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Abstract—Amid the rise of heterogeneous computing and

concerns over systems and application security, developers

are increasingly embracing transpilers: a growing class of

tools for converting code from one programming language

into another. As languages differ greatly in constructs, syn-

tactic sugar, security mitigations, and more, transpilers face

difficulties in faithfully translating software between source

and target languages—sometimes causing outright failures,

or worse, subtle-yet-incorrect execution behavior. Proactively

testing transpilers’ correctness is thus critical to the success

of code-translation-oriented development tasks, but unfortu-

nately, no effective techniques currently exist. Although fuzz-

testing appears a natural fit, current general-purpose fuzzing

tools mostly generate invalid, junk code that fails to engage

transpilers’ core translation logic; while dedicated compiler

fuzzers cannot keep pace with the ever-expanding set of

languages targeted by existing and emergent transpilers. Thor-

oughly vetting transpilers’ correctness thus demands a fuzzing

approach combining the reach of general-purpose fuzzing—

with the precision of dedicated compiler fuzzers.

This paper presents TETRIS: a general-purpose fuzzer for

testing source-to-source code transpilers. At its core, TETRIS

bridges the flexibility of general-purpose fuzzing, abstracting

away language-level differences into a unified interface for fine-

grained code mutations, with the precision of compiler fuzzers

by rigorously enforcing syntactic and semantic correctness.

Relying solely on minimal language specifications, TETRIS

supports fuzzing of any transpiler—irrespective of input or

output language—producing high-quality programs that ex-

tensively probe its underlying translation logic. In an evalua-

tion against four state-of-the-art fuzzers across seven popular

transpilers for C, Go, and Haxe, TETRIS is the only solution

to uphold both high language validity and high transpiler code

coverage—whilst supporting the broadest range of transpilers.

Moreover, TETRIS reveals the most code translation bugs—

all 12 of which were previously unknown—underscoring its

effectiveness in vetting today’s diverse transpiler ecosystem.

1. Introduction

Transpilers, or source-to-source translators, are an emer-
gent class of code processors designed to rewrite software
from one programming language to another—preserving
its functionality whilst adapting it to the target language’s
syntax and semantics. Though early automated code trans-

lation primarily centered on web application development
(e.g., translating to JavaScript [40] or WebAssembly [60]),
transpilers are rapidly gaining popularity in critical systems
and application use cases such as platform-to-platform soft-
ware migration [43], [39], [7], [28], security retrofitting for
legacy code [32], and maintaining cross-platform interoper-
ability [19], [46], [5]. Among the most prominent translation
efforts today are DARPA’s initiatives for rewriting C code
into Rust [11], notably through its funding of industrially-
developed transpilers [26]. Nowadays, transpilers exist for
a wide range of languages, including translating C to
Rust [26], Go [52], [27], and Zig [29]; Go to Haxe [54];
as well as Haxe to C++ [22] and Python [23].

Maintaining code equivalence is critical to successful
transpilation, necessitating precise handling of syntax and
semantics between source and target languages. Yet, tran-
spilation is fraught with difficulty. Different languages face
disagreeing constructs, making one-to-one mapping seldom
achievable. For example, C’s use of goto statements is
unmatched by Rust, burdening translators with the non-
trivial challenge of reconstructing C control flow into equiv-
alent idiomatic Rust. Moreover, differences in typing, such
as C’s implicit type conversions versus Go’s requirement
for explicit casting, necessitate careful handling to ensure
all edge cases are covered. Thus, as software translation
errors risk introducing unexpected program behavior—or
producing completely broken or otherwise unusable code—
thoroughly vetting the correctness of transpilers is vital
to the success of translation-oriented development tasks.

Fuzzing, or fuzz-testing, has historically seen
widespread adoption in automated software bug detection,
with numerous successful applications targeting various
types of code processors, including compilers [58],
decompilers [35], and disassemblers [44]. Unfortunately,
no current fuzzers are well-suited to testing transpilers.
Existing general-purpose fuzzers [16], [20], [9], while
supportive of virtually all transpilers today, struggle to create
syntactically- and semantically-valid test cases, leaving
them unable to exercise transpilers’ core translation logic.
In contrast, though dedicated compiler fuzzers [58], [36]
generate high-quality test cases, their rigid input structure
models and mutations restrict them to only individual
languages (e.g., C [58])—leaving them unsupportive
of the broader transpiler ecosystem that spans multiple
programming languages (e.g., Go [27], Haxe [22], Zig [29]).
Ensuring correctness of translation-oriented development



tasks thus demands a comprehensive testing strategy
combining both general-purpose fuzzing’s reach—with
dedicated compiler fuzzers’ precision.

To tackle this challenge, this paper introduces TETRIS:
the first general-purpose fuzzer targeting source-to-
source transpilers. Guided by the key tradeoffs between
general-purpose and compiler-dedicated fuzzers, we design
TETRIS as an all-in-one platform for flexible transpiler
fuzzing. To achieve breadth, TETRIS unifies language-
specific differences through a shared intermediate repre-
sentation, enabling language-aware mutations that system-
atically explore a wide range of translation edge cases
without requiring manual re-engineering per each language.
To achieve depth, TETRIS combines language grammars
with lightweight semantic constraints, allowing it to generate
well-formed, semantically-valid test cases comparable in
quality to those produced by compiler fuzzers. Together,
these capabilities make TETRIS a practical and extensible
solution for fuzzing transpilers—irrespective of their input
or output languages—bringing automated bug discovery
to an ever-growing, ever-critical software ecosystem that
has, so far, lacked any form of dedicated fuzzing support.

We evaluate TETRIS on seven real-world transpilers
spanning a diverse set of source-to-target language pair-
ings: C2Rust [26] (C→Rust), CxGo [52] and C4Go [27]
(C→Go), Zig Translate-C [29] (C→Zig), Go2Hx [54]
(Go→Haxe), HxCpp [22] (Haxe→C++), and HxPy [23]
(Haxe→Python). We compare TETRIS to four state-of-
the-art fuzzers: general-purpose AFL++ [16], Polyglot [9],
and AFL-Compiler-Fuzzer [20]; as well as compiler fuzzer
CSmith [58]. Across five day-long campaigns, TETRIS
achieves language validity only slightly below that of C-
specific fuzzer CSmith—yet outperforms general-purpose
fuzzers Polyglot, AFL++, and AFL-Compiler-Fuzzer by
6–31×—supporting all seven transpilers without any re-
engineering effort for any of them. In total, TETRIS dis-
covers 12 new transpiler bugs across seven real-world
transpilers—the most in our evaluation—with all since
confirmed and/or fixed by developers.

In summary, we make the following contributions:
• We distill the challenges of fuzzing source-to-source tran-

spilers; and assess the trade-offs faced by conventional
general-purpose as well as dedicated compiler fuzzers in
supporting them—highlighting the need for a principled
approach combining these approaches’ strengths to en-
hance both the breadth and precision of transpiler testing.

• We tackle these challenges through designing TETRIS: a
general-purpose fuzzer for testing correctness of source-
to-source code translators—irrespective of input language.

• We evaluate TETRIS on seven real-world code transpilers
spanning a multitude of input-output language pairs—C
to Rust, C to Go, C to Zig, Go to Haxe, Haxe to C++, and
Haxe to Python—alongside four state-of-the-art fuzzers:
AFL++, Polyglot, AFL-Compiler-Fuzzer, and CSmith.

• We show that, throughout 5×24-hour fuzzing campaigns
per transpiler, TETRIS outperforms conventional general-
purpose as well as dedicated compiler fuzzing tools in
upholding both test case validity and high code coverage,

whilst finding the most bugs across multiple transpilers.
• We manually analyze and report all bugs uncovered in

our evaluation. Of TETRIS’s 12 newly-uncovered bugs,
all are confirmed or fixed by their respective developers.

• We open-source our prototype TETRIS, and all evaluation
benchmarks and artifacts at the following URL:
https://github.com/FuturesLab/TeTRIS.

2. Background & Related Work

This section provides an overview of source-to-source
transpilers, defects emerging during code translation, and the
challenges involved in testing the correctness of transpilers.

