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ABSTRACT

The circum-galactic medium (CGM) can feasibly be mapped by multiwavelength surveys covering broad swaths of the sky.
With multiple large data sets becoming available in the near future, we develop a likelihood-free Deep Learning technique using
convolutional neural networks (CNNs) to infer broad-scale physical properties of a galaxy’s CGM and its halo mass for the
first time. Using CAMELS (Cosmology and Astrophysics with MachinE Learning Simulations) data, including IllustrisTNG,
SIMBA, and Astrid models, we train CNNs on Soft X-ray and 21-cm (H 1) radio two-dimensional maps to trace hot and cool
gas, respectively, around galaxies, groups, and clusters. Our CNNs offer the unique ability to train and test on ‘multifield” data
sets comprised of both H 1 and X-ray maps, providing complementary information about physical CGM properties and improved
inferences. Applying eRASS:4 survey limits shows that X-ray is not powerful enough to infer individual haloes with masses
log (Mya10/Mg) < 12.5. The multifield improves the inference for all halo masses. Generally, the CNN trained and tested on
Astrid (SIMBA) can most (least) accurately infer CGM properties. Cross-simulation analysis — training on one galaxy formation
model and testing on another — highlights the challenges of developing CNNs trained on a single model to marginalize over
astrophysical uncertainties and perform robust inferences on real data. The next crucial step in improving the resulting inferences
on the physical properties of CGM depends on our ability to interpret these deep-learning models.

Key words: software: simulations — galaxies: clusters: general — galaxies: groups: general —(galaxies:) intergalactic medium —
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1 INTRODUCTION

New telescopes are currently engaged in comprehensive surveys
across large sky areas and reaching previously unobtainable depths,
aiming to map the region beyond the galactic disc but within the
galaxy’s virial radius: the circum-galactic medium (CGM; Tumlin-
son, Peeples & Werk 2017). However, these telescopes have inherent
limitations in detecting emissions from gaseous haloes surrounding
typical galaxies. Nevertheless, they offer an exceptional opportunity
to characterize the broad properties of CGM that extend beyond their
original scientific scope. The CGM contains a multiphase gas, partly
accreted from the filaments of the cosmic web that is continuously
being reshaped, used in star formation, and enriched by astrophysical
feedback processes occurring within the galaxy (Keres et al. 2005;
Christensen et al. 2016; Oppenheimer et al. 2016; Anglés-Alcazar
et al. 2017b; Hafen et al. 2019).

A simple way to characterize the CGM is by temperature. The cool
phase gas has a temperature of approximately 7~ 10* K and has been

* E-mail: naomi.gluck@yale.edu

the focus of UV absorption line measurements (e.g. Cooksey et al.
2010; Tumlinson et al. 2013; Werk et al. 2013; Johnson et al. 2015;
Keeney et al. 2018). The hot phase of the CGM, with temperatures T
> 10° K, is observable via X-ray facilities (e.g. Bogdan et al. 2018;
Bregman et al. 2018; Mathur et al. 2023) and can contain the majority
of a galaxy’s baryonic content. Understanding both the cool and hot
phases of the CGM may answer questions regarding where we may
find baryons (Anderson & Bregman 2011; Werk et al. 2014; Li et al.
2017; Oppenheimer et al. 2018), how galaxy quenching proceeds
(Tumlinson et al. 2011; Somerville, Popping & Trager 2015), and
how the metal products of stellar nucleosynthesis are distributed
(Peeples et al. 2014).

New, increasingly large data sets that chart the CGM across
multiple wavelengths already exist. In particular, two contrasting
wavelengths map diffuse gas across nearby galaxies: the X-ray and
the 21-cm (neutral hydrogen, H 1) radio. First, the eROSI TA' mission
has conducted an all-sky X-ray survey, enabling the detection of
diffuse emission from hot gas associated with groups and clusters

! Although eROSITA is currently dormant; its data at the level we mock have
already been taken.
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Table 1. Definitions and global value ranges of the CGM properties to be
inferred and constrained by the network. These are the global value ranges,
encompassing the individual ranges of IllustrisTNG, SIMBA, and Astrid.
They remain consistent throughout any combination of simulations during
training and testing. Properties are further distinguished by those radially
defined by R0 and those by 200 kpc.

Property Definition Range

Mhaio Logarithmic halo mass in R0, 11.5-14.3

Segm Mass ratio of CGM gas to total mass within ~ 0.0-0.23
Ra00c

Zegm Logarithmic CGM metallicity in 200 kpc —3.6--13

Megm Logarithmic CGM mass in 200 kpc 8.0-12.5

Seool Ratio of cool, low-ionized CGM gas within 0.0-1.0
200 kpc

Tegm Logarithmic CGM temperature in 200 kpc 3.9-7.6

and potentially massive galaxies (Predehl et al. 2021). Secondly
in the 21-cm radio domain, the pursuit of detecting cool gas
encompasses initiatives that serve as precursors to the forthcoming
Square Kilometer Array (SKA) project. Notable among these are
ASKAP (Johnston et al. 2007) and MeerKAT (Jonas & MeerKAT
Team 2016), both of which have already conducted comprehensive
surveys of H I gas in galaxy and group environments through deep
21-cm pointings.

Cosmological simulations provide theoretical predictions of CGM
maps, yet divergences arise due to varying hydrodynamic solvers and
subgrid physics modules employed in galaxy formation simulations
(Somerville, Popping & Trager 2015; Tumlinson, Peeples & Werk
2017; Davé et al. 2020). As a result, we see very different predictions
for the circumgalactic reservoirs surrounding galaxies. Distinctively,
the publicly available simulations such as I1lustrisTNG (Nelson et al.
2018; Pillepich et al. 2018), SIMBA (Davé et al. 2019), Astrid (Bird
et al. 2022; Ni et al. 2022), among others (e.g. Schaye et al. 2015;
Hopkins et al. 2018; Wetzel et al. 2023), are valuable resources for
generating CGM predictions. CAMELS?? (Cosmology and Astro-
physics with MachinE Learning Simulations) is the first publicly
available suite of simulations that includes thousands of parameter
and model variations designed to train machine learning models
(Villaescusa-Navarro et al. 2021¢, 2022). It contains four different
simulations sets covering distinct cosmological and astrophysical
parameter distributions: LH (Latin Hypercube, 1000 simulations),
1P (1-Parameter variations, 61 simulations), CV (Cosmic Variance,
27 simulations), and EX (Extreme, 4 simulations). Of these, the CV
set is uniquely significant as it fixes cosmology and astrophysics
to replicate the observable properties of galaxies best, providing a
fiducial model. We exclude the numerous CAMELS simulations that
vary cosmology and astrophysical feedback to prevent unrealistic
galaxy statistics. Thus, utilizing the diverse CAMELS CV sets,
we explore three universe realizations that make distinguishing
predictions for the CGM.

In this study, we develop an image-based convolutional neural
network (CNN) to infer CGM properties from CAMELS IllustrisTNG,
SIMBA, and Astrid CV-set simulations. The definitions and ranges
for all CGM properties are outlined in Table 1. Two significant and
differently structured astrophysical feedback parameters that impact
CGM properties, stellar and AGN feedback, remain predominantly

2CAMELS Project Website: https:/www.camel-simulations.org
3CAMELS Documentation available at https://camels.readthedocs.io/en/
latest/index.html
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unconstrained. The CV set does not explore the range of CAMELS
feedback parameters like the other sets. However, we choose the
CV set as a proof-of-concept and plan to include the much larger
LH set that completely marginalizes over astrophysics (Villaescusa-
Navarro et al. 2021b) in the future. The CNN is trained and tested
on diverse simulations, yielding valuable insights into the CGM
properties. Additionally, we apply observational multiwavelength
survey limits to the CNN for each field, guiding the design and
approach of new instruments and novel surveys, maximizing their
scientific returns on CGM properties, and significantly advancing
our understanding of galaxy formation and large-scale structure.

This paper is outlined as follows. Section 2 lays out the methods
used to complete this work and includes subsections on specific sim-
ulation information (Section 2.1), data set generation (Section 2.2),
CNNs (Section 2.3), and network output (Section 2.4). We begin
Section 3 by presenting results using individual simulations to
infer first the entire halo mass (Section 3.1), then a global CGM
property, the mass of the CGM over the mass of the halo, or feom
(Section 3.2), and the metallicity of the CGM (Section 3.3) which
exhibits large variation. We show results based on idealized soft X-
ray and H I images and assess the impact of realistic observations
with observational survey limits (Section 3.4). We also perform
cross simulation inference, where one trains a CNN on one galaxy
formation model or simulation and tests on another to gauge its
robustness (Section 3.5). We discuss the interpretability of the cross-
simulation inference analysis (Section 4.1), the applicability and
limitations of CNNs applied to CGM (Section 4.2), the variance
between true and inferred values for CGM properties using the
idealised multifield maps (Section 4.3), and a possible avenue for
future work as an expansion of this analysis (Section 4.4). Lastly,
Section 5 concludes.

2 METHODS

In this section, we introduce the simulations (Section 2.1) followed by
how our halo-centric ‘map’ data sets are generated and a description
of the global properties we train the network to infer (Section 2.2).
Then, Section 2.3 describes the neural network applied to these data
sets. Finally, we specify the network output, including statistical
measures, to evaluate the performance of CNN (Section 2.4).

We define some vocabulary and common phrases within this
work. Fields refer to X-ray and 21-cm H 1 (hereafter H 1), where
using one field corresponds to either X-ray or H I; two fields, X-ray
and H 1, make up the multifield. With our CNN architecture, the
number of fields is equivalent to the number of channels. Parameters
and hyperparameters define the inner workings of the CNN, where
the latter must be optimized. This should not be confused with
parameters in the context of astrophysical feedback. Properties
describe the attributes of the CGM that are inferred by the network:
M, fcgm’ lOg (chm), Mcgm’ fcoob and 1Og (Tcgm)- The parameter
space reflects the range of values for the CGM properties (between
the 16th and 84th percentiles) that each simulation encapsulates.

2.1 Simulations

We use the CV set from three simulation suites, each of which
uses a different hydrodynamic scheme: CAMELS-IllustrisTNG
(referred to as IllustrisTNG) using AREPO (Springel 2010; Wein-
berger, Springel & Pakmor 2020), CAMELS-SIMBA (referred to
as SIMBA) utilizing GIZMO (Hopkins 2015), and CAMELS-Astrid
(referred to as Astrid) utilizing MP-Gadget (Springel 2005). These
simulations encompass 27 volumes spanning (25h~'Mpc)® with
fixed cosmological parameters (£2); = 0.3 and g = 0.8) with varying

MNRAS 527, 10038-10058 (2024)

202 4990120 L0 U0 1s9NB Aq GLEZ9Y//8E00L/¥/L2S/l0IME/SeIuw/woo"dno-ojwapese//:sdny woly papeojumoq


https://www.camel-simulations.org
https://camels.readthedocs.io/en/latest/index.html

10040  N. Gluck et al.

Table 2. Outlining the number of haloes per mass bin in IllustrisTNG,
SIMBA, and Astrid. The mass bins are defined as follows: Sub-Lx for small
haloes with mass between 11.5 < log (Mha0o/Mg) < 12, Lx for intermediate-
sized haloes with masses ranging from 12 <log (Mha0/Mg) < 13, and Groups
are large haloes with masses from 13 < log (Mha1o/Mp) < 14.3.

Simulation Sub-Lx Lx Group Total
IlustrisTNG 3450 1812 192 5454
SIMBA 3397 1534 170 5101
Astrid 3262 1866 218 5346

random seeds for each volume’s initial condition. The CAMELS
astrophysical parameters for feedback are set to their fiducial values.
We exclusively use the z = 0 snapshots for this work.

