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Abstract

Electronic health records (EHRs) contain diverse patient data with varying visit frequencies. While irregular tensor

factorization techniques such as PARAFAC2 have been used for extracting meaningful medical concepts from EHRs,

existing methods fail to capture non-linear and complex temporal patterns and struggle with missing entries. In this

paper, we propose REPAR, an RNN REgularized Robust PARAFAC2 method to model complex temporal dependencies

and enhance robustness in the presence of missing data. Our approach employs Recurrent Neural Networks (RNNs)

for temporal regularization and a low-rank constraint for robustness, enabling precise patient subgroup identification

and improved clinical decision-making in noisy EHR data. We design a hybrid optimization framework that handles

multiple regularizations and various data types. REPAR is evaluated on 3 real-world EHR datasets, demonstrating

improved reconstruction and robustness under missing data. Two case studies further showcase REPAR’s ability to

extract meaningful dynamic phenotypes and enhance phenotype predictability from noisy temporal EHRs.

Introduction

Recent years have witnessed a global interest in mining electronic health records (EHRs) to improve healthcare and

advance medical research [1, 2]. EHRs consist of detailed information such as diagnoses, laboratory test results, and

medication prescriptions for large patient populations. However, directly using raw EHR data is challenging due to the

complex structure associated with its longitudinal and multi-dimensional nature as well as the enormity of the data.

Clinical scientists are interested in breaking apart heterogeneous syndromes into subgroups, i.e. phenotypes, such as

diseases and disease subtypes, for better understandings of the differences in biological mechanisms and treatment

responses, which could lead to more effective and precise treatment [3]. In medical contexts, the word “phenotype”

refers to clinically relevant variations in morphology, physiology, or behavior. The analysis of phenotype plays a key

role in clinical practice and medical research [4]. Therefore, raw EHR data are often mapped to phenotypes [5], which

can be used for cohort (patient subgroup) selection and healthcare quality measurement, grouping patients with similar

symptoms or treatment responses, enabling personalized care.

Sepsis Phenotype Example. Sepsis is a heterogeneous syndrome characterized by a dysregulated immunological re-

sponse to infection that results in organ dysfunction and often death. Phenotyping in sepsis can help identify patient

subgroups who have different clinical characteristics, prognoses, and treatment responses, thus enabling a precision

approach to treatment. However, traditional clustering-based phenotyping methods [6, 7] cannot fully capture the

complex temporal and inter-attribute dependencies of the data and are not robust to missing data.

EHR data often contains multiple types of information that are interconnected – imagine a multidimensional array

(or tensor) where each dimension represents different aspects of patient care, such as symptoms, treatments, and time

[8]. Tensor factorization breaks down a tensor into simpler components (rank-one tensors), enabling the extraction of

meaningful patterns and relationships across dimensions for improved analysis and interpretation. Unlike traditional

clustering-based approaches, tensor factorization-based computational phenotyping models not only cluster patients

into subgroups, but also capture interactions between multiple attributes (e.g., specific procedures used to treat a

disease) to extract concise and potentially more interpretable multiattribute patterns in latent spaces [9, 10, 11]. Sev-

eral established methods exist for analyzing regular tensors where all dimensions are uniformly structured (e.g., data

measurements at consistent time intervals), including Canonical Polyadic (CP) [12], Tucker [13], and Singular Value

Decomposition (SVD) [14]. However, EHR data often present a challenge because patient visits and events occur at

irregular time intervals. EHR records are also prone to missing observations due to variations in clinical practice that

affect the frequency of measurements (e.g., a patient will have labs collected more often in intensive care units (ICUs)

than in regular medical wards). Most existing methods may not capture the true patterns in the data effectively.
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Figure 1: (a) PARAFAC2 breaks irregular patient data into three components: temporal evolution (Uk), health patterns

(phenotypes) (V ), and membership levels (Sk). This reveals important trends and interactions in the data. (b) REPAR

enhances PARAFAC2 by using RNNs to model time-based health changes and a low-rank constraint to handle missing

and noisy data more effectively.

