
Comparative Studies of Neural Operators For Traffic State Estimation

Qi Gao, and Xuan Di∗ Member, IEEE

Abstract— Traffic State Estimation (TSE) is essential for
traffic management, planning, and control by predicting future
traffic conditions such as flow density and average velocity.
Traditional TSE methods, which employ either numerical tech-
niques or deep learning, often require extensive prior knowl-
edge and are too time-consuming for real-time applications.
Recently, Neural Operators (NOs), a novel type of machine
learning model, have been recognized for their efficiency in
learning complex mappings between functional spaces. NOs
offer significant advantages, including the elimination of the
need for recalculations or retraining under varying initial or
boundary conditions, and they are trained directly with data,
without understanding of the underlying physical laws. This
capability makes NOs particularly suitable for real-world, time-
sensitive applications. Although NOs have been successfully
used to model a range of phenomena from simple to complex
partial differential equations, their ability to generalize across
diverse functional spaces in traffic flow has not been thoroughly
explored. This paper uses simulated traffic flow data with
varying initial conditions and real-world fraffic flow data
from the Next Generation SIMulation (NGSIM) dataset to
evaluate the capacity of different NOs to approximate various
traffic flow scenarios. Our study aims to guide transportation
professionals in selecting suitable NOs and to encourage further
advancements in NO research.

I. INTRODUCTION

In the realm of traffic management, the ability to accu-
rately predict traffic flow states, such as density and velocity,
is crucial for effective control and planning. Traditional
methods for Traffic State Estimation (TSE) have largely
relied on numerical techniques[1] or physics informed deep
learning approaches[2], [3]. While these methods have been
instrumental in understanding traffic dynamics, they typically
require extensive computation, making them impractical for
real-time applications. This has led to an interest in more effi-
cient methodologies capable of quick adaptation to changing
conditions.

Recent advances in machine learning have introduced
Neural Operators (NOs)[4], [5], [6], [7], [8], a promising
class of models adept at learning complex mappings between
function spaces directly from data. Unlike traditional models,
NOs obviate the need for repeated recalculations under new
conditions, offering a significant leap in operational effi-
ciency, which is especially useful in the field of transportation
[9], [10]. This paper explores the application of various
Neural Operators predict traffic flow, using both simulated

∗Corresponding author: Xuan Di.
‡This work is sponsored by NSF CPS-2038984.
Qi Gao is with the Department of Civil Engineering and Engineering

Mechanics, Columbia University, New York, NY, 10027, USA (E-mail:
qg2179@columbia.edu).

Xuan Di is with the Department of Civil Engineering and Engineering
Mechanics, Columbia University, New York, NY, 10027 USA, and also with
the Data Science Institute, Columbia University, New York, NY, 10027 USA
(E-MAIL: sharon.di@columbia.edu).

Code avaliable at https://github.com/CU-DitecT/TSE NOs Compare.git

and real-world data from the Next Generation Simulation
(NGSIM) dataset. Our study is designed to evaluate the
adaptability of NOs to diverse traffic scenarios, assessing
their capabilities across different functions commonly seen
in traffic flow.

By comparing several types of NOs, this research aims to
provide insights into selecting the most appropriate models
for specific traffic conditions and to foster further develop-
ments in the field of traffic state estimation using Neural
Operators. In the process of doing so, we also discovered
some insights in NOs, which we believe will also be instru-
mental to improvement of existing NOs and developments
of future NOs.

Contributions

The main contribution of the paper can be summarized as
follow:

1) Demonstrated effective methods for adapting the exist-
ing architecture of NOs to handle multi-channel inputs
and outputs.

2) Proposed a procedure for preparing complex boundary
conditions for TSE, making them suitable for integra-
tion with the FNO family of NOs.

3) Proposed a set of simulated traffic flow datasets, cre-
ated using various traffic flow models and different
initial conditions to enhance the evaluation of NO
performance.

4) Performed an in-depth evaluation of various NOs
across two datasets, comprehensively representing di-
verse TSE scenarios.

The rest of the paper is organized as follow: Sec. II intro-
duces two commonly used macroscopic traffic flow model.
Sec. III introduces 5 different existing NOs. Sec. IV discuss
how we conducted our experiment for the comparison,
including how the two datasets are generated and how NOs
are trained with these datasets. In the next Sec. V the main
results of this paper are presented followed by the Sec. VI
concludes this study.