IustrisTNG is an adaptation of the original simulation as de-
scribed in Nelson et al. (2019) and Pillepich et al. (2018), using
the AREPO (Springel 2010) magnetohydrodynamics code employing
the N-body tree-particle-mesh approach for solving gravity and
magnetohydrodynamics via moving-mesh methods. Like all sim-
ulation codes used here, IllustrisSTNG has subgrid physics modules
encompassing stellar processes (formation, evolution, and feedback)
and black hole processes (seeding, accretion, and feedback). Black
hole feedback uses a dual-mode approach that applies thermal
feedback for high-Eddington accretion rates and kinetic feedback for
low-Eddington rate accretion rates. The kinetic mode is directionally
pulsed and is more mechanically efficient than the thermal mode
(Weinberger et al. 2017).

SIMBA, introduced in Davé et al. (2019), uses the hydrodynamic-
based ‘Meshless Finite Mass’ GizMO code (Hopkins 2015, 2017),
with several unique subgrid prescriptions. It includes more physically
motivated implementations of (1) AGN feedback and (2) black
hole growth. SIMBA’s improved subgrid physics model for AGN
feedback is based on observations, utilizing kinetic energy outflows
for both radiative and jet feedback modes operating at high and low
Eddington ratios, respectively. Additionally, it applies observation-
ally motivated X-ray feedback to quench massive galaxies. SIMBA’s
black hole growth model is phase-dependent. Cool gas accretion on
to BHs is achieved through a torque-limited accretion model (Anglés-
Alcazar et al. 2017a), and when accreting hot gas, SIMBA transitions
to Bondi accretion.

Astrid, introduced in Bird et al. (2022), adopts the Pressure—
Entropy SPH hydrodynamic model that uses the MP-Gadget code
(Feng et al. 2018). The original Astrid simulations focus on mod-
elling high-redshift galaxy formation (from z = 99 to z = 3)
by considering inhomogeneous hydrogen and helium reionization,
metal return from massive stars, and the initial velocity offset between
baryons and dark matter. It has also enhanced the modelling of
black hole mergers via a dynamic friction model. The CAMELS
version of Astrid (Ni et al. 2023) follows the original simulation, but
slight changes in black-hole dynamics and dual-mode AGN feedback
implementations were made between them.

2.2 Data set generation

To create our halo-centric map data sets, we use YT-based software
(Turk et al. 2011) that allows for consistent and uniform analysis
across different simulation codes. We generate maps of all haloes
within the CV set with masses of at least Mp,, = 10> Mg, along
the three cardinal axes. There are approximately 5000 haloes for
each simulation. The highest halo mass is 10'** Mg, for a nearly 3
dex span in halo mass. Refer to Table 2 for additional details. We
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categorize all the haloes within the simulations by halo mass, where
Sub-Lx haloes are within the range 11.5 < log (Mpa0/Mg) < 12, Lx
haloes are within the range 12 < log (Mya,/Mp) < 13, and groups
are within the range 13 < log (Mp,0/Mg) < 14.3.

The relationship between log (Mhao/Mp) and log (Meem),
log (Tcgm), fegms and 1og (Zegy) for all simulations, the parameter
space, is shown in Fig. 1. The mean value of each property is indicated
with a solid line. The shaded regions represent the 16th—84th
percentiles, and the dotted points indicate the ‘statistically low’
region for haloes with halo masses above log (Mp,,/Mg) > 13.0. In
agreement with previous work (Oppenheimer et al. 2021; Delgado
et al. 2023; Gebhardt et al. 2023; Ni et al. 2023), we illustrate how
the properties of gas beyond the galactic disc can differ significantly
between feedback implementations.

For log (Mcgm) (top left), Astrid (blue) shows little scatter be-
low log (Mpao/Mg) > 12.5, NllustrisTNG (pink) shows similar but
less extreme scatter, and SIMBA (purple) has consistent scatter
throughout. In log (Tcgm) (top right), Astrid again has a low scatter
throughout the entire My, range. This scatter increases slightly
for IllustrisTNG and again for SIMBA, and it is interesting to
note the divergence from log (T¢em) o log (Mpaio/Mg)?3. Astrid has
the most scatter for fo,m (bottom left), whereas IllustrisTNG and
SIMBA display comparable scatter for lower masses, reducing for
higher masses. Finally, log (Z,) illustrates that all three simulations
have significant and similar scatter. For M ep, 10g (Tcgm), and fegm,
Astrid has higher values throughout the My, range, followed by
IMustrisTNG and SIMBA. This is not the case in log (Zcgm), where
there is a significant overlap. The scatter in My, was also computed
with respect to the total flux per map, corresponding to the sum of
all pixel values in X-ray and H 1 separately. When binned by Mo,
there are correlations only with [lustrisTNG and Astrid for X-ray
(see Fig. A2). A more detailed discussion of map trends and pixel
counts is in Appendix A.

From the snapshot data obtained from the X-ray and H I maps, we
provide an equation describing the calculation of each CGM property
(Mhalo,fcgm’ chm, Mcgm’fcools and Tcgm):

Mo = ZmDM(l’ < Raooc)

+ D mga(r < Raooe) + Y Maarr < Rapoe) ey
chgm(r < RZOOC)
gm = ————————— )
fé Mhalo
Zeom(r < 200 kpc)
chm = Z £ P 3

> Micem(r < 200 kpe)
Megm =) Megm(r < 200kpc) )
Fro = > Mool (r < 200 kpc)

T S Megm(r < 200 kpe)

T > teem(r < 200 kpc)
E TS Megm(r < 200 kpe)

&)

(6)

where m is the mass of dark matter (DM), gas, or stellar (star)
particles enclosed within r < 200 kpc. The subscript ‘cgm’ refers
to any gas that is not star-forming. z.ey is the metallicity of the gas
particle. Mmoo is CGM gas with T < 10° K. tegm 18 the temperature
of the gas particle. For the definitions and numerical ranges of the
above CGM properties, see Table 1. To ensure our CNN is able
to reproduce the scatter seen in Fig. 1, we include a comparison
of mean and variance values between the input parameters and the
output inference, separated by mass bin for each galaxy simulation
model. This is only computed for log (Z.gn ), as this parameter does

202 4990120 L0 U0 1s9NB Aq GLEZ9Y//8E00L/¥/L2S/l0IME/SeIuw/woo"dno-ojwapese//:sdny woly papeojumoq



CGM with CNN 10041

m— [llustrisTNG
— SIMBA
12,0 — Astrid

o lla

75} m— [llustrisTNG w2 iy
— SIMBA s
— Astrid "

o :
peia)
=
=
g 1.0
10.5
10.0
i " n " n 15 " n " n " n
115 12.0 125 13.0 135 110 115 12.0 125 13.0 135 1.0
l()g(ﬂ‘fhab/ﬂ'{ﬁ\) l()g(ﬁ‘fhalu/ﬁ’fﬁ\)
0.16 -
“1Af s— llustris TNG
0.14F = SIMBA .
TLOT e Asstrid] .
012 .
1.8
0.10 oy
= B_oy
008t N
= %
0.06 —= 22
004} o - 241
s [ustrisTNG
0.02¢ = SIMBA 26
— Astrid
0.00

s 120 5 30 35 110

I(Jg(ﬂlhalu/ﬁ/f@)

s 20 5 30 35 10

log(ﬂfﬁlalu/ﬂ/f@)

Figure 1. Relationship between different CGM properties and the halo mass. Panels specifically illustrate Mcgm, 10g (Tegm), fegm, and log (Zegm) within each
simulation (IllustrisTNG, SIMBA, and Astrid) to represent the mean distribution of the objects. The points indicate the mass bins where there are statistically
fewer haloes in mass bins above log (Mpa10/Mg) = 13.5. The shaded regions represent the 16™ — 84™ percentiles.

not have a clear relationship with halo mass, enabling a distinction
between mass relationships (seen within the other properties) and
intrinsic scatter. We confirm that our CNN reproduces the scatter
within the initial data sets.

We generated one channel for each field (H I or X-ray), adding
them together in the multifield case (H 1 + X-ray). Each map utilizes
values obtained through mock observation, as described below. For
X-ray, we map X-ray surface brightness emission in the soft band
between 0.5 and 2.0 keV. H1, or ‘Radio’ refers to the 21-cm emission-
based measurement that returns column density maps, which is a
data reduction output of 21-cm mapping techniques. Each map is
128x128 pixels, spanning 512 x 512 kpc? with a 4 kpc resolution.
The depth spans £1000 kpc from the centre of the halo. Two types
of maps are generated for each field: those with no observational
limits, called idealized maps, and those with observed limits imposed.
We first explain the generation of idealized maps. X-ray maps are
created using the pyXSIM package (ZuHone & Hallman 2016).
While pyXSIM can generate lists of individual photons, we use
it in a non-stochastic manner to map the X-ray emission across the
kernel of the fluid element. Therefore, our X-ray maps are idealized
in their ability to map arbitrarily low emission levels. Radio-based
H 1 column density maps are created using the Trident package
(Hummels, Smith & Silvia 2017) where the Haardt & Madau (2012)
ionization background is assumed with the self-shielding criterion of
Rahmati et al. (2013) applied.

Fig. 2 depicts maps of the same massive halo in the three
simulations: IllustrisTNG, SIMBA, and Astrid, from left to right,
respectively. The four rows illustrate (1) idealized X-ray, (2) obser-
vationally limited X-ray, (3) idealized H 1, and (4) observationally
limited H 1. For X-ray with observational limits, we set the surface
brightness limit to 2.0 x 107'% erg s~! cm~2 arcmin~2 corresponding
to the observing depth of the eROSITA eRASS:4 all-sky survey
(Predehl et al. 2021). For H 1 with observational limits, we set the
column density limit to Ny, = 10'*% cm~2, which is approximately
the limit expected for the 21-cm H 1 MHONGOOSE Survey ata 15’
beam size similar to the eROSITA survey (de Blok et al. 2016). The
observational limits are implemented by setting a lower limit floor
that corresponds to the detectability of the telescope. Accessing the
same halo across the three simulations is possible, since the CV set
shares the same initial conditions between the different simulation
suites. The X-ray maps tracing the gas primarily above T > 10° K
are brightest for Astrid and dimmest for SIMBA, a trend also seen
when the observational limits are imposed. The H I maps, probing
T ~ 10* K gas, are less centrally concentrated than X-ray and often
trace gas associated with satellites.

We expand on the first column in Fig. 2 in Fig. Al, formatted
similarly, for a range of halo masses within IllustrisTNG from
log (Mya10/Mg) = 13.83 (leftmost) to log (Mya0/Mg) = 11.68 (right-
most). X-ray emission, which traces the gas with a temperature above
10° K, indicates a strong correlation with the halo mass. The features
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Figure 2. Each column illustrates maps for IllustrisTNG, SIMBA, and
Astrid, respectively. Each row corresponds to maps for idealized X-rays,
X-rays with observational limits, idealized H 1, and H 1 with observational
limits. These maps display the same halo across the CV set of the three
simulations.

seen here include wind-blown bubbles (Predehl et al. 2020), satellite
galaxies that create bow shocks (Kang et al. 2007; Bykov, Dolag &
Durret 2008; Zinger et al. 2018; Li et al. 2022), and emissions
associated with the galaxies themselves. H 1 does not have the same
correlation with halo mass, strengthening our choice in creating the
H 1+ X-ray multifield.

2.3 Convolutional neural network

The advantage of employing CNNs lies in their capacity to simulta-
neously learn multiple features from various channels or fields (X-ray
and H 1). Fields can be used independently or together for training,
validation, and testing without modifications to the network architec-
ture and only minor changes in the scripts whenever necessary. This
work adopts likelihood-free inference methods, suitable for cases
where determining a likelihood function for large and complex data
sets is computationally demanding or is not attainable. Our CNN
architecture is based on the architecture used with the CAMELS
Multifield Data set (CMD) in Villaescusa-Navarro et al. (2021a),
inferring two cosmological and four astrophysical feedback parame-
ters. In addition to now inferring six CGM properties, the remaining
modifications stem from replacing the LH set (Villaescusa-Navarro
et al. 2022) with the CV set. We must be able to accommodate
unevenly distributed discrete-valued data in the form of ‘halo-centric’
points, which can be seen in a property like the halo mass. This
is compared to the LH-based CMD data set, which was used to

MNRAS 527, 10038-10058 (2024)

infer the evenly distributed cosmological and astrophysical feedback
parameters by design.