Recently, PARAFAC2, an irregular tensor factorization method [15], has been popularized for extracting meaningful

phenotypes from such temporal EHR (illustrated in Figure 1a). A scalable PARAFAC2 model was proposed in [16] to

handle large and sparse data. Various constraints were introduced to improve the interpretability of the factor matrices

for more meaningful phenotype extraction [17]. In addition, robust PARAFAC2 models have been studied in [1, 18]

to handle missing and erroneous entries. Despite the advances in PARAFAC2, two fundamental challenges remain.

First, existing PARAFAC2 models only impose linear and human-defined temporal regularization functions, which

fail to fully capture the non-linear and complex temporal information in EHRs. Second, current models are designed

only for a single data type – numeric or binary, and lack flexibility for generalized data types.

To address these limitations, we propose an RNN REgularized Robust PARAFAC2 for Irregular Temporal Tensor

Factorization, REPAR, to capture complex temporal dependencies and improve robustness, phenotype representations

and predictability of tensor factorization. As shown in Figure 1b, REPAR starts with patient data that may have

missing or inconsistent entries, Ok, and assumes that there is a complete underlying version of the data, Xk. To

reconstruct this data, we use RNNs to model how patient health evolves over time and capture the complex temporal

dependencies, along with low-rank constraints that simplify the data into its most important components, and then

extract factor matrices Uk, Sk, V
¦ for further downstream analysis and phenotype interpretation. Our hypothesis is

that by capturing the more complex temporal information, it will be more robust to missing entries in the original

tensor (together with the low-rank constraint), and also achieve better predictability for the extracted phenotypes. This

helps in better understanding patient subgroups and making predictions. In addition, we introduce a new optimization

framework that can flexibly handle any smooth loss function, as opposed to the sole choice of the least square norm,

to better suit input tensors with various data types.

In summary, we list our main contributions below:

1. We propose REPAR, a robust RNN and low-rank regularized PARAFAC2 tensor factorization method, to capture

the complex temporal dependencies and enhance the robustness of the phenotype representations.

2. We propose a new hybrid optimization framework using stochastic gradient descent (SGD) and proximal average

to handle multiple regularizations and a generalized loss function to support various data types.

3. We evaluate REPAR on three real-world temporal EHR datasets, which verify the improved recovery, phenotype

representation, and predictability in the presence of missing values. Through downstream prediction analysis

and interpretation of the dynamic subphenotype trajectory, we demonstrate that REPAR can robustly extract

meaningful and high-predictability phenotypes that capture and distinguish different temporal patterns.

Related Work

SPARTan [16] scaled PARAFAC2 to large and sparse irregular tensors by introducing a sparsity aware computation

module to reduce the per-iteration cost. Following SPARTan, COPA [17] introduced various constraints/regularizations



to improve the interpretability of the factor matrices. For example, COPA proposed the M-spline constraint [19] to the

temporal evolution matrix, Uk, to capture the temporal smoothness, non-negative constraint to Sk to ensure phenotype

memberships are non-negative, and ℓ1-norm regularization of V to induce sparse phenotype definitions. Despite their

improvements in computational efficiency and output interpretability, COPA and SPARTan did not explicitly address

the problem of missing entries in the input tensor, which severely limits them from more robust clinical usage.

REPAIR [1] and LogPar [18] address missing entries in PARAFAC2. Inspired by the robust low-rank tensor mini-

mization (RLTM), the state-of-the-art mechanism for dealing with missing and error entries, REPAIR [1] separated

the corrupted input tensor into a clean, completed tensor and an error tensor. Since the clean tensor is often low-rank,

REPAIR added low-rank regularization (i.e., nuclear norm) on the clean tensor and sparsity regularization (ℓ1-norm

regularization) on the error tensor. It then proposed a novel two-phase optimization alternative direction method of

multipliers (ADMM) approach to solve the low-rank regularized PARAFAC2 model. LogPar considered binary data

with a one-class missing value scenario. LogPar modeled the binary irregular tensor with the Bernoulli distribution

parameterized by an underlying real-valued tensor. Then they approximated the underlying tensor with a positive-

unlabeled learning loss function to account for the missing values. However, both models are suitable for one type of

data and cannot be easily adapted for composite regularization of the factor matrices.

tPARAFAC2 [20] tracks evolving patterns in incomplete temporal data. It extends PARAFAC2 with temporal smooth-

ness regularization to capture time-evolving factors and incorporates statistical updates to handle missing values.

