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Abstract

Electronic health records (EHRs) contain diverse patient data with varying visit frequencies. While irregular tensor
factorization techniques such as PARAFAC2 have been used for extracting meaningful medical concepts from EHRs,
existing methods fail to capture non-linear and complex temporal patterns and struggle with missing entries. In this
paper, we propose REPAR, an RNN RE gularized Robust PARAFAC2 method to model complex temporal dependencies
and enhance robustness in the presence of missing data. Our approach employs Recurrent Neural Networks (RNNs)
for temporal regularization and a low-rank constraint for robustness, enabling precise patient subgroup identification
and improved clinical decision-making in noisy EHR data. We design a hybrid optimization framework that handles
multiple regularizations and various data types. REPAR is evaluated on 3 real-world EHR datasets, demonstrating
improved reconstruction and robustness under missing data. Two case studies further showcase REPAR’s ability to
extract meaningful dynamic phenotypes and enhance phenotype predictability from noisy temporal EHRs.

Introduction

Recent years have witnessed a global interest in mining electronic health records (EHRs) to improve healthcare and
advance medical research [1, 2]. EHRs consist of detailed information such as diagnoses, laboratory test results, and
medication prescriptions for large patient populations. However, directly using raw EHR data is challenging due to the
complex structure associated with its longitudinal and multi-dimensional nature as well as the enormity of the data.
Clinical scientists are interested in breaking apart heterogeneous syndromes into subgroups, i.e. phenotypes, such as
diseases and disease subtypes, for better understandings of the differences in biological mechanisms and treatment
responses, which could lead to more effective and precise treatment [3]. In medical contexts, the word “phenotype”
refers to clinically relevant variations in morphology, physiology, or behavior. The analysis of phenotype plays a key
role in clinical practice and medical research [4]. Therefore, raw EHR data are often mapped to phenotypes [5], which
can be used for cohort (patient subgroup) selection and healthcare quality measurement, grouping patients with similar
symptoms or treatment responses, enabling personalized care.

Sepsis Phenotype Example. Sepsis is a heterogeneous syndrome characterized by a dysregulated immunological re-
sponse to infection that results in organ dysfunction and often death. Phenotyping in sepsis can help identify patient
subgroups who have different clinical characteristics, prognoses, and treatment responses, thus enabling a precision
approach to treatment. However, traditional clustering-based phenotyping methods [6, 7] cannot fully capture the
complex temporal and inter-attribute dependencies of the data and are not robust to missing data.

EHR data often contains multiple types of information that are interconnected — imagine a multidimensional array
(or tensor) where each dimension represents different aspects of patient care, such as symptoms, treatments, and time
[8]. Tensor factorization breaks down a tensor into simpler components (rank-one tensors), enabling the extraction of
meaningful patterns and relationships across dimensions for improved analysis and interpretation. Unlike traditional
clustering-based approaches, tensor factorization-based computational phenotyping models not only cluster patients
into subgroups, but also capture interactions between multiple attributes (e.g., specific procedures used to treat a
disease) to extract concise and potentially more interpretable multiattribute patterns in latent spaces [9, 10, 11]. Sev-
eral established methods exist for analyzing regular tensors where all dimensions are uniformly structured (e.g., data
measurements at consistent time intervals), including Canonical Polyadic (CP) [12], Tucker [13], and Singular Value
Decomposition (SVD) [14]. However, EHR data often present a challenge because patient visits and events occur at
irregular time intervals. EHR records are also prone to missing observations due to variations in clinical practice that
affect the frequency of measurements (e.g., a patient will have labs collected more often in intensive care units (ICUs)
than in regular medical wards). Most existing methods may not capture the true patterns in the data effectively.
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(a) PARAFAC?2 overview (b) REPAR overview
Figure 1: (a) PARAFAC?2 breaks irregular patient data into three components: temporal evolution (Uy,), health patterns
(phenotypes) (V), and membership levels (S). This reveals important trends and interactions in the data. (b) REPAR
enhances PARAFAC2 by using RNNs to model time-based health changes and a low-rank constraint to handle missing
and noisy data more effectively.

