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A B S T R A C T 

The circum-galactic medium (CGM) can feasibly be mapped by multiwavelength surveys covering broad swaths of the sky. 
With multiple large data sets becoming available in the near future, we develop a likelihood-free Deep Learning technique using 

convolutional neural networks (CNNs) to infer broad-scale physical properties of a galaxy’s CGM and its halo mass for the 
first time. Using CAMELS (Cosmology and Astrophysics with MachinE Learning Simulations) data, including IllustrisTNG, 
SIMBA, and Astrid models, we train CNNs on Soft X-ray and 21-cm (H I ) radio two-dimensional maps to trace hot and cool 
gas, respectively, around galaxies, groups, and clusters. Our CNNs offer the unique ability to train and test on ‘multifield’ data 
sets comprised of both H I and X-ray maps, providing complementary information about physical CGM properties and impro v ed 

inferences. Applying eRASS:4 surv e y limits shows that X-ray is not powerful enough to infer individual haloes with masses 
log ( M halo /M �) < 12.5. The multifield impro v es the inference for all halo masses. Generally, the CNN trained and tested on 

Astrid (SIMBA) can most (least) accurately infer CGM properties. Cross-simulation analysis – training on one galaxy formation 

model and testing on another – highlights the challenges of developing CNNs trained on a single model to marginalize over 
astrophysical uncertainties and perform robust inferences on real data. The next crucial step in improving the resulting inferences 
on the physical properties of CGM depends on our ability to interpret these deep-learning models. 

Key w ords: softw are: simulations – galaxies: clusters: general – galaxies: groups: general – (g alaxies:) interg alactic medium –
radio lines: general – X-rays: general. 
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 INTRODUCTION  

ew telescopes are currently engaged in comprehensive surveys
cross large sky areas and reaching previously unobtainable depths,
iming to map the region beyond the galactic disc but within the
alaxy’s virial radius: the circum-galactic medium (CGM; Tumlin-
on, Peeples & Werk 2017 ). Ho we v er, these telescopes hav e inherent
imitations in detecting emissions from gaseous haloes surrounding
ypical galaxies. Nev ertheless, the y offer an exceptional opportunity
o characterize the broad properties of CGM that extend beyond their
riginal scientific scope. The CGM contains a multiphase gas, partly
ccreted from the filaments of the cosmic web that is continuously
eing reshaped, used in star formation, and enriched by astrophysical
eedback processes occurring within the galaxy (Keres et al. 2005 ;
hristensen et al. 2016 ; Oppenheimer et al. 2016 ; Angl ́es-Alc ́azar
t al. 2017b ; Hafen et al. 2019 ). 

A simple way to characterize the CGM is by temperature. The cool
hase gas has a temperature of approximately T ∼ 10 4 K and has been
 E-mail: naomi.gluck@yale.edu 
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he focus of UV absorption line measurements (e.g. Cooksey et al.
010 ; Tumlinson et al. 2013 ; Werk et al. 2013 ; Johnson et al. 2015 ;
eeney et al. 2018 ). The hot phase of the CGM, with temperatures T
 10 6 K, is observable via X-ray facilities (e.g. Bogd ́an et al. 2018 ;
regman et al. 2018 ; Mathur et al. 2023 ) and can contain the majority
f a galaxy’s baryonic content. Understanding both the cool and hot
hases of the CGM may answer questions regarding where we may
nd baryons (Anderson & Bregman 2011 ; Werk et al. 2014 ; Li et al.
017 ; Oppenheimer et al. 2018 ), how galaxy quenching proceeds
Tumlinson et al. 2011 ; Somerville, Popping & Trager 2015 ), and
ow the metal products of stellar nucleosynthesis are distributed
Peeples et al. 2014 ). 

New, increasingly large data sets that chart the CGM across
ultiple wavelengths already exist. In particular, two contrasting
avelengths map diffuse gas across nearby galaxies: the X-ray and

he 21-cm (neutral hydrogen, H I ) radio. First, the eROSITA 
1 mission

as conducted an all-sky X-ray survey, enabling the detection of
iffuse emission from hot gas associated with groups and clusters
 Although eROSITA is currently dormant; its data at the level we mock have 
lready been taken. 
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Table 1. Definitions and global value ranges of the CGM properties to be 
inferred and constrained by the network. These are the global value ranges, 
encompassing the individual ranges of IllustrisTNG, SIMBA, and Astrid. 
They remain consistent throughout any combination of simulations during 
training and testing. Properties are further distinguished by those radially 
defined by R 200c and those by 200 kpc . 

Property Definition Range 

M halo Logarithmic halo mass in R 200 c 11.5–14.3 
f cgm Mass ratio of CGM gas to total mass within 

R 200 c 

0.0–0.23 

Z cgm Logarithmic CGM metallicity in 200 kpc −3.6 – −1.3 
M cgm Logarithmic CGM mass in 200 kpc 8.0–12.5 
f cool Ratio of cool, low-ionized CGM gas within 

200 kpc 
0.0–1.0 

T cgm Logarithmic CGM temperature in 200 kpc 3.9–7.6 
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nd potentially massive galaxies (Predehl et al. 2021 ). Secondly 
n the 21-cm radio domain, the pursuit of detecting cool gas 
ncompasses initiatives that serve as precursors to the forthcoming 
quare Kilometer Array (SKA) project. Notable among these are 
SKAP (Johnston et al. 2007 ) and MeerKAT (Jonas & MeerKAT 

eam 2016 ), both of which have already conducted comprehensive 
urv e ys of H I gas in galaxy and group environments through deep
1-cm pointings. 
Cosmological simulations provide theoretical predictions of CGM 

aps, yet divergences arise due to varying hydrodynamic solvers and 
ubgrid physics modules employed in galaxy formation simulations 
Somerville, Popping & Trager 2015 ; Tumlinson, Peeples & Werk 
017 ; Dav ́e et al. 2020 ). As a result, we see very different predictions
or the circumgalactic reservoirs surrounding galaxies. Distinctively, 
he publicly available simulations such as IllustrisTNG (Nelson et al. 
018 ; Pillepich et al. 2018 ), SIMBA (Dav ́e et al. 2019 ), Astrid (Bird
t al. 2022 ; Ni et al. 2022 ), among others (e.g. Schaye et al. 2015 ;
opkins et al. 2018 ; Wetzel et al. 2023 ), are valuable resources for
enerating CGM predictions. CAMELS 

2 3 (Cosmology and Astro- 
hysics with MachinE Learning Simulations) is the first publicly 
vailable suite of simulations that includes thousands of parameter 
nd model variations designed to train machine learning models 
Villaescusa-Navarro et al. 2021c , 2022 ). It contains four different 
imulations sets co v ering distinct cosmological and astrophysical 
arameter distributions: LH (Latin Hypercube, 1000 simulations), 
P (1-Parameter variations, 61 simulations), CV (Cosmic Variance, 
7 simulations), and EX (Extreme, 4 simulations). Of these, the CV
et is uniquely significant as it fixes cosmology and astrophysics 
o replicate the observable properties of galaxies best, providing a 
ducial model. We exclude the numerous CAMELS simulations that 
ary cosmology and astrophysical feedback to prevent unrealistic 
alaxy statistics. Thus, utilizing the diverse CAMELS CV sets, 
e explore three universe realizations that make distinguishing 
redictions for the CGM. 
In this study, we develop an image-based convolutional neural 

etwork (CNN) to infer CGM properties from CAMELS IllustrisTNG, 
IMBA, and Astrid CV-set simulations. The definitions and ranges 
or all CGM properties are outlined in Table 1 . Two significant and
ifferently structured astrophysical feedback parameters that impact 
GM properties, stellar and AGN feedback, remain predominantly 
 CAMELS Project Website: https://www.camel-simulations.org 
 CAMELS Documentation available at https:// camels.readthedocs.io/ en/ 
atest/index.html 
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fi  
nconstrained. The CV set does not explore the range of CAMELS
eedback parameters like the other sets. Ho we ver, we choose the
V set as a proof-of-concept and plan to include the much larger
H set that completely marginalizes o v er astrophysics (Villaescusa- 
avarro et al. 2021b ) in the future. The CNN is trained and tested
n diverse simulations, yielding valuable insights into the CGM 

roperties. Additionally, we apply observational multiwavelength 
urv e y limits to the CNN for each field, guiding the design and
pproach of new instruments and no v el surv e ys, maximizing their
cientific returns on CGM properties, and significantly advancing 
ur understanding of galaxy formation and large-scale structure. 
This paper is outlined as follows. Section 2 lays out the methods

sed to complete this work and includes subsections on specific sim-
lation information (Section 2.1 ), data set generation (Section 2.2 ),
NNs (Section 2.3 ), and network output (Section 2.4 ). We begin
ection 3 by presenting results using individual simulations to 

nfer first the entire halo mass (Section 3.1 ), then a global CGM
roperty, the mass of the CGM o v er the mass of the halo, or f cgm 

Section 3.2 ), and the metallicity of the CGM (Section 3.3 ) which
xhibits large variation. We show results based on idealized soft X-
ay and H I images and assess the impact of realistic observations
ith observational surv e y limits (Section 3.4 ). We also perform
ross simulation inference , where one trains a CNN on one galaxy
ormation model or simulation and tests on another to gauge its
obustness (Section 3.5 ). We discuss the interpretability of the cross-
imulation inference analysis (Section 4.1 ), the applicability and 
imitations of CNNs applied to CGM (Section 4.2 ), the variance
etween true and inferred values for CGM properties using the 
dealised multifield maps (Section 4.3 ), and a possible avenue for
uture work as an expansion of this analysis (Section 4.4 ). Lastly,
ection 5 concludes. 

 METHODS  

n this section, we introduce the simulations (Section 2.1 ) followed by
ow our halo-centric ‘map’ data sets are generated and a description
f the global properties we train the network to infer (Section 2.2 ).
hen, Section 2.3 describes the neural network applied to these data
ets. Finally, we specify the network output, including statistical 
easures, to e v aluate the performance of CNN (Section 2.4 ). 
We define some v ocab ulary and common phrases within this

ork. Fields refer to X-ray and 21-cm H I (hereafter H I ), where
sing one field corresponds to either X-ray or H I ; two fields, X-ray
nd H I , make up the multifield. With our CNN architecture, the
umber of fields is equi v alent to the number of channels. Parameters
nd hyperparameters define the inner workings of the CNN, where 
he latter must be optimized. This should not be confused with
arameters in the context of astrophysical feedback. Properties 
escribe the attributes of the CGM that are inferred by the network:
 halo , f cgm , log ( Z cgm ), M cgm , f cool , and log ( T cgm ). The parameter
pace reflects the range of values for the CGM properties (between
he 16th and 84th percentiles) that each simulation encapsulates. 