Fig. 1: Generalized architecture for DeepONet and POD-
DeepONet.

2024 IEEE 27th International Conference on
Intelligent Transportation Systems (ITSC)
September 24- 27, 2024. Edmonton, Canada

979-8-3315-0592-9/24/$31.00 ©2024 IEEE 1992

20
24

 IE
EE

 2
7t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 In
te

lli
ge

nt
 T

ra
ns

po
rt

at
io

n
Sy

st
em

s (
IT

SC
) |

 9
79

-8
-3

31
5-

05
92

-9
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IT

SC
58

41
5.

20
24

.1
09

20
08

9

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 30,2025 at 22:34:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Generalized architecture for FNO family in handling multi channel inputs and outputs. The whole FNO family shares
this pipeline, including TFNO and MWT, but with very different design in their layers. Though they do all use Spectral
Convolutional Layer as a core component.

II. MACROSCOPIC TRAFFIC FLOW MODELS

Macroscopic traffic flow models are a class of mathemati-
cal models used to describe and analyze the flow of traffic as
a whole, rather than focusing on individual vehicles. These
models treat traffic flow similarly to fluids, using equations
and concepts from fluid dynamics to capture the overall
behavior of traffic on road networks. The main components
of macroscopic traffic models include flow f (the number
of vehicles passing a point per unit of time), density ρ (the
number of vehicles per unit length), and speed u (the distance
covered per unit time). Commonly used macroscopic traffic
models include but are not limited to Lighthill-Whitham-
Richards (LWR) [11], [12] traffic model, Cell Transmission
Models (CTM) [13] and Aw, Rascle[14] and Zhang[15]
(ARZ) traffic model. In this paper, we focus mainly on LWR
and ARZ since they are hyperbolic PDEs, where one major
objective of NOs is to learn the mapping between initial and
results of PDEs.

a) LWR Model: The Lighthill-Whitham-Richards
(LWR) model is a continuum traffic flow model, Developed
independently by Sir Michael James Lighthill and Gerald
Beresford Whitham in 1955, and extended by Peter Richards
in 1956, that describes how the density of cars on a road
affects the speed at which they travel. This relation is
called fundamental diagram, of which, the most common
version is characterized by u(x, t) = ufree(1− ρ(x, t)/ρjam).
Where ufree stands for the maximum speed a vehicle can
reach when the high way is empty, and ρjam stands for the
maximum density of vehicle on the high way (i.e. maximum
number of vehicle on unit length of highway). The flux
function f is intuitively defined as the product of speed
u and density ρ as f (x, t) = ρ(x, t)u(x, t). Therefore, the
hyperbolic conservation law can be characterized by the
following PDE:

∂tρ(x, t)+∂x f (x, t) = 0 (1)

b) ARZ model: The Aw, Rascle[14] and Zhang [15]
(ARZ) model is a second-order traffic flow model developed
independently by Aw, Rascle and Zhang to address an unre-
alistic assumption in the first-order LWR model. The LWR
model assumed that vehicles, having no momentum, can
instantaneously adjust their speed based on the current traffic
density—an assumption implying that vehicles either have

zero mass or possess infinite power. By contrast, the ARZ
model incorporates vehicle momentum into its formulation,
offering a more realistic depiction of traffic dynamics, which
is formulate as follow:

∂tρ +∂xρu = 0 (2)
∂t(ρ (u+ p(ρ)))+∂x(ρ (u+ p(ρ))u) = 0 (3)

Where ρ is the traffic density and u is the speed, which is
the same as LWR. p(ρ) is the pressure function, an increas-
ing function. In this paper, we focus on pressure function
of form p(ρ) = ργ , where γ = 1. For solving the equation
numerically in the experiment section, let z = ρ (u+ p(ρ)),
then we have another form of eq(4) ∂tz+∂xzu = 0.