Recently, PARAFAC?2, an irregular tensor factorization method [15], has been popularized for extracting meaningful
phenotypes from such temporal EHR (illustrated in Figure 1a). A scalable PARAFAC2 model was proposed in [16] to
handle large and sparse data. Various constraints were introduced to improve the interpretability of the factor matrices
for more meaningful phenotype extraction [17]. In addition, robust PARAFAC2 models have been studied in [1, 18]
to handle missing and erroneous entries. Despite the advances in PARAFAC2, two fundamental challenges remain.
First, existing PARAFAC2 models only impose linear and human-defined temporal regularization functions, which
fail to fully capture the non-linear and complex temporal information in EHRs. Second, current models are designed
only for a single data type — numeric or binary, and lack flexibility for generalized data types.

To address these limitations, we propose an RNN REgularized Robust PARAFAC2 for Irregular Temporal Tensor
Factorization, REPAR, to capture complex temporal dependencies and improve robustness, phenotype representations
and predictability of tensor factorization. As shown in Figure 1b, REPAR starts with patient data that may have
missing or inconsistent entries, O, and assumes that there is a complete underlying version of the data, X. To
reconstruct this data, we use RNNs to model how patient health evolves over time and capture the complex temporal
dependencies, along with low-rank constraints that simplify the data into its most important components, and then
extract factor matrices Uy, Si, V' T for further downstream analysis and phenotype interpretation. Our hypothesis is
that by capturing the more complex temporal information, it will be more robust to missing entries in the original
tensor (together with the low-rank constraint), and also achieve better predictability for the extracted phenotypes. This
helps in better understanding patient subgroups and making predictions. In addition, we introduce a new optimization
framework that can flexibly handle any smooth loss function, as opposed to the sole choice of the least square norm,
to better suit input tensors with various data types.

In summary, we list our main contributions below:
1. We propose REPAR, a robust RNN and low-rank regularized PARAFAC?2 tensor factorization method, to capture
the complex temporal dependencies and enhance the robustness of the phenotype representations.

2. We propose a new hybrid optimization framework using stochastic gradient descent (SGD) and proximal average
to handle multiple regularizations and a generalized loss function to support various data types.

3. We evaluate REPAR on three real-world temporal EHR datasets, which verify the improved recovery, phenotype
representation, and predictability in the presence of missing values. Through downstream prediction analysis
and interpretation of the dynamic subphenotype trajectory, we demonstrate that REPAR can robustly extract
meaningful and high-predictability phenotypes that capture and distinguish different temporal patterns.

Related Work

SPARTan [16] scaled PARAFAC?2 to large and sparse irregular tensors by introducing a sparsity aware computation
module to reduce the per-iteration cost. Following SPARTan, COPA [17] introduced various constraints/regularizations
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to improve the interpretability of the factor matrices. For example, COPA proposed the M-spline constraint [19] to the
temporal evolution matrix, Uy, to capture the temporal smoothness, non-negative constraint to S, to ensure phenotype
memberships are non-negative, and ¢;-norm regularization of V to induce sparse phenotype definitions. Despite their
improvements in computational efficiency and output interpretability, COPA and SPARTan did not explicitly address
the problem of missing entries in the input tensor, which severely limits them from more robust clinical usage.

REPAIR [1] and LogPar [18] address missing entries in PARAFAC2. Inspired by the robust low-rank tensor mini-
mization (RLTM), the state-of-the-art mechanism for dealing with missing and error entries, REPAIR [1] separated
the corrupted input tensor into a clean, completed tensor and an error tensor. Since the clean tensor is often low-rank,
REPAIR added low-rank regularization (i.e., nuclear norm) on the clean tensor and sparsity regularization (¢1-norm
regularization) on the error tensor. It then proposed a novel two-phase optimization alternative direction method of
multipliers (ADMM) approach to solve the low-rank regularized PARAFAC2 model. LogPar considered binary data
with a one-class missing value scenario. LogPar modeled the binary irregular tensor with the Bernoulli distribution
parameterized by an underlying real-valued tensor. Then they approximated the underlying tensor with a positive-
unlabeled learning loss function to account for the missing values. However, both models are suitable for one type of
data and cannot be easily adapted for composite regularization of the factor matrices.