.1 Simulations 

e use the CV set from three simulation suites, each of which
ses a different hydrodynamic scheme: CAMELS-IllustrisTNG 

referred to as IllustrisTNG) using AREPO (Springel 2010 ; Wein- 
erger, Springel & Pakmor 2020 ), CAMELS-SIMBA (referred to 
s SIMBA) utilizing GIZMO (Hopkins 2015 ), and CAMELS-Astrid 
referred to as Astrid) utilizing MP-Gadget (Springel 2005 ). These 
imulations encompass 27 volumes spanning (25 h −1 Mpc) 3 with 
xed cosmological parameters ( �M = 0.3 and σ 8 = 0.8) with varying
MNRAS 527, 10038–10058 (2024) 
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M

Table 2. Outlining the number of haloes per mass bin in IllustrisTNG, 
SIMBA, and Astrid. The mass bins are defined as follows: Sub- L ∗ for small 
haloes with mass between 11.5 ≤ log ( M halo /M �) ≤ 12, L ∗ for intermediate- 
sized haloes with masses ranging from 12 ≤ log ( M halo /M �) ≤ 13, and Groups 
are large haloes with masses from 13 ≤ log ( M halo /M �) ≤ 14.3. 

Simulation Sub- L ∗ L ∗ Group Total 

IllustrisTNG 3450 1812 192 5454 
SIMBA 3397 1534 170 5101 
Astrid 3262 1866 218 5346 
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andom seeds for each volume’s initial condition. The CAMELS
strophysical parameters for feedback are set to their fiducial values.
e e xclusiv ely use the z = 0 snapshots for this work. 
IllustrisTNG is an adaptation of the original simulation as de-

cribed in Nelson et al. ( 2019 ) and Pillepich et al. ( 2018 ), using
he AREPO (Springel 2010 ) magnetohydrodynamics code employing
he N -body tree-particle-mesh approach for solving gravity and

agnetohydrodynamics via moving-mesh methods. Like all sim-
lation codes used here, IllustrisTNG has subgrid physics modules
ncompassing stellar processes (formation, evolution, and feedback)
nd black hole processes (seeding, accretion, and feedback). Black
ole feedback uses a dual-mode approach that applies thermal
eedback for high-Eddington accretion rates and kinetic feedback for
ow-Eddington rate accretion rates. The kinetic mode is directionally
ulsed and is more mechanically efficient than the thermal mode
Weinberger et al. 2017 ). 

SIMBA, introduced in Dav ́e et al. ( 2019 ), uses the hydrodynamic-
ased ‘Meshless Finite Mass’ GIZMO code (Hopkins 2015 , 2017 ),
ith several unique subgrid prescriptions. It includes more physically
oti v ated implementations of (1) AGN feedback and (2) black

ole growth. SIMBA’s impro v ed subgrid physics model for AGN
eedback is based on observations, utilizing kinetic energy outflows
or both radiative and jet feedback modes operating at high and low
ddington ratios, respectively . Additionally , it applies observation-
lly moti v ated X-ray feedback to quench massive galaxies. SIMBA’s
lack hole growth model is phase-dependent. Cool gas accretion on
o BHs is achieved through a torque-limited accretion model (Angl ́es-
lc ́azar et al. 2017a ), and when accreting hot gas, SIMBA transitions

o Bondi accretion. 
Astrid, introduced in Bird et al. ( 2022 ), adopts the Pressure–

ntropy SPH hydrodynamic model that uses the MP-Gadget code
Feng et al. 2018 ). The original Astrid simulations focus on mod-
lling high-redshift galaxy formation (from z = 99 to z = 3)
y considering inhomogeneous hydrogen and helium reionization,
etal return from massive stars, and the initial velocity offset between

aryons and dark matter. It has also enhanced the modelling of
lack hole mergers via a dynamic friction model. The CAMELS
ersion of Astrid (Ni et al. 2023 ) follows the original simulation, but
light changes in black-hole dynamics and dual-mode AGN feedback
mplementations were made between them. 

.2 Data set generation 

o create our halo-centric map data sets, we use YT -based software
Turk et al. 2011 ) that allows for consistent and uniform analysis
cross different simulation codes. We generate maps of all haloes
ithin the CV set with masses of at least M halo = 10 11.5 M � along

he three cardinal axes. There are approximately 5000 haloes for
ach simulation. The highest halo mass is 10 14.3 M �, for a nearly 3
ex span in halo mass. Refer to Table 2 for additional details. We
NRAS 527, 10038–10058 (2024) 
ategorize all the haloes within the simulations by halo mass, where
ub- L ∗ haloes are within the range 11.5 ≤ log ( M halo /M �) ≤ 12, L ∗
aloes are within the range 12 ≤ log ( M halo /M �) ≤ 13, and groups
re within the range 13 ≤ log ( M halo /M �) ≤ 14.3. 

The relationship between log ( M halo /M �) and log ( M cgm ),
og ( T cgm ), f cgm , and log ( Z cgm ) for all simulations, the parameter
pace, is shown in Fig. 1 . The mean value of each property is indicated
ith a solid line. The shaded regions represent the 16th −84th
ercentiles, and the dotted points indicate the ‘statistically low’
egion for haloes with halo masses abo v e log ( M halo /M �) > 13.0. In
greement with previous work (Oppenheimer et al. 2021 ; Delgado
t al. 2023 ; Gebhardt et al. 2023 ; Ni et al. 2023 ), we illustrate how
he properties of gas beyond the galactic disc can differ significantly
etween feedback implementations. 

For log ( M cgm ) (top left), Astrid (blue) shows little scatter be-
ow log ( M halo /M �) > 12.5, IllustrisTNG (pink) shows similar but
ess extreme scatter, and SIMBA (purple) has consistent scatter
hroughout. In log ( T cgm ) (top right), Astrid again has a low scatter
hroughout the entire M halo range. This scatter increases slightly
or IllustrisTNG and again for SIMBA, and it is interesting to
ote the divergence from log ( T cgm ) ∝ log ( M halo /M �) 2/3 . Astrid has
he most scatter for f cgm (bottom left), whereas IllustrisTNG and
IMBA display comparable scatter for lower masses, reducing for
igher masses. Finally, log ( Z cgm ) illustrates that all three simulations
ave significant and similar scatter. For M cgm , log ( T cgm ), and f cgm ,
strid has higher values throughout the M halo range, followed by

llustrisTNG and SIMBA. This is not the case in log ( Z cgm ), where
here is a significant o v erlap. The scatter in M halo was also computed
ith respect to the total flux per map, corresponding to the sum of

ll pixel values in X-ray and H I separately. When binned by M halo ,
here are correlations only with IllustrisTNG and Astrid for X-ray
see Fig. A2 ). A more detailed discussion of map trends and pixel
ounts is in Appendix A . 

From the snapshot data obtained from the X-ray and H I maps, we
rovide an equation describing the calculation of each CGM property
 M halo , f cgm , Z cgm , M cgm , f cool , and T cgm ): 

 halo = 

∑ 

m DM ( r < R 200c ) 

+ 

∑ 

m gas ( r < R 200c ) + 

∑ 

m star ( r < R 200c ) (1) 

 cgm = 

∑ 

m cgm ( r < R 200c ) 

M halo 
(2) 

 cgm = 

∑ 

z cgm ( r < 200 kpc ) ∑ 

m cgm ( r < 200 kpc ) 
(3) 

 cgm = 

∑ 

m cgm ( r < 200 kpc ) (4) 

 cool = 

∑ 

m cool ( r < 200 kpc ) ∑ 

m cgm ( r < 200 kpc ) 
(5) 

 cgm = 

∑ 

t cgm ( r < 200 kpc ) ∑ 

m cgm ( r < 200 kpc ) 
(6) 

here m is the mass of dark matter (DM), gas, or stellar (star)
articles enclosed within r < 200 kpc . The subscript ‘cgm’ refers
o any gas that is not star-forming. z cgm is the metallicity of the gas
article. m cool is CGM gas with T < 10 6 K. t cgm is the temperature
f the gas particle. For the definitions and numerical ranges of the
bo v e CGM properties, see Table 1 . To ensure our CNN is able
o reproduce the scatter seen in Fig. 1 , we include a comparison
f mean and variance values between the input parameters and the
utput inference, separated by mass bin for each galaxy simulation
odel. This is only computed for log ( Z cgm ), as this parameter does
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Figure 1. Relationship between different CGM properties and the halo mass. Panels specifically illustrate M cgm , log ( T cgm ), f cgm , and log ( Z cgm ) within each 
simulation (IllustrisTNG, SIMBA, and Astrid) to represent the mean distribution of the objects. The points indicate the mass bins where there are statistically 
fewer haloes in mass bins abo v e log ( M halo /M �) = 13.5. The shaded regions represent the 16 th − 84 th percentiles. 
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ot have a clear relationship with halo mass, enabling a distinction 
etween mass relationships (seen within the other properties) and 
ntrinsic scatter. We confirm that our CNN reproduces the scatter 
ithin the initial data sets. 
We generated one channel for each field (H I or X-ray), adding

hem together in the multifield case (H I + X-ray). Each map utilizes
alues obtained through mock observation, as described below. For 
-ray, we map X-ray surface brightness emission in the soft band 
etween 0.5 and 2.0 keV. H I , or ‘Radio’ refers to the 21-cm emission-
ased measurement that returns column density maps, which is a 
ata reduction output of 21-cm mapping techniques. Each map is 
28x128 pixels, spanning 512 × 512 kpc 2 with a 4 kpc resolution. 
he depth spans ±1000 kpc from the centre of the halo. Two types
f maps are generated for each field: those with no observational 
imits, called idealized maps, and those with observed limits imposed. 

e first explain the generation of idealized maps. X-ray maps are 
reated using the pyXSIM package (ZuHone & Hallman 2016 ). 

hile pyXSIM can generate lists of individual photons, we use 
t in a non-stochastic manner to map the X-ray emission across the
ernel of the fluid element. Therefore, our X-ray maps are idealized 
n their ability to map arbitrarily low emission levels. Radio-based 
 I column density maps are created using the Trident package 

Hummels, Smith & Silvia 2017 ) where the Haardt & Madau ( 2012 )
onization background is assumed with the self-shielding criterion of 
ahmati et al. ( 2013 ) applied. 
Fig. 2 depicts maps of the same massive halo in the three
imulations: IllustrisTNG, SIMBA, and Astrid, from left to right, 
especti vely. The four ro ws illustrate (1) idealized X-ray, (2) obser-
ationally limited X-ray, (3) idealized H I , and (4) observationally
imited H I . For X-ray with observational limits, we set the surface
rightness limit to 2.0 × 10 −13 erg s −1 cm 

−2 arcmin −2 corresponding 
o the observing depth of the eROSITA eRASS:4 all-sky survey 
Predehl et al. 2021 ). For H I with observational limits, we set the
olumn density limit to N H I = 10 19.0 cm 

−2 , which is approximately
he limit expected for the 21-cm H I MHONGOOSE Surv e y at a 15’
eam size similar to the eROSITA surv e y (de Blok et al. 2016 ). The
bservational limits are implemented by setting a lower limit floor 
hat corresponds to the detectability of the telescope. Accessing the 
ame halo across the three simulations is possible, since the CV set
hares the same initial conditions between the different simulation 
uites. The X-ray maps tracing the gas primarily abo v e T > 10 6 K
re brightest for Astrid and dimmest for SIMBA, a trend also seen
hen the observational limits are imposed. The H I maps, probing
 ∼ 10 4 K gas, are less centrally concentrated than X-ray and often

race gas associated with satellites. 
We expand on the first column in Fig. 2 in Fig. A1 , formatted

imilarly, for a range of halo masses within IllustrisTNG from 

og ( M halo /M �) = 13.83 (leftmost) to log ( M halo /M �) = 11.68 (right-
ost). X-ray emission, which traces the gas with a temperature abo v e

0 6 K, indicates a strong correlation with the halo mass. The features
MNRAS 527, 10038–10058 (2024) 
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Figure 2. Each column illustrates maps for IllustrisTNG, SIMBA, and 
Astrid, respecti vely. Each ro w corresponds to maps for idealized X-rays, 
X-rays with observational limits, idealized H I , and H I with observational 
limits. These maps display the same halo across the CV set of the three 
simulations. 
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een here include wind-blown bubbles (Predehl et al. 2020 ), satellite
alaxies that create bow shocks (Kang et al. 2007 ; Bykov, Dolag &
urret 2008 ; Zinger et al. 2018 ; Li et al. 2022 ), and emissions

ssociated with the galaxies themselves. H I does not have the same
orrelation with halo mass, strengthening our choice in creating the
 I + X-ray multifield. 

