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ABSTRACT

Accurate prediction of repair durations is a challenge in
product maintenance due to its implications for resource
allocation, customer satisfaction, and operational performance.
This study aims to develop a deep learning framework to help
fleet repair shops accurately categorize repair time given
product historical data. The study uses an automobile repair and
maintenance dataset and creates an end-to-end predictive
framework by employing a multi-head attention network
designed for tabular data. The developed framework combines
categorical information, transformed through embeddings and
attention mechanisms, with numerical historical data to
facilitate integration and learning from diverse data features. A
weighted loss function is introduced to overcome class
imbalance issues in large datasets. Moreover, an online learning
strategy is used for continuous incremental model updates to
maintain  predictive accuracy in evolving operational
environments. QOur empirical findings demonstrate that the
multi-head  attention — mechanism  extracts  meaningful
interactions between vehicle identifiers and repair types
compared to a feed-forward neural network. Also, combining
historical maintenance data with an online learning strategy
facilitates real-time adjustments to changing patterns and
increases the model’s predictive performance on new data. The
model is tested on real-world repair data spanning 2013 to 2020
and achieves an accuracy of 78%, with attention weight analyses
illustrating feature interactions.
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Data, Deep Learning, Online Learning, Transformer.
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1. BACKGROUND

Lifecycle data provides a complete record of a product’s
history, including its design, manufacturing details, operational
performance, failure events, and repair records. This information
is valuable for making end-of-use decisions, optimizing
maintenance schedules, and guiding repair strategies [1]. Also,
lifecycle data helps assess repair complexity and predict the time
required to service different products. Since lifecycle data is
generated throughout the entire product lifespan, the data might
have diverse formats, such as numerical values, textual records,
and sensor-related data [2]. This heterogeneity creates a wide
range of analytical and functional applications. Variations in
lifecycle data, including information about the product design,
component accessibility, and historical failures, lead to different
repair decision patterns and influence repair duration [3].

The concept of repairability has gained significant attention
in recent years, especially with the growing influence of the
Right to Repair movement [4]. Although reliability has long
received attention in the literature, it differs from repairability.
Reliability concerns estimating product lifespan or predicting
failure time [5], whereas repairability refers to the ease of
maintenance and restoration after failure. Repair data has been
used to estimate the time between failures and schedule
preventive maintenance, but its applications extend beyond
failure prediction [6]. It also serves as an essential measure of
product longevity and design performance.

To quantify these aspects, researchers have developed
repairability indices [7], which assess how factors such as
modular design [8], ease of disassembly [9], and spare part
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availability influence repair costs and turnaround times [10].
Learning models are used to analyze equipment wear and
optimize maintenance schedules based on real-time sensor data
and historical records [11]. In aerospace, predictive analytics
applied to aircraft component lifecycles has improved flight
safety and maintenance cost [12]. Other industries, such as
healthcare and consumer electronics, have used lifecycle data to
improve maintenance planning and reduce downtime [13, 14].

Prior studies have developed predictive maintenance
techniques that integrate lifecycle data with machine learning to
forecast failure events [15], estimate remaining useful life [16],
and optimize maintenance intervals [17]. However, much of the
previous research has focused on predicting failures before they
happen; less attention has been given to estimating repair
durations and how long it takes to fix a product once a failure
occurs. This study addresses that gap using machine learning to
improve repair time predictions.

Accurate prediction of repair durations is essential for
optimizing automotive maintenance management. Precise
forecasts directly affect resource allocation, reduce operational
costs, and improve customer satisfaction by minimizing service
delays [18]. However, achieving reliable predictions is
challenging due to dynamic factors such as heterogeneous data
types (e.g., categorical attributes, numerical maintenance
histories) and temporal shifts in repair patterns [19, 20]. Factors
such as class imbalance when categorizing repair durations into
discrete intervals can also affect forecasting [21]. Thus, solutions
should process multi-feature data and handle evolving
workflows.

Existing approaches for repair duration prediction span
statistical, ensemble, and deep learning methods. Classical
techniques, including survival analysis and linear regression,
model repair times as time-to-event or continuous outcomes, but
often underperform with high-dimensional categorical data [22].
Ensemble methods such as XGBoost and LightGBM address
these limitations by handling nonlinear feature interactions, but
their static training paradigms limit interpretability and
applicability in streaming data scenarios [23-25]. Recent
advances in deep learning, particularly Transformer-based
architectures, offer promising improvements. Models such as
TabTransformer leverage self-attention mechanisms to
contextualize categorical embeddings [26]. Another model
named TabNet designs sequential attention that achieves state-
of-the-art accuracy in tabular data tasks while providing
interpretable feature attributions [27]. Nevertheless, existing
frameworks do not incorporate mechanisms for continuous
model updates, a critical gap in maintenance where data
distributions shift over product fleets and repair technologies.