tPARAFAC?2 [20] tracks evolving patterns in incomplete temporal data. It extends PARAFAC2 with temporal smooth-
ness regularization to capture time-evolving factors and incorporates statistical updates to handle missing values.
However, tPARAFAC2’s regularization assumes gradual and linear changes across time points, making it less suitable
for capturing more complex, non-linear temporal patterns that can arise in certain real-world EHR datasets.

CNTF [21] treated each patient’s data as an individual tensor, used CP to find the factor matrices and RNN to regu-
larize the latent factor evolution. The RNN model was used to model the non-linear temporal dependency in patient
progressions and can also integrate higher-order information. However, CNTF assumes interactions among modalities,
which may not always be the case, as demonstrated by the empirical results in [17] and [22].

Proposed Method

In this section, we present the REPAR model and its optimization, which has the following appealing features that
distinguish it from previous PARAFAC2 methods. (1) It accommodates a wide selection of regularizations, includ-
ing statistical learning-based (e.g., [y norm and nuclear norm), deep learning-based (e.g., RNN regularization), and
composite, to better capture the intrinsic nature of the irregular temporal EHR data. (2) It generalizes the loss func-
tions from the sole choice of the least square norm to any smooth loss function, which better suits input tensors with
various data types. We summarize popular loss functions for common data types in Table 1. (3) It introduces a new
optimization framework geared to fully exploit the parallel computing capability of modern GPUs to boost efficiency.
Furthermore, it incorporates Nesterov’s momentum into the updates of REPAR to achieve faster convergence.

Problem Formulation

The goal of REPAR is to analyze patient data in a way that uncovers hidden patterns while handling missing or
inconsistent information. We formalize the objective function for REPAR model in Definition 1. The PARAFAC2
loss for O ensures the reconstructed tensor closely approximates the original tensor. The low-rank for O enforces the
underlying complete tensor to be separated from missing values and helps the model focus on the essential patterns in
the data while filling in the gaps caused by missing entries. The RNN loss captures the temporal patterns in the data, and
an approximate uniqueness constraint ensures tensor factorization uniqueness. For EHR phenotype discovery, various
constraints can be imposed on the factorization matrices to yield meaningful and high-interpretability phenotypes.
REPAR accommodates such interpretability-purposed constraints in Equation (1) including non-negativity on S via
c1(Sk) and sparsity on 'V via co||V||1. The process ensures that the results are clear, interpretable, and useful for
identifying patient subgroups (phenotypes).
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Table 1: Examples of Tensor Data Types and Loss Functions

Data Type Loss Function

Binary Positive Unlabeled loss [18]
Count Poisson Loss [23]
Numerical Least Square Loss

Strictly positive data  Rayleigh Loss [23]

Definition 1. (REPAR objective function)

RNN loss
. PARAFAC? loss for O /K_/% low-rank for O
argmin > > L(Ouk, {USkV ' }Yijn) + D RNN(U) + pu|[H[« + p2[ V| + ps W]
Qe HSEV 21 (15)en k=1 1)
approximate uniqueness constraint interpretability constraint _ (
K K auxiliary w for disentangling constraints
+o > (IUk - QeH[F + 0llQi Qi — T[7) + > _ca(Sk) + 2| VIh+ o[ W-W[3 |
k=1 k=1
relation between 8 ;W

st.fork=1,.. K, S, = diag(W(k,:)), S is diagonal 2)

where H, {Si},1 € REX R, Qi € RIXE Q) denotes the index of the non-missing entries, ci is the nonnegativity constraint, and
c2|| V|1 is the sparsity penalty.

