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Abstract— Dexterous robotic hands offer unparalleled po-
tential for high-precision, contact-rich manipulation, but their
control remains a formidable challenge due to high-dimensional
action spaces and diverse object-hand interactions. In this
paper, we propose a novel framework for dexterous grasping
based on multi-agent deep reinforcement learning (MADRL)
and multi-stream embedding fusion. Each component of the
robotic hand, fingers, wrist, and arm, is modeled as an inde-
pendent agent that learns cooperative control strategies guided
by multi-stream embedding fusion. By leveraging high-quality
static grasp data from the MultiDex dataset as reference targets,
our method eliminates the need for human demonstrations
or generative sampling during training. Experimental results
demonstrate that our method achieves stable, compliant, and
generalizable grasps across diverse objects and hand configu-
rations, outperforming traditional single-agent baselines.

I. INTRODUCTION

Dexterous robotic manipulation is a cornerstone of human-

level autonomy in unstructured environments [1]. Unlike

simple parallel-jaw grippers, multi-fingered robotic hands

can achieve complex and adaptive interactions with objects

of varying shapes, sizes, and functionalities [2]. However,

the high degrees of freedom (DoF), intricate hand-object

dynamics, and multi-modal sensory feedback significantly

complicate control and policy learning for such systems [3].

While recent works have explored imitation learning and

reinforcement learning for dexterous manipulation, most

methods are constrained by reliance on either simplified

hands or limited sensory feedback [4]. Visual input alone

often proves insufficient when fine-grained force adjustments

or occluded contact cues are required [5]. Tactile sensors,

though essential, produce sparse and noisy data [6]. To

address these challenges, we propose a novel framework

that models each joint group of the robotic hand, fingers,

wrist, and arm, as a separate agent in a multi-agent deep

reinforcement learning (MADRL) setup by fusion of multi-

stream embedding. Our approach incorporates high-quality

static reference grasps extracted from the MultiDex dataset

[7], which provides physically plausible grasp poses across

multiple dexterous hand types. These reference configura-

tions serve as supervisory targets during training, avoiding

the need for simulation generation or full demonstrations.

A central component of our method is a multi-stream

embedding fusion mechanism. Each agent’s policy network
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processes multi-stream embedding data through a dual-

attention pipeline, first extracting modality-specific features

using self-attention [8], then merging them through cross-

attention [9]. This design emulates multi-stream integration

in the human approach, enabling robust and precise grasp

behavior. We demonstrate that this framework achieves stable

and functional grasp poses under various conditions, while

maintaining generalization across multiple hand morpholo-

gies. Our contributions are threefold:

• We introduce a novel multi-agent reinforcement learn-

ing framework tailored for dexterous robotic hands

using static reference grasp data.

• We develop a multi-stream attention-based fusion net-

work that effectively integrates multi-stream embedding

for precise manipulation.

• We validate our method on diverse object-hand scenar-

ios using MultiDex dataset [7], outperforming baseline

and ablated models in grasp success rate and stability.

II. RELATED WORK

Reinforcement learning (RL) has been increasingly

adopted for dexterous grasping tasks due to its capacity

to learn control policies without explicit modeling of dy-

namics. Works such as DAPG [10] and PPO-based ap-

proaches [11] have demonstrated success in learning high-

DoF manipulation strategies. However, these methods often

require extensive human demonstrations, collected using VR

or motion tracking systems, which are costly and difficult

to generalize. To mitigate the complexity of full-hand con-

trol, Jia et al. [12] proposed decomposing the hand into

finger-level agents, each learning its own subtask. Their

Visuo-Tactile Multi-Agent Grasping framework introduced

a hierarchical structure for training the wrist, arm, and

fingers separately via MADRL. However, their policy relied

heavily on demonstration-free end-to-end learning and lacked

diverse training grasps. Recent advancements in generative

modeling have enabled grasp synthesis across varied hand

types. [13], [14] proposed a diffusion-based grasp synthesis

pipeline for multiple dexterous hands guided by affordance-

aware discriminators. While their approach excels in gen-

erating diverse and functional grasp candidates, it focuses

primarily on generation, not on closed-loop control or policy

learning. In addition, integrating vision and touch is critical

for robust grasping, especially under partial observability

or environmental uncertainty. Prior methods have explored

concatenation [15] or late fusion of sensor modalities. Our

multi-stream attention network processes each modality with

self-attention and then fuses them using cross-attention,



enhancing responsiveness to contact events and visual cues

simultaneously.