.3 Convolutional neural network 

he advantage of employing CNNs lies in their capacity to simulta-
eously learn multiple features from various channels or fields (X-ray
nd H I ). Fields can be used independently or together for training,
alidation, and testing without modifications to the network architec-
ure and only minor changes in the scripts whenever necessary. This
 ork adopts lik elihood-free inference methods, suitable for cases
here determining a likelihood function for large and complex data

ets is computationally demanding or is not attainable. Our CNN
rchitecture is based on the architecture used with the CAMELS
ultifield Data set (CMD) in Villaescusa-Navarro et al. ( 2021a ),

nferring two cosmological and four astrophysical feedback parame-
ers. In addition to now inferring six CGM properties , the remaining
odifications stem from replacing the LH set (Villaescusa-Navarro

t al. 2022 ) with the CV set. We must be able to accommodate
ne venly distributed discrete-v alued data in the form of ‘halo-centric’
oints, which can be seen in a property like the halo mass. This
s compared to the LH-based CMD data set, which was used to
NRAS 527, 10038–10058 (2024) 
nfer the evenly distributed cosmological and astrophysical feedback
arameters by design. 
Our CNN makes two main adjustments: (1) the kernel size is

hanged from 4 to 2 to accommodate a smaller initial network input,
nd (2) the padding mode is altered from ‘circular’ to ‘zeros’. The
adding mode is crucial in guiding the network when the image
imensions decrease, as it no longer perfectly fits the original frame.
hanging to ‘zeros’ means filling the reduced areas with zeros

o maintain the network’s functionality. The CNN architecture is
utlined in greater detail in Appendix C in Table C1 for the main
ody of the CNN and Table C2 for additional functions utilized after
he main body layers. 

CNN also includes hyperparameters: (1) the maximum learning
ate (also referred to as step size), which defines how the application
f weights changes during training, (2) the weight decay as a
egularization tool to prevent overfitting by reducing the model
omplexity, (3) the dropout value (for fully connected layers) as
andom neurone disablement to prevent overfitting, and (4) the
umber of channels in CNN (set to an integer larger than one). To
ptimize these hyperparameters, we employ Optuna (Akiba et al.
019 ), 4 a tool that efficiently explores the parameter space and
dentifies the values attributed to returning the lo west v alidation loss,
hus achieving the best performance. 

We divide the full data set into a training set (60 per cent), a
alidation set (20 per cent), and a testing set (20 per cent). Only
he training set contains the same halo along three different axis
rojections (setting the network parameter split = 3 ). In con-
rast, the latter sets include neither the axis projections of any halo
or the original image of the haloes assigned to the training set.
he split is performed during each new training instance for a new
ombination of fields and simulations. We set the same random
eed across all network operations, so as to drastically reduce the
robability of o v erlap between training, validation, and testing sets.
ithout the same random seed, the data set will not be split in the

ame way each time, and one halo could appear in two or more sets,
ausing inaccurate results. This process is necessary to ensure that
he network does not perform additional ‘learning’ in one phase. 

.4 Network outputs 

ere, the ‘moment’ network (Jeffrey & Wandelt 2020 ) takes ad-
antage of only outputting the mean, μ, and variance, σ , of each
roperty for increased efficiency, instead of a full posterior range.
he minimum and maximum values used to calculate the network
rror for the six CGM properties are kept the same throughout this
ork, regardless of which simulation is used for training. Doing

o ensures that the results are comparable in the cross-simulation
nalysis or training on one simulation and testing on another. 

We additionally include four metrics to determine the accuracy
nd precision of the CNN’s outputs for each CGM property: the root
ean squared error (RMSE), the coefficient of determination ( R 

2 ),
he mean relative error ( ε), and the reduced chi-squared ( χ2 ). In the
ormulae below, we use the subscript i to correspond to the index
alue of the properties [1–6], the marginal posterior mean, μi , and
he standard deviation, σ i . Four different statistical measurements are
sed to make such conclusions, and TRUE i is used to denote the true
alue of any given CGM property with respect to simulation-based
aps. 

https://github.com/pfnet/optuna/
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Root mean squared error, RMSE : 

MSE i = 

√ 

〈 ( TRUE i − μi ) 2 〉 , (7) 

here smaller RMSE values can be interpreted as increased model 
ccuracy in units that can be related to the measured property. 
Coefficient of determination, R 

2 : 

 
2 
i = 1 − � i ( TRUE i − μi ) 2 

� i ( TRUE i − TRUE i ) 2 
, (8) 

epresenting the scale-free version of the RMSE, where the closer 
 
2 is to one, the more accurate the model. 
Mean relati v e error, ε: 

i = 

〈
σi 

μi 

〉
, (9) 

here smaller εi values can be interpreted as increased model 
recision. This is also the type of error predicted by CNN. 
Reduced chi-squared, χ2 : 

2 
i = 

1 

N 

N ∑ 

i= 1 

(
TRUE i − μi 

σi 

)2 

, (10) 

here this quantifies how ‘trustworthy’ the posterior standard devi- 
tion is, such that values close to one indicate a properly quantified
rror and that the model is well trained. Values greater than one
ndicate that the errors are underestimated, and those smaller than 
ne are o v erestimated. We do not expect deviations far from one
hen analysing inferences from CNNs trained and tested on the same 

imulation. Ho we ver, v alues much higher than one are expected if
etwork training and testing occur in different simulations, as outliers 
ay have a large contribution. The variation in parameter spaces 

etween simulations can be seen in Fig. 1 . If χ2 values become very
arge, two hypotheses can be presented. First, either the CNN is not
owerful enough to output the correct inference from the provided 
aps, or second, there is not enough of the correct information 
ithin the data set to produce a good inference. Distinguishing one 
ypothesis from the other, along with a physical interpretation of 
 alues that de viate from one, is not possible without the ability to
nterpret deep learning models. Resolving these issues is the focus 
f our future endea v ours. 
It is also important to note that the values reported in the subsequent

gures correspond to the subset of the data that has been plotted, not
he entire set, unless otherwise noted. To achieve such a reduced 
et, we randomly select a fraction of data points that vary with halo
ass – for example, approximately (1/30)th of log ( M halo /M �) =

1.5 haloes, but all haloes abo v e log ( M halo /M �) = 13.0 are plotted. 

 RESULTS  

e present our main results in this section. First, we discuss training
nd testing on one idealized field at a time for the same simulation
single-simulation analysis), focusing on three inferred properties: 
1) halo mass in R 200c ( M halo in Section 3.1 ), (2) the mass ratio
f CGM gas to the total mass inside R 200c [ f cgm in Section 3.2 ),
nd (3) the metallicity of the CGM inside 200 kpc (log ( Z cgm ) in
ection 3.3 ]. We do not display the case of a multifield here, as

he results do not indicate a significant impro v ement. F ollowing
his, we show the results for the observationally limited case (for
roperties M halo and M cgm ), strengthening the moti v ation for using a
ultifield (Section 3.4 ). We also organize network errors (RMSEs) 

y mass bin (see Table 2 ) and by simulation (training and testing
n the same simulation) for the multifield case with observational 
imits (Section 3.4.1 ). Finally, we provide the results of a cross-
imulation analysis encompassing all three simulations, with and 
ithout observational limits for comparison (Section 3.5 ). 
We utilize Truth–Inference scatter plots to display inferences 

n the CGM properties. Each plot consists of multiple panels 
istinguished by field, simulation, or both. The panels visualize the 
rue value, TRUE i , on the x -axis and the inferred posterior mean, μi ,
n the y -axis, with error bars corresponding to the posterior standard
eviation, σ i . Four statistics (for the subset of data plotted and not
he entire data set) are also provided for each panel: the RMSE
equation 7 ), coefficient of determination values ( R 

2 , equation 8 ),
ean relative error ( ε, equation 9 ), and reduced χ2 values (equation

0 ). The definitions and equations for each are given in Section 2.4 .
he black diagonal line also represents a ‘perfect inference’ one-to- 
ne line between the true and inferred values. 