Generalized PARAFAC2. The classic PARAFAC2 loss for O is the least squared loss as shown in Definition 2. EHRs
encode various types of information such as simple yes/no answers (e.g., patient has diabetes), numeric measure-
ments (e.g., blood pressure readings), and others might be counts (e.g., number of hospital visits). To accommodate
these different data types, we extend PARAFAC?2 to a more generalized form by introducing a general loss func-
tion Zszl Z(i,j)eﬂ L(Oyjk, {Uyg SkVT}ijk) with any smooth loss function L, rather than limiting it to be the least
squared loss. The capability to switch between various loss functions as shown in Table 1 allows REPAR to tailor to
different input data types.

Definition 2. (Classic PARAFAC2 model [15])

K
. 1
argmin E §\|Ok—UkSkVT||%,
{Uk}ASk 1V .5

s.t. U, = QiH, Q,;'—Qk = 1, Sy, is diagonal, where Q;, € R'** ! s orthogonal, Ij, € RF*® is the identity matrix
and R is the target rank of the PARAFAC?2 factorization.

RNN regularization. In order to model the temporal dependency in phenotype progression, we regard each patient’s
temporal evolution matrix U, € R’** % as a multivariate time series with each variable describing the progression
of the corresponding phenotype for patient k. For each timestamp ¢, we use the RNN model to predict U, given the
values from previous timestamps and minimize the Mean Square Error (MSE) between the real and predicted value.

A key feature of our model is that the RNN regularization is jointly optimized with the PARAFAC2 tensor factorization
to enforce the patient temporal evolution matrix is consistent with the temporal dependency captured by RNN as well
as to recover the temporal tensor. RNN regularization inherently captures long-term dependencies even though it only
regularizes the temporal evaluation matrix.

Low-rank for O. RLTM [24] can recover a tensor with missing values via a low-rank regularization function. The idea
is to separate the underlying completed tensor from the corrupted tensor where the completed part is often low-rank.
As we have previously shown, adding low-rank on O via nuclear norm constraints on the factor matrices H, V, W
can improve robustness to missing entries [1].
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Algorithm 1 Optimization Framework for REPAR

Input: Input tensor O; Model parameters po-ps, 01-03; Optimization parameters 7’s; Interpretability constraint types c1, c2, c3
and RNN sub-model; Initial rank estimation R.
1: while Not reach convergence criteria do
2:  Update {U}, {Qr} by SGD with momentum;
3:  Update RNN by SGD with momentum;
4 Update W, Sy, H by Proximal SGD with momentum;
5. Update V by Proximal averaging SGD with momentum;
6: end while
Output: Phenotype factor matrices {U} = {QrH}, {Si}, V.

Optimization

To solve the optimization problem in (1), REPAR follows an alternative optimization strategy (shown in Algorithm 1)
where we optimize one variable individually using SGD with all other variables fixed. The variables to be optimized
can be categorized into three groups according to whether the subproblems are purely smooth (i.e., differentiable),
proximal mapping-based smooth, or multiple non-smooth (i.e., non-differentiable). In particular, when dealing with
multiple non-smooth regularized subproblems, we introduce the proximal average-based technique as a replacement
for the existing optimization approach adopted in the previous PARAFAC2 works [1, 17]. As a result, REPAR can
take advantage of the parallel computing feature of GPU to boost efficiency. Furthermore, to improve convergence
speed, we incorporate Nesterov’s momentum, a method that helps the model learn faster and avoid getting stuck on
less optimal solutions, into the update of PARAFAC2 using SGD.

Experiments

Datasets

We use three datasets to test REPAR, which represent different types of data, including binary, categorical, and nu-
meric. Note that only REPAR changes the loss functions throughout the use of the three datasets.

MIMIC-III [25]: The ICU dataset is collected between 2001 and 2012. We keep records of patients with at least 10
hospital visits and construct a three-mode tensor. We select 405 medical NDC codes and 202 diagnosis codes that
have the highest frequency as in [11].

