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ABSTRACT 
Accurate prediction of repair durations is a challenge in 

product maintenance due to its implications for resource 
allocation, customer satisfaction, and operational performance. 
This study aims to develop a deep learning framework to help 
fleet repair shops accurately categorize repair time given 
product historical data. The study uses an automobile repair and 
maintenance dataset and creates an end-to-end predictive 
framework by employing a multi-head attention network 
designed for tabular data. The developed framework combines 
categorical information, transformed through embeddings and 
attention mechanisms, with numerical historical data to 
facilitate integration and learning from diverse data features. A 
weighted loss function is introduced to overcome class 
imbalance issues in large datasets. Moreover, an online learning 
strategy is used for continuous incremental model updates to 
maintain predictive accuracy in evolving operational 
environments. Our empirical findings demonstrate that the 
multi-head attention mechanism extracts meaningful 
interactions between vehicle identifiers and repair types 
compared to a feed-forward neural network. Also, combining 
historical maintenance data with an online learning strategy 
facilitates real-time adjustments to changing patterns and 
increases the model’s predictive performance on new data. The 
model is tested on real-world repair data spanning 2013 to 2020 
and achieves an accuracy of 78%, with attention weight analyses 
illustrating feature interactions.  

Keywords: Predictive Repair and Maintenance, Lifecycle 
Data, Deep Learning, Online Learning, Transformer. 

1. BACKGROUND 
Lifecycle data provides a complete record of a product’s 

history, including its design, manufacturing details, operational 
performance, failure events, and repair records. This information 
is valuable for making end-of-use decisions, optimizing 
maintenance schedules, and guiding repair strategies [1]. Also, 
lifecycle data helps assess repair complexity and predict the time 
required to service different products. Since lifecycle data is 
generated throughout the entire product lifespan, the data might 
have diverse formats, such as numerical values, textual records, 
and sensor-related data [2]. This heterogeneity creates a wide 
range of analytical and functional applications. Variations in 
lifecycle data, including information about the product design, 
component accessibility, and historical failures, lead to different 
repair decision patterns and influence repair duration [3]. 

The concept of repairability has gained significant attention 
in recent years, especially with the growing influence of the 
Right to Repair movement [4]. Although reliability has long 
received attention in the literature, it differs from repairability. 
Reliability concerns estimating product lifespan or predicting 
failure time [5], whereas repairability refers to the ease of 
maintenance and restoration after failure. Repair data has been 
used to estimate the time between failures and schedule 
preventive maintenance, but its applications extend beyond 
failure prediction [6]. It also serves as an essential measure of 
product longevity and design performance.  

To quantify these aspects, researchers have developed 
repairability indices [7], which assess how factors such as 
modular design [8], ease of disassembly [9], and spare part 
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availability influence repair costs and turnaround times [10]. 
Learning models are used to analyze equipment wear and 
optimize maintenance schedules based on real-time sensor data 
and historical records [11]. In aerospace, predictive analytics 
applied to aircraft component lifecycles has improved flight 
safety and maintenance cost [12]. Other industries, such as 
healthcare and consumer electronics, have used lifecycle data to 
improve maintenance planning and reduce downtime [13, 14]. 

Prior studies have developed predictive maintenance 
techniques that integrate lifecycle data with machine learning to 
forecast failure events [15], estimate remaining useful life [16], 
and optimize maintenance intervals [17]. However, much of the 
previous research has focused on predicting failures before they 
happen; less attention has been given to estimating repair 
durations and how long it takes to fix a product once a failure 
occurs. This study addresses that gap using machine learning to 
improve repair time predictions. 

Accurate prediction of repair durations is essential for 
optimizing automotive maintenance management. Precise 
forecasts directly affect resource allocation, reduce operational 
costs, and improve customer satisfaction by minimizing service 
delays [18]. However, achieving reliable predictions is 
challenging due to dynamic factors such as heterogeneous data 
types (e.g., categorical attributes, numerical maintenance 
histories) and temporal shifts in repair patterns [19, 20]. Factors 
such as class imbalance when categorizing repair durations into 
discrete intervals can also affect forecasting [21]. Thus, solutions 
should process multi-feature data and handle evolving 
workflows. 

Existing approaches for repair duration prediction span 
statistical, ensemble, and deep learning methods. Classical 
techniques, including survival analysis and linear regression, 
model repair times as time-to-event or continuous outcomes, but 
often underperform with high-dimensional categorical data [22]. 
Ensemble methods such as XGBoost and LightGBM address 
these limitations by handling nonlinear feature interactions, but 
their static training paradigms limit interpretability and 
applicability in streaming data scenarios [23-25]. Recent 
advances in deep learning, particularly Transformer-based 
architectures, offer promising improvements. Models such as 
TabTransformer leverage self-attention mechanisms to 
contextualize categorical embeddings [26]. Another model 
named TabNet designs sequential attention that achieves state-
of-the-art accuracy in tabular data tasks while providing 
interpretable feature attributions [27]. Nevertheless, existing 
frameworks do not incorporate mechanisms for continuous 
model updates, a critical gap in maintenance where data 
distributions shift over product fleets and repair technologies.  

