and current reporting status.

Outcomes: As shown in Table VI, GUIFUZZ++ uncovers

a total of 25 GUI-induced bugs across 11 real-world desktop

GUI applications, with 23 being previously-unreported GUI-

induced errors. Figure 4 breaks down the distribution of unique

bugs across different fuzzing configurations, highlighting that

ID Program Bug Type Brief Desc. New Status

01 Dia Bad Free Color area (transient) 7 µ
02 Glaxnimate Segfault Improper closing 7 §
03 Glaxnimate Segfault Invalid cut/pastes 7 §
04 KCalc Invalid Ptr Inserting open parent 7 �
05 KCalc Segfault Left bit shift overflow

06 KolourPaint Heap UAF Specific tools with undo 7 �
07 KolourPaint Segfault Buggy bug report menu 7 §
08 KolourPaint Segfault Shortcut settings dropdowns 7 §
09 KolourPaint Segfault Print preview zooming 7 §
10 LabPlot Invalid Ptr Invalid column insert 7 µ
11 LabPlot Heap UAF Pinning spreadsheets 7 µ
12 LabPlot Heap UAF Pinning matrices 7 µ
13 LibreCAD Heap UAF Invalid plugin usage 7 µ
14 LibreCAD Heap UAF Consecutive points 7 µ
15 MATE-calc Bad Free Invalid square roots
16 MATE-calc Bad Free Empty inverse trig functions 7 µ
17 PlotJuggler Segfault Quickly close button docker 7 §
18 QCAD Segfault Tool use in multiple sheets 7 §
19 Umbrello Segfault Birds eye after discard 7 µ
20 Umbrello Heap UAF Multiple sequence diagrams 7 µ
21 Umbrello Heap UAF Undo after discard 7 µ
22 Umbrello Segfault Print Preview after discard 7 µ
23 Umbrello Segfault Cut on empty diagram 7 µ
24 XCalc FPE Invalid modulus 7 §
25 XCalc FPE Invalid modulus 7 §

TABLE VI: All GUI-induced bugs uncovered by GUIFUZZ++, alongside
a brief description of their bug-triggering semantics and reporting statuses
(µ = fixed by developers, � = confirmed and waiting fixing, § = pending).
For brevity, we classify bugs #04 and #10 as “Invalid Pointer” errors, and
follow AddressSanitizer’s [43] crash taxonomy for all remaining bugs.

each configuration surfaces distinct issues—and underscoring

the importance of GUIFUZZ++’s support for tailoring fuzzing

strategies to the characteristics of the target application.

Fig. 4: Per-configuration GUI bugs found by GUIFUZZ++. Bug IDs corre-
spond to those listed in Table VI (C1 = Grey-box w/ AT-SPI, C2 = Grey-box
w/o AT-SPI, C3 = Black-box w/ AT-SPI, C4 = Black-box w/o AT-SPI).

In the remainder of this section, we present several represen-

tative case studies that showcase the depth and diversity of

bugs exposed by GUIFUZZ++.

Case Study 1: LibreCAD (bug #13). GUIFUZZ++ un-

covered a heap user-after-free in LibreCAD [36] triggered

by the following high-level operations: selecting the “Same

Properties” plugin from the Plugins menu, placing an angle

on the canvas using the Angle tool, and then beginning a two-

point line with the Two Points tool, spanning a total of eight

distinct GUI interactions (Figure 5).

This bug was confirmed and patched by developers on



Fig. 5: LibreCAD crash from an eight-sequence interaction: (1) Plugins
(click), (2) Same Properties (click), (3) Lines Menu (click), (4)
Select Angle (click), (5) Place Angle (drag), (6) Lines Menu (click),
(7) Select Two Points (click), and (8) Place Two Points (drag).

the same day it was reported. The root cause lies in the

“Same Properties” plugin, which attempts to copy attributes

from one diagram entity to another. A call to the plugin’s

finish() method triggers a segfault, as it prematurely deal-

locates objects still in use by the partially drawn two-point line.