However, tPARAFAC2’s regularization assumes gradual and linear changes across time points, making it less suitable

for capturing more complex, non-linear temporal patterns that can arise in certain real-world EHR datasets.

CNTF [21] treated each patient’s data as an individual tensor, used CP to find the factor matrices and RNN to regu-

larize the latent factor evolution. The RNN model was used to model the non-linear temporal dependency in patient

progressions and can also integrate higher-order information. However, CNTF assumes interactions among modalities,

which may not always be the case, as demonstrated by the empirical results in [17] and [22].

Proposed Method

In this section, we present the REPAR model and its optimization, which has the following appealing features that

distinguish it from previous PARAFAC2 methods. (1) It accommodates a wide selection of regularizations, includ-

ing statistical learning-based (e.g., l1 norm and nuclear norm), deep learning-based (e.g., RNN regularization), and

composite, to better capture the intrinsic nature of the irregular temporal EHR data. (2) It generalizes the loss func-

tions from the sole choice of the least square norm to any smooth loss function, which better suits input tensors with

various data types. We summarize popular loss functions for common data types in Table 1. (3) It introduces a new

optimization framework geared to fully exploit the parallel computing capability of modern GPUs to boost efficiency.

Furthermore, it incorporates Nesterov’s momentum into the updates of REPAR to achieve faster convergence.

Problem Formulation

The goal of REPAR is to analyze patient data in a way that uncovers hidden patterns while handling missing or

inconsistent information. We formalize the objective function for REPAR model in Definition 1. The PARAFAC2

loss for O ensures the reconstructed tensor closely approximates the original tensor. The low-rank for O enforces the

underlying complete tensor to be separated from missing values and helps the model focus on the essential patterns in

the data while filling in the gaps caused by missing entries. The RNN loss captures the temporal patterns in the data, and

an approximate uniqueness constraint ensures tensor factorization uniqueness. For EHR phenotype discovery, various

constraints can be imposed on the factorization matrices to yield meaningful and high-interpretability phenotypes.

REPAR accommodates such interpretability-purposed constraints in Equation (1) including non-negativity on S via

c1(Sk) and sparsity on V via c2∥V∥1. The process ensures that the results are clear, interpretable, and useful for

identifying patient subgroups (phenotypes).



Table 1: Examples of Tensor Data Types and Loss Functions

Data Type Loss Function

Binary Positive Unlabeled loss [18]

Count Poisson Loss [23]

Numerical Least Square Loss

Strictly positive data Rayleigh Loss [23]

Definition 1. (REPAR objective function)

argmin
Qk,H,Sk,V

K∑

k=1

∑

(i,j)∈Ω

PARAFAC2 loss for O
︷ ︸︸ ︷

L(Oijk, {UkSkV
¦}ijk)+

RNN loss
︷ ︸︸ ︷

K∑

k=1

RNN(Uk)+

low-rank for O
︷ ︸︸ ︷

Ä1∥H∥∗ + Ä2∥V∥∗ + Ä3∥W∥∗

+

approximate uniqueness constraint
︷ ︸︸ ︷

ϱ1

K∑

k=1

(
∥Uk −QkH∥2F + ϱ2∥Q

¦

k Qk − I∥2F
)
+

interpretability constraint
︷ ︸︸ ︷

K∑

k=1

c1(Sk) + c2∥V∥1 +

auxiliaryW for disentangling constraints
︷ ︸︸ ︷

ϱ3∥W −W∥2F ,

(1)

s.t. for k = 1, ...,K,

relation between S,W
︷ ︸︸ ︷

Sk = diag(W (k, :)),Sk is diagonal (2)

where H, {Sk}, I ∈ R
R×R, Qk ∈ R

Ik×R, Ω denotes the index of the non-missing entries, c1 is the nonnegativity constraint, and

c2∥V∥1 is the sparsity penalty.

