Robust Shape-Free Manipulation through a Graph-Based
Reinforcement Learning Approach for Deformable Objects

Mahdi Bonyani !, Maryam Soleymani', and Chao Wang?

Abstract— Robotic manipulation of deformable objects re-
mains a challenging problem due to high-dimensional geometry,
dynamic topology, and limited actuation. We propose a novel re-
inforcement learning framework that models the manipulation
scene as a heterogeneous graph and leverages SE(3)-equivariant
message passing to enable shape-free, generalizable control. Our
method, GRPD, combines structured graph design, spatially-
aware policy networks, and bounded policy optimization for
stable learning. Across diverse tasks such as rope shaping and
cloth hanging, GRPD outperforms baseline policies in terms
of sample efficiency, robustness to noise, and generalization to
unseen objects.

I. INTRODUCTION

Manipulating deformable objects represents an important
frontier in robotics research, with wide-ranging applications
in manufacturing, domestic services, and healthcare settings
[1], [2]. Unlike rigid objects, deformable objects pose unique
challenges for robotic manipulation. They are characterized
by high-dimensional state spaces and complex, nonlinear
dynamics that make state estimation difficult and forward
prediction computationally expensive [2]. The pose of a
deformable object is insufficient as a state representation
for manipulation tasks, as the object’s shape changes in
response to manipulation actions [3], [4], [5]. This funda-
mental difference from rigid object manipulation necessitates
specialized approaches to modeling and control. To solve
these challenges, some methods focus on learning models
directly in image space or latent space without incorporating
physics priors [6], [7]. These approaches often suffer from
low data efficiency and limited generalization capabilities.
Other researchers have developed explicit state-space repre-
sentations that incorporate physics priors about deformable
object behavior, such as mass-spring systems reflected in
network structures [2]. So, a better approach to deformable
object manipulation requires an object model that integrates
both shape representation and prediction capabilities. This
integration is essential for enabling robots to perform both
low-level tasks like pick-and-place operations and high-level
manipulation tasks that require planning and hierarchical
reasoning [5].

Graph-based representations have become increasingly
popular for modeling deformable objects due to their ability
to capture complex shapes, dynamics, and interactions in a
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computationally efficient manner [8]. These representations
typically approximate deformable objects as a sparse set
of interacting keypoints or particles, which are connected
through graph structures that reflect the underlying physical
properties and relationships [9]. Graph-based representations
also enable the incorporation of physics principles into the
modeling of deformable objects. The particle-based nature
of these representations offers significant advantages in cap-
turing object dynamics by leveraging the inductive biases of
particle systems [10]. Frameworks like AdaptiGraph employ
graph neural networks to predict particle motion in a unified
physical property-conditioned model capable of simulating
diverse materials with varying physical properties [11]. The
key contributions of our work include:

« We propose a novel graph-based reinforcement learning
framework for deformable object manipulation that in-
tegrates SF(3)-equivariant [12], [13] message passing
with explicit modeling of actuator-object heterogeneity.

o We introduce a symmetry-aware training pipeline using
modified bounded optimization and theoretically estab-
lish equivariance guarantees and universal approxima-
tion for shape-free manipulation policies.

II. METHODOLOGY

This section outlines our proposed method, Graph-
Reinforced Policy for Deformables (GRPD), a graph-based
reinforcement learning framework that facilitates robust ma-
nipulation of deformable objects with arbitrary geometries.
Our approach hinges on three central components: (i) a het-
erogeneous graph representation of the manipulation scene,
(i) an SE(3)-equivariant [12], [13] message-passing policy
network, and (iii) a bounded policy optimization scheme that
stabilizes learning in high-dimensional state-action spaces.

The manipulation environment is encoded as a dual-node
graph, separating actuators and deformable elements, with
directed edges capturing both intra- and inter-group inter-
actions. Right — Our GRPD policy processes this structure
using symmetry-preserving message passing and aggregates
action signals at actuator nodes.

A. Problem Formulation

We formulate the manipulation task as a Markov Decision
Process (MDP) M = (S, A, P,r,7), where S denotes the
state space, A the action space, P the transition probability
function, r : § x A — R the reward function, and y € [0,1)
the discount factor.

At each timestep ¢, the environment is encoded as a
heterogeneous graph G; = (V;,&;) with node set V; =
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Fig. 1. An overview of graph-structured representation of deformable
manipulation. The subfigure (a) shows the manipulation environment is
encoded as a dual-node graph, separating actuators and deformable ele-
ments, with directed edges capturing both intra- and inter-group interactions.
The subfigure (b) shows our GRPD policy processes this structure using
symmetry-preserving message passing and aggregates action signals at
actuator nodes.

Vobj U Vaer, corresponding to deformable object points and
actuators respectively. Each node v € V; is associated
with a feature vector h!, comprising positional coordinates
pl, € R3, velocity v! € R3, and task-specific features such
as distance to target and node type embeddings.

Our goal is to learn a policy mg(a:|G:) that selects actions
a; € A to maximize the expected return:

ZVtT(5t7at)] (D)
t=0

under the constraint that 7y is equivariant with respect to
rigid body transformations in SE(3).

£,

B. Heterogeneous Graph Representation
The graph G; contains directed edges of different types:
« Intra-object edges Egpjobj to encode local connectivity
within the deformable structure.
o Intra-actuator edges E,..ae for modeling interactions
between multiple end-effectors.
o Inter-agent-object edges Ey.obj, fully connecting each
actuator to all object nodes, ensuring global awareness.
Let h! denote the feature vector at node v at time t. We
define edge-wise message functions ), and update functions
¢, such that the message-passing update rule is:

m® = " PP 0P, 0P, eu) )
ueN (v)
R = o8 (b, m) 3)

where e, is the edge type, and k indexes the propagation
layer.