Because this line is incomplete, the plugin encounters invalid

state during cleanup. Notably, this bug was only exposed

under GUIFUZZ++’s AT-SPI-enhanced configuration. This is

likely due to the need for precise sequencing of submenu

interactions—such as selecting transient plugin entries—which

are rarely triggered through random UI exploration alone.

Case Study 2: LabPlot (bug #11). GUIFUZZ++ finds

another use-after-free in LabPlot [31] triggered by the

following four-sequence interaction (Figure 6): clicking

Pin Active Tab, opening the Spreadsheet menu, and

selecting column #2 in the data browser. This bug, confirmed

by the LabPlot developers one week after reporting, stems

from incorrect usage of the Qt [6] docking API. When a dock

widget is pinned, it is removed from its parent QDockArea.

If this removal leaves the dock area empty, the area itself is

destroyed. Later, when interacting with the spreadsheet col-

umn, LabPlot attempts to access this now-destroyed dock area,

resulting in a segmentation fault. This issue was uncovered

only in GUIFUZZ++’s grey-box configuration, suggesting that

coverage-guided exploration was necessary to navigate the

specific conditions leading to the crash.

Case Study 3: Umbrello (bugs #19, #21, #22). GUI-

FUZZ++ revealed a series of Umbrello [33] crashes during

fuzzing, triggered by different UI actions following diagram

deletion. These crashes stem from a missing null check: when

a user discards changes, Umbrello deletes the active diagram

but fails to update or reset internal state, leaving no valid

diagram selected. Triggering sequences include when the user

opens a new diagram and makes a change (e.g., adds a line

or class), then clicks New and chooses to discard the current

changes, and finally attempts to invoke actions such as Print

Preview (e.g., Figure 7), Bird’s Eye View, Undo, or

interacts with the Command History.

Fig. 6: LabPlot crash stemming from a four-sequence interaction: (1) Pin
(click), (2) Matrix (click), (3) Column 1 (click), then (4) Cell 2,2 (click).

Fig. 7: Umbrello crash with root cause stemming from a six-sequence GUI
interaction: (1) Canvas (click), (2) Canvas (click), (3) Ok (click), (4) Open
(click), (5) Discard (click), (6) Print Preview (click).

Each of these operations assumes a valid diagram is present,

triggering distinct SIGSEGV faults when dereferencing the

null pointer. The exact crash varies by action, revealing a

broader flaw in Umbrello’s state management following di-

agram disposal. While these bugs were discovered across all

configurations, a greater number surfaced during grey-box runs

(Table V), suggesting that coverage-guided exploration is more

effective at uncovering deeper, state-dependent bugs.

Developer Responses: While several bugs remain under

review at the time of writing (Table VI, many were acknowl-

edged and confirmed by developers within days to a week

of reporting—underscoring their reproducibility and practi-

cal significance. Collectively, these case studies showcase

GUIFUZZ++’s effectiveness at surfacing real, high-impact

GUI bugs in desktop applications, many of which stem

from complex GUI interaction sequences that GUIFUZZ++’s

supported fuzzing modes are uniquely equipped to explore.

Q3: GUIFUZZ++’s structured GUI interactions and ap-

plication introspection enables its discovery of non-trivial

GUI bugs—broadening the reach of fuzzing into the rich,

event-driven behaviors of modern desktop applications.



VI. DISCUSSION & THREATS TO VALIDITY

In the following, we weigh several limitations of our pro-

totype implementation of GUIFUZZ++.

Improving Runtime Throughput: While conventional

grey-box application fuzzing has seen numerous advancements

for increasing speed toward accelerating bug discovery [46],

[56], GUI fuzzing is inescapably much slower due to GUI-

specific bottlenecks—namely, the high resource cost from

rendering the GUI itself. Though some application-specific

runtime bottlenecks seem mitigable (e.g., on-launch splash

screens), we posit there is non-trivial engineering needed

to build a generalizable way of (1) pinpointing and (2)

successfully cutting-out these components without breaking

the overall application. As such, we leave exploring potential

optimizations for desktop GUI fuzzing to future work.