Our CNN makes two main adjustments: (1) the kernel size is
changed from 4 to 2 to accommodate a smaller initial network input,
and (2) the padding mode is altered from ‘circular’ to ‘zeros’. The
padding mode is crucial in guiding the network when the image
dimensions decrease, as it no longer perfectly fits the original frame.
Changing to ‘zeros’ means filling the reduced areas with zeros
to maintain the network’s functionality. The CNN architecture is
outlined in greater detail in Appendix C in Table C1 for the main
body of the CNN and Table C2 for additional functions utilized after
the main body layers.

CNN also includes hyperparameters: (1) the maximum learning
rate (also referred to as step size), which defines how the application
of weights changes during training, (2) the weight decay as a
regularization tool to prevent overfitting by reducing the model
complexity, (3) the dropout value (for fully connected layers) as
random neurone disablement to prevent overfitting, and (4) the
number of channels in CNN (set to an integer larger than one). To
optimize these hyperparameters, we employ Optuna (Akiba et al.
2019),* a tool that efficiently explores the parameter space and
identifies the values attributed to returning the lowest validation loss,
thus achieving the best performance.

We divide the full data set into a training set (60 percent), a
validation set (20 percent), and a testing set (20 percent). Only
the training set contains the same halo along three different axis
projections (setting the network parameter split = 3). In con-
trast, the latter sets include neither the axis projections of any halo
nor the original image of the haloes assigned to the training set.
The split is performed during each new training instance for a new
combination of fields and simulations. We set the same random
seed across all network operations, so as to drastically reduce the
probability of overlap between training, validation, and testing sets.
Without the same random seed, the data set will not be split in the
same way each time, and one halo could appear in two or more sets,
causing inaccurate results. This process is necessary to ensure that
the network does not perform additional ‘learning’ in one phase.

2.4 Network outputs

Here, the ‘moment’ network (Jeffrey & Wandelt 2020) takes ad-
vantage of only outputting the mean, u, and variance, o, of each
property for increased efficiency, instead of a full posterior range.
The minimum and maximum values used to calculate the network
error for the six CGM properties are kept the same throughout this
work, regardless of which simulation is used for training. Doing
so ensures that the results are comparable in the cross-simulation
analysis or training on one simulation and testing on another.

We additionally include four metrics to determine the accuracy
and precision of the CNN’s outputs for each CGM property: the root
mean squared error (RMSE), the coefficient of determination (R?),
the mean relative error (¢), and the reduced chi-squared (x?). In the
formulae below, we use the subscript i to correspond to the index
value of the properties [1-6], the marginal posterior mean, u;, and
the standard deviation, o ;. Four different statistical measurements are
used to make such conclusions, and TRUE; is used to denote the true
value of any given CGM property with respect to simulation-based
maps.

“https://github.com/pfnet/optuna/
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Root mean squared error, RMSE:

RMSE; = /((TRUE; — w)?), )

where smaller RMSE values can be interpreted as increased model
accuracy in units that can be related to the measured property.
Coefficient of determination, R:
R % (TRUE; — ;)
P 3, (TRUE; — TRUE;)?’
representing the scale-free version of the RMSE, where the closer

R? is to one, the more accurate the model.
Mean relative error, €:

Oj
€ = <*> ©)
i

where smaller ¢; values can be interpreted as increased model
precision. This is also the type of error predicted by CNN.
Reduced chi-squared, x:

1 L /TRUE; — i1\ °
2 —= =), 10
X; NZ( . ) (10)

i=1

(®)

where this quantifies how ‘trustworthy’ the posterior standard devi-
ation is, such that values close to one indicate a properly quantified
error and that the model is well trained. Values greater than one
indicate that the errors are underestimated, and those smaller than
one are overestimated. We do not expect deviations far from one
when analysing inferences from CNNs trained and tested on the same
simulation. However, values much higher than one are expected if
network training and testing occur in different simulations, as outliers
may have a large contribution. The variation in parameter spaces
between simulations can be seen in Fig. 1. If x? values become very
large, two hypotheses can be presented. First, either the CNN is not
powerful enough to output the correct inference from the provided
maps, or second, there is not enough of the correct information
within the data set to produce a good inference. Distinguishing one
hypothesis from the other, along with a physical interpretation of
values that deviate from one, is not possible without the ability to
interpret deep learning models. Resolving these issues is the focus
of our future endeavours.

Itis also important to note that the values reported in the subsequent
figures correspond to the subset of the data that has been plotted, not
the entire set, unless otherwise noted. To achieve such a reduced
set, we randomly select a fraction of data points that vary with halo
mass — for example, approximately (1/30)th of log (Mhao/Mg) =
11.5 haloes, but all haloes above log (Mp0/Mg) = 13.0 are plotted.

3 RESULTS

We present our main results in this section. First, we discuss training
and testing on one idealized field at a time for the same simulation
(single-simulation analysis), focusing on three inferred properties:
(1) halo mass in Ryy (Mpao in Section 3.1), (2) the mass ratio
of CGM gas to the total mass inside Rogoc [fegm in Section 3.2),
and (3) the metallicity of the CGM inside 200 kpc (log (Z.gn) in
Section 3.3]. We do not display the case of a multifield here, as
the results do not indicate a significant improvement. Following
this, we show the results for the observationally limited case (for
properties Mpa, and M), strengthening the motivation for using a
multifield (Section 3.4). We also organize network errors (RMSEs)
by mass bin (see Table 2) and by simulation (training and testing
on the same simulation) for the multifield case with observational
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limits (Section 3.4.1). Finally, we provide the results of a cross-
simulation analysis encompassing all three simulations, with and
without observational limits for comparison (Section 3.5).

We utilize Truth-Inference scatter plots to display inferences
on the CGM properties. Each plot consists of multiple panels
distinguished by field, simulation, or both. The panels visualize the
true value, TRUE;, on the x-axis and the inferred posterior mean, u;,
on the y-axis, with error bars corresponding to the posterior standard
deviation, o ;. Four statistics (for the subset of data plotted and not
the entire data set) are also provided for each panel: the RMSE
(equation 7), coefficient of determination values (R?, equation 8),
mean relative error (e, equation 9), and reduced x> values (equation
10). The definitions and equations for each are given in Section 2.4.
The black diagonal line also represents a ‘perfect inference’ one-to-
one line between the true and inferred values.

3.1 Inferred halo mass

The halo mass emerges as a readily interpretable property, directly
deducible from the network, owing to its clear expectations: ‘true’
high-mass haloes should yield correspondingly high ‘inferred’ halo
masses, regardless of the simulation used for training and testing.
Fig. 3 illustrates the Inference—Truth plots for My, across all three
simulations for a subset of the data. We define the halo mass in
equation (1) as the sum of dark matter, gas, and stars within r <
Rao0c-

The top row corresponds to the results using idealized X-ray maps
to infer My, and similarly for the bottom row using H I maps.
The columns are ordered by the simulation used for training and
testing: IllustrisTNG (left), SIMBA (middle), and Astrid (right).
The points are coloured by halo mass throughout. We examine the
CNN with input X-ray maps first. In the first panel, we train and
test on [llustrisTNG and obtain inferences that indicate a relatively
well-constrained monotonic relationship. Some points remain further
away from the ‘truth’ values set by the black diagonal line at the low-
mass end, suggesting that X-ray may not be the best probe for these
low-mass haloes. The next panel visualizes the training and testing
results on SIMBA, with a slight improvement in the higher mass
range and an overall relatively well-constrained, monotonic trend
with a few outliers that stray far from the black line. This is exactly
what is expected and is the same across simulations and fields. There
are a few more outliers than I1lustrisTNG and slightly larger error bars
across the entire mass range. Finally, the third panel demonstrates
that the CNN trained on and tested with Astrid has excellent inference
power, as indicated by smaller error bars throughout the mass range.

We can now look at the results obtained using the H I input maps.
In the first panel, with training and testing on IllustrisTNG, we obtain
a clear and well-constrained monotonic relationship with relatively
little scatter. There is a slight improvement in error predictions when
using H I instead of X-ray, as indicated by the change in the x?
value from 0.918 with X-ray to 0.938 with H 1. Visually, we can see
the improvement in the lower mass range, as there is less scatter.
The middle panel shows training and testing on SIMBA, where the
inference made is significantly worse than it is with X-ray throughout
the entire parameter space, especially intermediate to low masses
with increased scatter and larger error bars. The last panel shows
training and testing on Astrid. Training and testing the CNN on
Astrid with H I input maps yields the best inference of the three
galaxy formation models, indicated by the highest R> and lowest €.
However, the inference made with H I is outperformed by that made
with X-ray in the intermediate- to high-mass range.

MNRAS 527, 10038-10058 (2024)

202 4990120 L0 U0 1s9NB Aq GLEZ9Y//8E00L/¥/L2S/l0IME/SeIuw/woo"dno-ojwapese//:sdny woly papeojumoq



10044  N. Gluck et al.

MustrisTNG SIMBA Astrid
/ ’
14.0 X—ray / L // I / 14.0
A /! by
o —_
5135 + - 13.5 EG)
i =
= 13.0 - - 130 2
= =
= .
w5 12.5 ¢ F - 125 &
e ¥
= RMSE = 0.087 RMSE = 0.004 RMSE = 0.053 =
12.0 R = 0.934 r R? = 0‘9:.)1 - R =0.983 12.0
¢ = 0.007 € = 0.007 ¢ = 0.003
= X = 0918 | X =1.125 | x* = 0.858
1.5 : : S S : : * ‘ 115
14,01 HI /[ s // 14.0
I / F // y
g f I { : 1 135 75
£13.0 I . 130 2
=
= 12.5¢ - I 125 S
= RMSE = 0.003 RMSE = 0.169 RMSE = 0.088 =
12.01 R? =0.933 - R* =0.816 } R? = 0.072 12.0
¢ = 0.007 e =0.011 € = 0.004
115t \2 = 0.938 2 =1.277 | \2 = 1.080
: : : : r g : : : 11.5
12 13 14 12 13 14 12 13 14
k%(*‘”"ﬂlalo.tr uth ) 10g(ﬂ’fhalo.trutll) log(ﬂ’fha lo.trurh)

Figure 3. The Truth-Inference plots for M., When training and testing on the same simulation using idealized single-field data. IllustrisTNG, SIMBA, and
Astrid are shown from left to right, and X-ray and H I are shown in the upper and lower rows, respectively. The data are at z = 0.0. We plot a mass-dependent

fractional sample of haloes from the testing set.

Quantitatively, Astrid provides the most accurate and precise infer-
ence for both fields following the RMSE and € values, respectively.
It also has the highest R? score, indicating that a CNN trained and
tested on Astrid can best explain the variability in the data. SIMBA
has the lowest R? value overall with H I input maps, making it the
least accurate in this case. Investigating the x 2 values, CNNs training
and testing on (1) IllustrisTNG consistently overestimate the error
(x®> < 1), (2) SIMBA consistently underestimate the error (x> >
1), and (3) Astrid overestimate the X-ray error to a greater degree
than [lustrisTNG but slightly underestimate the H I error to a lesser
degree than SIMBA.

To interpret the meaning of the x? values reported in Fig. 3, we
determine the percentage of o; errors of individual data points that
overlap the line of perfect inference. If the errors are truly capturing
the Gaussian behaviour, as in x> = 1, we would expect 1 — o or
68 per cent errors to overlap. Briefly, we find that the percentage of
overlapping points is 78.3 per cent for the overall lowest x> = 0.858
for Astrid on idealized X-ray maps, and 65.0 per cent for the overall
highest x? = 1.277 for SIMBA for idealized H 1 maps. In the case
of SIMBA X-ray, we find an overlapping percentage of 68.9 per cent
for x? = 1.125, which indicates a slight non-Gaussian behaviour
for a x? just under one. Note that data points with underestimated
errors generally overcontribute, especially this x 2 value. However, it
is encouraging to see that the x? values scale as expected, meaning
that they have a diagnostic value, but that the inferred errors do not
completely follow Gaussian statistics.