we treat the high-quality grasp poses as static supervision

for RL-based learning. This allows our system to benefit

from the grasp diversity and quality without inheriting the

computational complexity of generative models. Compared

to earlier tactile-aware methods limited to two-finger grip-

pers [16], our model supports variable dexterous hands and

leverages agent-level fusion for more localized decision-

making. This structure improves compliance, stability, and

coordination across all DoF during grasp execution.

III. METHOD

Our objective is to achieve stable and generalizable dex-

terous manipulation using multi-agent deep reinforcement

learning (MADRL), leveraging a shared dataset [7] of func-

tional grasp poses. We propose a modular learning frame-

work that models each component of a robotic hand (fingers,

wrist, arm) as an independent agent, trained via MADRL,

with a focus on multi-stream sensor fusion for enhanced

robustness and adaptability.

A. Problem Formulation

Given an object represented by a 3D point cloud O ∈
RN×3, and a reference grasp pose h∗ = (t∗, θ∗) sampled

from a MultiDex dataset [7], where t∗ ∈ R3 is the target

position and θ∗ ∈ Rk is the joint configuration for a hand

with k degrees of freedom, the goal is to train an agent-

based control policy that achieves this grasp in a physically

plausible, compliant, and robust manner. We define the

system as a team of M agents, each controlling a subset

of joints in the hand-arm system. The joint action at time t

is at = [a1t , . . . ,a
M
t ], with each ait representing the torque

control signal for agent i. Each agent Ai receives a local

observation sit, and the overall state st = [s1t , . . . , s
M
t ] is

used for centralized training.

B. Multi-Stream Embedding Fusion

To robustly perceive and react to condition of objects,

each agent’s policy network uses a multi-stream feature

embedding. Let v
i,j
t denotes the features for agent i at time t

in stream j. These are passed through separate self-attention

modules to obtain unimodal features:

φi.jv = SelfAttnv(v
i,j
t ), (1)

(2)

The fused representation ψi is produced via a cross-

attention mechanism:

ψi = CrossAttn(φiv, φ
i
u), (3)

which is then passed through a fully connected network to

output the action:

ait = πθi(ψ
i). (4)

C. Reinforcement Learning with Centralized Critic

Training is performed using Multi-Agent Deep Deter-

ministic Policy Gradient (MADDPG) algorithm [17]. Each

agent’s actor πθi is updated to maximize the Q-value esti-

mated by a shared critic Qi(st,at):

∇θiJ(θi) = E
[

∇θiπθi(s
i
t)∇a

i

t

Qi(st,at)
]

. (5)

The critic is updated using the Bellman target [18]:

yit = rit + γQi(st+1,at+1), (6)

and minimizing the loss:

Li = E
[

(

Qi(st,at)− yit
)2
]

. (7)

D. Reward Design

Each agent receives a dense reward tailored to its role in

achieving a stable and functional grasp. For finger agents

(i = 1, . . . , 5), the reward encourages convergence to the

reference fingertip positions:

rit = −∥fi(t)− f∗i ∥
2. (8)

For arm and wrist agents, the reward promotes object lift

and pose alignment:

r
j
t = −λ∥ppalm(t)− pref∥

2 + µh(t), (9)

where h(t) denotes the object’s elevation and λ, µ are

weighting factors.