III. NEURAL OPERATORS

In this section, we examine two widely used Neural Op-
erators (NOs), Fourier Neural Operator(FNO) [6] and Deep
Operator Networks(DeepONet) [4], along with their recent
variants, Multiwavelet-based Model(MWT) [8], Tensorized
Fourier Neural Operator (TFNO) [7] and POD-DeepONet[5].
These NOs aim to learn a mapping v → u between two func-
tion spaces V and U , employing different methodologies.
This mapping often represents the relationship between the
initial conditions and result of a specific Partial Differential
Equation (PDE).

a) DeepONet: Inspired by previous work on approx-
imating non-linear operator by neural networks [16], Deep
Operator Networks(DeepONet) [4] stand as pioneering of
NOs. DeepONet featured two neural networks (two group of
neural networks in variants), known as the branch net b and
the trunk net t. The trunk net functions as a basis set, taking
position ξ as input and produce t(ξ), which represents the
values of each basis function at ξ . On the contrary, the branch
net processes the discredited input function, generating b(v)
as the coefficients for each basis to approximate the output
function u. Consequently, the output u in ξ is estimated by
u(ξ) = b(v)T t(ξ)

b) POD-DeepONet: POD-DeepONet[5], a variant of
DeepONet, differs mainly in its use of a predetermined basis
to replace the trunk net, while maintaining the branch net
as a neural network learned through training. This basis is
established through Principal Component Analysis (PCA)
on the test set prior to training. This approach significantly
reduced training time and improved performance.

1993

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 30,2025 at 22:34:11 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Visualization of each NOs’ prediction given the same
initial and boundary condition from NGSIM data.

c) FNO: The Fourier Neural Operator (FNO) [6] has
emerged as a popular Neural Operator due to its unique
approach and general applicability. Unlike DeepONet, which
learns basis functions from data, the FNO utilizes sine
and cosine functions as the basis. These functions are well
studied in their ability to approximate any function within
a Hilbert space, given a sufficiently high mode. This choice
allows the basic building block of FNO, Spectral Convo-
lution layer, to leverage the existing PyTorch Fast Fourier
Transform package that allow flow of gradients through both
forward and backward Fourier transforms. Consequently,
the FNO efficiently facilitates the transfer of information
between the functional and coefficient spaces across each
layer of the network. In addition, the FNO incorporates
innovative features such as high-frequency filtering and skip
connections, drawing inspiration from the ResNet archi-
tecture. These enhancements contribute to its robustness
and versatility to learn complex mapping between initial
functions and terminal function.

d) MWT: As a derivative of the Fourier Neural Operator
(FNO), the Multiwavelet-Based Neural Operator (MWT)
[8] retains many aspects of the FNO’s design including
the general archacture and the Spectral Convolution layer.
However, it make significant change to the original FNO
layers. Instead of directly feed the input of a layer directly in
to the Spectral Convolution layer and skipping layer, MWT
continuously conduct multiwavelet transform until reaching
the smallest wavelet of the input. Then MWT will feed
the output of multiwavelet transform in to three different
Spectral Convolution layer separately and reassamble the
output through inverse multiwavelet transform. This adjust-
ment enables the MWT to capture and learn complex high-
frequency information more effectively than the FNO.

As a derivative of the Fourier Neural Operator (FNO),
the Multiwavelet-Based Neural Operator (MWT)[8], retains
many features of the FNO’s design, including the general

Fig. 4: Visualization of TFNO’s prediction given the different
initial and boundary condition

architecture and the Spectral Convolution layer. However,
it introduces significant modifications to the original FNO
layers. Unlike the FNO, which feeds the input of a layer
directly into the Spectral Convolution layer and includes a
skip connection, the MWT performs successive multiwavelet
transformations until it reaches the smallest wavelet scale
of the input. Following this, the MWT processes the output
from the multiwavelet transform through three distinct Spec-
tral Convolution layers separately. The outputs from these
Spectral Convolution layers are then reassembled via an in-
verse multiwavelet transform as output of a MWT layer. This
modification allows the MWT to more effectively capture
and learn complex high-frequency information compared to
the FNO.

e) TFNO: The Tensorized Fourier Neural Operator
(TFNO) [7] is a recent variant of FNO that aims to improve
efficiency through Tucker decomposition. While improving
efficiency, TFNO also introduced some improvement to
FNO including normalization, channel mixing and soft-gated
skip-connection. These modifications to FNO significantly
improved performance and therefore should be considered
separately from the original FNO.