MNRAS 527, 10038-10058 (2024)

3.2 Inferred CGM gas fraction

Fig. 4 shows the Truth—Inference plots for feom in the same format as
Fig. 3, with the colour bar still indicating My,;,. We see that fc,, does
not have a monotonic trend, seen explicitly in Fig. 1. Higher masses
tend to be more constrained, illustrated by a less deviation from
the black line and smaller errors than those of lower mass haloes.
However, this is likely due to having fewer higher mass haloes for
the network to learn from. We define f.on in equation (2), as the sum
of non-star-forming gas within a radius of r < 200 kpc divided by
the halo mass.

CNN performs poorly with IllustrisTNG on idealized X-ray maps,
resulting in scattered points with large error bars. The network
underestimates the error bars, as indicated by a x> value greater
than one. The next panel shows the results with SIMBA, for which
there is better agreement and less scatter toward the higher and
intermediate halo masses. However, for the low-mass haloes, there is
no distinctive trend, though the network can predict the values well
overall but with somewhat large error bars (also underestimated).
SIMBA also has slightly lower feo, values than IllustrisTNG (c.f.
Fig. 1). Finally, a CNN with Astrid provides excellent inference
for feem and accurately estimates the network error. The values are
systematically larger, matching Fig. 1.

Similarly, we display H I in the bottom row, with overall trends
matching those seen with X-ray. However, H 1 offers tighter con-
straints at lower mass haloes (higher f.on, values). This indicates that
H1is aslightly better probe for f.gn, than X-ray. Interestingly, SIMBA
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Figure 4. The Truth-Inference plots for fegm, with idealized X-ray (top) and idealized H 1 (bottom), where the colour bar still represents halo mass. Astrid
performs the best with the tightest constraints and the smallest errors, while IllustrisTNG performs the worst, likely due to the sharp increase of fegm at low mass.

now overestimates the network error (x? value less than one), while
IustrisTNG and Astrid underestimate the errors. In general, fgm
performs worse than My, but CNN is learning to infer this property
using a single idealized field.

It does not appear that the quality of inference by the CNN
depends on where the range of feon lies with respect to the entire
value space spanned by all three simulations — I1lustrisTNG returns
the worst performance but has intermediate f.o, values, with an
underestimate of the error. Astrid yields the most accurate and precise
inferences for X-ray and H1fields, with lower scatter and error values
for predicting M, compared to IllustrisSTNG and SIMBA. While
SIMBA generally performs worse, it exhibits relatively good results
in this case, especially with H 1.

Following the results of Davies et al. (2020) using IllustrisTNG-
100, we see similar non-monotonic trends using CAMELS-
MlustrisTNG in feom as a function of halo mass. Low-mass haloes
(log (Mya1o/Mg) < 12) show high fegr, values. When the halo mass
is slightly increased, there is a decline in the values of figm, until
approximately log (Mp,0/Mg) &~ 12.5 as a threshold mass, after
which the monotonic trend with the halo mass returns. Star-forming
feedback processes below this threshold mass are dominant and
incapable of clearing the CGM. At the threshold mass, these star-
forming feedback processes become stronger. Instead of learning the
CGM of its gas, the AGN feedback is shut down as early black hole
formation is limited (Delgado et al. 2023). We then see a dramatic
increase due to turning on jet-mode feedback. Even for cluster-mass
objects, AGN feedback cannot overcome deep potential wells, so that
we again see high values of f,,. SIMBA has the strongest feedback
implementation of the galaxy formation models considered, resulting

in lower overall f.gn values throughout the entire mass range.
Additionally, we note that although SIMBA has the largest scatter in
Jegm. this is not simply a reflection of larger statistical fluctuations,
as it has a comparable amount of sub-Lx objects to IllustrisTNG
(see Table 2). Astrid has the weakest feedback, resulting in higher
overall feom values across the mass range Ni et al. (2023). Further
analysis is needed to more concretely establish the relationships
between feedback and halo mass such that these results are robust to
observational data.

3.3 Inferred metallicity

Fig. 5 shows the truth—inference plots for metallicity, plotted as
the logarithm of the absolute value of Z (note log(Zy) = 1.87,
Asplund et al. (2009) on this scale. Metallicity presents an interesting
challenge to our CNN, as there are often ~1 dex of scatter in Z at the
same halo mass with no obvious trend (see Fig. 1). When training
and testing on [llustrisTNG (top left), we see that higher mass haloes
are slightly better constrained than low-mass haloes, which are more
scattered and have larger (and overall underestimated) error bars. We
define the metallicity of the CGM in equation (3) as the sum of the
metallicity of the gas particles times the mass of non-star-forming
gas within a radius of r < 200kpc.

Training and testing on SIMBA results in significant scatter across
the entire mass range, with larger and underestimated error bars. L*
and group haloes have higher metallicity values overall than in the
previous panel. The last panel shows training and testing with Astrid,
returning the best overall inference in log (Ze,m) across the entire
mass range. Although the error is underestimated, Astrid has much

MNRAS 527, 10038-10058 (2024)
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Figure 5. The Truth-Inference plots for metallicity, with idealized X-ray (top) and idealized H 1 (bottom), where the colour bar still represents halo mass.
Astrid performs the best, while SIMBA performs the worst, as it has the most varied Z-values across the mass range, while Astrid has the most confined values.

higher accuracy and precision based on RMSE, R?, and € values. We
argue that this is quite an impressive demonstration of our CNN’s
ability to predict a value with significant scatter at a single halo mass.

The bottom row illustrates this same inference, but now using H1,
where we see similar trends as with X-ray, though slightly more
constrained in the case of IllustrisTNG and SIMBA and slightly less
constrained in the case of the low-mass end of Astrid. The same
upward shift for L* and group haloes is seen with SIMBA, alluding
to SIMBA's strong astrophysical feedback prescriptions that impact
higher mass haloes. This is also seen in the changes in lower (higher)
x2 values for IllustrisTNG and SIMBA (Astrid). We conclude that
neither X-ray nor H1is powerful enough onits own to infer log (Zcgm).
Surprisingly, the entire metallicity of the CGM can be well inferred
using H 1, especially in the case of Astrid, despite being a small
fraction of overall hydrogen, which itself is a primordial element. We
do not attempt to provide a physical interpretation of the metallicity
of the CGM, as it is quite complex and will be a good topic to focus on
for our future work applying interpretative deep learning techniques.

3.4 Observational limits and multifield constraints

Simulations must consider the limitations of current and future obser-
vational multiwavelength surveys, such that a one-to-one correlation
between them and the developing models can exist. The specific
limits used in this work come from the eROSITA eRASS:4 X-ray
luminosity of 2 x 107" erg s~' cm™ arcmin™2, and the typical
radio telescope column density for measurements of H 1 as 10%°
cm~2. Again, we include the RMSE values R?, €, and x2, which
are especially important to distinguish between single and multifield
inferences.

MNRAS 527, 10038-10058 (2024)

The top row of Fig. 6 displays the Truth-Inference plots, high-
lighting the power of using multiple fields to infer My, by training
and testing a CNN with the IllustrisTNG observationally limited
data sets. Utilizing the X-ray (top left), it is clear that we cannot
make an inference towards lower halo masses (Sub-Lx). This is
expected, given the eROSITA-inspired limits, which show X-ray
emission strongly correlating with the halo mass, following Fig. Al.
The inability to make a clear inference in this mass regime despite
providing the CNN with the most information (nearly 3500 separate
Sub-Lx haloes, see Table 2) reiterates the weaknesses of X-ray.
The X-ray inference improves in the Lx range, but is still highly
scattered. Chadayammuri et al. (2022) targeted L* galaxies by
stacking eROSITA haloes and found a weak signal, which appears to
be supported by the assessment here. The groups provide much better
inference for My, since these objects should be easily detectable
via eROSITA. In the middle panel, we explore H I with observational
limits to infer My,,. Interestingly, H 1 does a much better job for
sub-Lx haloes, as these are robustly detected in the 21-cm mapping
(see Fig. Al). The inference worsens for Lk haloes and for much of
the Group range. H I thus far shows improvements via a lower RMSE
value, a R? value closer to 1, and a lower € value. It also indicates that
the network predicts a greater error underestimation due to a higher
x?2 value.

As neither X-ray nor H I is robust enough to infer My,, alone
properly, we now train and test the network on combined H1 + X-
ray ‘multifield’. The multifield approach is specifically used when
one field alone may not be enough to constrain a property fully
or only constrain a property within a certain range of values. The
secondary or tertiary fields would then be able to fill in some gaps
or tighten the constraints within the inference. Additionally, with
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Figure 6. Truth-Inference figures for X-ray (left), H 1 (middle), and H 1 + X-ray (right) for IllustrisTNG with observational limits imposed on My, (fop row)
and Mcgm (bottom row) using IllustrisTNG. X-ray provides poor inference, especially for lower-mass galaxies, as there are very few, sometimes no emission
lines detected if they are too faint. On the other hand, the inference produced from H I results in more uniform errors throughout the mass range, since H I is
detected around both low- and high-mass haloes. Combined with their observational limits, the inference is enhanced by tighter constraints at all mass scales.

the ability to adjust the network based on current observations,
we form computational counterparts to future surveys to aid in its
construction. We achieve stronger constraints throughout the entire
mass range, even with observational limits from both X-ray and H I.
X-ray probes the L+ and Group mass range well, while H I probes
the sub-Lx mass well, alleviating the previously unresolved noise of
the left panel. We see a quantitative improvement in the multifield
approach in lower values for RMSE, R?%, and e, which comes at
the price of increased underestimation of errors seen with a slight
increase in x?2 value.

The bottom row of Fig. 6 provides similar results and trends for
Mo (defined in equation 4) via IlustrisTNG with X-ray, H 1, and
multifield using observational limits. X-ray here is also not powerful
enough as a probe to infer this property, especially in the low halo
mass region. We then look at H 1, where there is a better overall
inference in the low halo-mass region. However, H I produces more
scatter towards the high halo masses than X-ray. The last panel
displays results from the H I 4+ X-ray multifield, which is an overall
improvement compared to either field alone. The constraints are
tighter overall, and the scatter is reduced, as seen in the RMSE
values, R?, €, and x2. Additional truth—inference multifield plots
with observational limits for the remaining CGM properties can be
found in the Appendix B.

3.4.1 Visualizing the CNN error

To quantify the CNN error across all six CGM properties [Mh,o0,
Jegm» 10€ (Zegm), Megms feool, and 1og (Tegm)], we plot the error in
each property binned by the halo mass. In the left panel of Fig.
7, we plot the error (neural network error, or mean relative error)
for each property when considering the observational limits on H I,
X-ray, and multifield H1 4 X-ray for a CNN that is trained and
tested on IllustrisTNG. Panels are separated by halo mass, where
we use the full data set instead of the subset in the truth—inference
plots.

We outline the general trends of this figure and point out in-
teresting features. In the sub-Lx panel, X-ray maps alone provide
the highest error, followed by multifield, and then H T with the
lowest error, to be expected. Note that there is an infinitesimal
difference between multifield and using H 1 alone. In the sec-
ond panel (L), the margin of error between X-ray and H 1 is
decreasing, meaning that X-ray is becoming increasingly more
important in the intermediate halo mass range. Multifield devel-
opment is also strictly improving with the use of H I alone. With
Groups, the multifield offers a greater improvement over either field
alone, except for log (Mcym) where the X-ray has a slightly lower
error.

MNRAS 527, 10038-10058 (2024)
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Figure 7. Left: Average RMSE values split by halo category for training and testing on IllustrisTNG, with fields X-ray, H I, and the multifield H 1 + X-ray with
observational limits, for all six properties. These bars are representative of the full data set. We provide a dashed vertical line to distinguish between properties
that are radially bound by Ryooc and those by 200 kpc. Right: Average RMSE values split by simulation (training and testing on IllustrisTNG, SIMBA, or Astrid),
with H 1 + X-ray and observational limits, for all six properties. These bars are representative of the full data set. Neither panel is entirely comparable to the
Truth—-Inference plots, as these categorize errors by halo mass and are for the full data set.