C. Equivariant Policy Architecture

To respect geometric symmetries, we ensure the policy is
SE(3)-equivariant. This means that applying a rigid transfor-
mation g € SE(3) to the scene transforms the policy output

accordingly:

m9(g-G) =g - m(G) “4)

To enforce this, we modified an Equivariant Message Passing
Network (EMPN) [14], [15], [16] in which each message
function 1), is constrained to be equivariant:

¢e(g'hv7g'huyeuv) :g'we(hvahuveuv) (5)

This is implemented by using relative positions (p, — py)
and orientation-aligned convolution kernels «:

d)e(hva huz eu’u) = ’f(pu - p'u) - hy (6)
The final actuator features h, are decoded into actions via:
a = my(Gr) = MLP(h,) 7

D. Value Function Estimation

The value function V,(G;) is constructed using a
permutation-invariant DeepSets [17] formulation:

Vw(gt) = MLPy (Z MLPinUﬁ;)) ®)

vEV:

This allows flexibility in varying graph sizes and node types
while maintaining expressiveness.

E. Bounded Policy Optimization

Instead of standard PPO, we adopt Bounded Policy Op-
timization (BPP) to improve training stability in complex
high-dimensional environments. We solve the following con-
strained optimization:

mo(als)
Tolals) 4
mo, (als) " (#:) ®

S.t. DKL(7T9||7T9k) <46 (10)

9k+1 = arg méax E(S,G)Nﬂ'gk

where Am,k is the advantage function, and ¢ is a divergence
bound. BPP performs a differentiable projection step to
maintain this bound on both mean and variance of the
Gaussian policy output.

F. Theoretical Insight: Information Propagation

We model actuators as virtual nodes with full connectivity
to object nodes. Denoting the Jacobian of actuator output
w.r.t. object input as J = da/Oh°Y, our design ensures:

Jou 0 Y0 € Viet, Yt € Ve (11)

within a single message-passing layer. This guarantees that
actuator outputs are sensitive to the global state of the
deformable object, unlike in traditional GNNs where over-
squashing may hinder long-range dependency propagation.

III. EXPERIMENTS AND RESULTS

To evaluate the effectiveness of our proposed GRPD
framework, we design a comprehensive of robotic manipu-
lation tasks involving deformable objects of varying topolo-
gies and resolutions. Our experimental protocol focuses on
answering key research question: Does explicit modeling of
heterogeneity and geometric equivariance improve manipu-
lation success?



A. Experimental Setup

All experiments are conducted in NVIDIA Isaac-
Gym/IsaacLab, a GPU-accelerated simulator for physics-
based reinforcement learning. We simulate deformable ob-
jects such as cloth sheets and ropes with varying levels of
discretization (from 20 to 1200 nodes), manipulated by 2—4
end-effectors. Each manipulation scenario is modeled as a
heterogeneous graph with actuator and object nodes, with
spatial relationships captured through relative positions and
velocities.

We benchmark GRPD against three policy architectures:

o Transformer Policy: A non-equivariant attention-based
model treating all nodes homogeneously [18].

o Equivariant MPN: A homogeneous SE(3)-equivariant
message-passing network.

o Heterogeneous GNN: A non-equivariant heterogeneous
model that distinguishes node types but lacks symmetry
constraints.

All policies are trained using 5 million environment steps
with identical learning rates and batch sizes. We use In-
terquartile Mean (IQM) [19] with 95% confidence intervals
for performance aggregation across 10 random seeds.

B. Tasks

We evaluate GRPD on the following tasks as shown in
appendix B:

« Rope-Wrapping: Two actuators manipulate a rope to
close around a rigid object.

o Rope-Shaping: A deformable rope must conform to a
predefined shape (e.g., "W”).

o Cloth-Hanging: Four actuators position a square cloth
onto a hanger at arbitrary orientation.

o Cloth-Folding: A 2D cloth is folded along a virtual
crease with one or two arms.

Each task is randomized in terms of initial configuration and
target pose, requiring generalization over unseen start-goal
combinations.

C. Main Results

Our results consistently show that GRPD outperforms all
baselines in terms of sample efficiency and final return. In
the Cloth-Hanging task, GRPD achieves an average return
improvement of 18% over the equivariant MPN baseline
and 32% over the Transformer. The explicit heterogeneity
allows actuators to selectively attend to relevant object nodes,
while equivariance improves spatial generalization across 3D
orientations.

In the more dexterous Rope-Shaping task, GRPD demon-
strates faster convergence and better stability during training.
Baselines often plateau early or converge to suboptimal local
minima, particularly in high-resolution settings where over-
squashing impedes long-range information flow. GRPD, by
contrast, maintains stable gradients due to its full object-to-
actuator message aggregation.

D. Ablation Studies

a) Effect of Equivariance.: We disable SE(3) equivari-
ance and observe a sharp degradation in generalization. On
the Cloth-Folding task, test success rate drops from 78%
to 59%, highlighting the importance of preserving geometric
symmetries.

b) Effect of Heterogeneity.: We replace the heteroge-
neous policy with a homogeneous variant and notice per-
formance drops of 10-15% across all tasks. This confirms
that separating local and global interactions is essential when
dealing with sparse actuation and dense object graphs.

¢) Bounded Optimization vs. PPO.: Using PPO with
clipped updates results in unstable learning, especially in
tasks with sharp reward gradients like Rope-Wrapping.
GRPD trained with BPP exhibits smoother learning curves
and requires significantly less hyperparameter tuning.

E. Robustness to Noise and Resolution

We test GRPD’s robustness to input perturbations by
adding Gaussian noise (o = 0.01-0.1) to node positions and
velocities. GRPD maintains consistent performance across
noise levels, whereas baselines degrade rapidly, especially
in high-resolution scenarios (e.g., cloth with 1000+ nodes).
Furthermore, we evaluate scalability by training on low-
resolution meshes and testing on higher-resolution versions.
GRPD adapts seamlessly, leveraging its convolutional back-
bone to generalize across mesh granularities.