MIMIC-EXTRACT [26]: MIMIC-Extract is an open-source pipeline for transforming raw EHR data in MIMIC-IIT
into data frames that are directly usable in common machine-learning pipelines. We use the vitals labs mean table,
which contains 34,472 patients with 104 features (vital signs and laboratory measurements).

PhysioNet Sepsis Dataset [27]: PhysioNet 2019 Early Prediction of Sepsis from Clinical Data Challenge is an open-
access dataset. It contains 20,336 patients with 40 time-dependent variables such as HR, O2Sat, Temp, etc. Since most
of the features are extremely sparse, we select 6 dense features and then discretize the variables using criteria in [28].

Methods for Comparison

We compare REPAR! with 5 baseline methods: 1) SPARTan [16] and 2) COPA [17] are two state-of-the-art PARAFAC2
methods with different temporal regularizations, 3) REPAIR [1] and 4) LogPar [18] are two state-of-the-art robust
PARAFAC2 methods to handle missing entries, 5) CNTF [21] represents each patient data separately and performs
RNN regularized regular tensor factorization. The key difference between CNTF and REPAR is that CNTF treats each
patient data separately as a regular tensor and ignores the interactions or correlations among patient groups, which can
lead to low prediction accuracy as demonstrated by the empirical results in [17] and [22].

Ihttps://github.com/Emory- AIMS/REPAR
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Figure 2: FIT Scores Across Datasets: Comparison of FIT scores for REPAR and baseline models (SPARTan, COPA,
REPAIR, LogPar, CNTF) on datasets with 30% and 50% missing data. REPAR consistently achieves higher scores,
demonstrating superior robustness and effectiveness in handling missing entries and capturing temporal patterns.

Experiment Results

Tensor Factorization Robustness

To test the robustness of REPAR model against missing entries, we randomly omit values into the two datasets. The
original uncorrupted tensor, denoted as { Gy}, serves as the ground truth. We adopt the F'IT € (—o0, 1] score [29], a
measure of how well the model fits the data, as the quality measure (the higher the better):

Y G = UkS VT2

FIT =1 o
k=1 Gkl

3)

We run each set for 5 different random initializations and report the average F'I'T. We set the missing ratio to 30% and
50% as we observe that the baselines’ FIT scores drop significantly at higher missing ratios (30% to 50%) in [1], then
we test model completion performance under different target ranks, R, from 10 to 60. As Figure 2 shows, REPAR
outperforms all the other baseline methods on all datasets under both missing ratio settings. In particular, REPAR
achieves a FIT score of 0.574 and 0.524 on MIMIC-III when the missing ratio equals 30% and 50% respectively, a
10% relative improvement when compared to the best baseline model REPAIR. REPAR shows the same outstanding
performance with 7% and 10% improvement to the best baseline model for the MIMIC-EXTRACT (REPAIR) and
Sepsis (LogPar) datasets respectively. LogPar and REPAIR perform better than CNTF, COPA, and SPARTan thanks to
their regularizations to handle missing entries. CNTF and COPA perform slightly better than SPARTan because of the
temporal smoothness regularization. LogPar outperforms REPAIR on the Sepsis dataset but is worse on MIMIC-IIT
and MIMIC-EXTRACT. This demonstrates the importance of appropriately tuning the loss function as Sepsis is a
binary dataset. Hence the non-negative positive-unlabeled loss in LogPar is more suitable for such data. Comparing
different missing ratios, REPAR demonstrates superior robustness when the missing ratio increases to 50% from 30%.
Though REPAIR and LogPar have low-rank regularization, they do not model the non-linear temporal information,
which is key to achieving better robustness via missing value recovery.