.1 Inferred halo mass 

he halo mass emerges as a readily interpretable property, directly 
educible from the network, owing to its clear expectations: ‘true’ 
igh-mass haloes should yield correspondingly high ‘inferred’ halo 
asses, regardless of the simulation used for training and testing. 
ig. 3 illustrates the Inference–Truth plots for M halo across all three
imulations for a subset of the data. We define the halo mass in
quation ( 1 ) as the sum of dark matter, gas, and stars within r <
 200c . 
The top row corresponds to the results using idealized X-ray maps

o infer M halo , and similarly for the bottom row using H I maps.
he columns are ordered by the simulation used for training and

esting: IllustrisTNG (left), SIMBA (middle), and Astrid (right). 
he points are coloured by halo mass throughout. We examine the
NN with input X-ray maps first. In the first panel, we train and

est on IllustrisTNG and obtain inferences that indicate a relatively 
ell-constrained monotonic relationship. Some points remain further 

way from the ‘truth’ values set by the black diagonal line at the low-
ass end, suggesting that X-ray may not be the best probe for these

ow-mass haloes. The next panel visualizes the training and testing 
esults on SIMBA, with a slight impro v ement in the higher mass
ange and an o v erall relativ ely well-constrained, monotonic trend
ith a few outliers that stray far from the black line. This is exactly
hat is expected and is the same across simulations and fields. There

re a few more outliers than IllustrisTNG and slightly larger error bars 
cross the entire mass range. Finally, the third panel demonstrates 
hat the CNN trained on and tested with Astrid has excellent inference
ower, as indicated by smaller error bars throughout the mass range.
We can now look at the results obtained using the H I input maps.

n the first panel, with training and testing on IllustrisTNG, we obtain
 clear and well-constrained monotonic relationship with relatively 
ittle scatter. There is a slight impro v ement in error predictions when
sing H I instead of X-ray, as indicated by the change in the χ2 

alue from 0.918 with X-ray to 0.938 with H I . Visually, we can see
he impro v ement in the lower mass range, as there is less scatter.
he middle panel shows training and testing on SIMBA, where the

nference made is significantly worse than it is with X-ray throughout
he entire parameter space, especially intermediate to low masses 
ith increased scatter and larger error bars. The last panel shows

raining and testing on Astrid. Training and testing the CNN on
strid with H I input maps yields the best inference of the three
alaxy formation models, indicated by the highest R 

2 and lowest ε.
o we ver, the inference made with H I is outperformed by that made
ith X-ray in the intermediate- to high-mass range. 
MNRAS 527, 10038–10058 (2024) 
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M

Figure 3. The Truth–Inference plots for M halo when training and testing on the same simulation using idealized single-field data. IllustrisTNG, SIMBA, and 
Astrid are shown from left to right, and X-ray and H I are shown in the upper and lower rows, respectively. The data are at z = 0.0. We plot a mass-dependent 
fractional sample of haloes from the testing set. 
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Quantitativ ely, Astrid pro vides the most accurate and precise infer-
nce for both fields following the RMSE and ε v alues, respecti vely.
t also has the highest R 

2 score, indicating that a CNN trained and
ested on Astrid can best explain the variability in the data. SIMBA
as the lowest R 

2 value o v erall with H I input maps, making it the
east accurate in this case. Investigating the χ2 values, CNNs training
nd testing on (1) IllustrisTNG consistently o v erestimate the error
 χ2 < 1), (2) SIMBA consistently underestimate the error ( χ2 >

), and (3) Astrid o v erestimate the X-ray error to a greater degree
han IllustrisTNG but slightly underestimate the H I error to a lesser
egree than SIMBA. 
To interpret the meaning of the χ2 values reported in Fig. 3 , we

etermine the percentage of σ i errors of individual data points that
 v erlap the line of perfect inference. If the errors are truly capturing
he Gaussian behaviour, as in χ2 = 1, we would expect 1 − σ or
8 per cent errors to o v erlap. Briefly, we find that the percentage of
 v erlapping points is 78.3 per cent for the o v erall lowest χ2 = 0.858
or Astrid on idealized X-ray maps, and 65.0 per cent for the o v erall
ighest χ2 = 1.277 for SIMBA for idealized H I maps. In the case
f SIMBA X-ray, we find an o v erlapping percentage of 68.9 per cent
or χ2 = 1.125, which indicates a slight non-Gaussian behaviour
or a χ2 just under one. Note that data points with underestimated
rrors generally o v ercontribute, especially this χ2 v alue. Ho we ver, it
s encouraging to see that the χ2 values scale as expected, meaning
hat the y hav e a diagnostic value, but that the inferred errors do not
ompletely follow Gaussian statistics. 
NRAS 527, 10038–10058 (2024) 

H  
.2 Inferred CGM gas fraction 

ig. 4 shows the Truth–Inference plots for f cgm in the same format as
ig. 3 , with the colour bar still indicating M halo . We see that f cgm does
ot have a monotonic trend, seen explicitly in Fig. 1 . Higher masses
end to be more constrained, illustrated by a less deviation from
he black line and smaller errors than those of lower mass haloes.
o we ver, this is likely due to having fewer higher mass haloes for

he network to learn from. We define f cgm in equation ( 2 ), as the sum
f non-star-forming gas within a radius of r < 200 kpc divided by
he halo mass. 

CNN performs poorly with IllustrisTNG on idealized X-ray maps,
esulting in scattered points with large error bars. The network
nderestimates the error bars, as indicated by a χ2 value greater
han one. The next panel shows the results with SIMBA, for which
here is better agreement and less scatter toward the higher and
ntermediate halo masses. Ho we ver, for the lo w-mass haloes, there is
o distinctive trend, though the network can predict the values well
 v erall but with somewhat large error bars (also underestimated).
IMBA also has slightly lower f cgm values than IllustrisTNG (c.f.
ig. 1 ). Finally, a CNN with Astrid pro vides e xcellent inference
or f cgm and accurately estimates the network error. The values are
ystematically larger, matching Fig. 1 . 

Similarly, we display H I in the bottom row, with o v erall trends
atching those seen with X-ray. Ho we ver, H I of fers tighter con-

traints at lower mass haloes (higher f cgm values). This indicates that
 I is a slightly better probe for f cgm than X-ray . Interestingly , SIMBA
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Figure 4. The Truth–Inference plots for f cgm , with idealized X-ray (top) and idealized H I (bottom), where the colour bar still represents halo mass. Astrid 
performs the best with the tightest constraints and the smallest errors, while IllustrisTNG performs the w orst, lik ely due to the sharp increase of f cgm at low mass. 
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ow o v erestimates the network error ( χ2 value less than one), while
llustrisTNG and Astrid underestimate the errors. In general, f cgm 

erforms worse than M halo , but CNN is learning to infer this property
sing a single idealized field. 
It does not appear that the quality of inference by the CNN

epends on where the range of f cgm lies with respect to the entire
alue space spanned by all three simulations – IllustrisTNG returns 
he worst performance but has intermediate f cgm values, with an 
nderestimate of the error. Astrid yields the most accurate and precise 
nferences for X-ray and H I fields, with lower scatter and error values
or predicting M halo compared to IllustrisTNG and SIMBA. While 
IMBA generally performs worse, it e xhibits relativ ely good results

n this case, especially with H I . 
Following the results of Davies et al. ( 2020 ) using IllustrisTNG-

00, we see similar non-monotonic trends using CAMELS- 
llustrisTNG in f cgm as a function of halo mass. Low-mass haloes 
log ( M halo /M �) < 12) show high f cgm values. When the halo mass
s slightly increased, there is a decline in the values of f cgm , until
pproximately log ( M halo /M �) ≈ 12.5 as a threshold mass, after
hich the monotonic trend with the halo mass returns. Star-forming 

eedback processes below this threshold mass are dominant and 
ncapable of clearing the CGM. At the threshold mass, these star-
orming feedback processes become stronger. Instead of learning the 
GM of its gas, the AGN feedback is shut down as early black hole

ormation is limited (Delgado et al. 2023 ). We then see a dramatic
ncrease due to turning on jet-mode feedback. Even for cluster-mass 
bjects, AGN feedback cannot o v ercome deep potential wells, so that
e again see high values of f cgm . SIMBA has the strongest feedback

mplementation of the galaxy formation models considered, resulting 
n lower o v erall f cgm values throughout the entire mass range.
dditionally, we note that although SIMBA has the largest scatter in

 cgm , this is not simply a reflection of larger statistical fluctuations,
s it has a comparable amount of sub- L ∗ objects to IllustrisTNG
see Table 2 ). Astrid has the weakest feedback, resulting in higher
 v erall f cgm values across the mass range Ni et al. ( 2023 ). Further
nalysis is needed to more concretely establish the relationships 
etween feedback and halo mass such that these results are robust to
bservational data. 

.3 Inferred metallicity 

ig. 5 shows the truth–inference plots for metallicity, plotted as 
he logarithm of the absolute value of Z (note log (Z �) = 1.87,
splund et al. ( 2009 ) on this scale. Metallicity presents an interesting

hallenge to our CNN, as there are often ∼1 dex of scatter in Z at the
ame halo mass with no obvious trend (see Fig. 1 ). When training
nd testing on IllustrisTNG (top left), we see that higher mass haloes
re slightly better constrained than low-mass haloes, which are more 
cattered and have larger (and overall underestimated) error bars. We 
efine the metallicity of the CGM in equation ( 3 ) as the sum of the
etallicity of the gas particles times the mass of non-star-forming 

as within a radius of r < 200 kpc . 
Training and testing on SIMBA results in significant scatter across 

he entire mass range, with larger and underestimated error bars. L ∗

nd group haloes have higher metallicity values o v erall than in the
revious panel. The last panel shows training and testing with Astrid,
eturning the best o v erall inference in log ( Z cgm ) across the entire
ass range. Although the error is underestimated, Astrid has much 
MNRAS 527, 10038–10058 (2024) 
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M

Figure 5. The Truth–Inference plots for metallicity, with idealized X-ray (top) and idealized H I (bottom), where the colour bar still represents halo mass. 
Astrid performs the best, while SIMBA performs the worst, as it has the most v aried Z -v alues across the mass range, while Astrid has the most confined values. 
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igher accuracy and precision based on RMSE, R 
2 , and ε values. We

rgue that this is quite an impressive demonstration of our CNN’s
bility to predict a value with significant scatter at a single halo mass.

The bottom row illustrates this same inference, but now using H I ,
here we see similar trends as with X-ray, though slightly more

onstrained in the case of IllustrisTNG and SIMBA and slightly less
onstrained in the case of the low-mass end of Astrid. The same
pward shift for L ∗ and group haloes is seen with SIMBA, alluding
o SIMBA’s strong astrophysical feedback prescriptions that impact
igher mass haloes. This is also seen in the changes in lower (higher)
2 values for IllustrisTNG and SIMBA (Astrid). We conclude that
either X-ray nor H I is powerful enough on its own to infer log ( Z cgm ).
urprisingly, the entire metallicity of the CGM can be well inferred
sing H I , especially in the case of Astrid, despite being a small
raction of o v erall hydrogen, which itself is a primordial element. We
o not attempt to provide a physical interpretation of the metallicity
f the CGM, as it is quite complex and will be a good topic to focus on
or our future work applying interpretative deep learning techniques.

