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Abstract— Robotic manipulation of deformable objects re-
mains a challenging problem due to high-dimensional geometry,
dynamic topology, and limited actuation. We propose a novel re-
inforcement learning framework that models the manipulation
scene as a heterogeneous graph and leverages SE(3)-equivariant
message passing to enable shape-free, generalizable control. Our
method, GRPD, combines structured graph design, spatially-
aware policy networks, and bounded policy optimization for
stable learning. Across diverse tasks such as rope shaping and
cloth hanging, GRPD outperforms baseline policies in terms
of sample efficiency, robustness to noise, and generalization to
unseen objects.

I. INTRODUCTION

Manipulating deformable objects represents an important

frontier in robotics research, with wide-ranging applications

in manufacturing, domestic services, and healthcare settings

[1], [2]. Unlike rigid objects, deformable objects pose unique

challenges for robotic manipulation. They are characterized

by high-dimensional state spaces and complex, nonlinear

dynamics that make state estimation difficult and forward

prediction computationally expensive [2]. The pose of a

deformable object is insufficient as a state representation

for manipulation tasks, as the object’s shape changes in

response to manipulation actions [3], [4], [5]. This funda-

mental difference from rigid object manipulation necessitates

specialized approaches to modeling and control. To solve

these challenges, some methods focus on learning models

directly in image space or latent space without incorporating

physics priors [6], [7]. These approaches often suffer from

low data efficiency and limited generalization capabilities.

Other researchers have developed explicit state-space repre-

sentations that incorporate physics priors about deformable

object behavior, such as mass-spring systems reflected in

network structures [2]. So, a better approach to deformable

object manipulation requires an object model that integrates

both shape representation and prediction capabilities. This

integration is essential for enabling robots to perform both

low-level tasks like pick-and-place operations and high-level

manipulation tasks that require planning and hierarchical

reasoning [5].

Graph-based representations have become increasingly

popular for modeling deformable objects due to their ability

to capture complex shapes, dynamics, and interactions in a
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computationally efficient manner [8]. These representations

typically approximate deformable objects as a sparse set

of interacting keypoints or particles, which are connected

through graph structures that reflect the underlying physical

properties and relationships [9]. Graph-based representations

also enable the incorporation of physics principles into the

modeling of deformable objects. The particle-based nature

of these representations offers significant advantages in cap-

turing object dynamics by leveraging the inductive biases of

particle systems [10]. Frameworks like AdaptiGraph employ

graph neural networks to predict particle motion in a unified

physical property-conditioned model capable of simulating

diverse materials with varying physical properties [11]. The

key contributions of our work include:

• We propose a novel graph-based reinforcement learning

framework for deformable object manipulation that in-

tegrates SE(3)-equivariant [12], [13] message passing

with explicit modeling of actuator-object heterogeneity.

• We introduce a symmetry-aware training pipeline using

modified bounded optimization and theoretically estab-

lish equivariance guarantees and universal approxima-

tion for shape-free manipulation policies.

II. METHODOLOGY

This section outlines our proposed method, Graph-

Reinforced Policy for Deformables (GRPD), a graph-based

reinforcement learning framework that facilitates robust ma-

nipulation of deformable objects with arbitrary geometries.

Our approach hinges on three central components: (i) a het-

erogeneous graph representation of the manipulation scene,

(ii) an SE(3)-equivariant [12], [13] message-passing policy

network, and (iii) a bounded policy optimization scheme that

stabilizes learning in high-dimensional state-action spaces.

The manipulation environment is encoded as a dual-node

graph, separating actuators and deformable elements, with

directed edges capturing both intra- and inter-group inter-

actions. Right – Our GRPD policy processes this structure

using symmetry-preserving message passing and aggregates

action signals at actuator nodes.

A. Problem Formulation

We formulate the manipulation task as a Markov Decision

Process (MDP) M = (S,A,P, r, µ), where S denotes the

state space, A the action space, P the transition probability

function, r : S ×A → R the reward function, and µ ∈ [0, 1)
the discount factor.

At each timestep t, the environment is encoded as a

heterogeneous graph Gt = (Vt, Et) with node set Vt =



Fig. 1. An overview of graph-structured representation of deformable
manipulation. The subfigure (a) shows the manipulation environment is
encoded as a dual-node graph, separating actuators and deformable ele-
ments, with directed edges capturing both intra- and inter-group interactions.
The subfigure (b) shows our GRPD policy processes this structure using
symmetry-preserving message passing and aggregates action signals at
actuator nodes.

Vobj ∪ Vact, corresponding to deformable object points and

actuators respectively. Each node v ∈ Vt is associated

with a feature vector htv , comprising positional coordinates

ptv ∈ R3, velocity vtv ∈ R3, and task-specific features such

as distance to target and node type embeddings.

Our goal is to learn a policy Ã¹(at|Gt) that selects actions

at ∈ A to maximize the expected return:

EÃθ

[

∞
∑

t=0

µtr(st, at)

]

(1)

under the constraint that Ã¹ is equivariant with respect to

rigid body transformations in SE(3).

B. Heterogeneous Graph Representation

The graph Gt contains directed edges of different types:

• Intra-object edges Eobj-obj to encode local connectivity

within the deformable structure.

• Intra-actuator edges Eact-act for modeling interactions

between multiple end-effectors.

• Inter-agent-object edges Eact-obj, fully connecting each

actuator to all object nodes, ensuring global awareness.

Let htv denote the feature vector at node v at time t. We

define edge-wise message functions Èe and update functions

ϕv such that the message-passing update rule is:

m(k)
v =

∑

u∈N (v)

È(k)
e (h(k)v , h(k)u , euv) (2)

h(k+1)
v = ϕ(k)v (h(k)v ,m(k)

v ) (3)

where euv is the edge type, and k indexes the propagation

layer.