Besides seeking to predict repair durations accurately from
existing data, it is necessary to preserve model performance as
new data arrive. Online learning refers to a machine learning
approach where models update as new data becomes available,
rather than training once on a static dataset [28]. For repair shops,
online learning strategy is valuable as it helps prediction models
adjust to patterns in repair complexity, parts availability, and
technician expertise [29]. In automotive repair, online learning

helps maintenance facilities improve operations by providing
accurate time estimates based on real-world repair outcomes.
This research follows an input-update model, in which new
repair records are continuously fed into the system to modify
predictions [30]. This strategy is designed for repair shops with
varying workloads and changing vehicles to maintain model
relevancy without requiring complete retraining.

This research develops an end-to-end attention-based model
with integrated online learning for repair duration classification.
Figure 1 illustrates the resulting framework for predicting the
repair duration. The framework comprises raw data processing,
model building, prediction, and online learning. Initially, raw
data are integrated and go through preprocessing to generate
structured inputs. These inputs are fed into a multi-head attention
model that utilizes scaled dot-product attention to extract
complex interactions between features. Then, an online learning
mechanism incrementally updates the pre-trained model with
incoming data to maintain high accuracy and flexibility in real-
world scenarios. Finally, the predictive outcomes, classified as
duration-based repair categories, provide guidelines for
stakeholders such as customers and repair shops. The
contribution of this research can be summarized as follows:

e Build an architecture with parallel categorical embedding
and a multi-head attention Transformer encoder. The model
generates dense representations of vehicle attributes to
extract semantic relationships and self-attention layers to
learn feature interactions. In addition, embedded
categorical features are concatenated with historical
numerical data to improve input representation.

e Deploy online learning to incremental parameter updates
via mini-batch gradient descent. This facilitates real-time
adjustment to new repair patterns without catastrophic
forgetting.

2. DATASET AND FEATURE ENGINEERING

The data consists of 9,103 repair records for vehicles
produced by the same manufacturer. Table 1 provides an
overview of the dataset, which includes six main attributes:
vehicle identification (VIN), production year, model, repair
description, the start and end dates of each repair event, and cost.

TABLE 1: DATASET EXPLANATION

Feature Description Characteristic
Name
VIN Vehicle identification 531 unique values
number
Year Vehicle production Formatted as year
year
Model Vehicle model 10 unique values
Repair Description of the 12 unique values
Description repair event
Start Date Start date for a repair Formatted as
event month day year
End Date End date for a repair Formatted as
event month day year
Cost Total repair cost Numeric value
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FIGURE 1: PREDICTIVE REPAIR MANAGEMENT DATA FLOW

Since there are limited features present in the dataset, we use
feature engineering to extract and compute additional features
that complement the information. Table 2 explains the extracted
features. The Age feature is calculated as the difference between
the vehicle’s production and repair years. Number of Repairs
tracks how many prior repairs the vehicle underwent before the
current event. Time Between Repairs measures the days elapsed
since the last recorded repair. Finally, Repair Duration is a
categorical variable that assigns each repair event to a time-
interval group. The Repair Duration feature represents the length
of the repair and the time a vehicle remains at the repair shop,
from arrival to repair completion. Due to the unique nature of
varying repair times, we categorize them into six groups to
facilitate a structured analysis of repair time patterns.

TABLE 2: EXTRACTED FEATURES
Feature Name Description Characteristic
Age Year of repair minus Formatted as
year of production whole years,
starting at 1
Formatted as
integers

Number of
Repairs

Number of prior
repairs the vehicle had
before the current one

Days since the

Time Between Formatted as

Repairs vehicle’s last repair whole days
Repair Categorized repair 6 unique groups
Duration time

The selected input features include VIN, Model, Repair
Description, Cost, Age, Number of Repairs, and Time Between
Repairs. The output, termed as Repair Duration, shows the time
a vehicle is at a repair facility to complete repair or maintenance

tasks. The proposed model extracts interactions among input
features to predict vehicle Repair Duration accurately. Our
objective is to predict vehicle Repair Duration using categorical
vehicle characteristics and historical maintenance data. For
modeling purposes, Repair Duration is categorized into six
separate groups, including 1 hour, 1-2 hours, 2-4 hours, over 4
hours in 1 day, 2-7 days, and over 7 days.