.4 Obser v ational limits and multifield constraints 

imulations must consider the limitations of current and future obser-
ational multiwavelength surveys, such that a one-to-one correlation
etween them and the developing models can exist. The specific
imits used in this work come from the eROSITA eRASS:4 X-ray
uminosity of 2 × 10 −13 erg s −1 cm 

−2 arcmin −2 , and the typical
adio telescope column density for measurements of H I as 10 19 

m 
−2 . Again, we include the RMSE values R 

2 , ε, and χ2 , which
re especially important to distinguish between single and multifield
nferences. 
NRAS 527, 10038–10058 (2024) 
The top row of Fig. 6 displays the Truth–Inference plots, high-
ighting the power of using multiple fields to infer M halo by training
nd testing a CNN with the IllustrisTNG observationally limited
ata sets. Utilizing the X-ray (top left), it is clear that we cannot
ake an inference towards lower halo masses (Sub- L ∗). This is
 xpected, giv en the eROSITA -inspired limits, which show X-ray
mission strongly correlating with the halo mass, following Fig. A1 .
he inability to make a clear inference in this mass regime despite
roviding the CNN with the most information (nearly 3500 separate
ub- L ∗ haloes, see Table 2 ) reiterates the weaknesses of X-ray.
he X-ray inference impro v es in the L ∗ range, but is still highly
cattered. Chadayammuri et al. ( 2022 ) targeted L ∗ galaxies by
tacking eROSITA haloes and found a weak signal, which appears to
e supported by the assessment here. The groups provide much better
nference for M halo since these objects should be easily detectable
ia eROSITA . In the middle panel, we explore H I with observational
imits to infer M halo . Interestingly, H I does a much better job for
ub- L ∗ haloes, as these are robustly detected in the 21-cm mapping
see Fig. A1 ). The inference worsens for L ∗ haloes and for much of
he Group range. H I thus far shows impro v ements via a lower RMSE
 alue, a R 

2 v alue closer to 1, and a lo wer ε v alue. It also indicates that
he network predicts a greater error underestimation due to a higher

2 value. 
As neither X-ray nor H I is robust enough to infer M halo alone

roperly, we now train and test the network on combined H I + X-
ay ‘multifield’. The multifield approach is specifically used when
ne field alone may not be enough to constrain a property fully
r only constrain a property within a certain range of values. The
econdary or tertiary fields would then be able to fill in some gaps
r tighten the constraints within the inference. Additionally, with
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Figure 6. Truth–Inference figures for X-ray (left), H I (middle), and H I + X-ray (right) for IllustrisTNG with observational limits imposed on M halo ( top row ) 
and M cgm ( bottom row ) using IllustrisTNG. X-ray provides poor inference, especially for lower-mass galaxies, as there are very few, sometimes no emission 
lines detected if they are too faint. On the other hand, the inference produced from H I results in more uniform errors throughout the mass range, since H I is 
detected around both low- and high-mass haloes. Combined with their observational limits, the inference is enhanced by tighter constraints at all mass scales. 
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he ability to adjust the network based on current observations, 
e form computational counterparts to future surv e ys to aid in its

onstruction. We achieve stronger constraints throughout the entire 
ass range, even with observational limits from both X-ray and H I .
-ray probes the L ∗ and Group mass range well, while H I probes

he sub- L ∗ mass well, alleviating the previously unresolved noise of
he left panel. We see a quantitative improvement in the multifield 
pproach in lower values for RMSE, R 

2 , and ε, which comes at
he price of increased underestimation of errors seen with a slight
ncrease in χ2 value. 

The bottom row of Fig. 6 provides similar results and trends for
 cgm (defined in equation 4 ) via IllustrisTNG with X-ray, H I , and
ultifield using observational limits. X-ray here is also not powerful 

nough as a probe to infer this property, especially in the low halo
ass region. We then look at H I , where there is a better o v erall

nference in the low halo-mass re gion. Howev er, H I produces more
catter towards the high halo masses than X-ray. The last panel 
isplays results from the H I + X-ray multifield, which is an o v erall
mpro v ement compared to either field alone. The constraints are 
ighter o v erall, and the scatter is reduced, as seen in the RMSE
alues, R 

2 , ε, and χ2 . Additional truth–inference multifield plots 
ith observational limits for the remaining CGM properties can be 

ound in the Appendix B . 
.4.1 Visualizing the CNN error 

o quantify the CNN error across all six CGM properties [ M halo ,
 cgm , log ( Z cgm ), M cgm , f cool , and log ( T cgm )], we plot the error in
ach property binned by the halo mass. In the left panel of Fig.
 , we plot the error (neural network error, or mean relative error)
or each property when considering the observational limits on H I ,
-ray, and multifield H I + X-ray for a CNN that is trained and

ested on IllustrisTNG. Panels are separated by halo mass, where 
e use the full data set instead of the subset in the truth–inference
lots. 
We outline the general trends of this figure and point out in-

eresting features. In the sub- L ∗ panel, X-ray maps alone provide
he highest error, followed by multifield, and then H I with the
owest error, to be expected. Note that there is an infinitesimal
ifference between multifield and using H I alone. In the sec-
nd panel ( L ∗), the margin of error between X-ray and H I is
ecreasing, meaning that X-ray is becoming increasingly more 
mportant in the intermediate halo mass range. Multifield devel- 
pment is also strictly improving with the use of H I alone. With
roups, the multifield offers a greater impro v ement o v er either field

lone, except for log ( M cgm ) where the X-ray has a slightly lower
MNRAS 527, 10038–10058 (2024) 
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Figure 7. Left: Average RMSE values split by halo category for training and testing on IllustrisTNG, with fields X-ray, H I , and the multifield H I + X-ray with 
observational limits, for all six properties. These bars are representative of the full data set. We provide a dashed vertical line to distinguish between properties 
that are radially bound by R 200c and those by 200 kpc . Right: Average RMSE values split by simulation (training and testing on IllustrisTNG, SIMBA, or Astrid), 
with H I + X-ray and observational limits, for all six properties. These bars are representative of the full data set. Neither panel is entirely comparable to the 
Truth–Inference plots, as these categorize errors by halo mass and are for the full data set. 
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Focusing on f cgm , the errors are generally smaller than those of
 halo , but this may reflect the quantity range that is inferred as

 cgm is mainly between 0.0 and 0.16 while M halo varies between
1.5 and 14.3. Meanwhile, log ( Z cgm ) has similar error levels between
 I and X-ray, with a small impro v ement for multifield for sub-
 ∗ and L ∗. The errors in log ( Z cgm ) vary between 0.16 and 0.24,
o measuring metallicity at this level of accuracy is promising,
ut distinguishing high values of metallicity from low ones is
isappointing for IllustrisTNG (see Fig. B2 ). 
The last three sets of properties, log ( M cgm ), f cool , and log ( T ), have

ot been previously illustrated as Truth–Inference plots. They depict
imilar trends and show general multifield impro v ement. H I infers
ub- L ∗ the best, while X-ray infers Groups the best. The multifield
s most important for L ∗ haloes, and across all six properties, there
s a significant impro v ement in the inference. Other halo categories
sually do not result in as much impro v ement; in some cases, the
ultifield performs slightly worse. We note that inference of f cool 

or groups is a significant impro v ement, from 0.102 (X-ray) and
.125 (H I ) to 0.084 (multifield), reflecting that CNN integrates
bservations of both cool gas (H I ) and hot gas (X-ray) in this
raction. 

The right panel of Fig. 7 outlines the errors in IllustrisTNG,
IMBA, and Astrid for the multifield H I + X-ray with observational

imits for all six properties. The halo mass again separates the three
anels. Generally, a CNN trained and tested on SIMBA has the
ighest error o v er the entire mass range, while a CNN trained and
ested on Astrid returns a better inference. f cgm breaks this trend, as it
s significantly worse for L ∗ mass haloes when using IllustrisTNG,
hich is directly due to the drastic inflection point seen in Fig. 1 .
dditionally, Astrid can infer log ( Z cgm ) remarkably well for L ∗
ass haloes, compared to the high error when using IllustrisTNG.
his can be seen in Fig. B2 where IllustrisTNG has much more
catter across the entire mass range, while Astrid shows little
catter. 
NRAS 527, 10038–10058 (2024) 
.5 Cross simulation inference 

ntil now, each truth–inference plot has been created by training and
esting on the same simulation. In this section, we provide the results
btained when training on one simulation or galaxy formation model
nd testing on another to pro v e the degree of robustness across any
articular simulation. We do this for both an X-ray with observational
imits and a multifield with observational limits. 

In Fig. 8 , we demonstrate the cross-simulation inference between
llustrisTNG, SIMBA, and Astrid, using X-ray with observational
imits only on the M halo property. The diagonal plots correspond to
he training and testing in IllustrisTNG, SIMBA, and Astrid from
pper left to lower right (repeated from the upper panels of Fig. 3 ). 
The top row refers to CNNs trained on IllustrisTNG, where each

anel from left to right has been tested on IllustrisTNG, SIMBA, and
strid, respectively. When tested on SIMBA, most points are close

o the black line, but with significantly more scatter. When tested
n Astrid, we can only reco v er good constraints for the high-halo
ass range. There is much more scatter in the low-mass range, as a
ajority of them are o v erestimated, e xcept for a few outliers, most

ikely resulting from the inability of X-rays to probe the low-halo
ass range. 
When training on SIMBA, but then testing on IllustrisTNG, there

s still quite a bit of scatter in the low-mass haloes, and the high-
ass haloes are now o v erestimated. This matches the expectations

rom the brightness differences between IllustrisTNG (brighter) and
IMBA (dimmer). When testing on Astrid, all points are shifted up
nd o v erestimate halo mass. 

Finally, training on Astrid and testing on IllustrisTNG cannot
eco v er an y of the results. There is a lot of scatter for the low-
alo-mass range with large error bars, with points that do not
ollow the expected trends in IllustrisTNG for intermediate and high
asses. Astrid underestimates the majority of the halo masses. When

esting on SIMBA, the results cannot be reco v ered either, as most
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Figure 8. Cross-simulation results for IllustrisTNG, SIMBA, and Astrid on X-ray for M halo , with observational limits. The x-axis of each panel corresponds to 
the true values of M halo , and the y-axis corresponds to the inference values of M halo , as before. The y-axis labels indicate that the panels in the top row were 
trained on IllustrisTNG, the middle row on SIMBA, and the bottom row by Astrid. The columns are labelled such that the panels in the first column were 
tested on IllustrisTNG, the second column’s panels on SIMBA, and the third on Astrid. The diagonal panels are the result of training and testing on the same 
simulation. Training and testing on Astrid provide the tightest constraints and the best inference. These points are a fraction of the full data set. 
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oints underestimate the halo mass. Although training and testing 
n Astrid seem to provide the best constraints on halo mass with
-ray observational limits, it is the least robust simulation out of the

hree, as measured by its ability to be applied to other simulations as a
raining set. In contrast, other models trained on the Astrid LH set (Ni
t al. 2023 ; de Santi et al. 2023 ) are the most robust, as the parameter
ariations produce the widest variation in galaxy properties, in turn 
aking ML models more robust to changes in baryonic physics. 

llustrisTNG is the most robust in this case, as it returns the results
f the other two simulations with the least amount of scatter. 
One oddity in the statistical measurements produced comes from 

raining on either IllustrisTNG or SIMBA and testing on Astrid, 
hich results in a ne gativ e R 