C. Equivariant Policy Architecture

To respect geometric symmetries, we ensure the policy is

SE(3)-equivariant. This means that applying a rigid transfor-

mation g ∈ SE(3) to the scene transforms the policy output

accordingly:

Ã¹(g · G) = g · Ã¹(G) (4)

To enforce this, we modified an Equivariant Message Passing

Network (EMPN) [14], [15], [16] in which each message

function Èe is constrained to be equivariant:

Èe(g · hv, g · hu, euv) = g · Èe(hv, hu, euv) (5)

This is implemented by using relative positions (pu − pv)
and orientation-aligned convolution kernels »:

Èe(hv, hu, euv) = »(pu − pv) · hu (6)

The final actuator features ha are decoded into actions via:

a = Ã¹(Gt) = MLP(ha) (7)

D. Value Function Estimation

The value function VÈ(Gt) is constructed using a

permutation-invariant DeepSets [17] formulation:

VÈ(Gt) = MLPout

(

∑

v∈Vt

MLPin(h
t
v)

)

(8)

This allows flexibility in varying graph sizes and node types

while maintaining expressiveness.

E. Bounded Policy Optimization

Instead of standard PPO, we adopt Bounded Policy Op-

timization (BPP) to improve training stability in complex

high-dimensional environments. We solve the following con-

strained optimization:

¹k+1 = argmax
¹
E(s,a)∼Ãθk

[

Ã¹(a|s)

Ã¹k(a|s)
AÃθk

(s, a)

]

(9)

s.t. DKL(Ã¹||Ã¹k) f ¶ (10)

where AÃθk
is the advantage function, and ¶ is a divergence

bound. BPP performs a differentiable projection step to

maintain this bound on both mean and variance of the

Gaussian policy output.

F. Theoretical Insight: Information Propagation

We model actuators as virtual nodes with full connectivity

to object nodes. Denoting the Jacobian of actuator output

w.r.t. object input as J = ∂a/∂hobj, our design ensures:

Jvu ̸= 0 ∀v ∈ Vact, ∀u ∈ Vobj (11)

within a single message-passing layer. This guarantees that

actuator outputs are sensitive to the global state of the

deformable object, unlike in traditional GNNs where over-

squashing may hinder long-range dependency propagation.

III. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of our proposed GRPD

framework, we design a comprehensive of robotic manipu-

lation tasks involving deformable objects of varying topolo-

gies and resolutions. Our experimental protocol focuses on

answering key research question: Does explicit modeling of

heterogeneity and geometric equivariance improve manipu-

lation success?



A. Experimental Setup

All experiments are conducted in NVIDIA Isaac-

Gym/IsaacLab, a GPU-accelerated simulator for physics-

based reinforcement learning. We simulate deformable ob-

jects such as cloth sheets and ropes with varying levels of

discretization (from 20 to 1200 nodes), manipulated by 2–4

end-effectors. Each manipulation scenario is modeled as a

heterogeneous graph with actuator and object nodes, with

spatial relationships captured through relative positions and

velocities.

We benchmark GRPD against three policy architectures:

• Transformer Policy: A non-equivariant attention-based

model treating all nodes homogeneously [18].

• Equivariant MPN: A homogeneous SE(3)-equivariant

message-passing network.

• Heterogeneous GNN: A non-equivariant heterogeneous

model that distinguishes node types but lacks symmetry

constraints.

All policies are trained using 5 million environment steps

with identical learning rates and batch sizes. We use In-

terquartile Mean (IQM) [19] with 95% confidence intervals

for performance aggregation across 10 random seeds.

B. Tasks

We evaluate GRPD on the following tasks as shown in

appendix B:

• Rope-Wrapping: Two actuators manipulate a rope to

close around a rigid object.

• Rope-Shaping: A deformable rope must conform to a

predefined shape (e.g., ”W”).

• Cloth-Hanging: Four actuators position a square cloth

onto a hanger at arbitrary orientation.

• Cloth-Folding: A 2D cloth is folded along a virtual

crease with one or two arms.

Each task is randomized in terms of initial configuration and

target pose, requiring generalization over unseen start-goal

combinations.

C. Main Results

Our results consistently show that GRPD outperforms all

baselines in terms of sample efficiency and final return. In

the Cloth-Hanging task, GRPD achieves an average return

improvement of 18% over the equivariant MPN baseline

and 32% over the Transformer. The explicit heterogeneity

allows actuators to selectively attend to relevant object nodes,

while equivariance improves spatial generalization across 3D

orientations.

In the more dexterous Rope-Shaping task, GRPD demon-

strates faster convergence and better stability during training.

Baselines often plateau early or converge to suboptimal local

minima, particularly in high-resolution settings where over-

squashing impedes long-range information flow. GRPD, by

contrast, maintains stable gradients due to its full object-to-

actuator message aggregation.

D. Ablation Studies

a) Effect of Equivariance.: We disable SE(3) equivari-

ance and observe a sharp degradation in generalization. On

the Cloth-Folding task, test success rate drops from 78%

to 59%, highlighting the importance of preserving geometric

symmetries.

b) Effect of Heterogeneity.: We replace the heteroge-

neous policy with a homogeneous variant and notice per-

formance drops of 10–15% across all tasks. This confirms

that separating local and global interactions is essential when

dealing with sparse actuation and dense object graphs.

c) Bounded Optimization vs. PPO.: Using PPO with

clipped updates results in unstable learning, especially in

tasks with sharp reward gradients like Rope-Wrapping.

GRPD trained with BPP exhibits smoother learning curves

and requires significantly less hyperparameter tuning.

E. Robustness to Noise and Resolution

We test GRPD’s robustness to input perturbations by

adding Gaussian noise (Ã = 0.01–0.1) to node positions and

velocities. GRPD maintains consistent performance across

noise levels, whereas baselines degrade rapidly, especially

in high-resolution scenarios (e.g., cloth with 1000+ nodes).

Furthermore, we evaluate scalability by training on low-

resolution meshes and testing on higher-resolution versions.

GRPD adapts seamlessly, leveraging its convolutional back-

bone to generalize across mesh granularities.

F. Generalization to Unseen Objects

To assess generalization, we train policies on a subset

of cloth shapes (e.g., squares, triangles) and test on unseen

configurations (e.g., hexagons). GRPD retains over 85% of

training performance, while other models drop below 60%.

This indicates strong inductive bias from our equivariant and

heterogeneous design, enabling shape-free control strategies.