Multi-Attribute Phenotype Trajectories with Clinical Expert Adjudication

Compared to traditional clustering based phenotyping methods, REPAR not only can group similar patients but also
discover novel multi-attribute phenotypes which is difficult using the other methods. We demonstrate the effectiveness
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Figure 3: Multi-attribute Phenotype Trajectory: (a-b) REPAR identifies four distinct subgroups based on temperature
and systolic blood pressure trajectories, adjudicated by clinical experts. (c-g) Other methods struggle to uncover
distinct temporal patterns or generate noisier phenotype trajectories, demonstrating lower clinical interpretability.

of REPAR to find multi-attribute dynamic phenotype trajectories with the missing ratio of 30% using the Sepsis
dataset. For our visualization, we focused on patients who had 36 observations over time and set the model to identify
4 distinct patient subgroups. We selected two key measurements, temperature and systolic blood pressure. We then
assigned each patient to the phenotype best matched using the highest membership value in S. We tracked the temporal
trajectory of the average measurement values for each subgroup without post-processing the extracted phenotypes.

As shown in Figure 3a, REPAR identifies four subgroups that have clearly different temporal patterns in both temper-
ature and systolic blood pressure. Each of the 4 phenotypes was reviewed by a critical care expert. The clinical expert
matched the four groups to previously validated temperature trajectory based subgroups: 1) hyperthermic slow resolver
which exhibits a high temperature and slow decreasing trend as time increases, 2) hyperthermic fast resolver which
exhibits a high temperature and a fast decreasing trend as time increases, 3) normothermic with normal temperature,
and 4) hypothermic with low temperature. This corresponds to the temperature trajectory based patient subgroups
(phenotypes) identified in the recent work by clinical experts [7]. Correspondingly, these four groups also exhibit
different systolic blood pressure temporal patterns, namely: 1) high, increasing blood pressure, 2) high, decreasing
blood pressure, 3) normal, and 4) low-normal as shown in Figure 3b. This demonstrates the ability of REPAR for
identifying multi-attribute temporal phenotypes, which the single-attribute trajectory based methods can not capture.

Phenotype Presentation with Clinical Expert Adjudication

We present the representative phenotypes discovered by REPAR on MIMIC-III and MIMIC-EXTRACT in Table 2a
and 2b with the missing ratio set to 30%. We set the rank to 3. For MIMIC-III, which contains counts of medical
events, we identified the most frequent features associated with each subgroup (i.e., the top-weighted features from
each column of V'). For MIMIC-EXTRACT, a tensor with numerical measurements like vital signs, we identified the
most important vital signs using the top-weighted features from each column of V. We then use the S matrix to find
the patient subgroup of each phenotype and calculate the average value of the vital signs shown in the “Average value”
column. Similar to the phenotype trajectories, we do not post-process these extracted phenotypes.

A critical care expert reviewed and adjudicated the medical concepts that apply to the extracted phenotype presenta-
tions. For example, the phenotype “Abnormalities in vital signs” corresponds to patients with low oxygen saturation,
high temperature, high systolic blood pressure, and high heart rate. The “metabolic syndrome” phenotype references
patients with high glucose and high blood pressure.
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Table 2: Phenotypes discovered by REPAR. The red color corresponds to diagnosis and blue color corresponds to
medications.
(a) MIMIC-IIT

Cardiovascular Disturbances Weight Average Value

Cardiovascular syph NEC 2.12 2.6 (b) MIMIC-EXTRACT

Coronary atherosclerosis of autologous vein bypass graft 2.03 3.4

Atrial fibrillation 1.94 5.9 Abnormalities in Vital Signs Weight Average Value
Metoprolol Tartrate 1.84 1.4 Oxygen Saturation 0.91 85
Labetalol 1.73 38 Temperature 0.82 38.5
Acetaminophen 1.64 4.9 Systolic Blood Pressure 0.79 153.1
Electrolyte Disturbances Weight Average Value Heart Rate 0.61 115
Electrolyte and fluid disorders not elsewhere classified 6.74 9.1 Metabolic Syndrome Weight Average Value
Functional diarrhea 5.79 8.4 Glucose 7.54 150
Vomiting alone 4.15 14.3 Systolic Blood Pressure 4.93 153.1
Potassium Chloride 3.39 39 Mean Blood Pressure 3.41 95
Magnesium Sulfate 2.18 10.1 Diastolic Blood Pressure 273 82
Hydromorphone 1.12 2.3 Abnormalities in Blood Counts and Serum Electrolytes Weight Average Value
Gastrointestinal Disturbances Weight Average Value Mean Corpuscular Hemoglobin Concentration 2.14 30.8
Hemorrhage of gastrointestinal tract, unspecified 19.2 24 Sodium 141 135.2
Gastrointestinal vessel anomaly 17.3 35 Mean Corpuscular Hemoglobin 1.30 3038
Malignant neoplasm of body of stomach 16.5 4.7 Chloride 1.03 103
Ipratropium Bromide Neb 139 2.1