Focusing on fegm, the errors are generally smaller than those of
M, but this may reflect the quantity range that is inferred as
fegm is mainly between 0.0 and 0.16 while My, varies between
11.5 and 14.3. Meanwhile, log (Z.g) has similar error levels between
H 1 and X-ray, with a small improvement for multifield for sub-
L+ and Lx. The errors in log(Zem) vary between 0.16 and 0.24,
so measuring metallicity at this level of accuracy is promising,
but distinguishing high values of metallicity from low ones is
disappointing for [llustrisTNG (see Fig. B2).

The last three sets of properties, 10g (Mcgm), feool, and log (T), have
not been previously illustrated as Truth—Inference plots. They depict
similar trends and show general multifield improvement. H I infers
sub-Lx the best, while X-ray infers Groups the best. The multifield
is most important for L haloes, and across all six properties, there
is a significant improvement in the inference. Other halo categories
usually do not result in as much improvement; in some cases, the
multifield performs slightly worse. We note that inference of f.oo
for groups is a significant improvement, from 0.102 (X-ray) and
0.125 (H 1) to 0.084 (multifield), reflecting that CNN integrates
observations of both cool gas (H 1) and hot gas (X-ray) in this
fraction.

The right panel of Fig. 7 outlines the errors in IlustrisTNG,
SIMBA, and Astrid for the multifield H 1 + X-ray with observational
limits for all six properties. The halo mass again separates the three
panels. Generally, a CNN trained and tested on SIMBA has the
highest error over the entire mass range, while a CNN trained and
tested on Astrid returns a better inference. fom breaks this trend, as it
is significantly worse for L+ mass haloes when using IllustrisTNG,
which is directly due to the drastic inflection point seen in Fig. 1.
Additionally, Astrid can infer log(Z.m) remarkably well for Lx
mass haloes, compared to the high error when using IllustrisTNG.
This can be seen in Fig. B2 where [lustrisTNG has much more
scatter across the entire mass range, while Astrid shows little
scatter.
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3.5 Cross simulation inference

Until now, each truth—inference plot has been created by training and
testing on the same simulation. In this section, we provide the results
obtained when training on one simulation or galaxy formation model
and testing on another to prove the degree of robustness across any
particular simulation. We do this for both an X-ray with observational
limits and a multifield with observational limits.

In Fig. 8, we demonstrate the cross-simulation inference between
MlustrisTNG, SIMBA, and Astrid, using X-ray with observational
limits only on the My,|, property. The diagonal plots correspond to
the training and testing in IlustrisTNG, SIMBA, and Astrid from
upper left to lower right (repeated from the upper panels of Fig. 3).

The top row refers to CNNs trained on IllustrisTNG, where each
panel from left to right has been tested on IllustrisTNG, SIMBA, and
Astrid, respectively. When tested on SIMBA, most points are close
to the black line, but with significantly more scatter. When tested
on Astrid, we can only recover good constraints for the high-halo
mass range. There is much more scatter in the low-mass range, as a
majority of them are overestimated, except for a few outliers, most
likely resulting from the inability of X-rays to probe the low-halo
mass range.

When training on SIMBA, but then testing on IllustrisTNG, there
is still quite a bit of scatter in the low-mass haloes, and the high-
mass haloes are now overestimated. This matches the expectations
from the brightness differences between IllustrisTNG (brighter) and
SIMBA (dimmer). When testing on Astrid, all points are shifted up
and overestimate halo mass.

Finally, training on Astrid and testing on IllustrisTNG cannot
recover any of the results. There is a lot of scatter for the low-
halo-mass range with large error bars, with points that do not
follow the expected trends in IllustrisTNG for intermediate and high
masses. Astrid underestimates the majority of the halo masses. When
testing on SIMBA, the results cannot be recovered either, as most
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Figure 8. Cross-simulation results for IllustrisTNG, SIMBA, and Astrid on X-ray for Mp,o, With observational limits. The x-axis of each panel corresponds to
the true values of Mpajo, and the y-axis corresponds to the inference values of Mpg)0, as before. The y-axis labels indicate that the panels in the top row were
trained on IllustrisTNG, the middle row on SIMBA, and the bottom row by Astrid. The columns are labelled such that the panels in the first column were
tested on IllustrisTNG, the second column’s panels on SIMBA, and the third on Astrid. The diagonal panels are the result of training and testing on the same
simulation. Training and testing on Astrid provide the tightest constraints and the best inference. These points are a fraction of the full data set.

points underestimate the halo mass. Although training and testing
on Astrid seem to provide the best constraints on halo mass with
X-ray observational limits, it is the least robust simulation out of the
three, as measured by its ability to be applied to other simulations as a
training set. In contrast, other models trained on the Astrid LH set (Ni
etal. 2023; de Santi et al. 2023) are the most robust, as the parameter
variations produce the widest variation in galaxy properties, in turn
making ML models more robust to changes in baryonic physics.
IustrisTNG is the most robust in this case, as it returns the results
of the other two simulations with the least amount of scatter.

One oddity in the statistical measurements produced comes from
training on either IlustrisTNG or SIMBA and testing on Astrid,
which results in a negative R? value, indicating a significant mismatch
in the models. Another unusual statistic is in the extremely high x>
values from three cases: (1) training on IllustrisTNG and testing
on Astrid, (2) training on SIMBA and testing on Astrid, and (3)

training on Astrid and testing on either IllustrisTNG or SIMBA.
Each reiterates the lack of robust results that can be achieved with
Astrid.

Fig. 9 illustrates the cross-simulation results on Mp,, with ob-
servational limits on the multifield H 1 4+ X-ray for IllustrisTNG,
SIMBA, and Astrid. The top left panel shows this multifield, trained
on and tested with Il1lustriSTNG, where overall, My, can somewhat
be constrained throughout the entire parameter space. The second
panel on the diagonal corresponds to the same multifield but is now
trained on and tested with SIMBA. The constraints here are weaker
throughout the entire parameter space as there is more overall scatter,
though the trend is the same as expected. The last panel on the
diagonal shows the network trained on and tested with Astrid, where
we can obtain the tightest constraints overall, especially in the higher
halo mass range. The few outliers towards the mid (Lx) to low (Sub-
Lx) mass range with larger error bars may need further investigation.

MNRAS 527, 10038-10058 (2024)
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Figure 9. Cross-simulation results to infer My, using the multifield with observational limits for IllustrisTNG, SIMBA, and Astrid. The layout is the same as
in Fig. 8. Even with the observational limits of H I and X-ray, training and testing on Astrid have the best overall inference for Mp,o.

The top row shows training with IllustrisTNG and testing on
MustrisTNG, SIMBA, and Astrid, respectively. When training on
IlustrisTNG and testing on SIMBA, we expect that for a given mass
halo in IllustrisTNG, that same halo will look dimmer and, therefore,
less massive in SIMBA. This is seen here, as most haloes are below
the black line. When the network is now tested on Astrid, a similar
but opposite expectation is met. With the knowledge that for a given
halo mass in IllustrisTNG, that same halo will look brighter and,
therefore, more massive in Astrid, this trend also makes sense, as
we see a large majority of the points shifted above the black line.
We can conclude that with observational limits in the multifield,
training on IllustrisTNG can return the trends in SIMBA and Astrid,
but there is an offset in recovered My, explainable by the shift in
observables.

The middle row shows training with SIMBA and testing on
MustrisTNG, SIMBA, and Astrid, respectively. When the network
trains on IllustrisTNG, it can recover the inference and achieve
good constraints. The same halo in SIMBA will appear brighter in

MNRAS 527, 10038-10058 (2024)

MlustrisTNG, so the shift in most points upward above the black line
is, therefore, as expected. When testing on Astrid, we still recover
the inference and achieve good constraints, but we see the same shift
as we saw when training on IllustrisTNG and testing on Astrid. This
also aligns with the expectations, as the haloes in Astrid will seem
much brighter than those in SIMBA. We can conclude that with
observational limits in the multifield, SIMBA is also robust enough
to recover inference and constraints for M.

The bottom row shows training with Astrid and testing with
MlustrisTNG, SIMBA, and Astrid, respectively. When the network
tests on [llustrisTNG, we can recover the general trend with slightly
less strong constraints. We can recover the general trend with slightly
less strong constraints when the network is tested on SIMBA. The
haloes in Astrid will be brighter than the same haloes in IllustrisTNG
and SIMBA, so the majority of the points are below the black
line when testing on IllustrisTNG and SIMBA. We can conclude
that a CNN trained on Astrid cannot recover the inference and
constraints for My,,. We see the same statistical nuances as in the
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Figure 10. Cross-simulation results to infer Mcgm using the multifield with observational limits for IllustrisSTNG, SIMBA, and Astrid. The layout is the same

as in Fig. 8.

previous figure: negative R? values and large x2 values in the same
configurations.

By adding observational constraints for both H I and X-rays,
the simulations gain a further level of similarity, which enhances
their constraining power in the cross-simulation analysis. Fig. 10
shows the results of using the multifield (H 1 + X-ray) approach
with observational limits on Mgy, with observational limits. The
layout of the plot is analogous to that of Fig. 9. Training on
IustrisTNG (top row) overpredicts the results for intermediate- and
low-mass haloes when testing on SIMBA and underpredicts the same
results when testing on Astrid. This aligns with the expectations in
the bottom left panel of Fig. 1, which describes the relationship
between the halo mass and M gy,. Training on SIMBA (middle row)
underpredicts intermediate- and low-mass haloes results when testing
on IustrisTNG and Astrid. Note that there is much more scatter
when testing on IllustrisTNG, especially for objects with low Mg,
values. Training on Astrid (bottom row) does reasonably well when
testing on IlustrisTNG with some scatter in the intermediate- and

low-mass haloes. However, it overpredicts these intermediate- and
low-mass haloes when tested on SIMBA.

Although able to return similar trends, cross-simulation training
and testing display offsets related to different CGM properties in all
simulations. However, it is enlightening to see that cross-simulation
inference improves when more bands are included, which indicates
that broad properties like My, and M,y are more robustly charac-
terized by observing in multiple bands. We make a deliberate choice
to show the cross-simulation analysis results for My, and Mg, not
Jeem» as it is a ratio of the gas mass to the halo mass throughout
the halo (not within 200 kpc), leading to a more complex trend that
is not as easily interpretable. Cross-simulation analysis can offer a
way to understand the direction and magnitude of systematic offsets
and the variations between feedback implementations qualitatively
and the feedback energy as a function of redshift. This is entirely
contingent on our ability to create physically motivated deep-learning
models that are interpretable, which is the focus of our future
work.

MNRAS 527, 10038-10058 (2024)
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4 DISCUSSIONS

In this section, we discuss the interpretation of cross-simulation
analysis (Section 4.1), assess the applications and limitations of
CNNs when applied to CGM (Section 4.2), compare the variance
between true and inferred values for log (Mpa), log (Mcem), and
log (Zcgm) using the idealized multifield maps (Section 4.3), and
expand on an intriguing direction for future work (Section 4.4).

4.1 Cross-simulation interpretability

In Section 3.5, we explore the robustness of simulations by examining
cross-simulation inference with and without observational limits.
Fig. 9 presents cross-simulation inferences for multifield H1 + X-
ray with observational limits on My,,. Upon initial inspection,
training, and testing on Astrid offer the tightest constraints across
the entire mass bin. In general, a test simulation will overpredict
(underpredict) properties when trained on a simulation with CGM
observables that are dimmer (brighter). Among the three simulations,
a CNN trained on IllustrisTNG is the most robust, as it accurately
captures the differences between halo mass measurements when
trained on SIMBA and Astrid. However, more work must be done
to show that a CNN trained on IustrisTNG will produce the
most robust predictions when applied to real observational data.
A novel aspect to further explore is training and testing on multiple
simulations, varying the feedback parameters such that the CNN
would marginalize over the uncertainties in baryonic physics.