E. Dataset

We utilize reference grasps from the MultiDex dataset [7],

which provides diverse object-grasp pairs for multiple dexter-

ous hands. These reference poses serve as static supervision

signals for target configuration learning. Our framework

integrates rich sensory fusion, agent-level specialization, and

centralized training into a coherent architecture that enables

robust dexterous grasping. By leveraging high-quality real-

world-inspired grasp data, we demonstrate that our model

can achieve generalizable, compliant, and functionally ap-

propriate grasps across multiple hand configurations.

IV. RESULTS AND DISCUSSION

We evaluate our proposed multi-agent reinforcement learn-

ing framework with multi-stream fusion on four dexterous

robotic hands and multiple object categories. The primary

objective is to assess generalization and control fidelity

under variations in hand morphology and grasp complexity.

Performance is measured by success rate (%), averaged over

10 test objects, using the static grasp pose from the MultiDex

dataset as the goal configuration.



Fig. 1. An overview of the proposed method.

A. Baseline Comparisons

We compare our method with four learning-based base-

lines:

• SAPG (Single-Agent Policy Gradient): A modified

DAPG [10] trained using only static grasp references.

• Single-Agent PPO: An end-to-end control baseline

using Proximal Policy Optimization with global obser-

vation [19].

• SAC: A single-policy variant using the Soft Actor-Critic

algorithm, known for sample efficiency [20].

• A2C: Advantage Actor-Critic with discrete-time actor

updates and centralized reward signals [21].

All models are trained with identical object-hand combina-

tions, using the same reward shaping and static grasp target

configuration as supervision.

TABLE I

SUCCESS RATE (%) COMPARISON ACROSS ROBOTIC HANDS AND

CONTROL STRATEGIES.

Method EZGripper Barrett Allegro ShadowHand

A2C 21.7 15.2 22.4 33.6
SAC 26.9 18.5 27.1 42.8
Single-Agent PPO 29.8 20.6 31.4 50.3
SAPG (DAPG-style) 33.5 22.9 33.2 56.4
Ours (MADRL + Fusion) 49.2 25.8 35.9 67.9

B. Analysis by Hand Morphology

EZGripper (Low DoF): Our method achieves 49.2%

success, outperforming the SAPG baseline by over 15%. This

is significant for underactuated hands where fine control is

limited. Multi-agent coordination allows individual fingers

to adaptively adjust force distribution, while tactile fusion

informs the agent about object displacement and resistance,

a key advantage over model-free single-agent controllers.

Barrett (Symmetric Tri-finger): The gain here is more

modest (25.8% vs. 22.9%), as the symmetric topology sim-

plifies control. However, our method still excels on asymmet-

Fig. 2. An overview of failure cases wherein the model endeavors to
grasp an object with two fingers while extending another finger toward the
opposing end.

ric objects like hammers or flashlights, where task-relevant

force redirection is needed. Notably, SAC and A2C failed to

generalize grasp patterns when object poses varied.

Allegro (Moderate DoF): Our MADRL system yields a

35.9% success rate. The gain over SAPG (+2.7%) and PPO

(+4.5%) highlights the value of agent-level specialization.

In several cases, the thumb and index fingers coordinated

in power-wraps while other fingers stabilized the base. This

behavior was rarely seen in flat policy baselines.

ShadowHand (High DoF): Here, the largest absolute

gain is observed. Our method achieves 67.9% success versus

56.4% for SAPG and 50.3% for PPO. This shows that agent-

level policy modularity and sensory fusion are essential when

joint control complexity increases. With fusion, local tactile

signals drive rapid reconfiguration after partial object contact,

an ability not learned in vanilla policy gradients.

Also, for our qualitative results, Fig. 3 demonstrates the

successful grasping sequences across various objects using

different finger configurations, while Fig. 2 illustrates com-

mon failure cases where the system struggled with highly

reflective surfaces and complex geometric features.