F. Generalization to Unseen Objects

To assess generalization, we train policies on a subset
of cloth shapes (e.g., squares, triangles) and test on unseen
configurations (e.g., hexagons). GRPD retains over 85% of
training performance, while other models drop below 60%.
This indicates strong inductive bias from our equivariant and
heterogeneous design, enabling shape-free control strategies.

G. Computational Efficiency

Despite the increased model complexity, GRPD achieves
competitive training speed. Unlike attention-based GNNs,
which incur quadratic computational costs with respect to
node count, our factorized kernels and local-global splitting
ensure linear scaling. On average, GRPD’s per-iteration
training time is 1.2x that of EMPN and significantly faster
than Transformer-GNN hybrids.

IV. CONCLUSIONS

We presented GRPD, a graph-based reinforcement learn-
ing approach for deformable object manipulation that inte-
grates geometric equivariance and explicit heterogeneity. Our
experiments demonstrate superior performance in complex
3D tasks, high-resolution settings, and generalization to
novel object geometries. Future work includes extending this
framework to include vision-based keypoint detection and
real-robot deployment.
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APPENDIX

APPENDIX A: EXTENDED METHODOLOGICAL
JUSTIFICATION

This appendix provides a comprehensive theoretical and
architectural justification for the GRPD (Graph-Reinforced
Policy for Deformables) framework proposed in this paper.
We elaborate on the design motivations and provide rigorous
details for the key formulations used in our approach: SE(3)-
equivariance, heterogeneous graph message passing, struc-
tured actuator outputs, bounded policy learning, and the the-
oretical benefits of global interconnectivity for deformation-
aware control.

A. Egquivariance Under SE(3)

In the domain of robotic manipulation, a major challenge
arises from the combinatorial explosion of possible object
and actuator configurations in 3D space. This is particularly
pronounced when manipulating deformable objects, which
can adopt a vast range of poses due to their dynamic struc-
ture. Naively encoding these variations in a policy requires an
enormous amount of data and results in poor generalization.

To address this, we introduce group-equivariant function
approximators that exploit the geometric symmetries inherent
in the task. In particular, many robotic tasks exhibit invari-
ance or equivariance to the special Euclidean group SE(3),
the group of rigid body transformations in three dimensions:

SE(3) = {(R,t) | R € SO(3), t € R*} (12)
In our context, if a deformable object and robot arm are
rotated or translated in space, the optimal action should rotate
and translate accordingly. This motivates the use of SE(3)-
equivariant policy networks, which are sensitive to spatial
structure while avoiding redundant learning over symmetries.

1) Formal Definition of Equivariance: Let X and ) be
input and output spaces of a function f, and let a group G
(here, G = SE(3)) act on both via representations px : G —
Aut(X) and py : G — Aut(Y). Then f is equivariant
under G if:

flpx(9)x) = py (9)f (),

In robotic manipulation, the action space typically consists
of velocity vectors or control forces. If the state s undergoes
a transformation g € SE(3), the policy 7y should output a
transformed action:

Vge G, e X (13)

(g -s) =g me(s) (14)
This ensures that the learned strategy generalizes across
different orientations and positions of the object and robot,
which is critical in real-world applications where re-training
for every pose is infeasible.



2) The Structure of SE(3)SE(3) and its Representations:
The group SE(3) is a semidirect product:

SE(3) = SO(3)R? (15)
Its elements act on points € R? via:
g-x=Rx+1t, whereg=(R,t) (16)

We define the representations px and py used in the policy
as follows:
o For scalar node features (e.g., node type, distance to
target): p(g) =Id
e For vector features

p(g)(v) = Ro
« For position features: p(g)(p) = Rp+t

(e.g., positions, velocities):

This defines how features transform under SE(3). Our
policy network is constructed to respect these transformation
rules at every layer.

3) Equivariant Message Passing on Graphs: Consider a
geometric graph G = (V, &, p) where each node v € V is
associated with a position p, € R? and a feature h, € R4
We define a general message passing update:

R =g [ R, S~ (b, pu — p)
ueN (v)

a7

To ensure SE(3) equivariance:
« The relative position p,,—p, is equivariant to R(p, —p.,)
under rotation.
o The message ¢ must be a linear or tensorial function
of p, — p, and h,, that transforms appropriately.
An example of an equivariant message function is:

1/)(hu7pu _pv) = /{(pu _pu) -y, (18)
where k is a steerable kernel:
L ¢
kD)= Y wemYem(®) - pl* (19)

£=0 m=—¢
Here, Yy, are spherical harmonics, p = p/||p||, and wg,, are
learned weights.
In practice, we approximate this using:

k(p) = MLP (Ilpll, p) (20)

il
and apply it only to vector features h, that are steerable.
This suffices for learning SE(3)-equivariant transformations.

4) Empirical Benefits of SE(3) Equivariance: In our
experiments, we observe that enforcing SE(3)-equivariance
leads to the following improvements:

« Sample efficiency: Policies learn faster, as they are not

required to observe every rotation explicitly.

o Generalization: Models trained on one orientation

transfer seamlessly to others.

« Reduced overfitting: Equivariance acts as an inductive

bias, reducing the need for data augmentation.

This is particularly beneficial in deformable object ma-
nipulation, where the initial and target configurations are

often sampled randomly from a continuous pose space. For
example, in the Cloth-Hanging task, without equivariance,
the model struggles to predict meaningful actions when
the hanger is rotated, leading to low success rates. With
equivariant policies, the success rate increases significantly
due to consistent spatial reasoning.

5) Equivariance and Partial Observability: While equiv-
ariance is typically discussed in fully observable settings, it
remains valuable under partial observability. Let O(s) be the
partial observation of a full state s. If g € SE(3) acts on the
environment, then:

O(g-s)=g-0(s) 1)

Assuming the agent has access to local keypoints (e.g., cloth
corners or rope segments), the equivariant policy can still
transform actions consistently under global pose shifts, pro-
vided that the keypoint measurements themselves transform
under SE(3). Thus, equivariant policies are robust not only
to geometric transformations, but also to varying observation
configurations.