2.1. Source-to-Source Code Transpilers

Transpilers (short for “transcompilers”) are an emergent
class of automated language processors that convert source
code from one programming language to another, facili-
tating easier, automation-assisted migration across differing
technology stacks [26] and platforms [22]. Today, a rapidly
growing ecosystem of transpilers now addresses a wide
range of source-to-source translation needs. C2Rust [26]
is a prominent example, translating C to Rust and inspir-
ing follow-on tools focused on concurrency [24], memory
safety [13], [12], as well as lighter-weight translation [34].
Other efforts include C-to-Go transpilers (e.g., CxGo [52],
C4Go [27]), as well as tools targeting more recent lan-
guages such as Zig [29] and Nim [42]. Additionally, some
ecosystems—such as Fusion [17] and Haxe [22]—natively
support multi-target transpilation to a broad set of languages.
While implementations vary, most transpilers share a com-
mon structure consisting of four key steps, as outlined below.

2.1.1. Step 1: Source AST Generation. Transpilation be-
gins with parsing the input program’s source into an initial
abstract syntax tree (AST), representing the code’s overall
syntactic structure. For example, given C function declara-
tion double sum(int x, float y), the AST is pop-
ulated with unique nodes for the function name, return type,
and all parameters. Analyses are also performed to capture
the source language’s semantics. For example, static type
checking on the expression (x+y) may reveal an implicit
type conversion on x, prompting the AST to be annotated
with additional type information to reflect this coercion.
Similarly, other analyses (e.g., recognition of higher-level
constructs [54], object lifetimes [26]) produce their own
annotations, bridging the transpiler’s understanding of the
source program’s syntax and semantics.

2.1.2. Step 2: Intermediate AST Transformation. With
the source AST in hand, an intermediate AST is constructed
to explicitly capture any semantic or structural differences
between the source and target languages. Central to this
is identifying which source language data types and con-
structs are unsupported in the target language, and rewriting
them into semantically-equivalent forms conformant to the
target language. For example, Go’s stricter type system
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prohibits C’s implicit type conversions, such as int p =

(4>5); to address this, CxGo [52] introduces a custom
library function [51] in the intermediate AST to explicitly
convert booleans to integers, ensuring compatibility with
Go’s type requirements. Similarly, Rust lacks C’s goto

unconditional branching, requiring transpilers to rewrite
such instances as Rust-supported match cases, as shown
in Figure 1. Through meticulously handling cross-language
nuances, a transpiler’s intermediate AST transformations lay
the groundwork for accurately adapting the original program
logic to the syntax and semantics of the target language.

1 if (y < 5) {
2 goto LABEL_RES;
3 }
4 if (x < 20) {
5 goto LABEL_END;
6 }
7 LABEL_RES:
8 res = x∗y;
9 LABEL_END:

10 return res;

(a) Input code in C.

1 if y < 5
2 { cur_blk = 1; }
3 else if x < 20
4 { cur_blk = 2; }
5 else
6 { cur_blk = 1; }
7 match cur_blk {
8 1 => { res = x∗y; }
9 _ => {}

10 } return res;

(b) Output code in Rust.

Figure 1: goto-using C program and semantically-equivalent Rust version.

2.1.3. Step 3: Final AST Generation & Refinement.
After translating the intermediate AST into a preliminary
version of the target-language AST, a final refinement pass is
performed to ensure that the resulting code conforms to the
target language’s syntactic rules and semantic requirements,
such as type correctness and idiomatic usage. This typically
involves AST-level optimizations such as simplifying nested
expressions and eliminating dead code for improved read-
ability and performance; resolving type discrepancies, such
as inserting explicit casts when required by the target lan-
guage (e.g., converting integers to floating-point types); and
enforcing idiomatic compliance, such as replacing pointer
arithmetic in C with safe reference constructs in Rust.
Through these careful refinements, transpilers ensure that the
generated code not only behaves correctly, but also aligns
with the target language’s best practices, resulting in cleaner,
more efficient, and maintainable output code.

2.1.4. Step 4: Target Code Generation. With the refined
target-language AST in hand, transpilers proceed with gen-
erating the final target language source code by system-
atically translating each AST node into its corresponding
textual syntax. Unlike the previous step, which focused
on adapting program structure to the target language’s se-
mantics, this phase emphasizes producing concrete, human-
readable code that adheres to the language’s grammar, for-
matting, and naming conventions. Beyond preserving the
original program’s logic, transpilers strive to meet the per-
formance and stylistic expectations of the target ecosystem,
with the aim of enabling seamless integration of the trans-
lated code within existing toolchains. This balance between
semantic fidelity and idiomatic expression is exemplified by
CxGo’s translations of Potrace [53] and PortableGL [31],
which maintain both compatibility and runtime efficiency.

2.2. Errors in Code Translation

While transpilers ideally perfectly translate programs
into their targeted language, accurate code translation is
fraught with difficulty. To better understand the challenges
faced by transpilers, we survey recent publicly-reported
errors across eight mainstream transpilers covering a va-
riety of input and output language pairs. After analyzing
each of their root causes, we observe that these transpiler
bugs fall into three distinct high-level categories (Table 1):
(1) Syntactic Errors, (2) Type Conversion Errors, and
(3) Code Fragment Omissions. We detail these each below.

Bug Type Transpiler Brief Error Description Iss. ID

CxGo Mis-included variable re-declaration #42

C2Go Mis-recovered switch-case values #848

C2Nim Mis-recovered struct members #217

HxCpp Mis-recovered null array in callee #746

Syntactic

Zig Translate-C Mis-recovered array type and size #21192

C2Rust Mis-recovered int→float conversion #486

Zig Translate-C Mis-recovered bool→int conversion #20005
Type

Conversion
Zig Translate-C Mis-recovered int→bool conversion #20638

C2Go Unrecovered struct name #886

C4Go Unrecovered unary operator #482

C2Nim Unrecovered standard int types #240

C2Rust Unrecovered bitfield struct #183

C2Rust Unrecovered call instruction #896

Go2Hx Unrecovered array size #19

Code

Fragment

HxCpp Unrecovered optional int arguments #225

TABLE 1: Known transpiler translation bugs. Iss.ID = GitHub issue ID.

2.2.1. Type 1: Syntactic Errors. Variations in syntax rules
between source and target languages can lead to transla-
tion errors, such as incorrect ordering or misinterpretation
of syntax elements, resulting in non-compilable code. For
example, in Figure 2, the translated Go code incorrectly re-
declares variable x within the same scope, causing a com-
pilation error. This issue arises because the CxGo transpiler
fails to accurately translate the C macro in lines #1–2. While
this macro is indeed valid in C—permitting variable re-
declaration within separate block scopes—CxGo mistakenly
treats these declarations as occurring within the same scope,
producing syntactically-invalid Go code.

1 #define func(arg)
2 { int x = arg; }
3 if (0) {
4 func(5);
5 func(6);
6 } (a) Input C.

1 if false {
2 var x int = 5
3 _ = x
4 var x int = 6
5 _ = x
6 } (b) CxGo output.

Figure 2: CxGo issue #42: error resulting from re-declaration of local x.

2.2.2. Type 2: Type Conversion Errors. Due to differ-
ences in how data types are defined, used, and cast across
languages, transpilers may struggle to maintain type con-
sistency in the translated code. For example, in Go and
Zig, an if condition must explicitly be of boolean type.
In contrast, C implicitly converts integers in if conditions
to booleans, treating non-zero values as true and zero as
false. In Figure 3, consider the C macro on line #1, where
the condition is implicitly treated as true in the ternary op-
eration. However, when translated to Zig via its Translate-C
transpiler, the if condition incorrectly retains the integer
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type directly, even though Zig requires that conditions be
explicitly converted to bool (e.g., @as(bool,2)) [62].
This mismatch underscores the challenges of accurately type
conversions across languages during transpilation.

1 #define func(x) (2 ? 4 : 8)

(a) Input C.

1 fn func(x: anytype) c_int (
2 return if (@as(c_int, 2))
3 @as(c_int, 4);
4 else
5 @as(c_int, 8);
6 ) (b) Zig Translate-C output.

Figure 3: Zig issue #20005: mis-recovery of implicit boolean as an integer.