G. Computational Efficiency

Despite the increased model complexity, GRPD achieves

competitive training speed. Unlike attention-based GNNs,

which incur quadratic computational costs with respect to

node count, our factorized kernels and local-global splitting

ensure linear scaling. On average, GRPD’s per-iteration

training time is 1.2× that of EMPN and significantly faster

than Transformer-GNN hybrids.

IV. CONCLUSIONS

We presented GRPD, a graph-based reinforcement learn-

ing approach for deformable object manipulation that inte-

grates geometric equivariance and explicit heterogeneity. Our

experiments demonstrate superior performance in complex

3D tasks, high-resolution settings, and generalization to

novel object geometries. Future work includes extending this

framework to include vision-based keypoint detection and

real-robot deployment.
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APPENDIX

APPENDIX A: EXTENDED METHODOLOGICAL

JUSTIFICATION

This appendix provides a comprehensive theoretical and

architectural justification for the GRPD (Graph-Reinforced

Policy for Deformables) framework proposed in this paper.

We elaborate on the design motivations and provide rigorous

details for the key formulations used in our approach: SE(3)-

equivariance, heterogeneous graph message passing, struc-

tured actuator outputs, bounded policy learning, and the the-

oretical benefits of global interconnectivity for deformation-

aware control.

A. Equivariance Under SE(3)

In the domain of robotic manipulation, a major challenge

arises from the combinatorial explosion of possible object

and actuator configurations in 3D space. This is particularly

pronounced when manipulating deformable objects, which

can adopt a vast range of poses due to their dynamic struc-

ture. Naively encoding these variations in a policy requires an

enormous amount of data and results in poor generalization.

To address this, we introduce group-equivariant function

approximators that exploit the geometric symmetries inherent

in the task. In particular, many robotic tasks exhibit invari-

ance or equivariance to the special Euclidean group SE(3),
the group of rigid body transformations in three dimensions:

SE(3) =
{

(R, t) | R ∈ SO(3), t ∈ R3
}

(12)

In our context, if a deformable object and robot arm are

rotated or translated in space, the optimal action should rotate

and translate accordingly. This motivates the use of SE(3)-
equivariant policy networks, which are sensitive to spatial

structure while avoiding redundant learning over symmetries.

1) Formal Definition of Equivariance: Let X and Y be

input and output spaces of a function f , and let a group G
(here, G = SE(3)) act on both via representations ÄX : G→
Aut(X ) and ÄY : G → Aut(Y). Then f is equivariant

under G if:

f(ÄX(g)x) = ÄY (g)f(x), ∀g ∈ G, x ∈ X (13)

In robotic manipulation, the action space typically consists

of velocity vectors or control forces. If the state s undergoes

a transformation g ∈ SE(3), the policy Ã¹ should output a

transformed action:

Ã¹(g · s) = g · Ã¹(s) (14)

This ensures that the learned strategy generalizes across

different orientations and positions of the object and robot,

which is critical in real-world applications where re-training

for every pose is infeasible.



2) The Structure of SE(3)SE(3) and its Representations:

The group SE(3) is a semidirect product:

SE(3) = SO(3)R3 (15)

Its elements act on points x ∈ R3 via:

g · x = Rx+ t, where g = (R, t) (16)

We define the representations ÄX and ÄY used in the policy

as follows:

• For scalar node features (e.g., node type, distance to

target): Ä(g) = Id

• For vector features (e.g., positions, velocities):

Ä(g)(v) = Rv
• For position features: Ä(g)(p) = Rp+ t

This defines how features transform under SE(3). Our

policy network is constructed to respect these transformation

rules at every layer.

3) Equivariant Message Passing on Graphs: Consider a

geometric graph G = (V, E , p) where each node v ∈ V is

associated with a position pv ∈ R3 and a feature hv ∈ Rd.

We define a general message passing update:

h(k+1)
v = ϕ



h(k)v ,
∑

u∈N (v)

È(h(k)u , pu − pv)



 (17)

To ensure SE(3) equivariance:

• The relative position pu−pv is equivariant to R(pu−pv)
under rotation.

• The message È must be a linear or tensorial function

of pu − pv and hu that transforms appropriately.

An example of an equivariant message function is:

È(hu, pu − pv) = »(pu − pv) · hu (18)

where » is a steerable kernel:

»(p) =
L
∑

ℓ=0

ℓ
∑

m=−ℓ

wℓmYℓm(p̂) · ∥p∥ℓ (19)

Here, Yℓm are spherical harmonics, p̂ = p/∥p∥, and wℓm are

learned weights.

In practice, we approximate this using:

»(p) = MLP

(

∥p∥,
p

∥p∥

)

(20)

and apply it only to vector features hu that are steerable.

This suffices for learning SE(3)-equivariant transformations.

4) Empirical Benefits of SE(3) Equivariance: In our

experiments, we observe that enforcing SE(3)-equivariance

leads to the following improvements:

• Sample efficiency: Policies learn faster, as they are not

required to observe every rotation explicitly.

• Generalization: Models trained on one orientation

transfer seamlessly to others.

• Reduced overfitting: Equivariance acts as an inductive

bias, reducing the need for data augmentation.

This is particularly beneficial in deformable object ma-

nipulation, where the initial and target configurations are

often sampled randomly from a continuous pose space. For

example, in the Cloth-Hanging task, without equivariance,

the model struggles to predict meaningful actions when

the hanger is rotated, leading to low success rates. With

equivariant policies, the success rate increases significantly

due to consistent spatial reasoning.
5) Equivariance and Partial Observability: While equiv-

ariance is typically discussed in fully observable settings, it

remains valuable under partial observability. Let O(s) be the

partial observation of a full state s. If g ∈ SE(3) acts on the

environment, then:

O(g · s) = g ·O(s) (21)

Assuming the agent has access to local keypoints (e.g., cloth

corners or rope segments), the equivariant policy can still

transform actions consistently under global pose shifts, pro-

vided that the keypoint measurements themselves transform

under SE(3). Thus, equivariant policies are robust not only

to geometric transformations, but also to varying observation

configurations.
6) Relation to MDP Symmetry and Homomorphisms: The

use of equivariant policies is formally grounded in the theory

of MDP homomorphisms. An MDP M = (S,A, P, r, µ) is

symmetric under G if:

P (g·s′|g·s, g·a) = P (s′|s, a), r(g·s, g·a) = r(s, a) (22)

Then, it is known that:

Ã∗(g · s) = g · Ã∗(s) (23)

i.e., the optimal policy is equivariant. Thus, restricting the

policy class to equivariant functions does not reduce opti-

mality, but significantly constrains the search space, making

policy learning easier. In this section, we rigorously devel-

oped the motivation and mathematical formulation of SE(3)-
equivariant policies in the context of deformable object

manipulation. We showed how equivariant message passing

enables the policy to transform actions coherently under

scene rotations and translations, ensuring data efficiency,

robust generalization, and alignment with the symmetry

properties of the underlying MDP. This equivariant inductive

bias, when combined with heterogeneous graph modeling,

forms the foundation of our GRPD framework.