6) Relation to MDP Symmetry and Homomorphisms: The
use of equivariant policies is formally grounded in the theory
of MDP homomorphisms. An MDP M = (S, A, P,r,7) is
symmetric under G if:

P(g-s’|g-s,g~a) = P(Sllsva)a ’I"(g'S,g'a) = T(Saa) (22)

Then, it is known that:

(g s)=g-7"(s) (23)
i.e., the optimal policy is equivariant. Thus, restricting the
policy class to equivariant functions does not reduce opti-
mality, but significantly constrains the search space, making
policy learning easier. In this section, we rigorously devel-
oped the motivation and mathematical formulation of SE(3)-
equivariant policies in the context of deformable object
manipulation. We showed how equivariant message passing
enables the policy to transform actions coherently under
scene rotations and translations, ensuring data efficiency,
robust generalization, and alignment with the symmetry
properties of the underlying MDP. This equivariant inductive
bias, when combined with heterogeneous graph modeling,
forms the foundation of our GRPD framework.

B. Equivariant Convolution via Message Passing

Traditional convolutional neural networks (CNNs) achieve
remarkable performance in 2D image domains due to their
ability to exploit translational symmetry through local re-
ceptive fields and weight sharing. However, 3D robotic
manipulation requires handling more complex symmetries
governed by the rigid-body transformation group SE(3),
which includes arbitrary rotations and translations in space.

In our work, we extend the convolutional paradigm to
graph-structured data by formulating an equivariant message
passing scheme that is sensitive to spatial arrangements and
respects SE(3) symmetries. This is crucial for deformable
object manipulation, where the policy must infer actions
based on the object’s global pose and internal geometry, both
of which vary significantly across tasks and environments.



1) General Message Passing Framework: Let G = (V,€&)
denote a graph where each node v € V is associated with a
feature vector h, € R? and a spatial position p, € R3. A
general message passing operation for layer k£ has the form:

e = 60 (0, 5 6900,
ueN (v)

(24)

where e, is an edge feature (e.g., geometric information
such as p, — py), ¥ is the message function, and ¢ is the
update function.

In geometric learning, the edge features e,, are derived
from relative positions, making the message function spa-
tially aware:

€uv = Pu — Pov (25)

However, naively using this relative displacement in an MLP
leads to models that are not equivariant under rotations and
translations.

2) Equivariance via Steerable Kernels: To achieve SE(3)-
equivariance, we design the message function to transform
appropriately under group actions. Consider the action of a
rigid body transformation ¢ = (R,¢) € SE(3) on a point
cloud:

g-p=Rp+t (26)

Under such a transformation, the relative position changes
as:

g- (pu 7pv) = R(pu 7pv) 27
Let us define the message as:
Y(hu, Pu — Pv) = K(pu — Do) * I (28)

Here, k : R® — R%*? ig a learnable kernel that modulates
the interaction between nodes based on spatial configuration.
To ensure equivariance, the kernel must satisfy:

H(R(pu - pu)) = RH(Pu - pv)RT

This constraint ensures that the transformed message
U(hy, R(py —po)) is equal to R -t (hy, py — pou), preserving
the equivariance of the entire message update under rotation.

3) Basis Construction for Kernels: We construct K using
scalar, vector, or tensor bases that are equivariant or invariant
under SE(3) transformations. A general design pattern for
such kernels is:

L l
k) =33 Qi Yin®) - ol

=0 m=—1

(29)

(30)

where:

e Y, (p) are spherical harmonics evaluated on the unit

vector p = p/|p|l,

ey, are learnable parameters,

e [ and m index the order and degree of the harmonics.

This formulation defines a steerable kernel that naturally
transforms under SO(3) and remains invariant to translations
due to dependence on relative positions.

4) Practical Implementation: Factorized Kernels: To re-
duce computational cost and improve scalability, we imple-
ment factorized equivariant kernels as:

H(p) = MLPangle(ﬁ) ' MLPradial(”pH) 3D
This separation allows the network to learn angular sen-
sitivity independently from radial distance, approximating
the spherical harmonic basis in a data-driven way without
explicit group theory machinery.

5) Equivariant Update Rule: Putting this together, the full
equivariant update at layer k is:

mP = 3" (hqﬁ’“),pu —pv) :
uwEN (v)
(32)

If ¢ and ¢ are both constructed from equivariant operations
(e.g., linear combinations of equivariant kernels, normaliza-
tion, nonlinearities applied to invariant scalars), the entire
update is equivariant:
k+1 e (K
D = RopD i K = RAR vu (33)
6) Design Considerations for Deformable Manipulation:
In our setting, the policy receives as input a graph represent-
ing the deformable object and actuator positions. Each node
feature consists of:

« Positional coordinates: p, € R>

o Velocity vectors: v, € R?

« Object-specific attributes: contact status, type indica-
tors

To maintain equivariance:

o Vector-valued features are transformed using R

o Scalar features remain unchanged under g

o Pairwise relative vectors p,, — p,, are fed into the kernel
K

The output of the message passing network is a set of
action vectors associated with actuator nodes, which are also
SE(3)-equivariant by construction.

7) Theoretical Properties and Gradient Flow: An im-
portant property of equivariant message passing is that it
enhances gradient flow in large graphs. In standard graph
networks, information must pass through multiple hops, lead-
ing to the over-squashing problem. In equivariant message
passing:

o Global geometric information is encoded at each hop
via structured relative positions.

« Directional sensitivity ensures more informative gradi-
ents from spatially aligned nodes.

e Local filters generalize across different orientations
without learning redundant patterns.

This is critical for deformable object graphs where fine-
grained manipulation requires coordination across distant and
structurally diverse nodes (e.g., folding a corner of a cloth
toward a midpoint).