2.2.3. Type 3: Code Fragment Errors. Unlike the errors
rooted in syntactically-invalid code or incorrect type con-
versions, transpilers may also emit code that is syntactically
valid—but semantically wrong from missing code fragments
such as calls, arguments, or operators, resulting in output
that fails to match the original code’s behavior. For instance,
in Figure 4, the C function call --func(); on line #6 ends
up entirely omitted in the Rust code generated by C2Rust.
This omission occurs because C2Rust incorrectly identifies
the function call as an unnecessary operation, given that its
result is not directly used. However, this oversight fails to
account for the function’s effects at execution time—such
as updating the global g on line #2—leading to incorrect
runtime behavior in the translated Rust code.

1 int func() {
2 g = 1;
3 return g;
4 }
5 int main() {
6 -func();
7 } (a) Input C.

1 fn func() −> c_int {
2 g = 1 as c_int;
3 return g;
4 }
5 fn main() {
6 //-func();
7 } (b) C2Rust output.

Figure 4: C2Rust issue #896: erroneous omission of call -func().

2.2.4. Takeaways. As Table 1 shows, current transpilers en-
counter significant challenges, ranging from obvious errors
that impede transpiled programs from even being usable
(e.g., Types 1 & 2), to more subtle semantic errors revealed
only through divergent runtime behavior (e.g., Types 2 & 3).
Moreover, differing implementations further increase the
likelihood of inconsistencies; for example, C2Rust relies on
a Clang-based preprocessor [38] to parse and type-check
C source, while CxGo uses a custom-built C compiler
frontend [56]. Without a standard to guide the internal
strategies of transpilers, these varied approaches make con-
sistent accuracy across tools difficult to guarantee. Thus, a
comprehensive, automated approach is needed to accel-
erate identification—and further, timely resolution—of the
increasingly-complex code translation errors across today’s
ever-growing transpiler ecosystems.

3. Motivation: Obstacles to Transpiler Fuzzing

Although real-world code seems like the natural start-
ing point for testing transpilers, its reliance on unsup-
ported constructs makes it a non-starter for uncovering

translation bugs. For example, C2Rust [26] cannot translate
C’s inlined/variadic functions, SIMD, or packed structs,
while Go2Hx [54] omits Go’s concurrency features. As
these unsupported constructs halt transpilation altogether,
they obscure the subtle translation errors that occur within
otherwise-supported features (e.g., Figure 1). Consequently,
relying on real-world code is ineffective for exposing tran-
spiler bugs, motivating the need for a dedicated testing
approach tailored to source-to-source transpilers.

With extensive adoption across industry, fuzzing (or
“fuzz-testing”) has emerged as by far today’s most practical
and successful automated testing strategy for large-scale
software bug discovery [49], [16]. Yet, despite numerous
available fuzzers, none comprehensively support tran-
spilers—leaving transpiler developers without an effective
means to vet code translation correctness. Below, we exam-
ine the fuzzer categories most relevant to transpiler testing—
(1) general-purpose fuzzers and (2) compiler fuzzers—
and highlight their limitations in achieving systematic, prac-
tical fuzzing of today’s diverse source-to-source transpilers.

3.1. Transpiler-relevant Fuzzing Techniques

With no dedicated fuzzer for transpilers today, transpiler
developers frequently turn to general-purpose options like
AFL++ [16] and Polyglot [9], or to compiler-dedicated ones
such as CSmith [58]. Table 2 provides an overview of these
techniques, which we further discuss below.

3.1.1. General-purpose Fuzzers. At their core, general-
purpose fuzzers provide broad testing capabilities for nearly
any program input format—or in the case of transpilers—
any input language. Most of these fuzzers rely on mutational
input generation, dynamically modifying inputs to create
diverse and expansive test case corpora. AFL++ [16] and lib-
Fuzzer [48] are among today’s most popular general-purpose
fuzzers, having identified thousands of bugs across a wide
range of software domains. Moreover, recent years have also
seen the emergence of newer general-purpose fuzzers specif-
ically tailored to language processors—primarily compilers,
though equally applicable to transpilers. AFL-Compiler-
Fuzzer [20], for example, performs syntax-aware string mu-
tations using regular expressions; while Polyglot [9] instead
utilizes language grammars to generate programs confor-
mant to the given target’s input language syntax.

3.1.2. Dedicated Compiler Fuzzers. Efforts to test lan-
guage compilers have increasingly turned to dedicated com-

piler fuzzers—tools that generate well-formed inputs de-
signed to rigorously probe compilers’ front-ends (e.g., code
parsing) and back-ends (e.g., code optimizations). These
fuzzers typically perform grammar-aware mutations that
conform to the syntax of the target language, incorporating
additional specialized restrictions to also maximize semantic
validity. Examples include CSmith [58] and YARPGen [36],
which have uncovered numerous bugs in C compilers such
as LLVM [33]. While primarily built for compilers, these
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tools also see occasional use in transpiler testing. For exam-
ple, CSmith-generated programs have been used to evaluate
C-to-Rust transpilers such as C2Rust [25], given their ability
to produce diverse, semantically-sound input programs.

3.2. Fundamental Design Considerations

While fuzzing offers a promising way of systematically
uncovering translation errors, existing fuzzing tools were not
designed with transpiler testing in mind. To understand how
current fuzzers can be adapted—or what new capabilities
are required—we survey current techniques and identify
three fundamental design considerations that directly impact
their suitability for transpiler fuzzing (Table 2): (1) Lan-
guage Agnosticism, (2) Minimal Language Specification,
and (3) Code Validity. Below, we discuss the significance of
each—and derive a criteria for defining fuzzing approaches
best-suited to practical, effective transpiler testing.

Fuzzer Name
C1: Lang
Agnostic

C2: Min
Langspec

C3: Code
Validity

AFL++ [16] 7 n/a :

libFuzzer [48] 7 n/a :

AFL-Compiler-Fuzzer [20] 7 n/a :

Polyglot [9] 7 7 7

CSmith [58] : : 7

YARPGen [36] : : 7

TETRIS (our approach) 7 7 7

TABLE 2: Conventional fuzzers and their fundamental tradeoffs with
respect to transpiler fuzzing. n/a: specifications irrelevant to that fuzzer.

3.2.1. Consideration 1: Language Agnosticism. A central
challenge in fuzzing transpilers is the need to support a wide
range of source–to-target language pairs. General-purpose
fuzzers like AFL++ [16] treat inputs as raw byte streams,
making them broadly applicable but prone to generating
invalid code. Similarly, general-purpose language-processor
fuzzers like Polyglot [9] apply mutations based on user-
provided specifications, offering flexibility to any language.
In contrast, dedicated compiler fuzzers such as CSmith [58]
remain hardcoded to individual languages and require sig-
nificant non-trivial re-engineering to be extended to others.
This lack of portability severely limits compiler fuzzers’
utility for transpiler fuzzing, where multi-language support
is essential. A practical solution must strike a balance: it
should remain independent of any specific language while
retaining enough structural awareness to generate meaning-
ful, valid test cases across diverse language pairs.

Fuzzer
Fuzzer Component Size (LOC)

Core C Spec Go Spec Haxe Spec

CSmith [58] 38,988 n/a n/a

Polyglot [9] 7,016 1,508 n/a n/a

TETRIS 5,601 811 797 785

TABLE 3: Total code lines of fuzzing core and per-language specifications
for compiler fuzzer CSmith, general-purpose language processor fuzzer
Polyglot, and TETRIS. n/a: language unimplemented by that fuzzer.

3.2.2. Consideration 2: Minimal Language Specification.
Most language processor fuzzers rely on hand-crafted spec-

ifications to bootstrap their generation of syntactically-

and semantically-valid programs. As shown in Table 3,
CSmith [58] includes tens of thousands of lines of C-
specific code generation logic—making reuse difficult and
extension to new languages impractical. In contrast, Poly-
glot [9] requires lightweight specifications consisting of
only language grammars and accompanying semantic an-
notations, enabling far easier adaptation across languages.
For transpiler fuzzing, where broad language coverage is
essential, such specification overhead is a major scalability
barrier. A practical solution must minimize per-language
specification effort, ideally leveraging existing grammars to
support high-quality generation with minimal customization.