B. Equivariant Convolution via Message Passing

Traditional convolutional neural networks (CNNs) achieve

remarkable performance in 2D image domains due to their

ability to exploit translational symmetry through local re-

ceptive fields and weight sharing. However, 3D robotic

manipulation requires handling more complex symmetries

governed by the rigid-body transformation group SE(3),
which includes arbitrary rotations and translations in space.

In our work, we extend the convolutional paradigm to

graph-structured data by formulating an equivariant message

passing scheme that is sensitive to spatial arrangements and

respects SE(3) symmetries. This is crucial for deformable

object manipulation, where the policy must infer actions

based on the object’s global pose and internal geometry, both

of which vary significantly across tasks and environments.



1) General Message Passing Framework: Let G = (V, E)
denote a graph where each node v ∈ V is associated with a

feature vector hv ∈ Rd and a spatial position pv ∈ R3. A

general message passing operation for layer k has the form:

h(k+1)
v = ϕ(k)



h(k)v ,
∑

u∈N (v)

È(k)(h(k)u , euv)



 (24)

where euv is an edge feature (e.g., geometric information

such as pu − pv), È is the message function, and ϕ is the

update function.

In geometric learning, the edge features euv are derived

from relative positions, making the message function spa-

tially aware:

euv = pu − pv (25)

However, naively using this relative displacement in an MLP

leads to models that are not equivariant under rotations and

translations.

2) Equivariance via Steerable Kernels: To achieve SE(3)-
equivariance, we design the message function to transform

appropriately under group actions. Consider the action of a

rigid body transformation g = (R, t) ∈ SE(3) on a point

cloud:

g · p = Rp+ t (26)

Under such a transformation, the relative position changes

as:

g · (pu − pv) = R(pu − pv) (27)

Let us define the message as:

È(hu, pu − pv) = »(pu − pv) · hu (28)

Here, » : R3 → Rd×d is a learnable kernel that modulates

the interaction between nodes based on spatial configuration.

To ensure equivariance, the kernel must satisfy:

»(R(pu − pv)) = R»(pu − pv)R
¦ (29)

This constraint ensures that the transformed message

È(hu, R(pu−pv)) is equal to R ·È(hu, pu−pv), preserving

the equivariance of the entire message update under rotation.

3) Basis Construction for Kernels: We construct » using

scalar, vector, or tensor bases that are equivariant or invariant

under SE(3) transformations. A general design pattern for

such kernels is:

»(p) =
L
∑

l=0

l
∑

m=−l

³lm · Ylm(p̂) · ∥p∥l (30)

where:

• Ylm(p̂) are spherical harmonics evaluated on the unit

vector p̂ = p/∥p∥,

• ³lm are learnable parameters,

• l and m index the order and degree of the harmonics.

This formulation defines a steerable kernel that naturally

transforms under SO(3) and remains invariant to translations

due to dependence on relative positions.

4) Practical Implementation: Factorized Kernels: To re-

duce computational cost and improve scalability, we imple-

ment factorized equivariant kernels as:

»(p) = MLPangle(p̂) · MLPradial(∥p∥) (31)

This separation allows the network to learn angular sen-

sitivity independently from radial distance, approximating

the spherical harmonic basis in a data-driven way without

explicit group theory machinery.

5) Equivariant Update Rule: Putting this together, the full

equivariant update at layer k is:

m(k)
v =

∑

u∈N (v)

È(k)
(

h(k)u , pu − pv

)

, h(k+1)
v = ϕ(k)

(

h(k)v ,m(k)
v

)

(32)

If È and ϕ are both constructed from equivariant operations

(e.g., linear combinations of equivariant kernels, normaliza-

tion, nonlinearities applied to invariant scalars), the entire

update is equivariant:

h
(k+1)
g·v = R · h(k+1)

v , if h
(k)
g·u = R · h(k)u , ∀u (33)

6) Design Considerations for Deformable Manipulation:

In our setting, the policy receives as input a graph represent-

ing the deformable object and actuator positions. Each node

feature consists of:

• Positional coordinates: pv ∈ R3

• Velocity vectors: vv ∈ R3

• Object-specific attributes: contact status, type indica-

tors

To maintain equivariance:

• Vector-valued features are transformed using R
• Scalar features remain unchanged under g
• Pairwise relative vectors pu−pv are fed into the kernel

»

The output of the message passing network is a set of

action vectors associated with actuator nodes, which are also

SE(3)-equivariant by construction.

7) Theoretical Properties and Gradient Flow: An im-

portant property of equivariant message passing is that it

enhances gradient flow in large graphs. In standard graph

networks, information must pass through multiple hops, lead-

ing to the over-squashing problem. In equivariant message

passing:

• Global geometric information is encoded at each hop

via structured relative positions.

• Directional sensitivity ensures more informative gradi-

ents from spatially aligned nodes.

• Local filters generalize across different orientations

without learning redundant patterns.

This is critical for deformable object graphs where fine-

grained manipulation requires coordination across distant and

structurally diverse nodes (e.g., folding a corner of a cloth

toward a midpoint).