IV. EXPERIMENT

A. NGSIM Dataset

The NGSIM dataset [17], provided by the US Federal
Highway Administration, contains detailed vehicle trajectory
data for multiple highways and urban streets. Our study
focuses on a segment of US Highway 101, monitored through
a camera on a tall building on June 15, 2005. The dataset

Inputs FNO TFNO DeepONet POD-DeepONet
ρ 0.2355 0.2038 0.2269 0.2163

ρ w/ upstream 0.2215 0.2023 0.2288 0.2006
ρ w/ downstream 0.2194 0.1650 0.1890 0.1775

ρ w/ up&downstream 0.2158 0.1576 0.1772 0.1734

TABLE I: L2 Error of NOs predicting NGSIM data

1994

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 30,2025 at 22:34:11 UTC from IEEE Xplore. Restrictions apply.

covers vehicle speeds and locations over approximately 680
meters for 2,770 seconds.

The derivation of traffic density ρ and speed u follows
established methods [18], [19]. Initially, vehicles not consis-
tently visible in the video are filtered out. The highway is
segmented into 21 spatial cells, and the observation period
is segmented into 1,770 temporal cells. For each cell, we
calculate the number of vehicles and their average speed
across all lanes to determine the traffic density and speed.

To prevent the neural operators (NOs) from merely learn-
ing to map similar initial conditions to corresponding out-
comes, we first divide all 1,770 temporal cells into 30
subsections of 59 cells each with no overlapping. Then we
randomly allocate 25 subsections to the training set and 5 to
the testing set. In this way, we can ensure the NOs capture
the underlying traffic dynamics, allowing us to compare their
performance in learning these dynamics from data.

For effective neural operator (NO) training, we require
a large number of initial and boundary condition pairs.
In this work, we chose to divide the data into windows
spanning 21 spatial cells by 42 temporal cells—sufficiently
large to observe shockwave effects in traffic flow but small
enough to ensure an adequate number of training pairs.
These windows are generated by applying sliding windows
to each subsection from the training and testing sets. We
then randomly shuffle the windows within the training set
and the testing set separately. Eventually, we end up with
a training size of 450 and a testing size of 90. While this
dataset seems small, the NOs discussed here are usually
compared on a dataset containing 1,000 training pairs and
200 testing pairs provided by the authors of the Fourier
Neural Operator (FNO) [6]. Our dataset is smaller but still
of similar magnitude. Therefore, we believe this dataset can
adequately reflect the performance of NOs.

B. Numerical Simulated Traffic Flow Data

1) Numerical Schemes: The numerical simulated traffic
flow data used for training NOs are generated by solv-
ing LWR and ARZ with Lax-Friedrichs scheme. The Lax-
Friedrichs scheme is a finite difference method method used
to solve partial differential equations, particularly hyperbolic
conservation laws, which are often found in physics and
engineering applications such as fluid dynamics and traffic
flow. This scheme is particularly popular for its simplicity
and robustness. Therefore, we use Lax-Friedrichs scheme to
solve the LWR model and the ARZ model for generating
training data for NOs.

The Lax-Friedrichs scheme for solving LWR is as follow:

ρ(x, t +∆t) =0.5 · (ρ(x−∆x)+ρ(x+∆x)) (4)

−0.5
∆t
∆x

(ρ(x+∆x, t) ·u(x+∆x, t) (5)

−ρ(x−∆x, t) ·u(x−∆x, t)) (6)

u(x, t +∆t) = ufree ∗ (1−
ρ(x, t +∆t)

ρjam
) (7)

The Lax-Friedrichs scheme for solving ARZ is as follow:

ρ(x, t +1) =0.5 · (ρ(x−∆x)+ρ(x+∆x)) (8)

−0.5
∆t
∆x

(ρ(x+∆x, t) ·u(x+∆x, t) (9)

−ρ(x−∆x, t) ·u(x−∆x, t)) (10)
z(x, t +1) =0.5 · (z(x−∆x)+ z(x+∆x)) (11)

−0.5
∆t
∆x

(z(x+∆x, t) ·u(x+∆x, t) (12)

− z(x−∆x, t) ·u(x−∆x, t)) (13)

u(x, t +1) =
z(x, t +1)
ρ(x, t +1)

−ρ
γ(x, t +1) (14)

For the simulation, we focus on periodic boundary con-
dition with in domain x ∈ [0,1], i.e. ρ(0, t) = ρ(1, t) and
u(0, t) = u(1, t). Then given the initial condition ρ0(x) and
u0(x) (which will be discussed in following section), we use
the above scheme to solve for ρ(x, t) and z(x, t) for x ∈ [0,1]
and t ∈ [0,1].