The effort to train and test on different simulations mimics training
on a simulation and predicting real observational data. Although it
is disappointing to see such deviations in the results of the cross-
simulation analysis, we know that some simulations offer better
representations given the specific scope of this work than others.
Using observational limits that resemble the ranges of detection
of current instruments as a simulation constraint, we can begin
directly comparing simulations and observations. We note that the
simulations are unconstrained by available observations in the CGM.
The fiducial prescriptions for IllustrisSTNG and SIMBA are calibrated
to match the available data of the groups with varying success
(Oppenheimer et al. 2021), but Astrid with its higher f,; values
has not been calibrated similarly. Importantly, no simulation is a
perfect representation of the real universe, but it is crucial to develop
CNN s that can adapt to a wide range of mock haloes generated using
multiple galaxy formation codes that aim to simulate these systems
with realistic physical prescriptions.

Robustness quantification, or how well a network trained on
one simulation can infer a given quantity when tested on another
simulation within any set of simulations and machine learning
algorithms, including the CAMELS suites, is crucial to further
their development (Villaescusa-Navarro et al. 2021b; Villanueva-
Domingo & Villaescusa-Navarro 2022; Echeverri et al. 2023; de
Santi et al. 2023). The lack of robustness can be due to either
(1) differences between simulations, (2) networks learning from
numerical effects or artefacts, or (3) lack of overlapping between
simulations in the high-dimensional parameter space. These reasons
are not surprising, because of the use of the CV set within CAMELS,
and there could be slight variations in feedback that are unaccounted
for. Using the LH set instead would improve the results obtained
in this work. Additionally, precision (smaller error bars) without
accuracy (recovering the ‘true’ values) is meaningless. Therefore,
although Astrid generally has the smallest error bars, this alone shows
strong biases when tested on other models. Future work can be done
to address the inability to obtain robust constraints while performing
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cross-simulation analysis. One avenue is through domain adaptation
(Ganin et al. 2015), which allows a smoother transition between
training and testing on different simulations such that we obtain
robust results.

4.2 Applicability and limitations of CNNs applied to the CGM

We have applied a CNN following the structural format used by
Villaescusa-Navarro et al. (2022) and modified it to infer underlying
properties of the CGM of individual haloes with fixed cosmology and
astrophysics within the CAMELS CV set. The former CNN infers six
independent parameters (two cosmological and four astrophysical
feedback) by the design of the LH simulation set. Our trained CGM
CNN learns to predict properties with high co-dependencies (e.g.
log (Mha10) and log (Tcem)) and related quantities (fegm and Me,p). In
the latter case, there are two different ways to quantify CGM mass in
two distinct apertures— Mo is the CGM mass inside 200 kpc, and
Jegm 1s the mass of CGM over the total mass inside Raogc.

We attempted to infer one property at a time instead of all six and
found only a marginal improvement. CNN implemented in this work,
classified as a moment network (Jeffrey & Wandelt 2020), has the
flexibility to infer multiple properties simultaneously, but requires a
rigorous hyperparameter search, as detailed in Section 2.3.

A concern that often appears with any simulation-based approach
is the possibility of biases seeping into the result, generally due to
incomplete modelling of physical processes. We aim to alleviate this
concern first by using the CV set within the CAMELS simulations,
where the values of cosmological and astrophysical feedback param-
eters are fixed to their fiducial values. The LH set, which was not used
in this work (but could easily be integrated as part of future efforts),
increases the chances of successful cross-simulation analysis as the
astrophysical dependencies are completely marginalized. From this
standpoint, the CV set is not best suited to produce robust cross-
simulation analysis. Using the CV set, we gain valuable insight into
the distinctions among simulations and their effects on the results
of the CGM properties in this study. In addition to using the LH
set, we can explore training and testing on more than one simulation
or performing a similar analysis on the broader parameter space of
TNG-SB28 (Ni et al. 2023).

We apply CNNs to the CGM data sets to (1) determine the
degree to which physical properties of the CGM can be inferred
given a combination of fields and simulations, and (2) examine
different observing strategies to determine how combining different
wavebands can infer underlying CGM properties.

‘We demonstrate the feasibility of applying a CNN to observational
data sets and return values and errors for the CGM properties,
including My, and Mgy, Additionally, the inference of My, is more
robustly determined when another field, along with its associated
observational limits, is added. However, training on one simulation
and testing on another support the notion that predictions can produce
significantly divergent results compared to the true values, as seen in
Figs 8 and 9. As mentioned in Section 4.1, although IllustrisTNG,
SIMBA, and Astrid have been tuned to reproduce galaxies’ and some
gas properties, they make varied predictions for gaseous haloes. In
future efforts to improve this work, the LH set would replace the
CV set, under the expectation of improvement, as all astrophysics is
marginalized. Should this not be the case, domain adaptation is the
longer term solution to help bridge the many gaps between different
subgrid physics models. Another interesting future direction would
include training and testing on combinations of simulations, though
this is ideally performed with the LH set.
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Table 3. The variance of Mcgm and log (Zcgm) compared between the input
from CAMELS (truth) and the values from the idealized multifield (H 1 + X-
ray) inference.

log (Mcgm) sub-Lx L«

True Infer True Infer
TustrisTNG 0.024 0.013 0.127 0.074
SIMBA 0.099 0.094 0.129 0.111
Astrid 0.026 0.024 0.038 0.038
log (Zcgm) sub-Lx Lx

True Infer True Infer
TustrisTNG 0.072 0.041 0.078 0.035
SIMBA 0.086 0.060 0.108 0.052
Astrid 0.053 0.033 0.042 0.035

4.3 Multifield variance comparison

As an additional test, we check if our CNN-inferred values can
reproduce the original dispersion of a CGM data set. Even if a
CNN can reproduce the mean value of a CGM parameter, can it
also reproduce the spread of values? Fig. 1 shows the shaded 1o
dispersions in addition to the medians. We, therefore, calculate the
dispersion for log (Mcgm) and log (Zeem) for sub-Lx and Lk galaxies
across the three simulations to explore our CNN’s ability to reproduce
this scatter in relatively flat My,, bins. The values are displayed
in Table 3. On a positive note, it does appear that sub-Lx and Lx
dispersions for log (M, ) are well reproduced in SIMBA and Astrid.
However, the dispersions are severely underestimated, often by a
factor of 2, for log (Z.gm) and log(Mc,m), but, notably, R? measures
and the performance of the CNN is poor for these cases. In particular,
with NustrisTNG, Mcgm, and fcgm as a closely related quantity, show
worse performance due to rapidly changing gas fractions in response
to feedback, as we discuss in Section 3.2. In this case, the CNN is
unable to adequately learn signatures of reduced CGM mass at a fixed
halo mass. This test presents a crucial challenge for future machine
learning and deep learning methods in reproducing the spread of a
given property for objects that are otherwise alike.

4.4 Future work

In expanding the scope of this work to additional wavelengths in
the future, we also aim to advance our understanding of where the
CNN extracts important information from within a given map. We
can use the information gained from this type of analysis, which has
not been applied to CGM data before this work, to inform future
observational surveys on how best to achieve the greatest scientific
returns given wavelength, survey depth, and other specifications.
Additionally, this type of analysis will be necessary to determine
machine learning verification and validation. To achieve this, we
hypothesize that moving towards higher resolution simulations,
including IlustrisTNG-100, EAGLE, and others along with a more
physically motivated deep-learning model, will have a significant
impact across a wide range of scales, especially in the case of
observational limits.

5 CONCLUSIONS

In this study, we use CNNs trained and tested on CAMELS simulations
based on the IllustrisTNG, SIMBA, and Astrid galaxy formation
models to infer six broad-scale properties of the circum-galactic
medium (CGM). We focus on the halo mass, the CGM mass, the
metallicity, the temperature, and the cool gas fraction. We simulate
two observational fields, X-ray and 21-cm H I radio, which can
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represent the broad temperature range of the CGM. We tested our
CNN on data sets with and without (idealized) observational limits.
Our key findings include the following.

(i) When training and testing the CNN on the same simulation:

(a) By comparing all the CGM properties the CNN is trained
to infer, it performs the best overall on My, and Mgy, both
with and without observational limits. For IllustrisTNG with
observational limits, the RMSE values returned for My, are
~0.14 dex, and M,y are ~0.11 dex when combining X-ray
and H 1 data.

(b) The ‘multifield” CNN trained simultaneously on X-ray
and H I data with observational limits allows for the best
inference across the entire mass range using the same inpts
without the discontinuities seen when trained only on one field.
Obtaining interpretable inferences on the halo mass for the
continuous range of 11.5 < log (Mpao/Mp) < 14.5 requires
a multifield, although various combinations may be better
over smaller mass bins than others. Sub-L* haloes (M., =
10'1°=12M) are only marginally better inferred with H 1
than multifield. Moving to L* haloes (M, = 102713 M)
and the more massive groups (Mpa, > 10" Mg), there is a
drastic improvement when using multifield over X-ray and H 1
alone. Our exploration demonstrates that CNN-fed multiple
observational fields with detectable signals can continuously
improve the inference of CGM properties over a large mass
range given the same input maps.

(c) When adding observational limits to the multifield CNN,
the inference accuracy declines, but still returns RMSE values
indicating success. Recovering total mass from observations
appears to be feasible with our CNN. H 1 mapping is especially
critical for recovering CGM properties of sub-L+ and Lx
galaxies.

(i) For CNN cross-simulation analysis (training on one simulation
and testing on another):

(a) When applying cross-simulation analysis by training on
one simulation and testing on another, the inferred values
generally correlate with the true physical properties. Still, they
are frequently offset, indicating strong biases and overall poor
statistical performance.

(b) Interestingly, the cross-simulation analysis reveals that
using the H 1 + X-ray multifield with observational limits
improves the halo mass inference compared to that from X-ray
maps alone. In the process of adding constraints in this case, the
difference between the individual simulation parameter spaces
becomes smaller and acts as tighter boundary conditions for the
network.

Our results have broader implications for applying deep learning
algorithms to the CGM than those outlined here. First, performing
a cross-simulation analysis and determining that the CNN is robust
opens the possibility of replacing one of the simulations with real
data to infer the actual physical properties of observed systems.
Second, the addition of more wavelengths is easily implemented
within image-based neural networks. To continue making con-
nections to current and future multiwavelength surveys, we can
expand the number of fields used in this architecture beyond X-
ray and H I, including image-based CGM probes like the Dragonfly
Telescope that can map the CGM in optical ions, like Ha and N1t
(Lokhorst et al. 2022), and UV emission from ground- or space-
based probes (Johnson et al. 2014; Burchett et al. 2018; Johnson
et al. 2018; Péroux & Howk 2020). Most importantly, this method
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would allow simulation differences to be marginalized, while still
obtaining correlations and constraints. We can overcome the current
challenges of cross-simulation analysis by training our CNN on
multiple CAMELS simulations and parameter variations existing
and in production [including expanding to EAGLE (Schaye et al.
2015), RAMSES (Teyssier 2010), Enzo (Bryan et al. 2014), and
Magneticum®] while integrating additional wavebands. It is crucial
to identify the primary source of information for CNN to increase
the number of simulations and wavelengths used as input. Future
work includes performing saliency analysis with integrated gradients
to determine the most important pixels on a given map. It allows
for more targeted and efficient adjustments to improve inferences.
This can reveal which underlying physical properties are universally
recoverable and robustly predictable in observations.

The CGM demarcates a region of space defined by nebulous
boundaries, which poses a unique challenge to traditional analysis
techniques like principal component analysis. In addition, there
are no established methods to characteristically analyse CGM. The
phrase ‘characteristically analysing’ implies distinctly categorizing
entities. For instance, traditional analysis can be used with galaxies
to classify them into various categories based on their unique
evolutionary traits, as evidenced by Lotz, Primack & Madau (2004).
However, the CGM refers to the area surrounding the galactic disc
until the accretion shock radius, where neither boundary is precisely
defined as they cannot be directly observed. Applying the same
traditional analysis approach to a CGM data set would require a
rigid pipeline, making it difficult to incorporate new simulations or
wavelengths without extensive reconfiguration. Deep learning offers
a more flexible and versatile approach as a solution.