3.2.3. Consideration 3: Code Validity. While compiler
fuzzers such as CSmith [58] remain the gold standard
for code validity due to their language-specific designs,
general-purpose fuzzers like AFL++ mutate inputs indis-
criminately at the string level—ignoring language syn-
tax and semantics (e.g., floatx=3.1;→f#âtx>3.1;).
AFL-Compiler-Fuzzer exhibits similar issues, often produc-
ing syntax-breaking mutations (e.g., inty=3;→inty=;),
resulting in test cases that rarely reach the transpiler’s core
logic. While Polyglot improves syntactic validity via its
specification-guided mutation, its semantic validity remains
low—as little as 20%—due to errors such as duplicate
declarations. As a result, it only marginally improves test
coverage of transpiler translation behavior. For effective
transpiler fuzzing, it is essential to generate inputs that are
both syntactically valid and semantically sound, ideally
through lightweight, generalizable mechanisms rather than
brittle, language-specific infrastructure.

Motivation: Current fuzzers either fail to generate
valid code, or cannot easily support today’s many tran-
spilers across different programming languages, leav-
ing transpilers’ core logic—and bugs—occluded. Ef-
fectively testing transpilers thus demands a versatile
fuzzing approach that combines (1) the flexibility
of general-purpose fuzzers with (2) the correctness
of compiler-dedicated ones—extending comprehensive
testing across today’s growing transpiler ecosystems.

4. TeTRIS: Design & Implementation

To make systematic transpiler fuzzing practical and
effective, we introduce TETRIS—Testing Transpilers
Regardless of Input Source—a language-agnostic transpiler
fuzzer capable of generating syntactically- and semantically-
valid inputs comparable to those of dedicated compiler
fuzzers. Unlike real-world code, which often breaks transla-
tion outright due to transpiler-unsupported language features
(§ 3), TETRIS automatically generates synthetic, targeted
programs that focus on transpilers’ supported features, un-
covering the subtle bugs that would otherwise remain hid-
den. In the following section, we detail our underlying tran-
spiler fuzzing methodology, as well as the design decisions
behind our prototype implementation of TETRIS.
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1. AST Parsing & Lifting 2. Structural Mutation

3. Mutation Resolution4. Concretize Test Case

Seed Input Programs

Transpiled Final Program

Differential Execution

Grammar and Semantics

2.c

Input Source Neutral AST Targeted Mutators Intermediate AST

Finalized AST Scope ResolutionInstrumentation Finalized Source

S → xA | yS
A → yA | zB

B → z

Basic: void, char

Int: int, short, long

Float: float, double

3.c
1.c

int func1 () {
  int i1=12;
  float f1=2.1;
  char c1='a';  
  int i3=1995;
}

int i1=12;
float f1=2.1;
int i2= FIXME
     % i1 >> 2;

(int) f1int func1 () {
  int i1=12;
  float f1=2.1;
  int i2= (int) f1
        % i1 >> 2;
}

int func1 () {
    ...

printf(i1,f1,i2);
}

Figure 5: TETRIS: our general-purpose transpiler fuzzer. Shown are TETRIS’s four steps in a setup targeting an arbitrary C-processing transpiler.

4.1. Overview

Figure 5 illustrates TETRIS’s overall workflow.
TETRIS prioritizes syntactic validity by applying construct-
level mutations directly on a unified, language-agnostic
abstract syntax tree (AST) representation of the program
(Step 1), enabling seamless support for diverse transpiler
input languages. To preserve semantic validity, it applies
targeted mutators (Step 2) guided by precise scope and type
resolution (Step 3). The mutated AST is then re-rendered
into a complete source program (e.g., Go for Go2Hx [54]),
with differential-testing instrumentation inserted to detect
runtime divergences between the original and transpiled
outputs (Step 4). In addition to behavioral mismatches,
TETRIS captures other failure modes—such as transpiler
crashes and post-translation errors—systematically identi-
fying all observable indicators of translation defects. We
describe each of these phases in detail below.

4.2. AST Lifting and Structural Code Mutations

As Figure 5 shows, TETRIS begins by selecting an input
program from the user-provided seed corpus, and lifting its
source into a corresponding AST—represented as a binary
tree with each node containing an order, type, operator, and
value, along with contextual details such as data types (e.g.,
if it is a variable or function prototype) and its scope hierar-
chy (e.g., global-, function-, or statement-level scope). While
many fuzzers are built around hardcoded, language-specific
AST parsing (e.g., GrayC’s [14] reliance on LLVM’s C-to-
AST parsing [37]), our approach prioritizes generality: we
implement AST parsing atop the Bison [10] and Flex [45]
frameworks, enabling language-agnostic parsing requiring
only a BNF (Backus–Naur form) source language grammar.

In the following, we detail TETRIS’s subsequent pro-
gram mutation procedures and explain how they work to-
gether to produce diverse, well-formed programs that effec-
tively test the core translation logic of transpilers.

4.2.1. Source Construct Dictionary. As other language
processor fuzzers [14], [59], TETRIS performs mutations
to mix-and-match different source language constructs. To

support this, it performs AST parsing on all user-provided
seed programs to populate an internal dictionary of source
construct samples, analogous to a biological “gene pool”
of code samples. Examples of recovered constructs in-
clude string and numeric literals (e.g., int x = 0x4000),
control-flow statements (e.g., goto LABEL), and sub-
expressions (e.g., dim_x + dim_y). At a high level,
these samples serve as the fundamental building blocks for
TETRIS’s subsequent code mutations, described below.

Mutator Name Description and Targeted Source Constructs

Replace operator with language-permitted operator.
REPLACE-OPERATOR

Targets: arithmetic/bitwise/unary/logical/relational ops.

Replace string and numerical literals with a random value.
REPLACE-LITERAL

Targets: all global and local literals.

Replace explicit cast with language-permitted alternative.
RECAST-EXPLICIT

Targets: all global and local variables.

Expand a left or right sub-expression with a new one.
EXPAND-EXPRESSION

Targets: all expressions’ left or right sub-expressions.

Replace an entire statement with another.
SWAP-STATEMENT

Targets: all statements.

Delete an entire statement.
DELETE-STATEMENT

Targets: all statements.

TABLE 4: Overview of TETRIS’s source construct-level mutators.

4.2.2. Construct-level Mutation. After populating its in-
ternal dictionary of source elements, TETRIS performs
randomized construct-level mutations (Table 4). These mu-
tations operate at the granularity of syntactically-meaningful
AST nodes—such as if statements, goto branches, or
expressions—to preserve syntax and avoid the errors that
plague general-purpose fuzzers (§ 3.2.3). TETRIS targets
a wide range of such constructs, drawn from categories
common across many languages, including statements, ex-
pressions, literals, operators, and typecasts. For example,
TETRIS’s SWAP-STATEMENT replaces full statements (e.g.,
substituting p++ with an if block, Figure 6), while
REPLACE-LITERAL substitutes literal values with randomly
chosen alternatives. While additional language-specific mu-
tators are possible (e.g., manipulating C dispatch tables),
our current implementation focuses on constructs common
across many languages to maximize generality.

4.2.3. Language Specifications. Beyond syntactic correct-
ness, TETRIS must also preserve the semantics of the input
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1 if ( p > 0 ){
2

3 p++;
4 var = p;
5

6 }
(a) Seed program.

1 if ( p > 0 ){
2 if( _ <= 100 ){
3 _−−;
4 _ = _+_+_;
5 }
6 }

(b) After mutation.

1 if ( p > 0 ){
2 if (q+p <= 100 ){
3 var−−;
4 var = p+q+var;
5 }
6 }

(c) After resolution.

1 if( p > 0 ){
2 if( q+p <= 100 ){
3 var = (int)((float)(q+var)
4 + (float)(p+q+var));
5 }
6 }

(d) After successive mutation/resolution.

Figure 6: Side-by-side example visualizing TETRIS’s successive operations on a single seed input.

1 BasicIntTypes: [
2 int, short, short int,
3 unsigned short int,
4 long int, long long int,
5 unsigned long int,
6 unsigned long long int
7 ],
8 BasicFloatTypes: [
9 float, double

10 ], (a) C Semantics.

1 BasicIntTypes: [
2 int, uint,
3 int8, uint8,
4 int16, uint16,
5 int32, uint32,
6 int64, uint64,
7 ],
8 BasicFloatTypes: [
9 float32, float64

10 ], (b) Go Semantics.

Figure 7: Example data type semantics for both C and Go.

language, ensuring that source constructs interact meaning-
fully to produce well-formed programs that transpilers will
accept and correctly process. Inspired by prior specification-
guided fuzzers [9], [61], TETRIS augments off-the-shelf
language grammars with lightweight semantic annotations

to enforce both construct-level semantic rules—applicable
across multiple languages—as well as language-level con-
straints specific to individual languages.