The main characteristics of the dataset are as follows. VIN
serves as a unique identifier for each vehicle. There are 531
unique VINs, and many vehicles have multiple repairs recorded,
resulting in an average of 26 repairs per vehicle. Types of Repair
Descriptions indicate the nature of repair activities by specifying
which components are repaired or serviced. These descriptions
are categorized into hydraulics, preventative maintenance, and
others. A higher count could show an older or trouble-prone
vehicle component, potentially affecting repair difficulty. The
number of repairs reveals the chronological nature of the data. A
higher count could also indicate an older or trouble-prone
vehicle. A short interval since the last repair might mean
unresolved issues or recent maintenance means less work now.
For categorical features, instead of one-hot encoding, we
transform categorical features into learned embeddings.

Each VIN gets an embedding in 16 dimensions to capture its
unique propensity for repair durations. We embed the car Model
in four dimensions. This represents differences such as trucks
versus sedans or model-specific reliability. The Repair
Description is embedded in four dimensions. Historical features
are dynamic per record and give the model a temporal setting.
We normalize continuous historical data using Z-scores [31].
This way, no feature dominates due to scale. For example, costs
range in hundreds of dollars and do not overshadow hours, which
are single digits simply due to magnitude.
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FIGURE 2: MULTI-HEAD ATTENTION TRANSFORMER ARCHITECTURE

We combine static categorical information with dynamic
historical features to give the model a detailed view of each
repair record.

3. METHODOLOGY

Our model draws inspiration from the Transformer’s
encoder module [32], illustrated in Figure 2. The multi-head self-
attention mechanism is at its core, which helps the model learn
interactions between input features.

3.1 Multi-Head Attention Transformer

Self-attention is designed initially in natural language
processing to let a sequence model weigh the relevance of
different words in a sentence to each other. Here, we apply it to
the sequence of feature embeddings. The idea is to let the model
learn, for each feature, how much attention to pay to other
features when predicting the output. For example, embedding the
Repair Description might pay attention to the VIN embedding if
the vehicle’s identity influences that specific repair event.

Given queries @, keys K, and values V, which in self-
attention are all derived from the input embeddings matrix X
[32], the attention output is (Eq. 1):

T

oK W 1
Jd, (1)

k

Attention(Q, K,V) = softmax(

where d is the dimensionality of the key vectors.

Multi-head attention extends this by having multiple sets of
W matrices, i.e., multiple attention heads, so the model can
extract different types of relationships in parallel. Each head i
computes its attention output, and the heads are concatenated and
linearly transformed to form the final output. If we use h heads,

each with key dimensionality d; and value dimensionality d,,,
then (Egs. 1-2):

MultiHead(X) = [head,, ..., head, [W?° 2)

head; = Attention(XW,°, XWX, xw}) (3)

where W isan output projection and X is a matrix containing
the embeddings of categorical features for a single record.

The structure of the model is displayed in Figure 2. We
develop a deep learning architecture, TabTransformer [26].
TabTransformer leverages Transformer-based self-attention to
convert categorical feature embeddings into contextual
embeddings for both supervised and semi-supervised tasks.
Applying this approach improves data interpretability.

Categorical inputs, such as Model and VIN, are turned into
embeddings. Since the features are distinct, a fixed embedding
per feature can be added to its vector to indicate the feature
identity. A Transformer encoder block consists of multi-head
attention and a feed-forward network. This produces
contextualized representations for each categorical feature. We
apply a feed-forward network to each embedding, consisting of
two dense layers, as in Transformers. Residual connections and
layer normalization are connected with the multi-head attention.
The outputs of the Transformer for each feature are concatenated
into one vector. We also append the normalized numeric feature
vector. This combined vector goes through a multi-layer
perceptron containing dense layers with Gaussian Error Linear
Unit (GELU) activation and, finally, a SoftMax layer that outputs
probabilities for each duration group.