Fentanyl Citrate 7.9 3.7

Lactulose 391 4.6

Downstream Prediction Analysis

We further evaluate the derived phenotypes’ predictability power via a downstream prediction task. We predict in-
hospital mortality on MIMIC-III and MIMIC-EXTRACT datasets using the in-hospital death flag, and predict if a
patient will have sepsis on PhysioNet Sepsis dataset. We split the data with a proportion of 8:2 as training and test
sets and use PR-AUC (Area Under the Precision-Recall Curve) score to evaluate the predictive power. A logistic
regression model is trained on the patient importance membership matrix Sg. Besides tensor models, we also include
a non-tensor prediction model. We adopt Dipole [30], an attention-based RNN model for diagnosis prediction. We
vary the percentage of visit length used for prediction to mimic this real-world setting.

As shown in Figure 4, REPAR outperforms all the other methods. When the visit length ratio is 60%, REPAR outper-
forms the best baseline methods by 8%, 9% and 16% in Figure 4b, 4d, and 4f respectively. This demonstrates strong
predictability even with missing values. Due to the RNN regularization, REPAR can learn the hidden non-linear
temporal dependency and patterns, which can be used to improve missing value recovery and predictability. CNTF,
COPA and SPARTan perform worse than REPAR, REPAIR, and LogPar due to the lack of low-rank regularization
to handle missing values. The non-tensor based Dipole model performs the worst on all 3 datasets because the input
data is sparse and noisy, demonstrating the benefit of tensor factorization in filtering out the noise and identifying the
important and inherent features from the data.

Conclusion

We proposed REPAR, an RNN-Regularized Robust PARAFAC?2 for Irregular Temporal Tensor Factorization model
for capturing the complex temporal relationships and addressing the missing values in temporal EHR. REPAR has a
new hybrid optimization framework using stochastic gradient descent and proximal average that can handle multiple
regularizations and generalized loss functions. We conducted extensive experiments on EHR datasets to demonstrate
that REPAR can robustly extract meaningful and high predictability phenotypes in the presence of missing data. The
results are verified by the clinical expert on our team to discover meaningful medical concepts and identify patient
subgroups for complex disease such as sepsis. Future work directions may include validating these phenotypes across
multiple hospitals to ensure they are consistently meaningful; jointly optimizing tensor factorization and various pre-
diction tasks together to further enhance predictability; incorporating more advanced architectures like Transformers
to capture more complex temporal interactions, and integrating REPAR into hospital decision-support systems.

REPAR'’s ability to uncover complex temporal phenotypes has significant practical implications. For instance, in
ICUs, REPAR could assist in real-time monitoring of patient trajectories to identify those at risk of deteriorating. Its
robustness to missing data is particularly valuable in clinical settings where measurement frequencies vary, ensuring
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Figure 4: PR-AUC for downstream prediction tasks on the different datasets with the missing ratio in parenthesis
(missing percentage %). For MIMIC-III and MIMIC-Extract, the classification task is mortality prediction while
Sepsis is sepsis prediction.

reliable insights even in sparse datasets. Additionally, the phenotypes identified by REPAR can inform personalized
treatment plans, enabling precision medicine approaches for complex diseases like sepsis and chronic conditions
requiring long-term management.
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