RE+D) = (k) (hgk)’mgk))



8) Equivariance vs Invariance: While invariance encodes
geometric similarity by mapping transformed inputs to the
same output (e.g., classification tasks), equivariance is better
suited to control and motion prediction tasks. In our appli-
cation:

w(g-s)=g-m(s) (equivariance) 34
This allows the learned action to follow the transformed
geometry, preserving directional consistency—a critical re-
quirement in motion planning and actuation. Equivariant
convolution via message passing provides a principled mech-
anism to encode geometric priors directly into graph-based
policies for deformable object manipulation. By designing
spatially aware kernels that respect SE(3) transformations,
we ensure that the learned control policy generalizes across
object poses, orientations, and topologies with minimal data.
This appendix has detailed the mathematical formulation,
implementation strategies, and theoretical advantages of
equivariant message passing within our GRPD framework.

C. Heterogeneous Message Passing Formulation

Graph Neural Networks (GNNs) typically operate on ho-
mogeneous graphs, treating all nodes and edges with shared
transformation functions. However, deformable manipulation
inherently involves entities with different physical roles
and computational functions—specifically, (i) actuator nodes
that perform control, and (ii) object nodes that represent
deformable elements such as rope segments or cloth mesh
vertices.

A homogeneous graph model cannot explicitly encode
the asymmetry in function, dynamics, and control authority
between actuators and deformable points. Furthermore, local
interactions among object nodes (e.g., elasticity, topology)
and global reasoning across object-actuator pairs demand
distinct processing paths. This motivates the use of a **het-
erogeneous graph**, with typed nodes and edges and tailored
message-passing mechanisms.

1) Heterogeneous Graph Definition: We formally define
a heterogeneous graph as:

G=W,&E 70, Te) (35)

where:

o V = VUV, is the set of nodes, partitioned into object

and actuator types.

o & = Eopjobj U Eacteact U Eopj-act 18 the set of typed edges.

e T, :V — {object, actuator} is the node type function.

e 7. : £ — {obj-obj, act-act, obj-act} is the edge type

function.

This formulation allows for separate treatment of intra-
object physics, actuator collaboration, and perception-to-
control interactions, each governed by distinct dynamics and
geometries.

2) Structured Message Passing Scheme: We propose a
modular message-passing scheme with three distinct oper-
ations:

a) (1) Object-Object Message Passing: Local Physi-
cal Modeling: We model local interactions within the de-
formable object using:

mgbj—obj = Z wobj—obj(huv hvapu - pv) (36)
uENnbj(v)
hs]k:+1) _ ¢0bj (hg)k)7 m?}bj—obj) (37)

This captures neighborhood-based elastic or kinematic de-
pendencies—analogous to mass-spring systems or mesh con-
nectivity in physical simulation. The spatial edge feature
Pu — Dy €nsures directional reasoning, while 1)gpj.obj 18 often
equivariant to support spatial generalization.

b) (2) Actuator-Actuator Message Passing: Local Co-
ordination: Actuators may coordinate locally (e.g., bimanual
folding, four-arm placement). We define:

act-act __

mu Z 'l/)act-act(huv hmpu - pv)
ue-/\/acl(v)

(38)

hg)k-l—l) — (bact—local(hg;k)» mact—act)

v

(39)

This step encourages actuators to maintain consistent strate-
gies across symmetric roles or share global context.

c) (3) Object-to-Actuator Message Passing: Global Per-
ception Aggregation: To drive actions based on the global
state of the deformable object, each actuator aggregates
messages from all object nodes:

m;)}bj—aCt = Z ¢0bj-acl(h1L; hv,pu - pv) (40)
UE Vobj
hg“al = (Z)act—global (h£k+1)7 m?,bj_m) (41)

This formulation makes actuators global “virtual nodes”
capable of perceiving the entire object structure in a single
propagation step.

3) Why Message Decomposition Matters: Standard GNNs
often suffer from feature entanglement and over-squashing
when handling long-range interactions or large graphs. Our
modular design avoids this by:

o Using separate kernels for different node/edge types,
which allows specialization (e.g., geometric reasoning
for object nodes vs. control logic for actuators).

o Enabling single-hop global context for actuators, so
that fine-grained manipulation decisions are informed
by the full object state.

« Reducing redundancy and parameter explosion com-
pared to attention mechanisms that operate over all node
pairs.

Empirically, this separation leads to faster convergence,
improved generalization, and greater robustness under object
topology shifts.

4) Input Features for Each Node Type: Each node v
carries a feature vector h, based on its type:



a) Object Nodes (v € Vpj)::

hy = [pm Vyy oy, typeobj} (42)

where:
e p,: 3D position
e v,: velocity (for dynamic manipulation)
o d,: task-specific descriptor (e.g., distance to target re-
gion, binary contact)
o typeg,: one-hot encoding of material or segment type
b) Actuator Nodes (v € Vye)::

hy = [py, vy, gripper_status,type,,]  (43)

These include the actuator’s current pose, control state, and
role-specific indicators (e.g., left/right hand, tool type).

5) Action Output: Nodewise Decoding: After message
passing, the final feature vector of each actuator node is
decoded into an action:

@y = MLPgee (R € Vet (44)

Typically, a, includes:

« 3D velocity vector or delta position: a, € R3

« Optional gripper control (open/close): scalar or discrete

o Optional force magnitude or control gains

By restricting action decoding to actuator nodes only, the
policy explicitly maps perceptual understanding (from object
nodes) to control decisions in a spatially distributed manner.

6) Theoretical Properties: Let a, be the output action for
actuator node v, and h,, the latent feature for object node w.
Then the Jacobian:

Oay

Ohy,

measures the sensitivity of an actuator’s decision to an object
node’s state.
In standard neighborhood-based GNNs:

If u g N (v) = J,, =0

(46)

due to limited receptive field. In contrast, our formulation
guarantees that:

Jou 70,

due to full object-to-actuator connectivity. This ensures:

Yu S Vobj7 You S Vac[ (47)

« Rich credit assignment during backpropagation.

« Avoidance of over-squashing.

« Efficient control over spatially extended deformables.