2 value, indicating a significant mismatch
n the models. Another unusual statistic is in the extremely high χ2 

alues from three cases: (1) training on IllustrisTNG and testing 
n Astrid, (2) training on SIMBA and testing on Astrid, and (3)
raining on Astrid and testing on either IllustrisTNG or SIMBA. 
ach reiterates the lack of robust results that can be achieved with
strid. 
Fig. 9 illustrates the cross-simulation results on M halo with ob- 

ervational limits on the multifield H I + X-ray for IllustrisTNG,
IMBA, and Astrid. The top left panel shows this multifield, trained
n and tested with IllustrisTNG, where o v erall, M halo can somewhat
e constrained throughout the entire parameter space. The second 
anel on the diagonal corresponds to the same multifield but is now
rained on and tested with SIMBA. The constraints here are weaker
hroughout the entire parameter space as there is more o v erall scatter,
hough the trend is the same as expected. The last panel on the
iagonal shows the network trained on and tested with Astrid, where
e can obtain the tightest constraints o v erall, especially in the higher
alo mass range. The few outliers towards the mid ( L ∗) to low (Sub-
 ∗) mass range with larger error bars may need further investigation.
MNRAS 527, 10038–10058 (2024) 
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M

Figure 9. Cross-simulation results to infer M halo using the multifield with observational limits for IllustrisTNG, SIMBA, and Astrid. The layout is the same as 
in Fig. 8 . Even with the observational limits of H I and X-ray, training and testing on Astrid have the best overall inference for M halo . 
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The top row shows training with IllustrisTNG and testing on
llustrisTNG, SIMBA, and Astrid, respectively. When training on
llustrisTNG and testing on SIMBA, we expect that for a given mass
alo in IllustrisTNG, that same halo will look dimmer and, therefore,
ess massive in SIMBA. This is seen here, as most haloes are below
he black line. When the network is now tested on Astrid, a similar
ut opposite expectation is met. With the knowledge that for a given
alo mass in IllustrisTNG, that same halo will look brighter and,
herefore, more massive in Astrid, this trend also makes sense, as
e see a large majority of the points shifted abo v e the black line.
e can conclude that with observational limits in the multifield,

raining on IllustrisTNG can return the trends in SIMBA and Astrid,
ut there is an offset in reco v ered M halo e xplainable by the shift in
bservables. 
The middle row shows training with SIMBA and testing on

llustrisTNG, SIMBA, and Astrid, respectively. When the network
rains on IllustrisTNG, it can reco v er the inference and achieve
ood constraints. The same halo in SIMBA will appear brighter in
NRAS 527, 10038–10058 (2024) 
llustrisTNG, so the shift in most points upward abo v e the black line
s, therefore, as expected. When testing on Astrid, we still reco v er
he inference and achieve good constraints, but we see the same shift
s we saw when training on IllustrisTNG and testing on Astrid. This
lso aligns with the expectations, as the haloes in Astrid will seem
uch brighter than those in SIMBA. We can conclude that with

bservational limits in the multifield, SIMBA is also robust enough
o reco v er inference and constraints for M halo . 

The bottom row shows training with Astrid and testing with
llustrisTNG, SIMBA, and Astrid, respectively. When the network
ests on IllustrisTNG, we can reco v er the general trend with slightly
ess strong constraints. We can reco v er the general trend with slightly
ess strong constraints when the network is tested on SIMBA. The
aloes in Astrid will be brighter than the same haloes in IllustrisTNG
nd SIMBA, so the majority of the points are below the black
ine when testing on IllustrisTNG and SIMBA. We can conclude
hat a CNN trained on Astrid cannot reco v er the inference and
onstraints for M halo . We see the same statistical nuances as in the
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Figure 10. Cross-simulation results to infer M cgm using the multifield with observational limits for IllustrisTNG, SIMBA, and Astrid. The layout is the same 
as in Fig. 8 . 
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re vious figure: negati ve R 
2 v alues and large χ2 v alues in the same

onfigurations. 
By adding observational constraints for both H I and X-rays, 

he simulations gain a further level of similarity, which enhances 
heir constraining power in the cross-simulation analysis. Fig. 10 
hows the results of using the multifield (H I + X-ray) approach
ith observational limits on M cgm , with observational limits. The 

ayout of the plot is analogous to that of Fig. 9 . Training on
llustrisTNG (top row) o v erpredicts the results for intermediate- and 
ow-mass haloes when testing on SIMBA and underpredicts the same 
esults when testing on Astrid. This aligns with the expectations in 
he bottom left panel of Fig. 1 , which describes the relationship
etween the halo mass and M cgm . Training on SIMBA (middle row)
nderpredicts intermediate- and low-mass haloes results when testing 
n IllustrisTNG and Astrid. Note that there is much more scatter 
hen testing on IllustrisTNG, especially for objects with low M cgm 

alues. Training on Astrid (bottom row) does reasonably well when 
esting on IllustrisTNG with some scatter in the intermediate- and 
o w-mass haloes. Ho we v er, it o v erpredicts these intermediate- and
ow-mass haloes when tested on SIMBA. 

Although able to return similar trends, cross-simulation training 
nd testing display offsets related to different CGM properties in all
imulations. Ho we ver, it is enlightening to see that cross-simulation
nference impro v es when more bands are included, which indicates
hat broad properties like M halo and M cgm are more robustly charac-
erized by observing in multiple bands. We make a deliberate choice
o show the cross-simulation analysis results for M halo and M cgm , not
 cgm , as it is a ratio of the gas mass to the halo mass throughout
he halo (not within 200 kpc), leading to a more complex trend that
s not as easily interpretable. Cross-simulation analysis can offer a 
ay to understand the direction and magnitude of systematic offsets 

nd the variations between feedback implementations qualitatively 
nd the feedback energy as a function of redshift. This is entirely
ontingent on our ability to create physically moti v ated deep-learning 
odels that are interpretable, which is the focus of our future
ork. 
MNRAS 527, 10038–10058 (2024) 
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 DISCUSSIONS  

n this section, we discuss the interpretation of cross-simulation
nalysis (Section 4.1 ), assess the applications and limitations of
NNs when applied to CGM (Section 4.2 ), compare the variance
etween true and inferred values for log ( M halo ), log ( M cgm ), and
og ( Z cgm ) using the idealized multifield maps (Section 4.3 ), and
xpand on an intriguing direction for future work (Section 4.4 ). 

.1 Cr oss-simulation interpr etability 

n Section 3.5 , we explore the robustness of simulations by examining
ross-simulation inference with and without observational limits.
ig. 9 presents cross-simulation inferences for multifield H I + X-
ay with observational limits on M halo . Upon initial inspection,
raining, and testing on Astrid offer the tightest constraints across
he entire mass bin. In general, a test simulation will o v erpredict
underpredict) properties when trained on a simulation with CGM
bservables that are dimmer (brighter). Among the three simulations,
 CNN trained on IllustrisTNG is the most robust, as it accurately
aptures the differences between halo mass measurements when
rained on SIMBA and Astrid. Ho we ver, more work must be done
o show that a CNN trained on IllustrisTNG will produce the

ost robust predictions when applied to real observational data.
 no v el aspect to further explore is training and testing on multiple

imulations, varying the feedback parameters such that the CNN
ould marginalize o v er the uncertainties in baryonic physics. 
The effort to train and test on different simulations mimics training

n a simulation and predicting real observational data. Although it
s disappointing to see such deviations in the results of the cross-
imulation analysis, we know that some simulations offer better
epresentations given the specific scope of this work than others.
sing observational limits that resemble the ranges of detection
f current instruments as a simulation constraint, we can begin
irectly comparing simulations and observations. We note that the
imulations are unconstrained by available observations in the CGM.
he fiducial prescriptions for IllustrisTNG and SIMBA are calibrated

o match the available data of the groups with varying success
Oppenheimer et al. 2021 ), but Astrid with its higher f gas values
as not been calibrated similarly . Importantly , no simulation is a
erfect representation of the real universe, but it is crucial to develop
NNs that can adapt to a wide range of mock haloes generated using
ultiple galaxy formation codes that aim to simulate these systems
ith realistic physical prescriptions. 
Robustness quantification, or how well a network trained on

ne simulation can infer a given quantity when tested on another
imulation within any set of simulations and machine learning
lgorithms, including the CAMELS suites, is crucial to further
heir de velopment (Villaescusa-Nav arro et al. 2021b ; Villanue v a-
omingo & Villaescusa-Navarro 2022 ; Echeverri et al. 2023 ; de
anti et al. 2023 ). The lack of robustness can be due to either
1) differences between simulations, (2) networks learning from
umerical effects or artefacts, or (3) lack of o v erlapping between
imulations in the high-dimensional parameter space. These reasons
re not surprising, because of the use of the CV set within CAMELS,
nd there could be slight variations in feedback that are unaccounted
or. Using the LH set instead would impro v e the results obtained
n this work. Additionally, precision (smaller error bars) without
ccurac y (reco v ering the ‘true’ values) is meaningless. Therefore,
lthough Astrid generally has the smallest error bars, this alone shows
trong biases when tested on other models. Future work can be done
o address the inability to obtain robust constraints while performing
NRAS 527, 10038–10058 (2024) 
ross-simulation analysis. One avenue is through domain adaptation
Ganin et al. 2015 ), which allows a smoother transition between
raining and testing on different simulations such that we obtain
obust results. 

.2 Applicability and limitations of CNNs applied to the CGM 

e have applied a CNN following the structural format used by
illaescusa-Navarro et al. ( 2022 ) and modified it to infer underlying
roperties of the CGM of individual haloes with fixed cosmology and
strophysics within the CAMELS CV set. The former CNN infers six
ndependent parameters (two cosmological and four astrophysical
eedback) by the design of the LH simulation set . Our trained CGM
NN learns to predict properties with high co-dependencies (e.g.

og ( M halo ) and log ( T cgm )) and related quantities ( f cgm and M cgm ). In
he latter case, there are two different ways to quantify CGM mass in
wo distinct apertures– M cgm is the CGM mass inside 200 kpc, and
 cgm is the mass of CGM o v er the total mass inside R 200c . 

We attempted to infer one property at a time instead of all six and
ound only a marginal impro v ement. CNN implemented in this work,
lassified as a moment network (Jeffrey & Wandelt 2020 ), has the
exibility to infer multiple properties simultaneously, but requires a
igorous hyperparameter search, as detailed in Section 2.3 . 