ACKNOWLEDGEMENTS

We thank Shy Genel and Matthew Ho for valuable feedback and
suggestions for the paper. The CAMELS simulations were performed
on the supercomputing facilities of the Flatiron Institute, which is
supported by the Simons Foundation. This work is supported by
the NSF grant AST 2206055 and the Yale Center for Research
Computing facilities and staff. The work of FVN is supported
by the Simons Foundation. The CAMELS project is supported
by the Simons Foundation and the National Science Foundation
(NSF) grant AST 2108078. DAA acknowledges support by NSF
grants AST-2009687 and AST-2108944, CXO grant TM2-23006X,
Simons Foundation Award CCA-1018464, and Cottrell Scholar
Award CS-CSA-2023-028 by the Research Corporation for Science
Advancement.

DATA AVAILABILITY

CAMELS data are publicly available at
https://camels.readthedocs.io/en/latest/. Original data is available
from the authors upon request by emailing naomi.gluck @yale.edu.

REFERENCES

Akiba T., Sano S., Yanase T., Ohta T., Koyama M., 2019, preprint
(arXiv:1907.10902)

Anderson M. E., Bregman J. N., 2011, ApJ, 737,22

Anglés-Alcdzar D., Davé R., Faucher-Giguere C.-A., Ozel F., Hopkins P. F,,
2017a, MNRAS, 464, 2840

Shttp://www.magneticum.org/

MNRAS 527, 10038-10058 (2024)

Anglés-Alcazar D., Faucher-Giguere C.-A., Keres$ D., Hopkins P. F., Quataert
E., Murray N., 2017b, MNRAS, 470, 4698

Asplund M., Grevesse N., Sauval A. J., Scott P., 2009, ARA&A, 47, 481

Bird S., Ni Y., Di Matteo T., Croft R., Feng Y., Chen N., 2022, MNRAS, 512,
3703

Bogdan A., Lovisari L., Volonteri M., Dubois Y., 2018, Apl, 852, 131

Bregman J. N., Anderson M. E., Miller M. J., Hodges-Kluck E., Dai X., Li
J.-T,,Li Y, QuZ., 2018, ApJ, 862, 3

Bryan G. L. et al., 2014, ApJS, 211, 19

Burchett J. N., Tripp T. M., Wang Q. D., Willmer C. N. A, Bowen D. V.,
Jenkins E. B., 2018, MNRAS, 475, 2067

Bykov A. M., Dolag K., Durret F., 2008, Space Sci. Rev., 134, 119

Chadayammuri U., Bogdédn A Oppenheimer B. D., Kraft R. P., Forman W.
R., Jones C., 2022, ApJ, 936, L15

Christensen C. R., Davé R., Governato F., Pontzen A., Brooks A., Munshi F.,
Quinn T., Wadsley J., 2016, ApJ, 824, 57

Cooksey K. L., Thom C., Prochaska J. X., Chen H.-W., 2010, ApJ, 708, 868

Davies J. J., Crain R. A., Oppenheimer B. D., Schaye J., 2020, MNRAS, 491,
4462

DavéR., CrainR. A., Stevens A. R. H., Narayanan D., Saintonge A., Catinella
B., Cortese L., 2020, MNRAS, 497, 146

Davé R., Anglés-Alcdzar D., Narayanan D., Li Q., Rafieferantsoa M. H.,
Appleby S., 2019, MNRAS, 486, 2827

de Blok W. J. G. et al., 2016, in MeerKAT Science: On the Pathway to the
SKA. p. 7, preprint (arXiv:1709.08458)

Delgado A. M. et al., 2023, MNRAS, doi:

de Santi N. S. M. et al., 2023, ApJ, 952, 69

Echeverri N. et al., 2023, AplJ, 954, 125

Feng Y., Bird S., Anderson L., Font-Ribera A., Pedersen C., 2018, MP-
Gadget/MP-Gadget: A tag for getting a DOI

Ganin Y., Ustinova E., Ajakan H., Germain P., Larochelle H., Laviolette F.,
Marchand M., Lempitsky V., 2015, preprint (arXiv:1505.07818)

Gebhardt M. et al., 2023, preprint (arXiv:2307.11832)

Haardt F,, Madau P., 2012, ApJ, 746, 125

Hafen Z. et al., 2019, MNRAS, 488, 1248

Hopkins P. F.,, 2015, MNRAS, 450, 53

Hopkins P. F., 2017, preprint (arXiv:1712.01294)

Hopkins P. F. et al., 2018, MNRAS, 480, 800

Hummels C. B., Smith B. D., Silvia D. W., 2017, ApJ, 847, 59

Jeffrey N., Wandelt B. D., 2020, preprint (arXiv:2011.05991)

Johnson S. D., Chen H.-W., Mulchaey J. S., Tripp T. M., Prochaska J. X.,
Werk J. K., 2014, MNRAS, 438, 3039

Johnson L. C. et al., 2015, ApJ, 802, 127

Johnson S. D. et al., 2018, AplJ, 869, L1

Johnston S. et al., 2007, PASA, 24, 174

Jonas J., MeerKAT Team, 2016, in MeerKAT Science: On the Pathway to the
SKA.p. 1

Kang H., Ryu D., Cen R., Ostriker J. P., 2007, ApJ, 669, 729

Keeney B. A. et al., 2018, ApJS, 237, 11

Keres D., Katz N., Weinberg D. H., Dave R., 2005, MNRAS, 363, 2

LiJ.-T., Bregman J. N., Wang Q. D., Crain R. A., Anderson M. E., Zhang S.,
2017, ApJS, 233, 20

LiR. etal., 2022, ApJ, 936, 11

Lokhorst D. et al., 2022, ApJ, 927, 136

Lotz J. M., Primack J., Madau P., 2004, AJ, 128, 163

Mathur S., Das S., Gupta A., Krongold Y., 2023, MNRAS, 525, L11

Nelson D. et al., 2018, MNRAS, 475, 624

Nelson D. et al., 2019, CompAC, 6, 2

Ni Y. et al., 2022, MNRAS, 513, 670

NiY.etal., 2023, ApJ, 959, 136

Oppenheimer B. D. et al., 2016, MNRAS, 460, 2157

Oppenheimer B. D., Schaye J., Crain R. A., Werk J. K., Richings A. J., 2018,
MNRAS, 481, 835

Oppenheimer B. D., Babul A., Bahé Y., Butsky 1. S., McCarthy I. G., 2021,
Universe, 7, 209

Paszke A. et al., 2019, preprint (arXiv:1912.01703)

Peeples M. S., Werk J. K., Tumlinson J., Oppenheimer B. D., Prochaska J.
X., Katz N., Weinberg D. H., 2014, ApJ, 786, 54

202 4990120 L0 U0 1s9NB Aq GLEZ9Y//8E00L/¥/L2S/l0IME/SeIuw/woo"dno-ojwapese//:sdny woly papeojumoq


https://camels.readthedocs.io/en/latest/
file:naomi.gluck@yale.edu
http://arxiv.org/abs/1907.10902
http://dx.doi.org/10.1088/0004-637X/737/1/22
http://dx.doi.org/10.1093/mnras/stw2565
http://www.magneticum.org/
http://dx.doi.org/10.1093/mnras/stx1517
http://dx.doi.org/10.1146/annurev.astro.46.060407.145222
http://dx.doi.org/10.1093/mnras/stac648
http://dx.doi.org/10.3847/1538-4357/aa9ab5
http://dx.doi.org/10.3847/1538-4357/aacafe
http://dx.doi.org/10.1088/0067-0049/211/2/19
http://dx.doi.org/10.1093/mnras/stx3170
http://dx.doi.org/10.1007/s11214-008-9312-9
http://dx.doi.org/10.3847/2041-8213/ac8936
http://dx.doi.org/10.3847/0004-637X/824/1/57
http://dx.doi.org/10.1088/0004-637X/708/1/868
http://dx.doi.org/10.1093/mnras/stz3201
http://dx.doi.org/10.1093/mnras/staa1894
http://dx.doi.org/10.1093/mnras/stz937
http://arxiv.org/abs/1709.08458
http://dx.doi.org/
http://dx.doi.org/10.3847/1538-4357/acd1e2
http://dx.doi.org/10.3847/1538-4357/ace96e
http://arxiv.org/abs/1505.07818
http://arxiv.org/abs/2307.11832
http://dx.doi.org/10.1088/0004-637X/746/2/125
http://dx.doi.org/10.1093/mnras/stz1773
http://dx.doi.org/10.1093/mnras/stv195
http://arxiv.org/abs/1712.01294
http://dx.doi.org/10.1093/mnras/sty1690
http://dx.doi.org/10.3847/1538-4357/aa7e2d
http://arxiv.org/abs/2011.05991
http://dx.doi.org/10.1093/mnras/stt2409
http://dx.doi.org/10.1088/0004-637X/802/2/127
http://dx.doi.org/10.3847/2041-8213/aaf1cf
http://dx.doi.org/10.1071/as07033
http://dx.doi.org/10.1086/521717
http://dx.doi.org/10.3847/1538-4365/aac727
http://dx.doi.org/10.1111/j.1365-2966.2005.09451.x
http://dx.doi.org/10.3847/1538-4365/aa96fc
http://dx.doi.org/10.3847/1538-4357/ac8359
http://dx.doi.org/10.3847/1538-4357/ad022a
http://dx.doi.org/10.1086/421849
http://dx.doi.org/10.1093/mnrasl/slad085
http://dx.doi.org/10.1093/mnras/stx3040
http://dx.doi.org/10.1186/s40668-019-0028-x
http://dx.doi.org/10.1093/mnras/stac351
http://dx.doi.org/
http://dx.doi.org/10.1093/mnras/stw1066
http://dx.doi.org/10.1093/mnras/sty2281
http://dx.doi.org/10.3390/universe7070209
http://arxiv.org/abs/1912.01703
http://dx.doi.org/10.1088/0004-637X/786/1/54

Péroux C., Howk J. C., 2020, ARA&A, 58, 363

Pillepich A. et al., 2018, MNRAS, 473, 4077

Predehl P. et al., 2020, Nature, 588, 227

Predehl P. et al., 2021, A&A, 647, Al

Rahmati A., Pawlik A. H., Raicevi¢ M., Schaye J., 2013, MNRAS, 430, 2427

Schaye J. et al., 2015, MNRAS, 446, 521

Somerville R. S., Popping G., Trager S. C., 2015, MNRAS, 453, 4337

Springel V., 2005, MNRAS, 364, 1105

Springel V., 2010, MNRAS, 401, 791

Teyssier R., 2010, Astrophysics Source Code Library, record ascl:1011.007

Tumlinson J. et al., 2011, Science, 334, 948

Tumlinson J. et al., 2013, ApJ, 777, 59

Tumlinson J., Peeples M. S., Werk J. K., 2017, ARA&A, 55, 389

Turk M. J., Smith B. D., Oishi J. S., Skory S., Skillman S. W., Abel T.,
Norman M. L., 2011, ApJS, 192, 9

Villaescusa-Navarro F. et al., 2021a, preprint (arXiv:2109.09747)

Villaescusa-Navarro F. et al., 2021b, preprint (arXiv:2109.10360)

Villaescusa-Navarro F. et al., 2021c, ApJ, 915, 71

Villaescusa-Navarro F. et al., 2022, ApJS, 259, 61

Villanueva-Domingo P., Villaescusa-Navarro F., 2022, ApJ, 937, 115

Weinberger R. et al., 2017, MNRAS, 465, 3291

Weinberger R., Springel V., Pakmor R., 2020, ApJS, 248, 32

Werk J. K., Prochaska J. X., Thom C., Tumlinson J., Tripp T. M., O’Meara J.
M., Peeples M. S., 2013, ApJS, 204, 17

Werk J. K. et al., 2014, ApJ, 792, 8

Wetzel A. et al., 2023, ApJS, 265, 44

Zinger E., Dekel A., Birnboim Y., Nagai D., Lau E., Kravtsov A. V., 2018,
MNRAS, 476, 56

ZuHone J. A., Hallman E. J., 2016, Astrophysics Source Code Library, record
ascl:1608.002.

log(Mpa0/Mo) = 13.24

log(Mp;10/Mp) =12.91

H 1 obslimit

CGM with CNN 10055
APPENDIX A: ADDITIONAL PLOTS OF MOCK
DATA SETS

In this appendix, we provide additional maps and plots, including
the scatter of My,, with total pixel counts per map in X-ray and H 1
(analogous to Fig. 1), and Truth—Inference plots for inferred fegm,
10g (Zcgm)» feools and log (Tcem) for the H 1 + X-ray multifield with
observational limits. We omit My, Or Mg, here, as similar panels
are shown in the diagonal panels of Figs 9 and 10. A summary of
these properties and their trends with halo mass is shown in Fig. 7.