As illustrated in Figure 7, these annotations encode
valid type combinations (e.g., permissible integer types in C
and Go) and are consulted during mutation (e.g., RECAST-
EXPLICIT in Table 4) to ensure that type compatibility is
preserved. This helps avoid many of the semantic errors,
particularly type-related ones, that frequently undermine
prior general-purpose fuzzers [9], [20]. We further impose a
set of lightweight restrictions—external to TETRIS’s core
mutation engine—that guard against common semantic pit-
falls. For example, as shown below, rule #1 prevents the
duplication of declaration-bearing statements, which repre-
sent a frequent source of re-declaration errors in tools like
Polyglot [9]. Others, shown below, enforce language-specific
constraints, such as Go’s ban on prefix increment operators
and Haxe’s requirement for using cast() syntax:

• Construct-level: Any statements bearing variable or func-
tion declarations must not be duplicated.

• Construct-level: Any inserted else statements must be
immediately preceded by an if statement.

• Construct-level: To avoid infinite loops, any inserted
gotos must target a downstream branch label.

• Construct-level: To avoid infinite recursion, any inserted
call must not target the current function.

• Language-level: Accommodate Go’s prohibition of pre-
fixed increments and decrements (e.g., ++x) [55].

• Language-level: Accommodate Haxe’s requirement of
wrapping all typecasts via its cast() function [21].

Importantly, these annotations impose minimal overhead
within TETRIS, irrespective of the target language—
especially when compared to the extensive, multi-thousand-
line specifications at the core of compiler fuzzers such
as CSmith (Table 3). TETRIS relies only on lightweight,

language-specific inputs: a grammar and a corresponding set
of semantic annotations. Together, these enable broad lan-
guage support with fewer than 1,000 lines of configuration
per target. This low specification burden enables TETRIS
to scale efficiently across diverse transpilers, requiring only
a few hours of effort per specification in our experience.

4.3. Scope and Type Resolution

Since TETRIS’s mutators insert code constructs directly
from its construct dictionary, the resulting intermediate syn-
tax tree often includes references to out-of-scope variables.
Left unresolved, these can lead not only to undeclared iden-
tifiers, but also to type errors, as expressions may reference
variables with unknown or mismatched types. To address
this, we implement a scope and type resolution system that
accurately tracks both function-local and global program
scopes. We describe its design below.

4.3.1. Scope and Type System. TETRIS’s scope and type
systems work synergistically to correctly populate all vari-
able slots carved-out by our construct-level AST mutations
(e.g., Figure 6b). A type map assigns each type a unique
identifier: primitive types (e.g., int) are drawn from the
semantic specification (Figure 7), while composite types
(e.g., functions) record richer structure such as names, argu-
ments, and return values. In parallel, a scope tree organizes
visibility, with the global scope as the root and each scope-
creating construct introducing a child. Each scope node
maintains a symbol table of declared variables annotated
with their type identifiers, and variables are visible along
the path from the current node to the root.

To resolve each variable slot, TETRIS processes ex-
pressions one at a time by traversing the scope chain
and collecting declared variables by type from the current
scope’s symbol table and from enclosing scopes (i.e., outer
conditionals, the parent function, and the global scope). In
Figure 6b, this yields three integer variables p, q, and var,
which TETRIS then uses to populate randomly-constructed
expressions. When resolving the assignment expression at
line 4, TETRIS first selects a type identifier from the avail-
able set and then chooses a variable of that type, excluding
function identifiers with matching return types. Through
this process, the type map disambiguates variables from
functions and enables type-correct, scope-consistent expres-
sions (e.g., “var = p + q + var” in Figure 6c), which
in turn evolve into more complex forms after successive
mutations, resolutions, and typecasts, as shown in Figure 6d.

Although we considered reusing Polyglot’s scope and
type system, its limited coverage and frequent inference
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errors prompted us to develop a more robust and accurate
implementation. TETRIS’s scope and type systems improve
on Polyglot’s in several key ways:

• Retrieval: TETRIS retrieves all code objects, while
Polyglot maxes-out at 15 statements. Unlike Polyglot,
TETRIS adds additional parsing to also retrieve function-
level struct and pointer declarations, and arrays.

• Disambiguation: TETRIS disambiguates code identifiers
(e.g., function names) from data, while Polyglot often
mistakenly treats code as data (e.g., main += 1).

• Structs: TETRIS recovers struct objects, their mem-
bers, and pointers to them; while Polyglot misinterprets
and erroneously treats them as functions and variables.

Post-resolution, TETRIS’s generated AST is syntactically
and semantically finalized (Figure 6c), and ready for con-
cretization. Overall, TETRIS’s scope and type systems
facilitate realistic intertwining of many different program
data sources (e.g., variables, expressions, and globals)—
challenging transpilers’ meticulous parsing and recovery
of their semantics—and as our evaluation shows (§ 5),
revealing more transpiler bugs than any other fuzzer.

4.4. Test Case Concretization

With the finalized test case AST in hand, TETRIS
begins generating the final concrete program that will be
passed to the transpiler. During this process, it instruments
the code to support differential execution, which serves as
one of our eventual bug oracles (§ 4.5). We detail this below.

4.4.1. Differential Testing Instrumentation. Like other
differential fuzzers [50], [59], TETRIS introduces a suite of
global “shadow” variables initialized with random values;
and additionally, it designates a primary target function
and injects a routine to capture the runtime states of these
shadow variables, enabling semantic equivalence checks
between the original and transpiled programs. As mutations
proceed, various logical operations modify these global
variables’ states in diverse data-dependent ways, rigorously
testing transpilers’ accuracy in program logic reconstruction.

Should transpilation succeed, we instrument both the
source and translated programs with their language-

specific printing routines: printf() for C, cout for
C++, fmt.Printf() for Go, sys.println() for
Haxe, print() for Python, println!() for Rust, and
std.debug.print() for Zig. By instrumenting the
source and transpiled code separately, we avoid burdening
transpilers with the impractical task of translating entire
shared libraries (e.g., libc) that contain source-specific
print functions—an issue that would derail TETRIS’s
fuzzing process. Once instrumentation is complete, both pro-
grams are ready for differential execution and comparison.

4.5. Identifying Translation Bugs

Following test case generation, TETRIS evaluates tran-
spiler correctness using a series of pre- and post-translation

checks designed to uncover potential translation bugs—even
when no output code is successfully produced.

• Runtime Divergences: As in prior compiler [58] and
decompiler fuzzing [59] works, we classify cases where
the original and transpiled programs produce differing
runtime outputs as likely code translation errors, reflecting
semantic divergence introduced during transpilation.

• Post-translation Failures: Many known transpiler bugs
(Table 1) result in code that either fails to compile or
crashes at runtime. We log such post-translation build or
execution failures as probable translation errors, even in
the absence of runtime output comparison.

• Intra-translation Failures: Finally, we flag any cases
where the transpiler itself crashes or raises an internal
error during translation. While not producing output code,
such failures still expose bugs within the transpiler’s
translation logic or front-end analysis.

By capturing these distinct error classes, TETRIS facili-
tates detection of both obvious and subtle translation bugs.
Combined with its language-agnostic design, TETRIS en-
hances the reach and effectiveness of transpiler fuzzing,
establishing a robust foundation for uncovering diverse
translation flaws across multiple programming languages.

4.6. Implementation

We implement TETRIS atop grey-box fuzzer
AFL v2.56b, integrating our custom mutators, type
and scope system, and BNF grammars with corresponding
annotations for the three transpiler input languages
TETRIS currently targets: C, Go, and Haxe. We modify
AFL’s test case generation and post-processing phases to
incorporate our modifications. Where possible, we utilize
AFL’s QEMU-based [6] code coverage tracing to enable
feedback-guided grey-box transpiler fuzzing, but also
support a feedback-agnostic black-box where not.

5. Evaluation

We evaluate TETRIS’s effectiveness in fuzzing a suite of
real-world transpilers against four leading general-purpose
and compiler-dedicated fuzzers. Our overall evaluation is
guided by the following fundamental research questions:

• RQ1: Is TETRIS effective at generating valid inputs?
• RQ2: Can TETRIS more thoroughly test transpilers?
• RQ3: Does TETRIS uncover more translation bugs?