8) Equivariance vs Invariance: While invariance encodes

geometric similarity by mapping transformed inputs to the

same output (e.g., classification tasks), equivariance is better

suited to control and motion prediction tasks. In our appli-

cation:

Ã(g · s) = g · Ã(s) (equivariance) (34)

This allows the learned action to follow the transformed

geometry, preserving directional consistency—a critical re-

quirement in motion planning and actuation. Equivariant

convolution via message passing provides a principled mech-

anism to encode geometric priors directly into graph-based

policies for deformable object manipulation. By designing

spatially aware kernels that respect SE(3) transformations,

we ensure that the learned control policy generalizes across

object poses, orientations, and topologies with minimal data.

This appendix has detailed the mathematical formulation,

implementation strategies, and theoretical advantages of

equivariant message passing within our GRPD framework.

C. Heterogeneous Message Passing Formulation

Graph Neural Networks (GNNs) typically operate on ho-

mogeneous graphs, treating all nodes and edges with shared

transformation functions. However, deformable manipulation

inherently involves entities with different physical roles

and computational functions—specifically, (i) actuator nodes

that perform control, and (ii) object nodes that represent

deformable elements such as rope segments or cloth mesh

vertices.

A homogeneous graph model cannot explicitly encode

the asymmetry in function, dynamics, and control authority

between actuators and deformable points. Furthermore, local

interactions among object nodes (e.g., elasticity, topology)

and global reasoning across object-actuator pairs demand

distinct processing paths. This motivates the use of a **het-

erogeneous graph**, with typed nodes and edges and tailored

message-passing mechanisms.

1) Heterogeneous Graph Definition: We formally define

a heterogeneous graph as:

G = (V, E , Äv, Äe) (35)

where:

• V = Vobj∪Vact is the set of nodes, partitioned into object

and actuator types.

• E = Eobj-obj ∪ Eact-act ∪ Eobj-act is the set of typed edges.

• Äv : V → {object, actuator} is the node type function.

• Äe : E → {obj-obj, act-act, obj-act} is the edge type

function.

This formulation allows for separate treatment of intra-

object physics, actuator collaboration, and perception-to-

control interactions, each governed by distinct dynamics and

geometries.

2) Structured Message Passing Scheme: We propose a

modular message-passing scheme with three distinct oper-

ations:

a) (1) Object-Object Message Passing: Local Physi-

cal Modeling: We model local interactions within the de-

formable object using:

mobj-obj
v =

∑

u∈Nobj(v)

Èobj-obj(hu, hv, pu − pv) (36)

h(k+1)
v = ϕobj(h

(k)
v ,mobj-obj

v ) (37)

This captures neighborhood-based elastic or kinematic de-

pendencies—analogous to mass-spring systems or mesh con-

nectivity in physical simulation. The spatial edge feature

pu − pv ensures directional reasoning, while Èobj-obj is often

equivariant to support spatial generalization.

b) (2) Actuator-Actuator Message Passing: Local Co-

ordination: Actuators may coordinate locally (e.g., bimanual

folding, four-arm placement). We define:

mact-act
v =

∑

u∈Nact(v)

Èact-act(hu, hv, pu − pv) (38)

h(k+1)
v = ϕact-local(h

(k)
v ,mact-act

v ) (39)

This step encourages actuators to maintain consistent strate-

gies across symmetric roles or share global context.

c) (3) Object-to-Actuator Message Passing: Global Per-

ception Aggregation: To drive actions based on the global

state of the deformable object, each actuator aggregates

messages from all object nodes:

mobj-act
v =

∑

u∈Vobj

Èobj-act(hu, hv, pu − pv) (40)

hfinal
v = ϕact-global(h

(k+1)
v ,mobj-act

v ) (41)

This formulation makes actuators global ”virtual nodes”

capable of perceiving the entire object structure in a single

propagation step.

3) Why Message Decomposition Matters: Standard GNNs

often suffer from feature entanglement and over-squashing

when handling long-range interactions or large graphs. Our

modular design avoids this by:

• Using separate kernels for different node/edge types,

which allows specialization (e.g., geometric reasoning

for object nodes vs. control logic for actuators).

• Enabling single-hop global context for actuators, so

that fine-grained manipulation decisions are informed

by the full object state.

• Reducing redundancy and parameter explosion com-

pared to attention mechanisms that operate over all node

pairs.

Empirically, this separation leads to faster convergence,

improved generalization, and greater robustness under object

topology shifts.

4) Input Features for Each Node Type: Each node v
carries a feature vector hv based on its type:



a) Object Nodes (v ∈ Vobj)::

hv =
[

pv, vv, dv,typeobj

]

(42)

where:

• pv: 3D position

• vv: velocity (for dynamic manipulation)

• dv: task-specific descriptor (e.g., distance to target re-

gion, binary contact)

• typeobj: one-hot encoding of material or segment type

b) Actuator Nodes (v ∈ Vact)::

hv = [pv, vv,gripper status,typeact] (43)

These include the actuator’s current pose, control state, and

role-specific indicators (e.g., left/right hand, tool type).

5) Action Output: Nodewise Decoding: After message

passing, the final feature vector of each actuator node is

decoded into an action:

av = MLPdec(h
final
v ), v ∈ Vact (44)

Typically, av includes:

• 3D velocity vector or delta position: av ∈ R3

• Optional gripper control (open/close): scalar or discrete

• Optional force magnitude or control gains

By restricting action decoding to actuator nodes only, the

policy explicitly maps perceptual understanding (from object

nodes) to control decisions in a spatially distributed manner.

6) Theoretical Properties: Let av be the output action for

actuator node v, and hu the latent feature for object node u.

Then the Jacobian:

Jvu =
∂av
∂hu

(45)

measures the sensitivity of an actuator’s decision to an object

node’s state.

In standard neighborhood-based GNNs:

If u /∈ N (K)(v) ⇒ Jvu ≈ 0 (46)

due to limited receptive field. In contrast, our formulation

guarantees that:

Jvu ̸= 0, ∀u ∈ Vobj, ∀v ∈ Vact (47)

due to full object-to-actuator connectivity. This ensures:

• Rich credit assignment during backpropagation.

• Avoidance of over-squashing.

• Efficient control over spatially extended deformables.

7) Comparison with Homogeneous GNNs: We ablated the

heterogeneous design by merging node types and message

functions. This led to:

• Poor specialization: actuators and object nodes learn

entangled representations, reducing interpretability.