7) Comparison with Homogeneous GNNs: We ablated the
heterogeneous design by merging node types and message
functions. This led to:

o Poor specialization: actuators and object nodes learn
entangled representations, reducing interpretability.

o Longer training time and lower final reward due to
ineffective credit assignment.

o Reduced generalization when manipulating unseen
shapes or object topologies.

These observations support the theoretical claim that func-

tional heterogeneity is not just a modeling convenience, but

a necessity in multi-agent control over physical structures.
This section formalizes and justifies our use of heterogeneous
message passing in the GRPD framework. By distinguishing
between object and actuator nodes and constructing modu-
lar message-passing paths, our architecture aligns with the
underlying task structure of deformable manipulation. This
enables our model to capture local physics, global perceptual
reasoning, and targeted actuation in a unified yet interpretable
graph-based formulation.

D. Expressive Actuator Outputs

In deformable object manipulation, robotic agents
must generate control signals that are both precise
and generalizable across a wide variety of tasks, ge-
ometries, and object states. Unlike rigid object ma-
nipulation—where action targets are well-structured and
low-dimensional—deformable manipulation often requires
context-aware, spatially grounded, and temporally adaptive
motor outputs.

In this work, we model actuators as specialized nodes in
a heterogeneous graph and design their outputs to encode
direction, magnitude, and functional control in a structured
way. This appendix provides a detailed formulation and
justification of our action design, focusing on the following
key principles:

1) Separation of direction and magnitude to improve

expressiveness and training stability.

2) Invariant decoding across varying global geometries

via local feature grounding.

3) Scalability to multi-actuator setups with independently

parameterized or shared decoders.

1) Action Space Definition: Each actuator node v € Vi,
predicts a control output:

ay = (0y,¢,) ER* X R (48)

where:
e 0, is a unit direction vector (i.e., |9, || = 1), represent-
ing the intended motion direction in 3D space.
e C, iS a positive scalar, representing the magnitude or
speed of the control signal.
The final velocity command issued to actuator v is given
by:

Apv =Cy- r[}v (49)

This representation enables independent learning of spa-
tial orientation and motion intensity, which improves inter-
pretability, data efficiency, and physical realism.

2) Justification for Direction-Magnitude Decoupling:
Standard MLP-based decoders often predict a full 3D ve-
locity vector directly:

naive __
" =

a MLP(h,) € R? (50)

This approach has two drawbacks:

o Coupled parameterization: The network must simul-
taneously learn the correct direction and magnitude in a
single step. This entanglement increases variance during
exploration and makes fine control difficult.



« No unit control: Since the output space is unbounded,
small errors in early training may result in arbitrarily
large motions, especially under noisy gradient updates.

By contrast, we design the decoder to output:

i praw

1r o U

vqr)aw = MLP;, (hv)v Uy = ||UrawH Te
v

¢o = ReLU(MLP™¢(h,))

61V

(52)

This directional normalization with a stabilizing ¢ = 1076
ensures numerically safe gradients and isolates the learning
of motion strength into a distinct prediction head.

3) Physical Interpretation: In many robotic platforms,
actions are realized as velocity or displacement vectors in
Cartesian space. In physical terms:

e 7, corresponds to a unit direction in the task or
workspace frame, guiding where the end-effector should
move next.

e C, can be mapped to joint-level control rates, time-
scaled trajectories, or gripper travel speeds.

This decoupled formulation aligns with control conven-
tions in both position-based and impedance-based motion
control. For example, a compliant robotic arm moving toward
a fold in a cloth must maintain directional consistency while
modulating force or speed based on fabric resistance.

4) Probabilistic Interpretation: Our policy is trained us-
ing a stochastic Gaussian output:

779(a0|hv) :N(av|ﬂv7zv) (53)
In our directional-magnitude model, this becomes:
[ = Cy By, By =021 (54)

This distribution factorization means:

o The agent samples unit directions with a fixed mean and
samples speed from a scalar Gaussian.

o Policy entropy can be separately encouraged along
angular and radial components.

o During early training, the agent can learn to confidently
choose direction while retaining exploration on magni-
tude (or vice versa).

This structure yields more interpretable and controllable
policy outputs, and has been shown in prior works to enhance
robustness in underactuated settings.

5) Compatibility with Graph-Based Aggregation: The fi-
nal actuator embedding h,, is derived via:

hv = ¢act-global h%}cal’ Z wobj-act(hua hvapu - pv)
UWE Vobj
(55
This aggregated representation reflects both:
o Local actuator state (e.g., current position, task role).
o Global object configuration (e.g., which cloth corner
needs to be pulled, which rope node needs tensioning).
The directional decoder thus acts on a globally informed
feature space, mapping perceptual summaries into physically
realizable directions, and tailoring control magnitude based
on scene-level demands.

6) Multi-Actuator Generalization: Our formulation sup-
ports both:

o Independent parameterization: Each actuator has a
unique decoder MLP,,, which may be useful for asym-
metric tools or hardware.

o Shared parameterization: A single decoder MLPgp,req
is used for all actuator nodes, leveraging weight sharing
and improving generalization.

In our experiments, shared decoding led to better transfer
to new tasks and geometries, particularly in tasks where
actuator symmetry is preserved (e.g., cloth hanging with 4
arms).

7) Gripper-Specific Actions and Hybrid Outputs: For
tasks requiring binary gripper control, we augment the output
as:
g0 €10,1]

Ay = (@vvcv7gv)7 (56)

where g, is a scalar indicating gripper open/close intent.
This can be interpreted probabilistically (e.g., via sigmoid
activation) and used in hybrid continuous-discrete control
schemes.

This approach is extensible to:

o Force control (predicting stiffness or torque limits).

o Trajectory control (predicting future waypoints).

« High-level intent (e.g., grasp, pull, lift).

This section introduced and justified our expressive actua-
tor output representation for deformable object manipulation.
By decoupling direction and magnitude, grounding actions
in globally aggregated features, and allowing modular con-
trol extensions (e.g., gripper status), we ensure that each
actuator can execute precise, adaptable, and interpretable
control strategies. Our formulation strikes a balance between
expressiveness and stability, making it well-suited for re-
inforcement learning in continuous action spaces involving
complex spatial reasoning.