5.1. Experimental Setup

We evaluate TETRIS on seven real-world tran-
spilers spanning six input–output language pairings:
C2Rust [26] (C→Rust); CxGo and C4Go (C→Go);
Go2Hx [54] (Go→Haxe); HxCpp [22] (Haxe→C++);
HxPy (Haxe→Python); and Zig Translate-C [29] (C→Zig).
We evaluate it against two state-of-the-art general-
purpose language-processor fuzzers: Polyglot [9] and AFL-
Compiler-Fuzzer [20]; general-purpose conventional fuzzer
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Transpiler
TETRIS Polyglot AFL-Compiler-Fuzzer AFL++ CSmith

TOTAL %VALID TOTAL %VALID TOTAL %VALID TOTAL %VALID TOTAL %VALID

C2Rust 2,933 77.39% 19,998 19.56% 23,047 7.48% 66,092 4.94% 2,774 95.57%

CxGo 8,101 71.84% 203,474 8.18% 360,984 1.53% 121,694 2.72% n/a n/a

C4Go 332 55.41% 126,610 6.67% 229,563 0.82% 297,919 1.13% n/a n/a

HxCpp 2,717 75.72% n/a n/a 189,633 0.83% 465,746 0.79% n/a n/a

HxPy 3,430 77.80% n/a n/a 55,982 1.95% 134,511 1.72% n/a n/a

Mean: 71.63% 11.47% 2.52% 2.26% 95.57%

TABLE 5: Mean total and valid test cases per transpiler. We omit black-box-only transpilers Go2Hx and Zig Translate-C since the evaluated fuzzers dump
generated test cases only in grey-box fuzzing mode. n/a: transpiler unsupported by that fuzzer.

Transpiler
TETRIS Polyglot AFL-Compiler-Fuzzer AFL++ CSmith

TOTAL TOTAL ∆ COV TOTAL ∆ COV TOTAL ∆ COV TOTAL ∆ COV

C2Rust 72,384.4 62,075.4 +16.61% 49,662.4 +45.75% 49,658.2 +45.77% 80,648.8 -10.25%

CxGo 42,413.6 40,006.4 +6.02% 33,379.8 +27.06% 36,534.4 +16.09% n/a n/a

HxCpp 48,405.2 n/a n/a 42,939.4 +12.73% 42,326.0 +14.36% n/a n/a

HxPy 54,046.8 n/a n/a 49,612.8 +8.94% 48,868.8 +10.60% n/a n/a

Mean: +11.31% +23.62% +21.70% -10.25%

TABLE 6: Mean basic block coverage per transpiler and TETRIS’s relative differences (∆ COV). All comparisons to TETRIS are statistically-significant
(i.e., Mann-Whitney U p-values < 0.05). We omit transpilers unsupportive of coverage tracing. n/a: transpiler unsupported by that fuzzer.

AFL++ [16]; and dedicated C compiler fuzzer CSmith [58],
as it is reportedly used in development of C2Rust [25].

Seed Inputs: We seed all fuzzers with the same 2–5
seed programs per each targeted transpiler input language.
For C-consuming transpilers, we auto-generate the seeds via
CSmith; while for others where no CSmith-like program
generator exists (e.g., Haxe), we manually crafted the seeds
ourselves to be structurally similar to CSmith’s: namely,
all seeds contain diverse source code construct usage—
statements, expressions, literals, control-flow constructs, and
more—to ensure that all fuzzers benefit from a high initial
source code diversity for their eventual program mutations.

Grey- and Black-box Fuzzing: We configure TETRIS
and all AFL-based fuzzers (i.e., Polyglot, AFL-Compiler-
Fuzzer, and AFL++) in grey-box mode, using standard
QEMU-based [6] coverage-tracing tools for all supportive
transpilers: C2Rust, CxGo, C4Go, HxCpp, and HxPy. For
QEMU-incompatible transpilers Go2Hx and Zig Translate-
C, we instead conduct black-box, coverage-agnostic fuzzing.
Accordingly, our test case validity (§ 5.2) and code coverage
(§ 5.3) measurements rely on the saved (i.e., coverage-
increasing) test case corpora that AFL stores exclusively in
grey-box mode. Because AFL does not save such corpora in
black-box mode, we cannot replicate these experiments for
Go2Hx or Zig-Translate-C. However, since AFL supports
saving bug-triggering inputs in black-box mode—detecting
them independently of code coverage—our bug-finding ex-
periments (§ 5.4) include both Go2Hx and Zig-Translate-C.

Trials and Resources: Following the evaluation stan-
dard set by Klees et al. [30], we conduct each fuzzing
campaign experiment over five 24-hour trials per each com-
peting fuzzer. We assess statistical significance among all
TETRIS versus competitor coverage comparisons using the
Mann-Whitney U test with a p = 0.05 significance level.
We distribute all experiments across three Ubuntu 22.04
machines, each with an Intel Core i9-12900K CPU and
64GB RAM, and reuse these systems for all post-processing.

Excluded Fuzzers: We exclude several fuzzers from
our evaluation due to incompatibility with transpiler test-
ing. RustSmith [50], which generates Rust programs for
compiler testing, is omitted because no transpilers exist that

translate Rust into other languages. Similarly, GoFuzz [18]
produces library-dependent programs that cannot be con-
sumed by Go2Hx. Finally, while we explored GoSmith [57],
we observe that it consistently fails to generate valid code,
with none of its programs compiling successfully.

Excluded Comparisons and Justifications: We omit
comparisons where competing fuzzers are incompatible with
specific transpilers. For example, Polyglot lacks Haxe or
Go specifications, limiting its use to C-based transpilers.
Similarly, CSmith’s test cases depend on non-removable
library features, rendering them incompatible with C-based
transpilers that lack library translation support (e.g., CxGo);
thus, we evaluate CSmith only against C2Rust. All incom-
patibilities are marked as n/a in our evaluation tables.

5.2. RQ1: Test Case Validity

Transpilers, like compilers and decompilers, process
highly-structured inputs, requiring adherence to language
syntax and semantics to effectively test their core logic.
Accordingly, we measure all fuzzers’ percentage of valid

test cases: namely, the proportion of their final saved corpora
of test cases that are accepted by the targeted transpiler—
and therefore un-rejected for syntactic or semantic errors.

For all AFL-based fuzzers (i.e., TETRIS, Polyglot,
AFL-Compiler-Fuzzer, and AFL++), we apply validity
checking on their saved test case corpora (i.e., their popu-
lated queue directories) per trial. For CSmith, we manually
collect five trials’ worth of test cases capped at 24 hours of
transpiler runtime each. As AFL-based fuzzers unfortunately
cannot store inputs in black-box mode, we omit transpilers
Go2Hx and Zig Translate-C in this experiment. Table 5
shows each fuzzer’s mean total test cases and validity rates.

5.2.1. Results. As Table 5 shows, TETRIS outperforms
Polyglot, AFL-Compiler-Fuzzer, and AFL++ with a mean
71.63% validity versus these competitors’ 11.47%, 2.52%,
and 2.26% validity rates, respectively. Unsurprisingly,
general-purpose fuzzers see higher test case throughputs (to-
tal test cases generated) from their indiscriminate mutations
(§ 3.2.3), which—while simpler and faster than TETRIS’s
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conservative mutation and scope/type resolution—produce
lower-quality programs overall, as evidenced by their di-
minished code coverage (Table 6). Moreover, on C2Rust,
TETRIS achieves validity not far off from language-specific
CSmith’s 95.57%, underscoring the overall robustness of
TETRIS’s more generalizable approach.

Interestingly, three fuzzers—TETRIS, Polyglot, and
AFL-Compiler-Fuzzer—see lowest validity specifically on
C4Go. Upon our investigation, we find C4Go has more
limited language-level support than its counterpart, CxGo—
for example, failing on constant definitions [2], logical
NOTs on typedefs [1], and anonymous structs [3]—
leading to a higher rejection rate of test cases across all
fuzzers. Nevertheless, TETRIS’s balanced mutation strate-
gies achieve the highest test case validity rate among all
general-purpose fuzzers, highlighting TETRIS’s effective-
ness across multiple diverse transpiler input languages.

RQ1: TETRIS trades-off speed for code validity, bring-
ing correctness comparable to language-specific com-
piler fuzzing to a much wider range of transpilers.