3.2 Online Learning

Online learning constitutes a class of machine learning
approaches wherein a model addresses predictive or decision-
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making tasks by sequentially learning from individual data
instances as they become available [28]. The objective is to
improve prediction or decision accuracy based on knowledge
acquired from prior outcomes and supplementary information.
This approach differs from traditional batch or offline machine
learning techniques, which train models using entire datasets
simultaneously. Online learning is also different from fine-
tuning. Fine-tuning refers to updating a pre-trained model on a
specific dataset to adapt it to a particular task. This includes a
one-time adjustment of model weights to optimize performance,
but online learning is a continuous model adaptation paradigm.
Online learning has gained more attention due to its applicability
for handling continuous data in various real-world applications.

We apply a supervised online learning strategy wherein
predictive models incrementally update their parameters using
complete feedback information as new outcomes become
available. The online learning flowchart is presented in Figure 3.
Specifically, the pre-trained model initially predicts over the first
four months of 2021 and then incorporates ground truth data
through fine-tuning to improve its predictive accuracy. This
iterative updating maintains high accuracy when forecasting the
next four months of 2021.

Initial
training data
e Do new data No z
Tran;r:xurgral palterns F'reglac:tla test
appear?
Yes \
Collect training Incrementally Updated
data of new pattern adjust initial model model

FIGURE 3: THE FLOW CHART OF ONLINE LEARNING

When using online learning, we should be cautious to
prevent the model from forgetting past patterns and overfitting
to recent data. One strategy is to train the model for a few epochs
on new data with a lower learning rate. We use a small batch size
to preserve past knowledge, reduce overfitting, and limit the
number of training epochs.

4. RESULTS AND DISCUSSION

This section presents the results in detail and interprets each
finding. First, we discuss data preprocessing and model training.
Then, we present the Transformer’s prediction results.

4.1 Data Preprocessing and Model Training

The pre-training dataset consists of 7,861 records spanning
from 2013 to 2020, which are partitioned into 85% training and
15% validation sets. The target distribution for Repair Duration
is around 41% for 1 hour, 13% for 1-2 hours, 13% for 2-4 hours,

8% for over 4 hours in 1 day, 14% for 2-7 days, and 11% for
more than 7 days. We use stratified sampling to keep the target
distribution consistent between the training and validation sets.
Data from 2021 is set aside to test incremental learning.

The model is trained using categorical cross-entropy loss
and optimized with Adam (learning rate = 0.001) for up to 100
epochs, with early stopping based on validation loss to prevent
overfitting. During training, precision and recall for minority
classes are monitored to verify that the model detects them
correctly.

4.2 Results of Multi-Head Attention Transformer

We evaluate the model by classifying repairs based on their
duration. The model achieves an overall accuracy of 77.88% on
the validation set. Table 3 lists the detailed predicted accuracy
per class, and Figure 4 shows the confusion matrix.

TABLE 3: VALIDATION PREDICTION ACCURACY

Repair Duration Accuracy
1 hour 0.771
1-2 hours 0.677
2-4 hours 0.814
Over 4 hours in 1 day 1.000
2-7 days 0.636
Over 7 days 0.947
Overall 0.779

Confusion Matrix
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FIGURE 4: TRANSFORMER VALIDATION PREDICTION
CONFUSION MATRIX

4.3 Comparison Results of Feed-Forward Neural
Network and Random Forest

To benchmark the Transformer, we compare it against two
baselines: a feed-forward neural network that mirrors the
Transformer’s dense blocks, and a random forest as a classical
ensemble reference. The feed-forward model maintains
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architectural components with the Transformer’s feed-forward
sublayers, while the random forest provides a non-deep-learning
point of comparison. Quantitative evaluation is displayed in
Table 4.

TABLE 4: MODEL ACCURACY COMPARISON
Feed-Forward

Transformer Neural Rl:f‘:i(;n
Network
Accuracy 77.88% 76.69% 96.95%

The feed-forward model utilizes identical input features but
differs in architectural complexity. It employs simple embedding
layers followed by dense connections rather than the
Transformer’s self-attention mechanisms and positional
encodings. The model achieved an accuracy of 76.69% on the
validation set, while the Transformer reached a higher accuracy
of 77.88%. The confusion matrix is displayed in Figure 5.
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FIGURE 5: FEED-FORWARD NEURAL NETWORK
VALIDATION PREDICTION CONFUSION MATRIX

The Transformer’s performance can be attributed to three
main factors: its attention mechanism’s ability to model complex
interdependencies between repair attributes, its capacity to learn
contextual representations of categorical variables through
embedding transformations, and its deeper architecture to
capture higher-order patterns in the temporal aspects of vehicle
repairs. These architectural advantages are valuable for
modeling the sequential and relational nature of repair duration
prediction tasks.