Fig. A1 is an expanded version of Fig. 2 for IllustrisTNG maps in
X-ray (with and without observational limits, first and second rows,
respectively) and H 1 (with and without observational limits, third
and fourth rows, respectively) across most of the halo mass range
explored in our analysis. Each column indicates four variations of
the same halo.

Fig. A2 illustrates the scatter of log(Mp.o/Mg), Where each
coloured point represents the total pixel value of each map along
with the respective halo mass. ‘Pixel counts’, as the total flux (X-
ray) or the total column density (H 1), are the sum of the pixels in each
map (log-scaled). We only include one image axis (even though our
CNN training set uses three rotations of the same halo along the three
axes) so that the same halo does not appear more than once. The black
points represent the average trends in each halo mass bin (see the
definitions of the mass bin in Table 2), and the error bars are the 16th—
84th percentiles. Dashed grey vertical lines indicate the observational
limits of each field, such that to the left of this line reside objects that
would be too faint to observe with current instruments. The top row

log(Mpz0/Me) =12.44 | log(My;0/Mp) = 12.07 | log(Mp;,/Me) =11.67

Figure A1. Maps of idealized X-ray (row 1), X-ray with observational limits (row 2), idealized H I (row 3), and H I with observational limits (row 4), as seen
with IustrisTNG. Moving across the row are haloes of decreasing mass (approximately 0.5 dex), where columns correspond to the same halo map and hence

the same mass.
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Figure A2. Halo mass as a function of the spatially integrated (total) flux
in X-ray (top; green) and H I (bottom; pink) for all maps available from
the IustrisTNG (left), SIMBA (middle), and Astrid (right) simulations. The
vertical dashed line represents the observational limit of each field, and the
black points represent the average value in each mass bin. The error bars
represent the average 16-84 percentile in total flux for different halo mass
bins. We see correlations only for IllustrisTNG and Astrid in X-ray.

shows this scatter in X-ray, where there is a clear correlation with the
halo mass for IllustrisTNG and Astrid. The bottom row shows the
scatter in H 1, similarly formatted. In this case, the correlations with
halo mass for all simulations are either too weak or non-existent.
Both fields match the expected trends from the visualization of the
maps in Fig. Al. This exercise aims to see if the halo mass can be
predicted solely with total flux. Since the vertical scatter is not in
the same order and is much larger than the network error, we cannot
conclude that the halo mass is based only on the total flux.

APPENDIX B: ADDITIONAL MULTIFIELD
TRUTH-INFERENCE PLOTS

Fig. BI shows the Truth-Inference plots for fegm with the multifield
H1 + X-ray and observational limits. We see a significant scatter
throughout the mass range when training and testing on IllustrisTNG
(left). Training and testing on SIMBA (middle) shows intermediate-
mass haloes clustered at low feum values, and low-mass haloes
scattered throughout. Training and testing on Astrid (right) shows a
relatively low amount of scatter with small error bars, resulting in the
lowest € and highest R value. Also, note that Astrid shifts the entire
trend towards higher fe, values and has its highest concentration of
points towards higher values of fegn.

Fig. B2 shows the Truth-Inference plots for log (Z¢em) with the
H 1+ X-ray multifield and observational limits. Training and testing

NustrisTNG SIMBA Astrid
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Figure B1. Truth-Inference plots for fcgm using H 1+ X-ray with observational limits for IllustrisTNG, SIMBA, and Astrid. These points are a fraction of the

full data set.
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Figure B2. Truth-Inference plots for log (Zcgm) using H 1 + X-ray with observational limits for IllustrisTNG, SIMBA, and Astrid. These points are a fraction

of the full data set.
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Figure B3. Truth-Inference plots for f.oo (defined in equation 5) using H 1 + X-ray with observational limits for IllustrisTNG, SIMBA, and Astrid. These

points are a fraction of the full data set.
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Figure B4. Truth—Inference plots for log (Tcgm) (defined in equation 6) using H 1+ X-ray with observational limits for IllustrisTNG, SIMBA, and Astrid. These

points are a fraction of the full data set.

on IustrisTNG (left) or SIMBA (middle) results in significant
scatter. Training and testing on Astrid shows a relatively low amount
of scatter with small error bars. These trends look relatively similar
to those with idealized maps of X-rays and H 1 (Fig. 5).

Fig. B3 shows the Truth—Inference plots for f;,,; with the multifield
H 1 + X-ray and observational limits. All three simulations have
inferences with significant scatter and large error bars. The multifield
greatly improves the inference results for this property, which is
difficult to constrain within the scope of this work.

Finally, Fig. B4 shows the Truth-Inference plots for log (7T¢em)
with the H 1 + X-ray multifield and observational limits. Training
and testing on IlustrisTNG provide relatively good inference, with
increased scatter for intermediate-mass haloes. Training and testing
on SIMBA show the largest scatter across the mass range. Training
and testing on Astrid provides the least amount of scatter, with the
smallest error bars and an overall impressive inference.

APPENDIX C: CNN ARCHITECTURE

Initially, a similar CNN was applied to the CAMELS Multifield Data
set (CMD; Villaescusa-Navarro et al. 2021c¢) as continuous 2D maps
with the aim of constraining two cosmological parameters (og and
Q). and four astrophysical feedback parameters (Asn1, Asn2, AAGNI»

Aacnz) Whose definitions change depending on the simulation used.
Note that 3D maps are also available and can be reduced to obtain
the existing 2D maps, but are not used for this analysis. A multifield
allows the combination of fields to determine which singular or
multiple fields return the tightest and most accurate constraints
on any given parameter. The parameters currently available in the
original network for the CMD are gas properties (density, velocity,
temperature, pressure, metallicity), neutral hydrogen density, elec-
tron number density, magnetic fields, magnesium-ion fraction, dark
matter density, and velocity, stellar mass density, and the total matter
density.

We now define the variables used for the CNN used for this work
in Table C1. The names of layers beginning with C refer to Conv2d,
and B refers to BatchNorm2d. Each type of layer has different
input variables as described in the first mention of the layer type, with
more details in the Paszke et al. (2019) documentation for PyTorch.
Subsequent layers of these two types do not have headings, but the
numbers in the columns refer to the variable names and definitions
when they are first mentioned.

For the Conv2d layers, Input and Output are the size of the
image produced as it passes through each layer. Kernel refers to the
size of the kernel or the grid space in any particular layer. Stride is
the number of rows and columns that have passed through each ‘slide’
or translation between layers. If computational efficiency is not an
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Table C1. Table outlining the main body of the CNN architecture used.

Layer Input Output Kernel Stride Padding
C01 1 12 3,3) (1,1) (1,1)
C02 12 12 3,3) (1,1) (1,1)
C03 12 12 2,2) 2,2)

Layer Size € Momentum  Affine Tracking
BO1 12 le—5 0.1 True True
B02 12 le—5 0.1 True True
BO3 12 le—5 0.1 True True
Cl1 12 24 3,3) (1,1) (1,1)
C12 24 24 3,3) (1,1) (1,1)
Cl13 24 24 2,2) 2,2) -
Bl11 24 le—5 0.1 True True
B12 24 le—5 0.1 True True
B13 24 le—5 0.1 True True
C21 24 48 3,3) (1,1) (1,1)
C22 48 48 3,3) (1,1) (1,1)
C23 48 48 2,2) 2,2) -
B21 48 le—5 0.1 True True
B22 48 le—5 0.1 True True
B23 48 le—5 0.1 True True
C31 48 96 (3,3) (1,1) (1,1)
C32 96 96 3,3) (1,1) (1,1)
C33 96 96 2,2) 2,2) -
B31 96 le—5 0.1 True True
B32 96 le—5 0.1 True True
B33 96 le—5 0.1 True True
C41 96 192 (3,3) (1,1) (1,1)
C42 192 192 3,3) (1,1) (1,1)
C43 192 192 2,2) 2,2) -
B41 192 le—5 0.1 True True
B42 192 le—5 0.1 True True
B43 192 le—5 0.1 True True
C51 192 384 (3,3) (1,1) (1,1)
C52 384 394 3,3) (1,1) (1,1)
C53 384 384 2,2) 2,2) -
B51 384 le—5 0.1 True True
B52 384 le—5 0.1 True True
B53 384 le—5 0.1 True True
Co1 384 768 2,2) (1,1) -
B61 768 le—5 0.1 True True

issue, in some cases, it can be more accurate to slide one element at
a time. However, cutting out the intermediate steps and increasing
the stride for larger data sets like the one used here is more efficient.
Padding refers to filling the kernel’s edges after each layer. As
the dimensions of the image decrease and eventually reach 1 x 1,
we need to fill the space left after each dimensional reduction. One
padding mode is the ‘zeros’, where values of 0 are used as a filler as
the image is processed through the network. Another common mode
is ‘circular’, where the grid is filled with the value at the boundary
of the image in the current stage.

For the Bat chNorm2d layers, where Size refers to the number
of features based on some expected input size from the previous layer.
€ is added to the denominator of any value to ensure the stability of
the pipeline and the results. Momentum can be set to None if a
cumulative moving average (simple average) is being computed, but
the default value is 0.1 for the running mean and running variance
computations. Note that this argument is slightly different from what
is generally used in optimizer classes. Af fine, if set to True, allows
weights and biases to be defined, which are y and 8, respectively,

Table C2. A continuation of the neural network architecture, following
Table C1.

Layer Type Kernel size Stride Padding
PO AvgPool2d 2 2 0
Layer Type Feat. In Feat. Out Bias
FC1 Linear 768 384 True
FC2 Linear 384 12 True
Layer Function p-value in-place Slope
Dropout Dropout () 0.3522 False

ReLU ReLU ()

LeakyReLU  LeakyReLU () —-0.2
tanh Tanh ()

within the documentation. Tracking, if set to True as the default,
tracks the mean and variance. If set to False, statistics buffers are
initialized such that running-mean and running-var is set
to None, and the module uses only batch statistics for training and
testing modes.

In Table C2, the functions mentioned directly follow those of
Table C1. The P0: AvgPool2d layer includes the kernel
size for the window size. Stride and Padding have similar
definitions as before, where Stride now refers to the stride of the
window, where it defaults to the same value as the kernel size, and
Padding is defaulted to ‘zeros’ mode, discussed previously.

A linear transformation is applied for both Fully Connected (FC)
layers, where the Feat. In and Feat. Out refers to the size
of each input and output sample, respectively. Setting the bias to
True (as the default) allows the activation function to be shifted
by some constant amount, known as the bias, to the layer input.
The dropout layers randomly disengage some neurons with some
probability, p-value, or just as p, to discourage some neurons
from being favoured over others. The default p-value is 0.5. Finally,
if set to True, inplace will randomly set the neurones to zero in
place. The default value for this parameter is False, where the results
of the dropout layer are saved to a separate variable to be potentially
used later.

The ReLU (), or the rectified linear activation function (linear,
piece-wise), takes this form:

ReLU(x) = (x)* = max(0, x). (C1H

The input is returned directly if positive and will be set to zero
otherwise. The LeakyReLU() (Leaky rectified linear unit) is
defined as

ifx >0

(C2)

.
otherwise

X
LeakyReLU(x) = { .
negative_slope X X,

where the negative_slope controls the slope angle specifically
used for negative input values. The default value is 0.001, such
that instead of a flat slope for negative values, it has a small slope,
determined before training begins, and is not a result of the training
process. The Tanh () function is defined as,

exp(x) — exp(—x)

TR0 = ip0 + exp(—)’

(C3)
where it is used in place of the sigmoid function, as it is more
computationally efficient for networks with multiple layers.

This paper has been typeset from a TeX/I&TEX file prepared by the author.
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