5.3. RQ2: Transpiler Code Coverage

In fuzzing, higher code coverage of the target naturally
leads to a higher likelihood of bug discovery. To evalu-
ate all fuzzer’s transpiler code coverage, we replay their
generated inputs using the standard coverage-tracing tool
AFL-QEMU-Cov [15], counting their unique basic blocks
reached in each fuzzing trial. We exclude transpilers in this
experiment that remain incompatible with AFL-QEMU-Cov
coverage tracing: C4Go, Go2Hx, and Zig Translate-C.

Transpiler
TETRIS CSmith

OLD NEW CONF OLD NEW CONF

C2Rust 1 0 0 2 0 0

CxGo 0 7 7 n/a n/a n/a

C4Go 0 2 2 n/a n/a n/a

Go2Hx 1 2 2 n/a n/a n/a

HxCpp 0 0 0 n/a n/a n/a

HxPy 0 0 0 n/a n/a n/a

Zig Translate-C 2 1 1 n/a n/a n/a

Total: 4 12 12 2 0 0

TABLE 7: Total old (known), new, and new confirmed bugs. n/a: transpiler
unsupported by that fuzzer. Fuzzers that are not shown find zero bugs.

5.3.1. Results. Table 6 reports the mean five-trial cov-
erage per fuzzer, along with TETRIS’s coverage relative
to its competitors (∆ COV). Overall, TETRIS surpasses
every general-purpose fuzzer, attaining relative coverage im-
provements of 11–23%. All Mann-Whitney U comparisons
yield statistically-significant differences: apart from CSmith,
TETRIS sees statistically-significant improvements over all
general-purpose fuzzers, with p-values of 0.00794 for all.
Moreover, as our appendix coverage plots illustrate (Fig-
ure 11), TETRIS consistently outranks general-purpose ap-
proaches throughout the entire duration of fuzzing. Though
TETRIS faces 10.25% lower coverage than CSmith on
C2Rust, it ultimately trades-off a minimal coverage loss for
far greater flexibility—expanding thorough fuzzing to a
much wider range of language transpilers.

RQ2: TETRIS’s higher-quality test cases consistently
outrank general-purpose fuzzers in transpiler coverage,
enabling deeper testing of transpilers’ translation logic.

5.4. RQ3: Transpiler Bug Discovery

Lastly, we evaluate TETRIS’s ability to uncover trans-
lation errors among our seven real-world transpilers. After
collecting all fuzzers’ test cases, we manually analyze and
deduplicate them into a final set of unique transpiler bugs.
For all competitors, we apply TETRIS’s own correctness-
checking procedures (§ 4.5) on their saved test case corpora.
Table 7 reports TETRIS’s and CSmith’s total number of
previously-known (old) bugs, newly discovered bugs, and
developer-confirmed bugs following our disclosure. We omit
all other competitors from Table 7 as each finds zero bugs.

5.4.1. Results. Overall, TETRIS’s higher validity and cov-
erage enabled its discovery of the most transpiler bugs in
our evaluation—16 total, including 12 new bugs found
exclusively by TETRIS, all of which are confirmed by their
respective developers. While not shown in Table 7, five
TETRIS-found CxGo bugs and one Go2Hx bug are since
patched, demonstrating TETRIS’s impact in driving real-
world transpiler improvements. Comparatively, CSmith finds
two bugs in C2Rust, yet both are previously-known defects.
Nevertheless, as Table 8 shows, TETRIS’s discovered
defects exercise a multitude of source constructs and se-
mantic translation challenges—demonstrating the breadth
and depth of TETRIS’s transpiler fuzzing capabilities.

RQ3: TETRIS’s high-quality test cases and high tran-
spiler coverage enhance discovery of a broader range of
transpiler defects than previous fuzzing methodologies.

5.4.2. Transpiler Bug Case Studies. In the following,
we showcase several interesting case studies of TETRIS-
discovered bugs that reveal distinct challenges among main-
stream source-to-source transpilers.

1 x += 100 + (4 < 4.5);
2 x += 9.9 + (4 < 4.5);

(a) Original C.

1 x += 100 + float32(int(libc.BoolToInt(4 < 4.5)))
2 x += 9.9 + float32(float64(4 < 4.5)) Error!

(b) CxGo Go Output.

Figure 8: Type conversion bug for bool→float in Go.

CxGo: Implicit Bool-to-Float Conversion. Figure 8 shows
a CxGo bug stemming from an unhandled conversion be-
tween boolean and floating-point types. In C, relational
expressions (e.g., 4 < 4.5) evaluate to 1 (true) or 0

(false), allowing implicit conversion to floats within ex-
pressions (e.g., (4 < 4.5) + 9.9). In contrast, Go does
not permit direct boolean-to-float conversion, yet CxGo
erroneously attempts to cast such expressions as floats,
thereby resulting in compilation errors in the transpiled
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Transpiler Bug Type How Detected Brief Error Description Iss. ID New?

C2Rust Syntactical Post-translation Failure Mis-recovering bitfields contained in union #881

CxGo Syntactical Post-translation Failure Mis-recovering 3-D array element pointer deref #78 7

CxGo Syntactical Post-translation Failure Mis-recovering compound literal (e.g., &(int)1) #81 7

CxGo Type Conversion Post-translation Failure Mis-recovering implicit conversion (bool → float) #76 7

CxGo Type Conversion Post-translation Failure Mis-recovering explicit conversion (bool → float) #75 7

CxGo Type Conversion Post-translation Failure Mis-recovering explicit conversion (float → int) #79 7

CxGo Code Fragment Runtime Divergence Mis-recovering operations on static variable #77 7

CxGo Code Fragment Intra-translation Failure Crash parsing unreachable switch body code #80 7

C4Go Type Conversion Post-translation Failure Unsupported type conversion (bool → int) #516 7

C4Go Code Fragment Post-translation Failure Unrecovered initialization of value in union #515 7

Go2Hx Syntactical Intra-translation Failure Unrecovered generic types for function args #178 7

Go2Hx Code Fragment Runtime Divergence Mis-recovering arch-specific type (haxe.Int64) #26

Go2Hx Code Fragment Runtime Divergence Mis-recovering zeroed array comparisons #179 7

Zig Translate-C Syntactical Post-translation Failure Mis-recovering bitfields contained in struct #1499

Zig Translate-C Syntactical Post-translation Failure Mis-including unreachable post-return code #19716

Zig Translate-C Code Fragment Post-translation Failure Unrecovered compound literal (e.g., &(int)1) #21855 7

TABLE 8: TETRIS-found transpiler bugs, how they were detected (§ 4.5), and corresponding GitHub issue IDs. 7= bug is newly found by TETRIS.

code. However, CxGo correctly handles boolean-to-integer

conversions by using an intermediate integer cast (e.g.,
int(libc.BoolToInt(4 < 4.5))). Yet, while such
approach works for integers, it fails when booleans inter-
act with floating points—though reapplying similar cast-
ing could resolve this. By examining these complex data-
type relationships, TETRIS identifies numerous implicit and
explicit conversion errors, uncovering key blind spots in
mainstream transpilers’ implementations.

1 return x += y∗3;
2 x++;
3 return 0 ;

(a) Original C.

1 return blk: {
2 const ref = &x;
3 ref.∗ += y ∗ @as(c_int,3);
4 break :blk ref.∗;
5 };
6 x += 1;
7 return 0;

(b) Zig Translate-C Output.

Figure 9: Zig Translate-C’s mis-inclusion of unreachable post-return code.

Zig Translate-C: Unreachable Code. Beyond type errors,
TETRIS uncovers numerous parsing-related edge cases in
transpilers. In Figure 9, TETRIS generated a C program
with several lines of dynamically-unreachable code follow-
ing the initial return statement. Given Zig’s strict enforce-
ment against unreachable code, Translate-C focuses exten-
sively on finding and culling unreachable code to ensure suc-
cessful compilation, as evidenced by its past fixes of related
bugs (e.g., GitHub issues #7585, #8002, #15155). However,
Translate-C mistakenly retains the post-return code in
TETRIS’s generated program, leading to compile errors on
the transpiler-emitted Zig code. Thus, TETRIS’s ability to
stress-test subtle, edge-case semantics helps uncover bugs in
areas where considerable transpiler development effort has
been spent, empowering transpiler creators with a better,
more thorough means of vetting their tools’ correctness.