Supporting Other Interactions: Our current prototype’s

click-oriented GUI interactions (e.g., Table III) currently focus

on left-clicks, though extending GUIFUZZ++ to right-clicks

is straightforward. However in practice, we observe right-

click menus largely expose redundant functionality (e.g., Cut,

Copy, Paste) that is already accessible through left-

click–navigable menus (e.g., Edit→ Cut), so omitting right-

clicking does not meaningfully impact most GUI fuzzing.

Likewise, while GUIFUZZ++’s key-pressing interactions cur-

rently issue just single-key presses, extending support to multi-

key combinations requires only minimal modification. We plan

to explore these in future extensions to GUIFUZZ++.

Generality to Other Platforms: Although GUIFUZZ++’s

current prototype remains Linux-specific, many of its com-

ponents already are cross-platform—or are easily swapped-

out with their platform-specific counterparts—as we discuss in

§ IV-C. Importantly, GUIFUZZ++ specifically targets desktop-

based OSes, and intentionally avoids mobile OSes (e.g., An-

droid, iOS) or tablet ones (e.g., iPadOS), as we expect that

these platforms’ already-mature GUI fuzzing tools [22], [24]

remain a better fit for their respective GUI app ecosystems.

While we do plan to explore GUIFUZZ++’s porting to other

desktop platforms like macOS and Windows, we leave this

engineering and requisite re-evaluation to future work.

Generality to Other Applications: To mitigate risk of

bias and overfitting, we evaluate GUIFUZZ++ across a wide

range of targets (Table IV) spanning diverse types of GUI

applications: calculators, multimedia, financial, data analysis,

and computer modeling. Additionally, these applications are

built atop three of today’s most popular GUI development

frameworks—Qt [6], GTK [12], and Xorg [15]—further under-

scoring the generality of GUIFUZZ++’s fundamental approach

across diverse ecosystems of desktop GUI software.

Since GUIFUZZ++ builds on existing fuzzing frame-

works [10], it can be applied to closed-source GUI binaries

as well (e.g., Tesla’s Qt-based infotainment software [51]),

provided that the base fuzzer and underlying program in-

strumentation supports them. However, we expect certain

GUIFUZZ++ modes (e.g., grey-box mode, AT-SPI [13]) likely

require additional adaptation to work on closed-source targets.

Further, while we foresee many opportunities in extending

GUIFUZZ++ to other GUI-based application domains be-

yond our present evaluation set—such as video games, web

browsers, or an aircraft avionics software—many domain-

specific orthogonal challenges need solving first. For example,

web browsers are large, multi-threaded codebases, yet multi-

threading often deteriorates the stability of general grey-

box fuzzing [5]. Similarly, video games likely require many

new game-tailored bug oracles for non-crashing bugs (e.g.,

glitching-into Super Mario’s “Minus World” [11], [48]). Oth-

ers, such as avionics software, call for porting from their

niche platforms (e.g., PowerPC) to more tool-friendly ones

like Linux. Nonetheless, with solutions to these obstacles, we

anticipate that GUIFUZZ++ and future follow-on solutions

will be ready to fuzz these and other important GUI domains.

VII. CONCLUSION

In this work, we introduce GUIFUZZ++, a general-purpose

framework that bridges the longstanding disconnect between

modern grey-box fuzzing and desktop GUI software. While

traditional fuzzers operate primarily over byte-level or spa-

tial input domains, GUIFUZZ++ formalizes GUI interac-

tions as operand-driven instructions, systematically translating

random bytes into actionable, logic-exercising GUI events.

Through a minimal yet expressive core instruction set and

integration with accessibility frameworks such as AT-SPI,

GUIFUZZ++ supports both pixel-based and element-aware

interaction modes, along with built-in mechanisms to iso-

late fuzzing to the intended application context. Altogether,

GUIFUZZ++ enables mainstream fuzzers like AFL++ to

be seamlessly extended to GUI fuzzing—with negligible

intervention—providing the first scalable platform for effec-

tively uncovering GUI-induced defects in today’s rapidly-

evolving desktop software ecosystems, as demonstrated by

the 23 previously-unknown bugs it has discovered thus far.
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