• Longer training time and lower final reward due to

ineffective credit assignment.

• Reduced generalization when manipulating unseen

shapes or object topologies.

These observations support the theoretical claim that func-

tional heterogeneity is not just a modeling convenience, but

a necessity in multi-agent control over physical structures.

This section formalizes and justifies our use of heterogeneous

message passing in the GRPD framework. By distinguishing

between object and actuator nodes and constructing modu-

lar message-passing paths, our architecture aligns with the

underlying task structure of deformable manipulation. This

enables our model to capture local physics, global perceptual

reasoning, and targeted actuation in a unified yet interpretable

graph-based formulation.

D. Expressive Actuator Outputs

In deformable object manipulation, robotic agents

must generate control signals that are both precise

and generalizable across a wide variety of tasks, ge-

ometries, and object states. Unlike rigid object ma-

nipulation—where action targets are well-structured and

low-dimensional—deformable manipulation often requires

context-aware, spatially grounded, and temporally adaptive

motor outputs.

In this work, we model actuators as specialized nodes in

a heterogeneous graph and design their outputs to encode

direction, magnitude, and functional control in a structured

way. This appendix provides a detailed formulation and

justification of our action design, focusing on the following

key principles:

1) Separation of direction and magnitude to improve

expressiveness and training stability.

2) Invariant decoding across varying global geometries

via local feature grounding.

3) Scalability to multi-actuator setups with independently

parameterized or shared decoders.

1) Action Space Definition: Each actuator node v ∈ Vact

predicts a control output:

av = (v̂v, cv) ∈ R3 ×R (48)

where:

• v̂v is a unit direction vector (i.e., ∥v̂v∥ = 1), represent-

ing the intended motion direction in 3D space.

• cv is a positive scalar, representing the magnitude or

speed of the control signal.

The final velocity command issued to actuator v is given

by:

∆pv = cv · v̂v (49)

This representation enables independent learning of spa-

tial orientation and motion intensity, which improves inter-

pretability, data efficiency, and physical realism.

2) Justification for Direction-Magnitude Decoupling:

Standard MLP-based decoders often predict a full 3D ve-

locity vector directly:

anaive
v = MLP(hv) ∈ R3 (50)

This approach has two drawbacks:

• Coupled parameterization: The network must simul-

taneously learn the correct direction and magnitude in a

single step. This entanglement increases variance during

exploration and makes fine control difficult.



• No unit control: Since the output space is unbounded,

small errors in early training may result in arbitrarily

large motions, especially under noisy gradient updates.

By contrast, we design the decoder to output:

vraw
v = MLPdir

v (hv), v̂v =
vraw
v

∥vraw
v ∥+ ϵ

(51)

cv = ReLU(MLPmag
v (hv)) (52)

This directional normalization with a stabilizing ϵ = 10−6

ensures numerically safe gradients and isolates the learning

of motion strength into a distinct prediction head.

3) Physical Interpretation: In many robotic platforms,

actions are realized as velocity or displacement vectors in

Cartesian space. In physical terms:

• v̂v corresponds to a unit direction in the task or

workspace frame, guiding where the end-effector should

move next.

• cv can be mapped to joint-level control rates, time-

scaled trajectories, or gripper travel speeds.

This decoupled formulation aligns with control conven-

tions in both position-based and impedance-based motion

control. For example, a compliant robotic arm moving toward

a fold in a cloth must maintain directional consistency while

modulating force or speed based on fabric resistance.

4) Probabilistic Interpretation: Our policy is trained us-

ing a stochastic Gaussian output:

Ã¹(av|hv) = N (av|µv,Σv) (53)

In our directional-magnitude model, this becomes:

µv = cv · v̂v, Σv = Ã2I (54)

This distribution factorization means:

• The agent samples unit directions with a fixed mean and

samples speed from a scalar Gaussian.

• Policy entropy can be separately encouraged along

angular and radial components.

• During early training, the agent can learn to confidently

choose direction while retaining exploration on magni-

tude (or vice versa).

This structure yields more interpretable and controllable

policy outputs, and has been shown in prior works to enhance

robustness in underactuated settings.

5) Compatibility with Graph-Based Aggregation: The fi-

nal actuator embedding hv is derived via:

hv = ϕact-global



hlocal
v ,

∑

u∈Vobj

Èobj-act(hu, hv, pu − pv)





(55)

This aggregated representation reflects both:

• Local actuator state (e.g., current position, task role).

• Global object configuration (e.g., which cloth corner

needs to be pulled, which rope node needs tensioning).

The directional decoder thus acts on a globally informed

feature space, mapping perceptual summaries into physically

realizable directions, and tailoring control magnitude based

on scene-level demands.

6) Multi-Actuator Generalization: Our formulation sup-

ports both:

• Independent parameterization: Each actuator has a

unique decoder MLPv , which may be useful for asym-

metric tools or hardware.

• Shared parameterization: A single decoder MLPshared

is used for all actuator nodes, leveraging weight sharing

and improving generalization.

In our experiments, shared decoding led to better transfer

to new tasks and geometries, particularly in tasks where

actuator symmetry is preserved (e.g., cloth hanging with 4

arms).

7) Gripper-Specific Actions and Hybrid Outputs: For

tasks requiring binary gripper control, we augment the output

as:

av = (v̂v, cv, gv) , gv ∈ [0, 1] (56)

where gv is a scalar indicating gripper open/close intent.

This can be interpreted probabilistically (e.g., via sigmoid

activation) and used in hybrid continuous-discrete control

schemes.

This approach is extensible to:

• Force control (predicting stiffness or torque limits).

• Trajectory control (predicting future waypoints).

• High-level intent (e.g., grasp, pull, lift).

This section introduced and justified our expressive actua-

tor output representation for deformable object manipulation.

By decoupling direction and magnitude, grounding actions

in globally aggregated features, and allowing modular con-

trol extensions (e.g., gripper status), we ensure that each

actuator can execute precise, adaptable, and interpretable

control strategies. Our formulation strikes a balance between

expressiveness and stability, making it well-suited for re-

inforcement learning in continuous action spaces involving

complex spatial reasoning.