Generalized PARAFAC2. The classic PARAFAC2 loss for O is the least squared loss as shown in Definition 2. EHRs

encode various types of information such as simple yes/no answers (e.g., patient has diabetes), numeric measure-

ments (e.g., blood pressure readings), and others might be counts (e.g., number of hospital visits). To accommodate

these different data types, we extend PARAFAC2 to a more generalized form by introducing a general loss func-

tion
∑K

k=1

∑
(i,j)∈Ω L(Oijk, {UkSkV

¦}ijk) with any smooth loss function L, rather than limiting it to be the least

squared loss. The capability to switch between various loss functions as shown in Table 1 allows REPAR to tailor to

different input data types.

Definition 2. (Classic PARAFAC2 model [15])

argmin
{Uk},{Sk},V

K∑

k=1

1

2
∥Ok −UkSkV

¦∥2F ,

s.t. Uk = QkH,Q¦
k Qk = I,Sk is diagonal, where Qk ∈ RIk×R is orthogonal, Ik ∈ RR×R is the identity matrix

and R is the target rank of the PARAFAC2 factorization.

RNN regularization. In order to model the temporal dependency in phenotype progression, we regard each patient’s

temporal evolution matrix Uk ∈ R
Ik×R as a multivariate time series with each variable describing the progression

of the corresponding phenotype for patient k. For each timestamp t, we use the RNN model to predict Ut
k given the

values from previous timestamps and minimize the Mean Square Error (MSE) between the real and predicted value.

A key feature of our model is that the RNN regularization is jointly optimized with the PARAFAC2 tensor factorization

to enforce the patient temporal evolution matrix is consistent with the temporal dependency captured by RNN as well

as to recover the temporal tensor. RNN regularization inherently captures long-term dependencies even though it only

regularizes the temporal evaluation matrix.

Low-rank for O. RLTM [24] can recover a tensor with missing values via a low-rank regularization function. The idea

is to separate the underlying completed tensor from the corrupted tensor where the completed part is often low-rank.

As we have previously shown, adding low-rank on O via nuclear norm constraints on the factor matrices H,V,W

can improve robustness to missing entries [1].



Algorithm 1 Optimization Framework for REPAR

Input: Input tensor O; Model parameters Ä0-Ä3, ϱ1-ϱ3; Optimization parameters ¸’s; Interpretability constraint types c1, c2, c3
and RNN sub-model; Initial rank estimation R.

1: while Not reach convergence criteria do

2: Update {Uk}, {Qk} by SGD with momentum;

3: Update RNN by SGD with momentum;

4: Update W,Sk,H by Proximal SGD with momentum;

5: Update V by Proximal averaging SGD with momentum;

6: end while

Output: Phenotype factor matrices {Uk} = {QkH}, {Sk},V.

Optimization

To solve the optimization problem in (1), REPAR follows an alternative optimization strategy (shown in Algorithm 1)

where we optimize one variable individually using SGD with all other variables fixed. The variables to be optimized

can be categorized into three groups according to whether the subproblems are purely smooth (i.e., differentiable),

proximal mapping-based smooth, or multiple non-smooth (i.e., non-differentiable). In particular, when dealing with

multiple non-smooth regularized subproblems, we introduce the proximal average-based technique as a replacement

for the existing optimization approach adopted in the previous PARAFAC2 works [1, 17]. As a result, REPAR can

take advantage of the parallel computing feature of GPU to boost efficiency. Furthermore, to improve convergence

speed, we incorporate Nesterov’s momentum, a method that helps the model learn faster and avoid getting stuck on

less optimal solutions, into the update of PARAFAC2 using SGD.

Experiments

Datasets

We use three datasets to test REPAR, which represent different types of data, including binary, categorical, and nu-

meric. Note that only REPAR changes the loss functions throughout the use of the three datasets.

MIMIC-III [25]: The ICU dataset is collected between 2001 and 2012. We keep records of patients with at least 10

hospital visits and construct a three-mode tensor. We select 405 medical NDC codes and 202 diagnosis codes that

have the highest frequency as in [11].