V. ABLATION ANALYSIS

To evaluate the contribution of each architectural com-

ponent in our proposed framework, we conduct a detailed

ablation study on the MultiDex dataset, focusing on the



Fig. 3. An overview of qualitative result that unseen object is demonstrated
with orange text.

ShadowHand due to its complex kinematic structure and

high number of degrees of freedom (DoF). The follow-

ing components are ablated individually while keeping all

other parts fixed: (1) multi-agent policy design, (2) tactile

and visual sensory inputs, and (3) attention-based fusion

mechanisms. We report success rate, grasp diversity (as the

standard deviation across successful joint configurations),

and collision depth (mm) as our evaluation metrics.

TABLE II

ABLATION STUDY RESULTS USING THE SHADOWHAND.

Configuration Success (%) Diversity (rad) Collision (mm)

Full model (Ours) 67.9 0.228 15.8
w/o Multi-Agent (single actor) 53.1 0.182 18.4
w/o Cross-Attention (early fusion) 57.5 0.191 18.0
w/o Self-Attention (MLP only) 50.4 0.176 19.5

A. Effect of Multi-Agent Policy Decomposition

Disabling the multi-agent structure and reverting to a sin-

gle shared policy across all joints led to a 14.8% reduction

in grasp success and a noticeable drop in diversity. This

performance degradation reflects the inability of a monolithic

policy to coordinate localized control actions effectively. The

decentralized design enables finer motion primitives at the

joint level and allows specialization for different roles, wrist

orientation control versus fingertip positioning, which are

especially critical in high-DoF hands like the ShadowHand.

B. Impact of Attention-Based Fusion Architecture

When we replaced the cross-attention fusion module with

early fusion (simple concatenation of visual and tactile fea-

tures), performance dropped to 57.5% success. This demon-

strates the limitations of naive integration strategies. Cross-

attention allows the network to model interactions between

modalities contextually, learning dependencies between vi-

sual cues (e.g., object geometry) and tactile feedback (e.g.,

contact force).

The most significant degradation occurred when both self-

attention and cross-attention were removed, replaced with

standard MLP layers. Success dropped to 50.4%, with the

worst grasp diversity and the highest average collision depth.

This highlights the role of attention in modeling spatial local-

ity, contact semantics, and coordinated motion across fingers.

Without attention, the network failed to assign appropriate

importance to contact-rich regions, leading to aggressive or

unbalanced grasps.

VI. CONCLUSION

In this work, we introduced a novel framework for

dexterous robotic grasping that integrates multi-agent deep

reinforcement learning with multi-stream fusion. Unlike prior

approaches that rely on hand-specific generative models or

demonstration-driven policy learning, our method uses static

reference grasp data as supervision to train decentralized

agents, each specialized for a subset of joints in the robotic

hand. This modular design enables precise, compliant, and

generalizable grasp execution across a diverse set of high-

DoF robotic hands.

We demonstrated that our architecture significantly out-

performs conventional single-agent reinforcement learning

algorithms, including PPO, SAC, A2C, and a demonstration-

free adaptation of DAPG,on both success rate and grasp

diversity metrics. Furthermore, ablation analysis revealed the

essential roles of multi-agent decomposition, dual-modality

fusion, and attention-based encoders in achieving robust

grasp performance and contact-safe behavior. Our method

achieved high grasp success rates across object types and

hand morphologies, with particularly strong results on an-

thropomorphic hands such as ShadowHand and Allegro. The

combination of localized control and context-aware sensory

fusion allowed the system to adapt to complex object ge-

ometries, unexpected contacts, and asymmetrical affordance

regions.

For future work, we aim to extend the framework to in-the-

wild robotic grasping tasks involving real sensor inputs and

actuation noise. Additionally, integrating open-vocabulary

affordance reasoning with online policy adaptation may

further enhance functionality in task-oriented scenarios, such

as tool use or human-object handovers. We believe our

work takes an important step toward scalable, interpretable,

and generalizable dexterous manipulation in unstructured

environments.
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