E. Bounded Policy Projection (BPP)

Training reinforcement learning (RL) policies for high-

dimensional, deformation-aware domains like deformable

object manipulation is particularly sensitive to instability.

Small policy shifts can result in abrupt changes to actuator

behavior due to entangled geometry-action mappings, mak-

ing reward signals volatile and leading to poor convergence.

This instability is magnified in graph-based models with

spatial equivariance and heterogeneous structure. Here, per-

turbations in parameter space can have complex, non-local

effects on both message-passing features and actuator out-

puts.

To address this, we employ Bounded Policy Projec-

tion (BPP), a policy optimization method that constrains

updates using explicit divergence bounds. Unlike Proximal

Policy Optimization (PPO), which uses surrogate objec-

tives with implicit clipping, BPP guarantees that policy

shifts remain within a bounded distance—measured by the

Kullback-Leibler (KL) divergence—between successive iter-

ations. This provides both theoretical guarantees and empir-

ical smoothness in training dynamics.



1) Problem Setup: Let Ã¹(a|s) be the policy parame-

terized by ¹, and D = {(st, at, rt)} be samples from

rollout trajectories. The goal of policy gradient methods is

to maximize the expected discounted return:

J(¹) = EÄ∼Ãθ

[

∞
∑

t=0

µtr(st, at)

]

(57)

Using the policy gradient theorem, we can compute the

gradient:

∇¹J(¹) = Es∼dπθ ,a∼Ãθ
[∇¹ log Ã¹(a|s)A

Ãθ (s, a)] (58)

where AÃθ (s, a) is the advantage function, and dÃθ is the

state visitation distribution.

However, directly applying this gradient may lead to large,

unstable updates in ¹. Instead, we formulate a constrained

optimization problem that maximizes improvement while

keeping the policy close to the previous one:

max
¹

E(s,a)∼Ãθk

[

Ã¹(a|s)

Ã¹k(a|s)
AÃθk (s, a)

]

(59)

subject to DKL(Ã¹∥Ã¹k) f ¶ (60)

This is the core of Bounded Policy Optimization (BPP). BPP

provides a practical, differentiable implementation of this

idea suitable for complex function approximators like graph

neural networks.

2) Gaussian Policy and KL Constraint: Our policy for

each actuator v ∈ Vact outputs a multivariate Gaussian:

Ã¹(av|hv) = N (av|µ¹(hv),Σ¹(hv)) (61)

with learnable mean and diagonal covariance:

µ¹(hv) ∈ R3, Σ¹(hv) = diag(Ã¹(hv)
2) (62)

The KL divergence between two such Gaussians Ã¹k and

Ã¹ (for fixed state hv) is:

DKL(Ã¹∥Ã¹k) =
1

2

[

tr(Σ−1
k Σ) + (µk − µ)TΣ−1

k (µk − µ)

− d+ log
detΣk
detΣ

]

(63)

where d is the action dimension (typically d = 3 per

actuator).

This divergence decomposes into two interpretable terms:

• A quadratic penalty on mean shift: (µk−µ)
TΣ−1

k (µk−
µ)

• A log-volume term penalizing variance inflation

To prevent overly aggressive updates, BPP enforces:

Es∼D [DKL(Ã¹(·|s)∥Ã¹k(·|s))] f ¶ (64)

3) Optimization via Projected Gradient Descent: In prac-

tice, BPP performs gradient ascent on the unconstrained

surrogate objective:

L(¹) = E(s,a)∼Ãθk

[

Ã¹(a|s)

Ã¹k(a|s)
AÃθk (s, a)

]

(65)

and uses a differentiable projection operator to keep ¹ within

the bounded.

The projection step can be approximated via second-order

optimization or Lagrangian duality. We define:

L(¹, ¼) = L(¹)− ¼ (DKL(Ã¹∥Ã¹k)− ¶) (66)

Then perform gradient steps with respect to ¹ while adjusting

¼ using dual ascent.

In our implementation, we use a first-order approximation

of the KL constraint:

∆¹¦F∆¹ f ¶ (67)

where F is the empirical Fisher Information Matrix (FIM),

approximated as:

F ≈ Es∼D

[

∇¹ log Ã¹(a|s)∇¹ log Ã¹(a|s)
T
]

(68)

This defines a natural gradient direction that respects the

local policy geometry, leading to more efficient and stable

updates, especially in high-dimensional parameter spaces.

4) Integration with GRPD Architecture: In our GRPD

framework, each policy update modifies the weights of a

message-passing graph neural network. Without a bounded,

the following issues emerge:

• Over-updating message functions: A large gradient

step in È may distort geometric feature extraction.

• Policy collapse in early training: Incorrect feedback

from low-reward states may induce sudden directional

reversals in actuator outputs.

• Covariance drift: Variance parameters become un-

bounded, resulting in erratic exploration and slow con-

vergence.

BPP addresses these by constraining both mean and vari-

ance updates in the action distribution. This is particularly

important in settings where the policy must coordinate long-

range dependencies (e.g., folding cloth by pulling opposite

corners).

In the Cloth-Hanging task, BPP increased training stability

across 10 random seeds by reducing reward variance by

37% compared to PPO. It also enabled successful transfer to

novel cloth geometries with no fine-tuning, highlighting its

robustness to distributional shift. BPP plays a foundational

role in stabilizing the training of graph-based deformable

manipulation policies. By bounding policy shifts in KL-

divergence space and decoupling mean and variance updates,

it ensures that gradient steps remain within the locally valid

region of the policy manifold. This bounded approach is

especially vital in our context, where actuator decisions

are derived from globally conditioned, equivariant message-

passing networks that require smooth optimization dynamics

to remain interpretable and effective.

F. Theoretical Justification: Jacobian Connectivity

We analyze the Jacobian ∂av
∂hu

where av is the actuator

output and hu is an object node feature. In standard GNNs

with local neighborhoods, such Jacobians vanish for distant

nodes (due to over-squashing). In our model, since all object



Fig. 2. An overview of diverse tasks for evaluating deformable object
manipulation. A collection of manipulation scenarios involving deformable
objects under spatial constraints. These tasks test coordination across
multiple actuators, control under shape variability, and policy adaptability
across different deformation dynamics and environments.

nodes connect directly to each actuator via Eobj-act, the

Jacobian has full support:

∀u ∈ Vobj, ∀v ∈ Vact,
∂av
∂hu

̸= 0 (69)

This enables efficient global context aggregation and im-

proves sensitivity to distant object changes, crucial in tasks

involving large deformable surfaces.