To further assess model performance, we include a random
forest baseline. Random forests handle categorical features
without the need for embedding transformations. Also, the
nonlinear decision boundaries created by tree-based models
might match the patterns of repair duration data better than the

Transformer’s approach. In our experiments, the random forest
outperformed the more complex Transformer. Therefore, a
simpler tree-based model can represent the underlying data
relationships in this case.

Although the random forest outperforms, the Transformer is
still valuable, as it provides a foundation for identifying complex
patterns and can support future tasks with sequential or
unstructured data.

4.4 Results of Attention Mechanism

The multi-head attention mechanism provides some
interpretability. We examine the attention weight matrices for
validation examples presented in Table 5. For many samples of
long repairs, the VIN and Historical Features receive strong
attention, which suggests that the model considers the
combination of vehicle identity and past repair events when
identifying long repairs. Meanwhile, the VIN appears as the
dominant feature and shows the importance of vehicle-specific
characteristics in determining repair duration.

TABLE 5: MULTI-HEAD ATTENTION IMPORTANCE

Model Re[?au: VIN Historical
Description Features
Attention 5 ¢y, 3.9%  85.6%  6.7%
Importance

Both Model and Repair Description features exhibit
minimal influence. The Model embedding often has lower
attention weights, except in cases where the vehicle model is
unusual in repair duration. The numeric features, such as age,
number of repairs, and time between repairs, consist of Historical
Features. They reveal previous repair patterns and temporal
information. Overall, attention is distributed among factors,
which indicates the model’s integrated use of all inputs.

4.5 Results of Online Learning

To maintain performance over time, we periodically retrain
or fine-tune the model as new data comes in, such as quarterly or
semi-annually. This helps the model respond to changes in new
vehicle models, aging, or changing maintenance practices.

Applying the Transformer model pre-trained in 2013-2020,
we first fine-tune the model using recent observations in
January-April 2021 and later predict repair durations for
subsequent months in May-August 2021. The implementation
uses feature engineering with temporal and historical indicators
and strategic hyperparameter optimization, including learning
rate modulation and early stopping protocols. Results achieve a
performance improvement of 74.3% in prediction accuracy,
from 19.55% to 34.08%, following online learning
implementation.

The results show the value of online learning techniques in
mitigating model drift within temporal prediction systems.
Class-specific metrics demonstrate gains in extreme duration
categories, with accuracy improvements of 50.90% for 1-hour
repair durations and 32.61% for repair durations of over 7 days.
This performance improvement can be attributed to factors such
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as adaptation to temporal data drift patterns, restoration of
classification capability in previously undetected classes, and
improved calibration over the prediction spectrum.

5. CONCLUSION

This study developed an end-to-end predictive framework
for classifying repair durations using a multi-head attention
Transformer with online learning. The model processes
categorical and numerical historical data to identify the
meaningful relationships between vehicle identifiers, repair
types, and maintenance history. A weighted loss function has
been applied to address class imbalance in the dataset. Also, an
incremental learning strategy has been used to help the model
adjust to changes in repair trends over time.

The model is trained on a dataset of vehicle repair records
from 2013 to 2020, covering various repair categories and
durations. It achieves 78% accuracy on the validation dataset.
Analysis of attention weights demonstrates repair type and
vehicle characteristics as the most influential factors. The model
performs well; however, it has some limitations. The
Transformer model might be overparameterized for this dataset
size. The performance of the Transformer model can be
improved by modifying the model structure and designing more
extensive hyperparameter tuning. Also, the pre-trained model
has limited performance on the unseen data.

The work can be extended in several ways. Future work will
investigate self-supervised learning to improve feature
extraction from limited data and uncertainty quantification to
assess confidence in predictions. Hybrid models that combine
deep learning with traditional machine learning methods may
also increase accuracy. Future work will expand our dataset to
include repair records from more manufacturers, electric and
hybrid vehicles, and diverse regions to improve generalizability.
Moreover, the emergence of smart vehicles facilitates the
implementation of in-vehicle diagnostics and Internet of Things
(IoT) sensors to build large, real-time datasets. Lightweight
models at the edge can provide instant duration estimates, while
cloud-based architectures such as Transformers, learn from IoT
streams. Another direction of future work is to revise online
learning strategies to make updates more responsive while
avoiding overfitting to recent data. Finally, incorporating real-
time feedback from repair shops could optimize predictions and
make the system more practical.
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