MIMIC-EXTRACT [26]: MIMIC-Extract is an open-source pipeline for transforming raw EHR data in MIMIC-III

into data frames that are directly usable in common machine-learning pipelines. We use the vitals labs mean table,

which contains 34,472 patients with 104 features (vital signs and laboratory measurements).

PhysioNet Sepsis Dataset [27]: PhysioNet 2019 Early Prediction of Sepsis from Clinical Data Challenge is an open-

access dataset. It contains 20,336 patients with 40 time-dependent variables such as HR, O2Sat, Temp, etc. Since most

of the features are extremely sparse, we select 6 dense features and then discretize the variables using criteria in [28].

Methods for Comparison

We compare REPAR1 with 5 baseline methods: 1) SPARTan [16] and 2) COPA [17] are two state-of-the-art PARAFAC2

methods with different temporal regularizations, 3) REPAIR [1] and 4) LogPar [18] are two state-of-the-art robust

PARAFAC2 methods to handle missing entries, 5) CNTF [21] represents each patient data separately and performs

RNN regularized regular tensor factorization. The key difference between CNTF and REPAR is that CNTF treats each

patient data separately as a regular tensor and ignores the interactions or correlations among patient groups, which can

lead to low prediction accuracy as demonstrated by the empirical results in [17] and [22].

1https://github.com/Emory-AIMS/REPAR
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Figure 2: FIT Scores Across Datasets: Comparison of FIT scores for REPAR and baseline models (SPARTan, COPA,

REPAIR, LogPar, CNTF) on datasets with 30% and 50% missing data. REPAR consistently achieves higher scores,

demonstrating superior robustness and effectiveness in handling missing entries and capturing temporal patterns.

Experiment Results

Tensor Factorization Robustness

To test the robustness of REPAR model against missing entries, we randomly omit values into the two datasets. The

original uncorrupted tensor, denoted as {Gk}, serves as the ground truth. We adopt the FIT ∈ (−∞, 1] score [29], a

measure of how well the model fits the data, as the quality measure (the higher the better):

FIT = 1−

∑K

k=1 ∥Gk −UkSkV
T ∥2

∑K

k=1 ∥Gk∥2
. (3)

We run each set for 5 different random initializations and report the average FIT . We set the missing ratio to 30% and

50% as we observe that the baselines’ FIT scores drop significantly at higher missing ratios (30% to 50%) in [1], then

we test model completion performance under different target ranks, R, from 10 to 60. As Figure 2 shows, REPAR

outperforms all the other baseline methods on all datasets under both missing ratio settings. In particular, REPAR

achieves a FIT score of 0.574 and 0.524 on MIMIC-III when the missing ratio equals 30% and 50% respectively, a

10% relative improvement when compared to the best baseline model REPAIR. REPAR shows the same outstanding

performance with 7% and 10% improvement to the best baseline model for the MIMIC-EXTRACT (REPAIR) and

Sepsis (LogPar) datasets respectively. LogPar and REPAIR perform better than CNTF, COPA, and SPARTan thanks to

their regularizations to handle missing entries. CNTF and COPA perform slightly better than SPARTan because of the

temporal smoothness regularization. LogPar outperforms REPAIR on the Sepsis dataset but is worse on MIMIC-III

and MIMIC-EXTRACT. This demonstrates the importance of appropriately tuning the loss function as Sepsis is a

binary dataset. Hence the non-negative positive-unlabeled loss in LogPar is more suitable for such data. Comparing

different missing ratios, REPAR demonstrates superior robustness when the missing ratio increases to 50% from 30%.

Though REPAIR and LogPar have low-rank regularization, they do not model the non-linear temporal information,

which is key to achieving better robustness via missing value recovery.