There is a diffusive effect in solution of Lax-Fridrichs
scheme due to it’s averaging of neighboring points. This
could lead to larger error in the results when there is sharp
gradient or discontinuities. Fortunately, this diffusive effect
depends on the size of grid, because it only average neighbor
points. So we also solve PDEs in finer grid (∆x = ∆t = 2−13)
and down sample to the grid (∆x = ∆t = 2−7) of the training
dataset. The solution in the grid of training dataset is also
preserved, given the dataset used in previous works usually
contain diffusion terms.

2) Initial Condition Generation: In simulating traffic flow,
the function form of the result largely depends on the initial
boundary conditions. Therefore, to create a comprehensive
traffic flow dataset encompassing all types of functions, a
diverse range of initial boundary conditions is essential.
Below, we detail the types of initial boundary conditions
employed, their corresponding functional properties, and our
methods for generating them.

Fourier Series This initial condition set comprises func-
tions represented as sums of sinusoidal and cosinusoidal
components, with coefficients randomly sampled for each.
The series considers specific frequencies up to modes 2 or 4.
These functions are ideal for representing smooth behaviors
effectively.

Sinusoidal Waves w/ Phase Shift(PS) This set includes
sinusoidal wave functions with frequencies randomly sam-
pled up to 8, each incorporating a random phase shift. This
configuration is designed to evaluate the ability of numerical
operators (NOs) to handle high-frequency functions accu-
rately.

Bell Shape Characterized by a smooth, single-peaked
function that closely resembles a Gaussian distribution, the
coefficients for the peak’s position and the standard deviation
are randomly determined. This initial condition is used to
assess each NO’s capability in managing sharp transitions or
shocks within the function.

Piece-Wise Constant This initial condition consists of
functions defined by three regions of constant values, each
separated by abrupt changes. The values and length for each
region are randomly chosen. It is particularly useful for

1995

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 30,2025 at 22:34:11 UTC from IEEE Xplore. Restrictions apply.

Dataset TFNO FNO MWT DeepONet DeepONet(POD)
Fourier Series(mode=2, gird=27) 0.00255 0.01355(5.33) 0.00145(0.57) 0.01436(5.64) 0.00670(2.63)
Fourier Series(mode=4, gird=27) 0.00306 0.01524(5.16) 0.00214(0.70) 0.01661(5.43) 0.00840(2.75)

Sin Waves w/ PS (gird=27) 0.00239 0.01345(5.63) 0.00179(0.75) 0.01372(5.75) 0.00610(2.56)
Bell Shape(gird=27) 0.00356 0.01773(4.64) 0.00225(0.63) 0.01886(5.29) 0.00733(2.06)

Mixed(grid=27) 0.00135 0.01637(12.14) 0.00106(0.79) 0.01434(10.64) 0.00548(4.06)
Fourier Series(mode=2, gird=213) 0.00761 0.03081(4.05) 0.00907(1.19) 0.05672(7.46) 0.04929(6.48)
Fourier Series(mode=4, gird=213) 0.01195 0.03326(2.78) 0.01287(1.08) 0.06566(5.49) 0.07210(6.03)

Sin Waves w/ PS (gird=213) 0.00649 0.03312(5.11) 0.00999(1.54) 0.06437(9.93) 0.06453(9.95)
Bell Shape(gird=213) 0.00892 0.03746(4.20) 0.00975(1.09) 0.06652(7.46) 0.04643(5.21)

Piece-wise Constant(grid=213) 0.02496 0.03900(1.56) 0.03338(1.34) 0.12623(5.06) 0.12401(4.97)
Mixed(grid=213) 0.00698 0.03759(5.38) 0.00708(1.01) 0.05879(8.42) 0.03981(5.70)