E. Bounded Policy Projection (BPP)

Training reinforcement learning (RL) policies for high-
dimensional, deformation-aware domains like deformable
object manipulation is particularly sensitive to instability.
Small policy shifts can result in abrupt changes to actuator
behavior due to entangled geometry-action mappings, mak-
ing reward signals volatile and leading to poor convergence.

This instability is magnified in graph-based models with
spatial equivariance and heterogeneous structure. Here, per-
turbations in parameter space can have complex, non-local
effects on both message-passing features and actuator out-
puts.

To address this, we employ Bounded Policy Projec-
tion (BPP), a policy optimization method that constrains
updates using explicit divergence bounds. Unlike Proximal
Policy Optimization (PPO), which uses surrogate objec-
tives with implicit clipping, BPP guarantees that policy
shifts remain within a bounded distance—measured by the
Kullback-Leibler (KL) divergence—between successive iter-
ations. This provides both theoretical guarantees and empir-
ical smoothness in training dynamics.



1) Problem Serup: Let my(als) be the policy parame-
terized by 6, and D = {(s¢ a¢,7)} be samples from
rollout trajectories. The goal of policy gradient methods is
to maximize the expected discounted return:

J(Q) = E7-~rrg [Z ’Ytr(sta at)]
t=0

Using the policy gradient theorem, we can compute the
gradient:

VoJ(0) = Esdro ammy [Vologmg(als)A™ (s, a)]

(57)

(58)

where A™ (s,a) is the advantage function, and d™ is the
state visitation distribution.

However, directly applying this gradient may lead to large,
unstable updates in 6. Instead, we formulate a constrained
optimization problem that maximizes improvement while
keeping the policy close to the previous one:

mo(als)
Esoyom, | ——5 A% (s, 59
mgxx (s,a) 01 o, (a\s) k(s CI,) ( )
subject to Dy (mg||ma,) < 6 (60)

This is the core of Bounded Policy Optimization (BPP). BPP
provides a practical, differentiable implementation of this
idea suitable for complex function approximators like graph
neural networks.

2) Gaussian Policy and KL Constraint: Our policy for
each actuator v € V, outputs a multivariate Gaussian:

o (av|ho) = N(av|po(hy), Zo(hy)) (61)
with learnable mean and diagonal covariance:
po(hy) € R3, Sy(hy) = diag(og(hy)?) (62)

The KL divergence between two such Gaussians g, and
g (for fixed state h,) is:

Dy (mollma,) = 2 (S5 2) + (s — 1) S i — )

2
det 2
—d +log detEk]
‘ (63)
where d is the action dimension (typically d = 3 per

actuator).
This divergence decomposes into two interpretable terms:

« A quadratic penalty on mean shift: (11, — )7 %" (ux —

1)
e A log-volume term penalizing variance inflation

To prevent overly aggressive updates, BPP enforces:
Esnp [Dw(mo(-s) 7o, (-]5))] < 6

3) Optimization via Projected Gradient Descent: In prac-
tice, BPP performs gradient ascent on the unconstrained
surrogate objective:

(64)

mo(als)
o, (als)

and uses a differentiable projection operator to keep 6 within
the bounded.

L(0) = E(s,a)~mo, A" (s, a) (65)

The projection step can be approximated via second-order
optimization or Lagrangian duality. We define:
L(0,\) = L(0) — X (Dxvr(mg||mg,,) — 9) (66)
Then perform gradient steps with respect to 6 while adjusting
A using dual ascent.
In our implementation, we use a first-order approximation
of the KL constraint:

AOTFAD < § (67)

where F' is the empirical Fisher Information Matrix (FIM),
approximated as:

F~FE,.p [V(.) log mg(als) Vg log 7rg(a|5)T] (68)

This defines a natural gradient direction that respects the
local policy geometry, leading to more efficient and stable
updates, especially in high-dimensional parameter spaces.

4) Integration with GRPD Architecture: In our GRPD
framework, each policy update modifies the weights of a
message-passing graph neural network. Without a bounded,
the following issues emerge:

¢ Over-updating message functions: A large gradient
step in ¢ may distort geometric feature extraction.

o Policy collapse in early training: Incorrect feedback
from low-reward states may induce sudden directional
reversals in actuator outputs.

o Covariance drift: Variance parameters become un-
bounded, resulting in erratic exploration and slow con-
vergence.

BPP addresses these by constraining both mean and vari-
ance updates in the action distribution. This is particularly
important in settings where the policy must coordinate long-
range dependencies (e.g., folding cloth by pulling opposite
corners).

In the Cloth-Hanging task, BPP increased training stability
across 10 random seeds by reducing reward variance by
37% compared to PPO. It also enabled successful transfer to
novel cloth geometries with no fine-tuning, highlighting its
robustness to distributional shift. BPP plays a foundational
role in stabilizing the training of graph-based deformable
manipulation policies. By bounding policy shifts in KL-
divergence space and decoupling mean and variance updates,
it ensures that gradient steps remain within the locally valid
region of the policy manifold. This bounded approach is
especially vital in our context, where actuator decisions
are derived from globally conditioned, equivariant message-
passing networks that require smooth optimization dynamics
to remain interpretable and effective.

F. Theoretical Justification: Jacobian Connectivity

We analyze the Jacobian gz where a, is the actuator

output and h,, is an object node feature. In standard GNNs
with local neighborhoods, such Jacobians vanish for distant
nodes (due to over-squashing). In our model, since all object




Cloth Hanging Rope Shaping

Fig. 2. An overview of diverse tasks for evaluating deformable object
manipulation. A collection of manipulation scenarios involving deformable
objects under spatial constraints. These tasks test coordination across
multiple actuators, control under shape variability, and policy adaptability
across different deformation dynamics and environments.

nodes connect directly to each actuator via Egpj.act, the
Jacobian has full support:

9a,
Ohy,

This enables efficient global context aggregation and im-
proves sensitivity to distant object changes, crucial in tasks
involving large deformable surfaces.