Multi-Attribute Phenotype Trajectories with Clinical Expert Adjudication

Compared to traditional clustering based phenotyping methods, REPAR not only can group similar patients but also

discover novel multi-attribute phenotypes which is difficult using the other methods. We demonstrate the effectiveness
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Figure 3: Multi-attribute Phenotype Trajectory: (a-b) REPAR identifies four distinct subgroups based on temperature

and systolic blood pressure trajectories, adjudicated by clinical experts. (c-g) Other methods struggle to uncover

distinct temporal patterns or generate noisier phenotype trajectories, demonstrating lower clinical interpretability.

of REPAR to find multi-attribute dynamic phenotype trajectories with the missing ratio of 30% using the Sepsis

dataset. For our visualization, we focused on patients who had 36 observations over time and set the model to identify

4 distinct patient subgroups. We selected two key measurements, temperature and systolic blood pressure. We then

assigned each patient to the phenotype best matched using the highest membership value in S. We tracked the temporal

trajectory of the average measurement values for each subgroup without post-processing the extracted phenotypes.

As shown in Figure 3a, REPAR identifies four subgroups that have clearly different temporal patterns in both temper-

ature and systolic blood pressure. Each of the 4 phenotypes was reviewed by a critical care expert. The clinical expert

matched the four groups to previously validated temperature trajectory based subgroups: 1) hyperthermic slow resolver

which exhibits a high temperature and slow decreasing trend as time increases, 2) hyperthermic fast resolver which

exhibits a high temperature and a fast decreasing trend as time increases, 3) normothermic with normal temperature,

and 4) hypothermic with low temperature. This corresponds to the temperature trajectory based patient subgroups

(phenotypes) identified in the recent work by clinical experts [7]. Correspondingly, these four groups also exhibit

different systolic blood pressure temporal patterns, namely: 1) high, increasing blood pressure, 2) high, decreasing

blood pressure, 3) normal, and 4) low-normal as shown in Figure 3b. This demonstrates the ability of REPAR for

identifying multi-attribute temporal phenotypes, which the single-attribute trajectory based methods can not capture.

Phenotype Presentation with Clinical Expert Adjudication

We present the representative phenotypes discovered by REPAR on MIMIC-III and MIMIC-EXTRACT in Table 2a

and 2b with the missing ratio set to 30%. We set the rank to 3. For MIMIC-III, which contains counts of medical

events, we identified the most frequent features associated with each subgroup (i.e., the top-weighted features from

each column of V ). For MIMIC-EXTRACT, a tensor with numerical measurements like vital signs, we identified the

most important vital signs using the top-weighted features from each column of V . We then use the S matrix to find

the patient subgroup of each phenotype and calculate the average value of the vital signs shown in the “Average value”

column. Similar to the phenotype trajectories, we do not post-process these extracted phenotypes.

A critical care expert reviewed and adjudicated the medical concepts that apply to the extracted phenotype presenta-

tions. For example, the phenotype “Abnormalities in vital signs” corresponds to patients with low oxygen saturation,

high temperature, high systolic blood pressure, and high heart rate. The “metabolic syndrome” phenotype references

patients with high glucose and high blood pressure.



Table 2: Phenotypes discovered by REPAR. The red color corresponds to diagnosis and blue color corresponds to