TABLE II: L2 error of NOs in predicting numerically simulated results of LWR equation with different initial conditions

Dataset TFNO FNO MWT DeepONet DeepONet(POD)
Fourier Series(mode=2, gird=27) 0.00857 0.02247(2.62) 0.00676(0.79) 0.05611(6.54) 0.03235(3.77)
Fourier Series(mode=4, gird=27) 0.00949 0.02783(2.93) 0.00880(0.93) 0.07102(7.49) 0.04492(4.73)

Sin Waves w/ PS (gird=27) 0.01068 0.02701(2.53) 0.00972(0.91) 0.08313(7.79) 0.05536(5.18)
Bell Shape(gird=27) 0.01016 0.03101(3.05) 0.00798(0.79) 0.06070(5.98) 0.03677(3.62)

Mixed(grid=27) 0.00454 0.02767(6.10) 0.00415(0.92) 0.04205(9.27) 0.01720(3.79)
Fourier Series(mode=2, gird=213) 0.01716 0.04072(2.37) 0.02072(1.21) 0.11490(6.69) 0.08560(4.99)
Fourier Series(mode=4, gird=213) 0.02644 0.04934(1.87) 0.03026(1.14) 0.16212(6.13) 0.12120(4.58)

Sin Waves w/ PS (gird=213) 0.02890 0.05206(1.80) 0.03451(1.19) 0.17872(6.18) 0.15728(5.44)
Bell Shape(gird=213) 0.02517 0.05434(2.16) 0.02644(1.05) 0.13382(5.32) 0.09674(3.84)

Piece-wise Constant(grid=213) 0.06626 0.06497(0.98) 0.07234(1.09) 0.24581(3.71) 0.17707(2.67)
Mixed(grid=213) 0.02076 0.05623(2.71) 0.02326(1.12) 0.11130(5.36) 0.08040(3.87)

TABLE III: L2 error of NOs in predicting numerically simulated results of ARZ equation with different initial conditions

simulating systems with clear, distinct states or zones and
tests each NO’s effectiveness in handling discontinuities.

Mixed This set combines various types of functions
mentioned above to create a complex and diverse testing
environment. It aims to challenge the learning capabilities of
each NO in simultaneously handling a wide range of initial
conditions.

We found that the Lax-Friedrichs scheme will be unstable
when solving PDEs with piece-wise constant initial condition
when the grid is space. Therefor, we excluded the piece-wise
constant dataset for grid size of 27.

C. Training

The primary goal of this paper is to assess the performance
of various neural operators (NOs) across a diverse range of
data, from smooth to sharp, discontinuous or high frequency
functions and from simulated to real datasets. To ensure a fair
comparison, we meticulously adhere to the training protocols
outlined in the original papers. However, given the multi-
channel inputs/outputs and complex boundary conditions in
our dataset, we made essential modifications to accommodate
these factors.

For DeepONet and POD-DeepONet, modifying the net-
work to handle different types of inputs is straightforward.
The Branch Net, which processes initial and boundary con-
ditions, essentially comprises a fully connected network that
accepts flattened vectors. To incorporate various inputs, sim-
ply flatten each input and concatenate them. For the outputs,
both DeepONet and POD-DeepONet inherently support 2D
or even 3D outputs. Users need only specify the points
of interest (e.g., time t and position x in a 2D space) for
evaluation, which are then fed to the Trunk Net or the POD
Basis. To enable multi-channel 2D output, an additional input
c, with binary values 0 or 1, indicates the channel being
evaluated as shown in Fig 1.

The FNO (Fourier Neural Operator) family naturally sup-
ports multi-channel input and output. In this architecture,
an uplifting neural network P projects input channels to
a higher-dimensional latent representation, while another
network Q reduces these dimensions back to the desired
output channels. However, the FNO family requires that all
channels maintain the same dimensions, necessitating careful
input design. In our approach, to integrate initial conditions
with the FNO family, we replicate the initial condition across
the time axis to form a matrix matching the output’s shape.
Similarly, for boundary conditions, we replicate these along
the spatial axis to achieve the same effect. These methods
are demonstrated in Fig2.