A concern that often appears with any simulation-based approach
s the possibility of biases seeping into the result, generally due to
ncomplete modelling of physical processes. We aim to alleviate this
oncern first by using the CV set within the CAMELS simulations,
here the values of cosmological and astrophysical feedback param-

ters are fixed to their fiducial values. The LH set, which was not used
n this work (but could easily be integrated as part of future efforts),
ncreases the chances of successful cross-simulation analysis as the
strophysical dependencies are completely marginalized. From this
tandpoint, the CV set is not best suited to produce robust cross-
imulation analysis. Using the CV set, we gain valuable insight into
he distinctions among simulations and their effects on the results
f the CGM properties in this study. In addition to using the LH
et, we can explore training and testing on more than one simulation
r performing a similar analysis on the broader parameter space of
NG-SB28 (Ni et al. 2023 ). 
We apply CNNs to the CGM data sets to (1) determine the

egree to which physical properties of the CGM can be inferred
iven a combination of fields and simulations, and (2) examine
ifferent observing strategies to determine how combining different
avebands can infer underlying CGM properties. 
We demonstrate the feasibility of applying a CNN to observational

ata sets and return values and errors for the CGM properties,
ncluding M halo and M cgm . Additionally, the inference of M halo is more
obustly determined when another field, along with its associated
bservational limits, is added. However, training on one simulation
nd testing on another support the notion that predictions can produce
ignificantly divergent results compared to the true values, as seen in
igs 8 and 9 . As mentioned in Section 4.1 , although IllustrisTNG,
IMBA, and Astrid have been tuned to reproduce galaxies’ and some
as properties, they make varied predictions for gaseous haloes. In
uture efforts to impro v e this work, the LH set would replace the
V set, under the expectation of improvement, as all astrophysics is
arginalized. Should this not be the case, domain adaptation is the

onger term solution to help bridge the many gaps between different
ubgrid physics models. Another interesting future direction would
nclude training and testing on combinations of simulations, though
his is ideally performed with the LH set. 
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Table 3. The variance of M cgm and log ( Z cgm ) compared between the input 
from CAMELS (truth) and the values from the idealized multifield (H I + X- 
ray) inference. 

log ( M cgm ) sub- L ∗ L ∗
True Infer True Infer 

IllustrisTNG 0.024 0.013 0.127 0.074 
SIMBA 0.099 0.094 0.129 0.111 
Astrid 0.026 0.024 0.038 0.038 
log ( Z cgm ) sub- L ∗ L ∗

True Infer True Infer 
IllustrisTNG 0.072 0.041 0.078 0.035 
SIMBA 0.086 0.060 0.108 0.052 
Astrid 0.053 0.033 0.042 0.035 
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.3 Multifield variance comparison 

s an additional test, we check if our CNN-inferred values can 
eproduce the original dispersion of a CGM data set. Even if a
NN can reproduce the mean value of a CGM parameter, can it
lso reproduce the spread of values? Fig. 1 shows the shaded ±1 σ
ispersions in addition to the medians. We, therefore, calculate the 
ispersion for log ( M cgm ) and log ( Z cgm ) for sub- L ∗ and L ∗ galaxies
cross the three simulations to explore our CNN’s ability to reproduce 
his scatter in relatively flat M halo bins. The values are displayed 
n Table 3 . On a positive note, it does appear that sub- L ∗ and L ∗
ispersions for log ( M cgm ) are well reproduced in SIMBA and Astrid.
o we ver, the dispersions are severely underestimated, often by a 

actor of 2, for log ( Z cgm ) and log( M cgm ), but, notably, R 
2 measures

nd the performance of the CNN is poor for these cases. In particular,
ith IllustrisTNG, M CGM , and f CGM as a closely related quantity, show
orse performance due to rapidly changing gas fractions in response 

o feedback, as we discuss in Section 3.2 . In this case, the CNN is
nable to adequately learn signatures of reduced CGM mass at a fixed
alo mass. This test presents a crucial challenge for future machine 
earning and deep learning methods in reproducing the spread of a 
iven property for objects that are otherwise alike. 

.4 Future work 

n expanding the scope of this work to additional wavelengths in 
he future, we also aim to advance our understanding of where the
NN extracts important information from within a given map. We 
an use the information gained from this type of analysis, which has
ot been applied to CGM data before this work, to inform future
bservational surv e ys on how best to achieve the greatest scientific
eturns giv en wav elength, surv e y depth, and other specifications.
dditionally, this type of analysis will be necessary to determine 
achine learning verification and validation. To achieve this, we 

ypothesize that moving towards higher resolution simulations, 
ncluding IllustrisTNG-100, EAGLE, and others along with a more 
hysically moti v ated deep-learning model, will have a significant 
mpact across a wide range of scales, especially in the case of
bservational limits. 

 CONCLUSIONS  

n this study, we use CNNs trained and tested on CAMELS simulations
ased on the IllustrisTNG, SIMBA, and Astrid galaxy formation 
odels to infer six broad-scale properties of the circum-galactic 
edium (CGM). We focus on the halo mass, the CGM mass, the
etallicity, the temperature, and the cool gas fraction. We simulate 

wo observational fields, X-ray and 21-cm H I radio, which can 
epresent the broad temperature range of the CGM. We tested our
NN on data sets with and without (idealized) observational limits. 
ur key findings include the following. 

(i) When training and testing the CNN on the same simulation: 

(a) By comparing all the CGM properties the CNN is trained 
to infer, it performs the best o v erall on M halo and M cgm , both
with and without observational limits. For IllustrisTNG with 
observational limits, the RMSE values returned for M halo are 
∼0.14 dex, and M cgm are ∼0.11 dex when combining X-ray 
and H I data. 

(b) The ‘multifield’ CNN trained simultaneously on X-ray 
and H I data with observational limits allows for the best
inference across the entire mass range using the same inpts 
without the discontinuities seen when trained only on one field. 
Obtaining interpretable inferences on the halo mass for the 
continuous range of 11.5 ≤ log ( M halo /M �) ≤ 14.5 requires
a multifield, although various combinations may be better 
o v er smaller mass bins than others. Sub- L ∗ haloes ( M halo =
10 11.5 −12 M �) are only marginally better inferred with H I

than multifield. Moving to L ∗ haloes ( M halo = 10 12 −13 M �)
and the more massive groups ( M halo > 10 13 M �), there is a
drastic impro v ement when using multifield o v er X-ray and H I

alone. Our exploration demonstrates that CNN-fed multiple 
observational fields with detectable signals can continuously 
impro v e the inference of CGM properties o v er a large mass
range given the same input maps. 

(c) When adding observational limits to the multifield CNN, 
the inference accuracy declines, but still returns RMSE values 
indicating success. Reco v ering total mass from observations 
appears to be feasible with our CNN. H I mapping is especially
critical for reco v ering CGM properties of sub- L ∗ and L ∗
galaxies. 

(ii) For CNN cross-simulation analysis (training on one simulation 
nd testing on another): 

(a) When applying cross-simulation analysis by training on 
one simulation and testing on another, the inferred values 
generally correlate with the true physical properties. Still, they 
are frequently offset, indicating strong biases and o v erall poor
statistical performance. 

(b) Interestingly, the cross-simulation analysis reveals that 
using the H I + X-ray multifield with observational limits 
impro v es the halo mass inference compared to that from X-ray
maps alone. In the process of adding constraints in this case, the
difference between the individual simulation parameter spaces 
becomes smaller and acts as tighter boundary conditions for the 
network. 

Our results have broader implications for applying deep learning 
lgorithms to the CGM than those outlined here. First, performing 
 cross-simulation analysis and determining that the CNN is robust 
pens the possibility of replacing one of the simulations with real
ata to infer the actual physical properties of observed systems. 
econd, the addition of more wavelengths is easily implemented 
ithin image-based neural networks. To continue making con- 
ections to current and future multiwavelength surveys, we can 
xpand the number of fields used in this architecture beyond X-
ay and H I , including image-based CGM probes like the Dragonfly
elescope that can map the CGM in optical ions, like H α and N II

Lokhorst et al. 2022 ), and UV emission from ground- or space-
ased probes (Johnson et al. 2014 ; Burchett et al. 2018 ; Johnson
t al. 2018 ; P ́eroux & Howk 2020 ). Most importantly, this method
MNRAS 527, 10038–10058 (2024) 
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ould allow simulation differences to be marginalized, while still
btaining correlations and constraints. We can o v ercome the current
hallenges of cross-simulation analysis by training our CNN on
ultiple CAMELS simulations and parameter variations existing

nd in production [including expanding to EAGLE (Schaye et al.
015 ), RAMSES (Teyssier 2010 ), Enzo (Bryan et al. 2014 ), and
agneticum 

5 ] while integrating additional wavebands. It is crucial
o identify the primary source of information for CNN to increase
he number of simulations and wavelengths used as input. Future
ork includes performing saliency analysis with integrated gradients

o determine the most important pixels on a given map. It allows
or more targeted and efficient adjustments to impro v e inferences.
his can reveal which underlying physical properties are universally

eco v erable and robustly predictable in observations. 
The CGM demarcates a region of space defined by nebulous

oundaries, which poses a unique challenge to traditional analysis
echniques like principal component analysis. In addition, there
re no established methods to characteristically analyse CGM. The
hrase ‘characteristically analysing’ implies distinctly categorizing
ntities. For instance, traditional analysis can be used with galaxies
o classify them into various categories based on their unique
 volutionary traits, as e videnced by Lotz, Primack & Madau ( 2004 ).
o we ver, the CGM refers to the area surrounding the galactic disc
ntil the accretion shock radius, where neither boundary is precisely
efined as they cannot be directly observed. Applying the same
raditional analysis approach to a CGM data set would require a
igid pipeline, making it difficult to incorporate new simulations or
av elengths without e xtensiv e reconfiguration. Deep learning offers
 more flexible and versatile approach as a solution. 
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igure A1. Maps of idealized X-ray (row 1), X-ray with observational limits (row
ith IllustrisTNG. Moving across the row are haloes of decreasing mass (approxim

he same mass. 

/m
PPENDIX  A:  ADDITIONAL  PLOTS  OF  MOCK  

ATA  SETS  

n this appendix, we provide additional maps and plots, including 
he scatter of M halo with total pixel counts per map in X-ray and H I

analogous to Fig. 1 ), and Truth–Inference plots for inferred f cgm ,
og ( Z cgm ), f cool , and log ( T cgm ) for the H I + X-ray multifield with
bservational limits. We omit M halo or M cgm here, as similar panels
re shown in the diagonal panels of Figs 9 and 10 . A summary of
hese properties and their trends with halo mass is shown in Fig. 7 . 

Fig. A1 is an e xpanded v ersion of Fig. 2 for IllustrisTNG maps in
-ray (with and without observational limits, first and second rows, 

espectively) and H I (with and without observational limits, third 
nd fourth ro ws, respecti vely) across most of the halo mass range
xplored in our analysis. Each column indicates four variations of 
he same halo. 