1 x := [4]int{0, 0, 0, 0}
2 if x != [4]int{0, 0, 0, 0} {
3 panic("Error: not equal!")
4 }

(a) Original Go.

1 var x = new Array<Int>([0, 0, 0, 0]);
2 if (x != new Array<Int>([0, 0, 0, 0])) {
3 throw "Error: not equal!";
4 }

(b) Go2Hx Haxe Output.

Figure 10: Go2Hx’s mis-translation of comparisons on zeroed arrays.

Go2Hx: Comparing Two Zeroed Arrays. In Go, com-
paring arrays value-by-value is straightforward; two arrays
with identical elements, such as [4]int{0, 0, 0, 0},
are considered equal. Yet, after translating this code to Haxe
via Go2Hx, a runtime error occurs as Haxe instead compares
arrays by reference—rather than by value (Figure 10). This
difference creates unexpected behavior: a Go expression
such as x != [4]int0, 0, 0, 0, which would eval-
uate to false, is instead translated into a Haxe expression
evaluating to true due to reference inequality. Ultimately,
TETRIS identifies a non-trivial challenge in Go2Hx’s trans-
lation of Go array semantics to Haxe, as a faithful translation
requires implementing element-wise comparison support.

Security Implications of Transpiler Bugs. Translation
errors indeed can undermine security of translated code.
For example, a previously-fixed bug in sudo’s Rust port
introduced an information-leakage vulnerability not present
in sudo’s C code [4]. To this end, TETRIS fills an im-
portant gap in the ability to vet transpilers against these
(and other) security-affecting translation errors. For ex-
ample, a TETRIS-found Go2Hx bug (Figure 10) intro-
duces erroneously-inverted conditional checks; subtle data-
logic-affecting bugs like these may introduce unexpected
crashes (i.e., denial-of-service vulnerabilities)—or worse,
create opportunities for attacks exploiting unintended dif-
ferences from the original code. We anticipate TETRIS
and future transpiler-testing efforts will be critical as our
world increasingly embraces transpiler-driven automated
code translation—with initiatives like DARPA’s TRAC-
TOR [11] highlighting this shift as already on the horizon.

Takeaways: Through rigorous exploration of language
edge cases relating to type conversions, control flow,
data structures, and more, TETRIS reveals complex
translation challenges often missed by transpiler devel-
opers. This breadth facilitates TETRIS’s discovery of
both obvious and subtle translation errors, revealing
critical gaps in transpilers’ correctness.

6. Discussion

In the following, we weigh several limitations of our
approach and prototype implementation, TETRIS.
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6.1. Supporting Other Transpiled Languages

Deploying TETRIS to other transpilers requires a spec-
ification comprising of two components: a BNF grammar
with accompanying semantic annotations. While grammars
are often freely available, semantic annotations remain a
manual task. Our per-language semantics span several hun-
dred lines of code (Table 3), however, most are boilerplate—
such as specifying basic type compatibilities (Figure 7)—
requiring minimal effort to craft. In practice, we spent only
a few hours integrating C, Go, and Haxe into TETRIS.

While TETRIS targets statically-typed languages like
C, it currently lacks support for dynamically-typed ones
like Python and JavaScript. Ensuring correctness for
dynamically-typed languages requires additional guardrails
to prevent runtime type errors: for example, an int vari-
able later erroneously treated as a string, producing an
invalid program. To this end, we envision leveraging recent
advancements in type inference [41], [8] to recover declared
variables’ types—and from there, allowing TETRIS’s mu-
tation resolution (Figure 5) to piece-together appropriately
typed expressions as it currently does for statically-typed
languages. We anticipate these changes will primarily cen-
ter on TETRIS’s Scope and Type System (§ 4.3), with
optimizations essential to prevent excessive runtime type-
checking overhead. We leave exploring this to future work.

6.2. Supporting Other Language Features

Although our goal is to thoroughly test transpilers’
correctness across a language’s full feature set, we defer
scrutinizing their handling of more advanced language fea-
tures (e.g., Rust’s borrow-checker, Haxe’s macros) to future
work, as we observe that our evaluated transpilers cannot
yet handle them. For example, C2Rust [26] lacks support for
Rust’s ownership model, while Go2Hx [54] emits rudimen-
tary Haxe without macros. Nevertheless, by uncovering 12
new bugs, our work shows that even common-case language
constructs remain problematic for current transpilers, under-
scoring the need for approaches like TETRIS to rigorously
test their handling of these features.

6.3. Unspecified and Undefined Behavior

Although TETRIS finds many transpiler bugs, it can-
not avoid certain undesirable semantic behaviors inher-
ent to the target transpiler’s input language. For exam-
ple, we see several cases where TETRIS-discovered run-
time divergences are actually from unspecified operation
ordering rather than transpiler errors. We also encoun-
tered some instances of undefined behavior such as in-
teger overflows in TETRIS-generated C programs; and
while such errors are catchable via static analyzers like
UndefinedBehaviorSanitizer [47], similar tools
are not common in other languages such as Haxe.

While we foresee potential for more semantic guardrails
in TETRIS—as CSmith [58] and other language-specific
fuzzers use—we leave this engineering to future work.

In practice, we easily filtered-out such test cases through
automated scripts during our post-fuzzing bug triage.

6.4. Test Case Throughput

As Table 5 shows, TETRIS generates fewer test cases
on average compared to general-purpose fuzzers AFL++,
AFL-Compiler-Fuzzer, and Polyglot. This lower throughput
is largely due to the overhead of TETRIS’s mutation engine,
which retains numerous source constructs in memory; and
its pre-transpilation validation step, where each generated
program is tested. While TETRIS’s throughput is on-par
with compiler-dedicated fuzzer CSmith, we see potential
for several performance optimizations in TETRIS—such
as restructuring our mutation engine to leverage multi-
threading—but leave the requisite engineering and re-
evaluation to future work. Ultimately, as TETRIS is built
atop the AFL fuzzer [16], which already supports paral-
lelization, we posit that TETRIS is also easily parallelized
for larger-scale transpiler fuzzing.

6.5. Ethical Considerations

Like other fuzzers, TETRIS carries a dual-use risk:
while intended to strengthen the correctness and security
of transpilers, it could also be misused to identify vulner-
abilities in transpiled code or in the transpilers themselves.
To mitigate this risk, we will release TETRIS as an open-
source artifact with ethical usage guidelines that emphasize
responsible disclosure, ensuring that transpiler developers
and the broader research community benefit from its use.
These guidelines will align with established security com-
munity norms for coordinated vulnerability disclosure.

7. Conclusion

Transpilers’ automated source-to-source translation is
increasingly driving cross-platform interoperability, technol-
ogy migration, and security hardening of legacy code. Un-
fortunately, the complexity of transpiling often leads to in-
sidious errors compromising translation accuracy, resulting
in broken or otherwise incorrect code. To expedite discovery
of transpiler bugs, we present the first generic, language-
agnostic transpiler fuzzing framework, capable of generating
high-quality test cases comparable to those from specialized,
language-specific fuzzers. Our evaluation demonstrates that
this approach achieves superior code coverage, test case
validity, and bug discovery compared to prior techniques—
uncovering 12 new transpiler bugs, with all confirmed.

Acknowledgments

This material is based upon work supported by the Na-
tional Science Foundation (NSF) under Award No. 2419798,
and by the Defense Advanced Research Projects Agency
(DARPA) under Award No. FA8750-24-2-0002, Subaward
No. GR105409-SUB00001384. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of NSF or DARPA.

12



References

[1] C4go issue #381: operation not: typedef. https://github.com/
Konstantin8105/c4go/issues/381.

[2] C4go issue #469: #define as constant. https://github.com/
Konstantin8105/c4go/issues/469.

[3] C4go issue #51: F: struct declaration. https://github.com/
Konstantin8105/c4go/issues/51.

[4] sudo-rs issue #577: Don’t leak information about what files exist on
filesystem. https://github.com/trifectatechfoundation/sudo-rs/issues/
577.

[5] Bastidas F. Andrés and Marı́a Pérez. Transpiler-based architecture
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Appendix: Code Coverage Graphs
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Figure 11: Mean hourly code coverage plots per fuzzer for each supported
transpiler. We omit transpilers incompatible with coverage tracing.
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