This appendix presents the theoretical underpinnings of
our architectural choices. From symmetry-aware feature en-
coding and structured graph design to stable optimization
and end-to-end differentiability, every component of GRPD
is motivated by the physical, geometric, and computational
characteristics of deformable manipulation. Our derivations
aim to support the reproducibility, rigor, and clarity of the
proposed contributions.

Yu € Vobj,v’U € Vacty

#0 (69)

APPENDIX
APPENDIX B: RESULTS AND DISCUSSION
A. Overview

This appendix provides a detailed analysis and theoretical
interpretation of the experimental results presented in the
main paper. We expand upon task-specific performance,
architectural ablation, training dynamics, and generalization
behavior. Our goal is not only to validate the effectiveness
of the proposed GRPD framework but also to provide in-
sights into why and how its key components contribute to
successful shape-free manipulation.

B. Task-Specific Performance Insights

Our evaluation suite includes four diverse tasks, as shown
in Fig. 2: Rope-Wrapping, Rope-Shaping, Cloth-Hanging,
and Cloth-Folding. These tasks challenge the policy across
multiple axes—spatial generalization, temporal sequencing,
and deformable dynamics.

a) Rope-Shaping.: GRPD demonstrates robust geomet-
ric generalization by manipulating the rope into unseen
shapes (e.g., W, spiral). Success is strongly correlated with
the policy’s ability to reason over long-range structure. In
baseline GNNSs, over-squashing leads to premature conver-
gence to local shapes. GRPD’s global object-to-actuator ag-
gregation bypasses this limitation and enables shape-sensitive
deformation.

b) Cloth-Hanging.: The cloth must be aligned, lifted,
and precisely draped over a rigid bar. This task benefits
from SE(3)-equivariant representations: the cloth’s starting
pose is randomized in both position and orientation. GRPD
successfully generalizes to out-of-distribution poses. Our

ablation confirms that without equivariance, performance
degrades by over 20% due to policy confusion in rotated
frames.
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Fig. 3. Learning curves on three tasks illustrating the effectiveness of
GRPD versus baseline policies. GRPD consistently achieves higher returns
and improved learning stability, particularly in environments requiring
coordination, spatial reasoning, and handling of complex deformations.

C. Policy Stability and Training Dynamics

One of the core challenges in deformable manipulation is
training stability due to sparse rewards, non-stationary object
configurations, and large action spaces. GRPD’s stability
arises from the synergistic effect of three factors:

o Heterogeneous message routing ensures clean separa-

tion of perceptual reasoning and actuation control.

« BPP optimization keeps the policy within stable be-

havioral regions by bounding the KL divergence.

o Direction-magnitude actuator outputs prevent mag-

nitude explosion and improve reward gradients.

In early training (0-2M steps), we observe that GRPD
maintains smooth exploration trajectories with gradually
increasing action norms, while PPO-based baselines either
stall or oscillate violently.

D. Generalization and Scalability

We examine how well the policy generalizes across:

o Object resolution: Training on coarse meshes (e.g., 200

nodes) and testing on fine meshes (e.g., 1000+ nodes).

« Unseen shapes: Transferring from squares and rectan-

gles to triangles, hexagons, or cloths with holes.

o Actuator configurations: Changing number and spatial

distribution of manipulators.

GRPD generalizes successfully in all dimensions, which
we attribute to its resolution-agnostic design: relative
coordinate-based kernels and node-wise message propaga-
tion avoid overfitting to specific topologies.
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Fig. 4. Impact of spatial sampling complexity on defromable manipulation
in original 3D space, 2D quarter, 2D half from left to right, respectively.
Evaluation of model performance under different configuration spaces for
the Cloth-Hanging task. As the spatial variation is reduced, all models
improve, but those with explicit structural reasoning—Ilike ours—maintain
superior performance, highlighting the benefits of heterogeneity and equiv-
ariance in complex 3D settings.
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Fig. 5. Performance under varying levels of synthetic noise and object
resolutions in the deformable task, showing GRPD’s resilience to perturba-
tions and ability to handle high-resolution inputs.

E. Failure Modes and Limitations

While GRPD performs consistently well, we observe the
following limitations:

a) Contact Disambiguation.: In dense object config-
urations (e.g., crumpled cloth), actuator-object contact as-
signment becomes ambiguous. Without auxiliary keypoint
detection or contact feedback, the policy may misattribute
force application.

b) Long-Horizon Planning.: Tasks requiring 10+ se-
quential actions (e.g., complex folding) degrade in per-
formance due to accumulated positional drift. Integrating
temporal abstraction (e.g., options or subgoal prediction) is
a future direction.

¢) Real-to-Sim Gaps.: Though GRPD transfers across
object shapes and meshes, domain shift from simulation to
real-world sensory noise and actuation latency may require
additional adaptation mechanisms (e.g., domain randomiza-
tion or fine-tuned dynamics).

E. Interpretability and Policy Visualization

We further investigate the internal behavior of the network:

o Attention analysis: Actuator node embeddings show
selective focus on spatially proximal object nodes and
high-curvature regions (e.g., cloth corners).

o Feature evolution: Across training, object node em-
beddings cluster based on physical relevance—nodes on
fold lines share similar activation spaces.

o Jacobian tracing: Gradient sensitivity maps indicate
that each actuator’s output is influenced by a large por-
tion of the object graph, confirming theoretical global
connectivity.

These insights affirm the expressive power of heteroge-
neous GNNs in modeling deformable control tasks with
structured yet flexible priors. This appendix has provided an
in-depth discussion of our experimental findings. GRPD’s
superior performance stems from its architectural alignment
with the physical structure of deformable systems: global
perception, directional control, type-aware message passing,
and stable bounded learning. These components jointly ad-
dress the spatial, temporal, and geometric complexities of

shape-free manipulation, enabling robust and generalizable
policies for real-world robotics.