Fig. A2 illustrates the scatter of log ( M halo /M �), where each
oloured point represents the total pixel value of each map along
ith the respective halo mass. ‘Pixel counts’, as the total flux (X-

ay) or the total column density (H I ), are the sum of the pixels in each
ap (log-scaled). We only include one image axis (even though our
NN training set uses three rotations of the same halo along the three
xes) so that the same halo does not appear more than once. The black
oints represent the average trends in each halo mass bin (see the
efinitions of the mass bin in Table 2 ), and the error bars are the 16th–
4th percentiles. Dashed grey vertical lines indicate the observational 
imits of each field, such that to the left of this line reside objects that
ould be too faint to observe with current instruments. The top row
MNRAS 527, 10038–10058 (2024) 

 2), idealized H I (row 3), and H I with observational limits (row 4), as seen 
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M

Figure A2. Halo mass as a function of the spatially integrated (total) flux 
in X-ray (top; green) and H I (bottom; pink) for all maps available from 

the IllustrisTNG (left), SIMBA (middle), and Astrid (right) simulations. The 
vertical dashed line represents the observational limit of each field, and the 
black points represent the average value in each mass bin. The error bars 
represent the average 16–84 percentile in total flux for different halo mass 
bins. We see correlations only for IllustrisTNG and Astrid in X-ray. 
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igure B1. Truth–Inference plots for f cgm using H I + X-ray with observational li
ull data set. 

igure B2. Truth–Inference plots for log ( Z cgm ) using H I + X-ray with observatio
f the full data set. 
hows this scatter in X-ray, where there is a clear correlation with the
alo mass for IllustrisTNG and Astrid. The bottom ro w sho ws the
catter in H I , similarly formatted. In this case, the correlations with
alo mass for all simulations are either too weak or non-existent.
oth fields match the expected trends from the visualization of the
aps in Fig. A1 . This e x ercise aims to see if the halo mass can be

redicted solely with total flux. Since the vertical scatter is not in
he same order and is much larger than the network error, we cannot
onclude that the halo mass is based only on the total flux. 

PPENDIX  B:  ADDITIONAL  MULTIFIELD  

RUTH–INFERENCE  PLOTS  

ig. B1 shows the Truth–Inference plots for f cgm with the multifield
 I + X-ray and observational limits. We see a significant scatter

hroughout the mass range when training and testing on IllustrisTNG
left). Training and testing on SIMBA (middle) shows intermediate-
ass haloes clustered at low f cgm values, and low-mass haloes

cattered throughout. Training and testing on Astrid (right) shows a
elati vely lo w amount of scatter with small error bars, resulting in the
owest ε and highest R 

2 value. Also, note that Astrid shifts the entire
rend towards higher f cgm values and has its highest concentration of
oints towards higher values of f cgm . 
Fig. B2 shows the Truth–Inference plots for log ( Z cgm ) with the
 I + X-ray multifield and observational limits. Training and testing
mits for IllustrisTNG, SIMBA, and Astrid. These points are a fraction of the 

nal limits for IllustrisTNG, SIMBA, and Astrid. These points are a fraction 

/m
nras/article/527/4/10038/7462315 by guest on 01 O

ctober 2025
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Figure B3. Truth–Inference plots for f cool (defined in equation 5 ) using H I + X-ray with observational limits for IllustrisTNG, SIMBA, and Astrid. These 
points are a fraction of the full data set. 

Figure B4. Truth–Inference plots for log ( T cgm ) (defined in equation 6 ) using H I + X-ray with observational limits for IllustrisTNG, SIMBA, and Astrid. These 
points are a fraction of the full data set. 
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n IllustrisTNG (left) or SIMBA (middle) results in significant 
catter. Training and testing on Astrid shows a relatively low amount 
f scatter with small error bars. These trends look relatively similar
o those with idealized maps of X-rays and H I (Fig. 5 ). 

Fig. B3 shows the Truth–Inference plots for f cool with the multifield 
 I + X-ray and observational limits. All three simulations have 

nferences with significant scatter and large error bars. The multifield 
reatly impro v es the inference results for this property, which is
ifficult to constrain within the scope of this work. 
Finally, Fig. B4 shows the Truth–Inference plots for log ( T cgm )

ith the H I + X-ray multifield and observational limits. Training 
nd testing on IllustrisTNG provide relatively good inference, with 
ncreased scatter for intermediate-mass haloes. Training and testing 
n SIMBA show the largest scatter across the mass range. Training 
nd testing on Astrid provides the least amount of scatter, with the
mallest error bars and an o v erall impressiv e inference. 

PPENDIX  C:  CNN  ARCHITECTURE  

nitially, a similar CNN was applied to the CAMELS Multifield Data 
et (CMD; Villaescusa-Navarro et al. 2021c ) as continuous 2D maps 
ith the aim of constraining two cosmological parameters ( σ 8 and 
M ), and four astrophysical feedback parameters ( A SN1 , A SN2 , A AGN1 ,
 AGN2 ) whose definitions change depending on the simulation used. 
ote that 3D maps are also available and can be reduced to obtain

he existing 2D maps, but are not used for this analysis. A multifield
llows the combination of fields to determine which singular or 
ultiple fields return the tightest and most accurate constraints 

n an y giv en parameter. The parameters currently available in the
riginal network for the CMD are gas properties (density , velocity ,
emperature, pressure, metallicity), neutral hydrogen density, elec- 
ron number density, magnetic fields, magnesium-ion fraction, dark 
atter density, and velocity, stellar mass density, and the total matter

ensity. 
We now define the variables used for the CNN used for this work

n Table C1 . The names of layers beginning with C refer to Conv2d ,
nd B refers to BatchNorm2d . Each type of layer has different
nput variables as described in the first mention of the layer type, with

ore details in the Paszke et al. ( 2019 ) documentation for PyTorch .
ubsequent layers of these two types do not ha ve headings, b ut the
umbers in the columns refer to the variable names and definitions
hen they are first mentioned. 
For the Conv2d layers, Input and Output are the size of the

mage produced as it passes through each layer. Kernel refers to the
ize of the kernel or the grid space in any particular layer. Stride is
he number of rows and columns that have passed through each ‘slide’
r translation between layers. If computational efficiency is not an 
MNRAS 527, 10038–10058 (2024) 



10058 N. Gluck et al. 

M

Table C1. Table outlining the main body of the CNN architecture used. 

Layer Input Output Kernel Stride Padding 

C01 1 12 (3,3) (1,1) (1,1) 
C02 12 12 (3,3) (1,1) (1,1) 
C03 12 12 (2,2) (2,2) 

Layer Size ε Momentum Affine Tracking 

B01 12 1e −5 0.1 True True 
B02 12 1e −5 0.1 True True 
B03 12 1e −5 0.1 True True 

C11 12 24 (3,3) (1,1) (1,1) 
C12 24 24 (3,3) (1,1) (1,1) 
C13 24 24 (2,2) (2,2) –
B11 24 1e −5 0.1 True True 
B12 24 1e −5 0.1 True True 
B13 24 1e −5 0.1 True True 
C21 24 48 (3,3) (1,1) (1,1) 
C22 48 48 (3,3) (1,1) (1,1) 
C23 48 48 (2,2) (2,2) –
B21 48 1e −5 0.1 True True 
B22 48 1e −5 0.1 True True 
B23 48 1e −5 0.1 True True 
C31 48 96 (3,3) (1,1) (1,1) 
C32 96 96 (3,3) (1,1) (1,1) 
C33 96 96 (2,2) (2,2) –
B31 96 1e −5 0.1 True True 
B32 96 1e −5 0.1 True True 
B33 96 1e −5 0.1 True True 
C41 96 192 (3,3) (1,1) (1,1) 
C42 192 192 (3,3) (1,1) (1,1) 
C43 192 192 (2,2) (2,2) –
B41 192 1e −5 0.1 True True 
B42 192 1e −5 0.1 True True 
B43 192 1e −5 0.1 True True 
C51 192 384 (3,3) (1,1) (1,1) 
C52 384 394 (3,3) (1,1) (1,1) 
C53 384 384 (2,2) (2,2) –
B51 384 1e −5 0.1 True True 
B52 384 1e −5 0.1 True True 
B53 384 1e −5 0.1 True True 
C61 384 768 (2,2) (1,1) –
B61 768 1e −5 0.1 True True 
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Table C2. A continuation of the neural network architecture, following 
Table C1 . 

Layer Type Kernel size Stride Padding 

P0 AvgPool2d 2 2 0 
Layer Type Feat. In Feat. Out Bias 
FC1 Linear 768 384 True 
FC2 Linear 384 12 True 
Layer Function p -value in-place Slope 
Dropout Dropout() 0.3522 False 
ReLU ReLU() 
LeakyReLU LeakyReLU() −0.2 
tanh Tanh() 
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ssue, in some cases, it can be more accurate to slide one element at
 time. Ho we ver, cutting out the intermediate steps and increasing
he stride for larger data sets like the one used here is more efficient.
adding refers to filling the kernel’s edges after each layer. As

he dimensions of the image decrease and eventually reach 1 × 1,
e need to fill the space left after each dimensional reduction. One
adding mode is the ‘zeros’, where values of 0 are used as a filler as
he image is processed through the network. Another common mode
s ‘circular’, where the grid is filled with the value at the boundary
f the image in the current stage. 
For the BatchNorm2d layers, where Size refers to the number

f features based on some expected input size from the previous layer.
is added to the denominator of any value to ensure the stability of

he pipeline and the results. Momentum can be set to None if a
umulativ e mo ving av erage (simple av erage) is being computed, but
he default value is 0.1 for the running mean and running variance
omputations. Note that this argument is slightly different from what
s generally used in optimizer classes. Affine , if set to True, allows
eights and biases to be defined, which are γ and β, respectively,
NRAS 527, 10038–10058 (2024) 

Published by Oxford University Press on behalf of Royal Astronomical Society. This is an 
( https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reus
ithin the documentation. Tracking , if set to True as the default,
racks the mean and variance. If set to False, statistics buffers are
nitialized such that running-mean and running-var is set
o None, and the module uses only batch statistics for training and
esting modes. 

In Table C2 , the functions mentioned directly follow those of
able C1 . The P0: AvgPool2d layer includes the kernel
ize for the window size. Stride and Padding have similar
efinitions as before, where Stride now refers to the stride of the
indow, where it defaults to the same value as the kernel size, and
adding is defaulted to ‘zeros’ mode, discussed previously. 
A linear transformation is applied for both Fully Connected (FC)

ayers, where the Feat. In and Feat. Out refers to the size
f each input and output sample, respectively. Setting the bias to
rue (as the default) allows the activation function to be shifted
y some constant amount, known as the bias, to the layer input.
he dropout layers randomly disengage some neurons with some
robability, p-value , or just as p , to discourage some neurons
rom being fa v oured o v er others. The default p -value is 0.5. Finally,
f set to True, inplace will randomly set the neurones to zero in
lace. The default value for this parameter is False, where the results
f the dropout layer are saved to a separate variable to be potentially
sed later. 
The ReLU() , or the rectified linear acti v ation function (linear,

iece-wise), takes this form: 

eLU(x) = (x) + = max (0 , x) . (C1) 

he input is returned directly if positive and will be set to zero
therwise. The LeakyReLU() (Leaky rectified linear unit) is
efined as 

eakyReLU (x) = 

{ 

x, if x ≥ 0 

ne gativ e slope × x , otherwise 
, (C2) 

here the negative slope controls the slope angle specifically
sed for ne gativ e input values. The default value is 0.001, such
hat instead of a flat slope for ne gativ e values, it has a small slope,
etermined before training begins, and is not a result of the training
rocess. The Tanh() function is defined as, 

anh (x) = 

exp (x) − exp ( −x) 

exp (x) + exp ( −x) 
, (C3) 

here it is used in place of the sigmoid function, as it is more
omputationally efficient for networks with multiple layers. 
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