medications.
(a) MIMIC-III

Cardiovascular Disturbances Weight Average Value

Cardiovascular syph NEC 2.12 2.6

Coronary atherosclerosis of autologous vein bypass graft 2.03 3.4

Atrial fibrillation 1.94 5.9

Metoprolol Tartrate 1.84 1.4

Labetalol 1.73 3.8

Acetaminophen 1.64 4.9

Electrolyte Disturbances Weight Average Value

Electrolyte and fluid disorders not elsewhere classified 6.74 9.1

Functional diarrhea 5.79 8.4

Vomiting alone 4.15 14.3

Potassium Chloride 3.39 3.9

Magnesium Sulfate 2.18 10.1

Hydromorphone 1.12 2.3

Gastrointestinal Disturbances Weight Average Value

Hemorrhage of gastrointestinal tract, unspecified 19.2 2.4

Gastrointestinal vessel anomaly 17.3 3.5

Malignant neoplasm of body of stomach 16.5 4.7

Ipratropium Bromide Neb 13.9 2.1

Fentanyl Citrate 7.9 3.7

Lactulose 3.91 4.6

(b) MIMIC-EXTRACT

Abnormalities in Vital Signs Weight Average Value

Oxygen Saturation 0.91 85

Temperature 0.82 38.5

Systolic Blood Pressure 0.79 153.1

Heart Rate 0.61 115

Metabolic Syndrome Weight Average Value

Glucose 7.54 150

Systolic Blood Pressure 4.93 153.1

Mean Blood Pressure 3.41 95

Diastolic Blood Pressure 2.73 82

Abnormalities in Blood Counts and Serum Electrolytes Weight Average Value

Mean Corpuscular Hemoglobin Concentration 2.14 30.8

Sodium 1.41 135.2

Mean Corpuscular Hemoglobin 1.30 30.8

Chloride 1.03 103

Downstream Prediction Analysis

We further evaluate the derived phenotypes’ predictability power via a downstream prediction task. We predict in-

hospital mortality on MIMIC-III and MIMIC-EXTRACT datasets using the in-hospital death flag, and predict if a

patient will have sepsis on PhysioNet Sepsis dataset. We split the data with a proportion of 8:2 as training and test

sets and use PR-AUC (Area Under the Precision-Recall Curve) score to evaluate the predictive power. A logistic

regression model is trained on the patient importance membership matrix Sk. Besides tensor models, we also include

a non-tensor prediction model. We adopt Dipole [30], an attention-based RNN model for diagnosis prediction. We

vary the percentage of visit length used for prediction to mimic this real-world setting.

As shown in Figure 4, REPAR outperforms all the other methods. When the visit length ratio is 60%, REPAR outper-

forms the best baseline methods by 8%, 9% and 16% in Figure 4b, 4d, and 4f respectively. This demonstrates strong

predictability even with missing values. Due to the RNN regularization, REPAR can learn the hidden non-linear

temporal dependency and patterns, which can be used to improve missing value recovery and predictability. CNTF,

COPA and SPARTan perform worse than REPAR, REPAIR, and LogPar due to the lack of low-rank regularization

to handle missing values. The non-tensor based Dipole model performs the worst on all 3 datasets because the input

data is sparse and noisy, demonstrating the benefit of tensor factorization in filtering out the noise and identifying the

important and inherent features from the data.

Conclusion

We proposed REPAR, an RNN-Regularized Robust PARAFAC2 for Irregular Temporal Tensor Factorization model

for capturing the complex temporal relationships and addressing the missing values in temporal EHR. REPAR has a

new hybrid optimization framework using stochastic gradient descent and proximal average that can handle multiple

regularizations and generalized loss functions. We conducted extensive experiments on EHR datasets to demonstrate

that REPAR can robustly extract meaningful and high predictability phenotypes in the presence of missing data. The

results are verified by the clinical expert on our team to discover meaningful medical concepts and identify patient

subgroups for complex disease such as sepsis. Future work directions may include validating these phenotypes across

multiple hospitals to ensure they are consistently meaningful; jointly optimizing tensor factorization and various pre-

diction tasks together to further enhance predictability; incorporating more advanced architectures like Transformers

to capture more complex temporal interactions, and integrating REPAR into hospital decision-support systems.

REPAR’s ability to uncover complex temporal phenotypes has significant practical implications. For instance, in

ICUs, REPAR could assist in real-time monitoring of patient trajectories to identify those at risk of deteriorating. Its

robustness to missing data is particularly valuable in clinical settings where measurement frequencies vary, ensuring
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(a) MIMIC-III (30%)
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(b) MIMIC-III (50%)
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(c) Extract (30%)
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(d) Extract (50%)
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(e) Sepsis(30%)
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(f) Sepsis (50%)

Figure 4: PR-AUC for downstream prediction tasks on the different datasets with the missing ratio in parenthesis

(missing percentage %). For MIMIC-III and MIMIC-Extract, the classification task is mortality prediction while

Sepsis is sepsis prediction.

reliable insights even in sparse datasets. Additionally, the phenotypes identified by REPAR can inform personalized

treatment plans, enabling precision medicine approaches for complex diseases like sepsis and chronic conditions

requiring long-term management.
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