We did not train MWT with NGSIM data due to the
specific design constraints of MWT, which requires input
dimensions to be powers of two. Although it is feasible
to interpolate real-world data to meet this requirement,
determining the appropriate interpolation method poses a
challenge, especially since our objective is to compare dif-
ferent neural operators (NOs). Interpolation outcomes could
potentially benefit one NO’s performance while impairing
another’s. Consequently, we chose to exclude MWT from
our comparison in NGSIM dataset and focused solely on
evaluating FNO, TFNO, DeepONet, and POD-DeepONet.

V. RESULTS

A. Results on NGSIM Dataset

The results for training NOs with the NGSIM dataset
are detailed in Table I. Overall, TFNO outperformed all
other models, while FNO exhibited the weakest performance.
POD-DeepONet slightly surpassed DeepONet, which gen-
erated overly smooth results that poorly aligned with the
actual data, as shown in Fig 3. The data in Table I further
reveals that training with upstream and downstream traffic
flow information (used as boundary conditions) significantly

1996

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 30,2025 at 22:34:11 UTC from IEEE Xplore. Restrictions apply.

enhanced the prediction accuracy of all neural operators
(NOs), particularly with downstream traffic flow. However,
FNO benefited the least from the additional downstream flow
data, finding also Reflected in Fig 3. To further explore
the importance of both upstream and downstream traffic
flow information in traffic flow estimation, we included a
visualization of TFNO’s predictions under various initial and
boundary condition combinations in Fig 4. This visualization
corroborates the main findings from Table I, indicating min-
imal difference with upstream traffic flow information alone,
whereas predictions with downstream information align more
closely with the ground truth.

B. Results on Simulated Traffic Flow Datasets
The results from the simulated traffic flow datasets are

presented in Tables II and III. Overall, MWT performed
best in relatively smooth datasets generated using a sparse
grid in the Lax-Friedrichs method, while TFNO excelled in
other scenarios. For the single-channel datasets based on the
LWR equation, FNO and DeepONet were the least effective,
particularly in datasets with mixed initial conditions. This
highlights the improvements in subsequent versions of these
networks, enhancing their capacity to handle diverse initial
conditions.

In multi-channel datasets, FNO’s performance was com-
parable to TFNO and MWT, surpassing both DeepONet and
POD-DeepONet. The general architecture of the FNO family,
shown in Fig 2, appears to manage well-structured multi-
channel data more effectively than the DeepONet family.
Interestingly, despite the common belief that FNO struggles
with piece-wise constant data due to high frequency errors
around the discontinuities when using Fourier Series, our
results show that the FNO family still outperforms the Deep-
ONet family in these scenarios. Moreover, all members of the
FNO family had similar performances on piece-wise constant
data, suggesting that the basic design of FNO handles these
types of data most effectively.

Finally, POD-DeepONet consistently outperformed Deep-
ONet, a finding also observed in the NGSIM data. This im-
provement for DeepONet is likely due to the use of a proper
orthogonal decomposition basis derived from data through
PCA prior to training, enhancing its overall performance.

VI. CONCLUSION

In this paper, we conducted a comprehensive evaluation
of various Neural Operators (NOs) for Traffic State Esti-
mation (TSE). Our findings reveal that while some NOs
like MWT and TFNO excel in some use case, they do
require more complex input preparations, particularly MWT.
In contrast, the DeepONet family allows for simpler input
integration, making it more user-friendly and less demanding
of machine learning expertise. We also addressed a prevalent
misconception in the field: that the FNO family struggles
with piece-wise constant data compare to other NOs due to
high-frequency errors from Fourier Series approximations.
Our results prove otherwise. Additionally, we underscored
the importance of including both upstream and downstream
traffic information for effective TSE, a common sense well-
established in the field of transportation. Consequently, the
choice of the best NO for TSE is not straightforward; it

should be base on the specific requirements and capabilities
of the user. This principle likely extends to other applications
of NOs. We hope this work not only aids users in selecting
the ideal NO for their needs but also inspire further research
in addressing the disadvantage of each NOs and the develope
of new NOs.

REFERENCES

[1] T. Seo, A. M. Bayen, T. Kusakabe, and Y. Asakura, “Traffic state
estimation on highway: A comprehensive survey,” Annual reviews in
control, vol. 43, pp. 128–151, 2017.