This appendix presents the theoretical underpinnings of

our architectural choices. From symmetry-aware feature en-

coding and structured graph design to stable optimization

and end-to-end differentiability, every component of GRPD

is motivated by the physical, geometric, and computational

characteristics of deformable manipulation. Our derivations

aim to support the reproducibility, rigor, and clarity of the

proposed contributions.

APPENDIX

APPENDIX B: RESULTS AND DISCUSSION

A. Overview

This appendix provides a detailed analysis and theoretical

interpretation of the experimental results presented in the

main paper. We expand upon task-specific performance,

architectural ablation, training dynamics, and generalization

behavior. Our goal is not only to validate the effectiveness

of the proposed GRPD framework but also to provide in-

sights into why and how its key components contribute to

successful shape-free manipulation.

B. Task-Specific Performance Insights

Our evaluation suite includes four diverse tasks, as shown

in Fig. 2: Rope-Wrapping, Rope-Shaping, Cloth-Hanging,

and Cloth-Folding. These tasks challenge the policy across

multiple axes—spatial generalization, temporal sequencing,

and deformable dynamics.

a) Rope-Shaping.: GRPD demonstrates robust geomet-

ric generalization by manipulating the rope into unseen

shapes (e.g., W, spiral). Success is strongly correlated with

the policy’s ability to reason over long-range structure. In

baseline GNNs, over-squashing leads to premature conver-

gence to local shapes. GRPD’s global object-to-actuator ag-

gregation bypasses this limitation and enables shape-sensitive

deformation.

b) Cloth-Hanging.: The cloth must be aligned, lifted,

and precisely draped over a rigid bar. This task benefits

from SE(3)-equivariant representations: the cloth’s starting

pose is randomized in both position and orientation. GRPD

successfully generalizes to out-of-distribution poses. Our

ablation confirms that without equivariance, performance

degrades by over 20% due to policy confusion in rotated

frames.

Fig. 3. Learning curves on three tasks illustrating the effectiveness of
GRPD versus baseline policies. GRPD consistently achieves higher returns
and improved learning stability, particularly in environments requiring
coordination, spatial reasoning, and handling of complex deformations.

C. Policy Stability and Training Dynamics

One of the core challenges in deformable manipulation is

training stability due to sparse rewards, non-stationary object

configurations, and large action spaces. GRPD’s stability

arises from the synergistic effect of three factors:

• Heterogeneous message routing ensures clean separa-

tion of perceptual reasoning and actuation control.

• BPP optimization keeps the policy within stable be-

havioral regions by bounding the KL divergence.

• Direction-magnitude actuator outputs prevent mag-

nitude explosion and improve reward gradients.

In early training (0–2M steps), we observe that GRPD

maintains smooth exploration trajectories with gradually

increasing action norms, while PPO-based baselines either

stall or oscillate violently.

D. Generalization and Scalability

We examine how well the policy generalizes across:

• Object resolution: Training on coarse meshes (e.g., 200

nodes) and testing on fine meshes (e.g., 1000+ nodes).

• Unseen shapes: Transferring from squares and rectan-

gles to triangles, hexagons, or cloths with holes.

• Actuator configurations: Changing number and spatial

distribution of manipulators.

GRPD generalizes successfully in all dimensions, which

we attribute to its resolution-agnostic design: relative

coordinate-based kernels and node-wise message propaga-

tion avoid overfitting to specific topologies.

Fig. 4. Impact of spatial sampling complexity on defromable manipulation
in original 3D space, 2D quarter, 2D half from left to right, respectively.
Evaluation of model performance under different configuration spaces for
the Cloth-Hanging task. As the spatial variation is reduced, all models
improve, but those with explicit structural reasoning—like ours—maintain
superior performance, highlighting the benefits of heterogeneity and equiv-
ariance in complex 3D settings.



Fig. 5. Performance under varying levels of synthetic noise and object
resolutions in the deformable task, showing GRPD’s resilience to perturba-
tions and ability to handle high-resolution inputs.

E. Failure Modes and Limitations

While GRPD performs consistently well, we observe the

following limitations:

a) Contact Disambiguation.: In dense object config-

urations (e.g., crumpled cloth), actuator-object contact as-

signment becomes ambiguous. Without auxiliary keypoint

detection or contact feedback, the policy may misattribute

force application.

b) Long-Horizon Planning.: Tasks requiring 10+ se-

quential actions (e.g., complex folding) degrade in per-

formance due to accumulated positional drift. Integrating

temporal abstraction (e.g., options or subgoal prediction) is

a future direction.

c) Real-to-Sim Gaps.: Though GRPD transfers across

object shapes and meshes, domain shift from simulation to

real-world sensory noise and actuation latency may require

additional adaptation mechanisms (e.g., domain randomiza-

tion or fine-tuned dynamics).

F. Interpretability and Policy Visualization

We further investigate the internal behavior of the network:

• Attention analysis: Actuator node embeddings show

selective focus on spatially proximal object nodes and

high-curvature regions (e.g., cloth corners).

• Feature evolution: Across training, object node em-

beddings cluster based on physical relevance—nodes on

fold lines share similar activation spaces.

• Jacobian tracing: Gradient sensitivity maps indicate

that each actuator’s output is influenced by a large por-

tion of the object graph, confirming theoretical global

connectivity.

These insights affirm the expressive power of heteroge-

neous GNNs in modeling deformable control tasks with

structured yet flexible priors. This appendix has provided an

in-depth discussion of our experimental findings. GRPD’s

superior performance stems from its architectural alignment

with the physical structure of deformable systems: global

perception, directional control, type-aware message passing,

and stable bounded learning. These components jointly ad-

dress the spatial, temporal, and geometric complexities of

shape-free manipulation, enabling robust and generalizable

policies for real-world robotics.