[2] X. Di, R. Shi, Z. Mo, and Y. Fu, “Physics-informed deep learning for
traffic state estimation: A survey and the outlook,” Algorithms, vol. 16,
no. 6, p. 305, 2023.

[3] R. Shi, Z. Mo, K. Huang, X. Di, and Q. Du, “A physics-informed
deep learning paradigm for traffic state and fundamental diagram
estimation,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 11 688–11 698, 2021.

[4] L. Lu, P. Jin, and G. E. Karniadakis, “Deeponet: Learning non-
linear operators for identifying differential equations based on
the universal approximation theorem of operators,” arXiv preprint
arXiv:1910.03193, 2019.

[5] L. Lu, X. Meng, S. Cai, Z. Mao, S. Goswami, Z. Zhang, and G. E.
Karniadakis, “A comprehensive and fair comparison of two neural
operators (with practical extensions) based on fair data,” Computer
Methods in Applied Mechanics and Engineering, vol. 393, p. 114778,
2022.

[6] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya,
A. Stuart, and A. Anandkumar, “Fourier neural operator for parametric
partial differential equations,” arXiv preprint arXiv:2010.08895, 2020.

[7] J. Kossaifi, N. Kovachki, K. Azizzadenesheli, and A. Anandkumar,
“Multi-grid tensorized fourier neural operator for high-resolution
pdes,” arXiv preprint arXiv:2310.00120, 2023.

[8] G. Gupta, X. Xiao, and P. Bogdan, “Multiwavelet-based operator
learning for differential equations,” Advances in neural information
processing systems, vol. 34, pp. 24 048–24 062, 2021.

[9] X. Chen, F. Yongjie, S. Liu, and X. Di, “Physics-informed neural
operator for coupled forward-backward partial differential equations,”
in 1st Workshop on the Synergy of Scientific and Machine Learning
Modeling@ ICML2023, 2023.

[10] B. T. Thodi, S. V. R. Ambadipudi, and S. E. Jabari, “Fourier neural
operator for learning solutions to macroscopic traffic flow models:
Application to the forward and inverse problems,” Transportation
Research Part C: Emerging Technologies, vol. 160, p. 104500, 2024.

[11] P. I. Richards, “Shock waves on the highway,” Operations research,
vol. 4, no. 1, pp. 42–51, 1956.

[12] M. J. Lighthill and G. B. Whitham, “On kinematic waves ii. a theory
of traffic flow on long crowded roads,” Proceedings of the royal society
of london. series a. mathematical and physical sciences, vol. 229, no.
1178, pp. 317–345, 1955.

[13] C. F. Daganzo, “The cell transmission model: A dynamic represen-
tation of highway traffic consistent with the hydrodynamic theory,”
Transportation research part B: methodological, vol. 28, no. 4, pp.
269–287, 1994.

[14] A. Aw and M. Rascle, “Resurrection of” second order” models of
traffic flow,” SIAM journal on applied mathematics, vol. 60, no. 3, pp.
916–938, 2000.

[15] H. M. Zhang, “A non-equilibrium traffic model devoid of gas-like
behavior,” Transportation Research Part B: Methodological, vol. 36,
no. 3, pp. 275–290, 2002.

[16] T. Chen and H. Chen, “Universal approximation to nonlinear operators
by neural networks with arbitrary activation functions and its appli-
cation to dynamical systems,” IEEE transactions on neural networks,
vol. 6, no. 4, pp. 911–917, 1995.

[17] U.S. Department of Transportation, “Next generation simulation
(ngsim) dataset,” U.S. Department of Transportation Intelligent
Transportation Systems Joint Program Office, 2007. [Online].
Available: https://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm

[18] R. Shi, Z. Mo, and X. Di, “Physics-informed deep learning for
traffic state estimation: A hybrid paradigm informed by second-order
traffic models,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 1, 2021, pp. 540–547.

[19] Z. Mo, Y. Fu, D. Xu, and X. Di, “Trafficflowgan: Physics-informed
flow based generative adversarial network for uncertainty quantifi-
cation,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer, 2022, pp. 323–339.

1997

Authorized licensed use limited to: Columbia University Libraries. Downloaded on September 30,2025 at 22:34:11 UTC from IEEE Xplore. Restrictions apply.