Besides seeking to predict repair durations accurately from 
existing data, it is necessary to preserve model performance as 
new data arrive. Online learning refers to a machine learning 
approach where models update as new data becomes available, 
rather than training once on a static dataset [28]. For repair shops, 
online learning strategy is valuable as it helps prediction models 
adjust to patterns in repair complexity, parts availability, and 
technician expertise [29]. In automotive repair, online learning 

helps maintenance facilities improve operations by providing 
accurate time estimates based on real-world repair outcomes. 
This research follows an input-update model, in which new 
repair records are continuously fed into the system to modify 
predictions [30]. This strategy is designed for repair shops with 
varying workloads and changing vehicles to maintain model 
relevancy without requiring complete retraining. 

This research develops an end-to-end attention-based model 
with integrated online learning for repair duration classification. 
Figure 1 illustrates the resulting framework for predicting the 
repair duration. The framework comprises raw data processing, 
model building, prediction, and online learning. Initially, raw 
data are integrated and go through preprocessing to generate 
structured inputs. These inputs are fed into a multi-head attention 
model that utilizes scaled dot-product attention to extract 
complex interactions between features. Then, an online learning 
mechanism incrementally updates the pre-trained model with 
incoming data to maintain high accuracy and flexibility in real-
world scenarios. Finally, the predictive outcomes, classified as 
duration-based repair categories, provide guidelines for 
stakeholders such as customers and repair shops. The 
contribution of this research can be summarized as follows: 
• Build an architecture with parallel categorical embedding 

and a multi-head attention Transformer encoder. The model 
generates dense representations of vehicle attributes to 
extract semantic relationships and self-attention layers to 
learn feature interactions. In addition, embedded 
categorical features are concatenated with historical 
numerical data to improve input representation. 

• Deploy online learning to incremental parameter updates 
via mini-batch gradient descent. This facilitates real-time 
adjustment to new repair patterns without catastrophic 
forgetting. 

 
2. DATASET AND FEATURE ENGINEERING 

The data consists of 9,103 repair records for vehicles 
produced by the same manufacturer. Table 1 provides an 
overview of the dataset, which includes six main attributes: 
vehicle identification (VIN), production year, model, repair 
description, the start and end dates of each repair event, and cost. 
 

TABLE 1: DATASET EXPLANATION 
Feature 
Name 

Description Characteristic 

VIN Vehicle identification 
number 

531 unique values 

Year Vehicle production 
year 

Formatted as year 

Model Vehicle model 10 unique values 
Repair 

Description 
Description of the 

repair event 
12 unique values 

Start Date Start date for a repair 
event 

Formatted as 
month day year 

End Date End date for a repair 
event 

Formatted as 
month day year 

Cost Total repair cost Numeric value 
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FIGURE 1: PREDICTIVE REPAIR MANAGEMENT DATA FLOW 

Since there are limited features present in the dataset, we use 
feature engineering to extract and compute additional features 
that complement the information. Table 2 explains the extracted 
features. The Age feature is calculated as the difference between 
the vehicle’s production and repair years. Number of Repairs 
tracks how many prior repairs the vehicle underwent before the 
current event. Time Between Repairs measures the days elapsed 
since the last recorded repair. Finally, Repair Duration is a 
categorical variable that assigns each repair event to a time-
interval group. The Repair Duration feature represents the length 
of the repair and the time a vehicle remains at the repair shop, 
from arrival to repair completion. Due to the unique nature of 
varying repair times, we categorize them into six groups to 
facilitate a structured analysis of repair time patterns. 
 

TABLE 2: EXTRACTED FEATURES 
Feature Name Description Characteristic 

Age Year of repair minus 
year of production 

Formatted as 
whole years, 
starting at 1 

Number of 
Repairs 

Number of prior 
repairs the vehicle had 
before the current one 

Formatted as 
integers 

Time Between 
Repairs 

Days since the 
vehicle’s last repair 

Formatted as 
whole days 

Repair 
Duration 

Categorized repair 
time  

6 unique groups 

 
The selected input features include VIN, Model, Repair 

Description, Cost, Age, Number of Repairs, and Time Between 
Repairs. The output, termed as Repair Duration, shows the time 
a vehicle is at a repair facility to complete repair or maintenance 

tasks. The proposed model extracts interactions among input 
features to predict vehicle Repair Duration accurately. Our 
objective is to predict vehicle Repair Duration using categorical 
vehicle characteristics and historical maintenance data. For 
modeling purposes, Repair Duration is categorized into six 
separate groups, including 1 hour, 1-2 hours, 2-4 hours, over 4 
hours in 1 day, 2-7 days, and over 7 days. 

The main characteristics of the dataset are as follows. VIN 
serves as a unique identifier for each vehicle. There are 531 
unique VINs, and many vehicles have multiple repairs recorded, 
resulting in an average of 26 repairs per vehicle. Types of Repair 
Descriptions indicate the nature of repair activities by specifying 
which components are repaired or serviced. These descriptions 
are categorized into hydraulics, preventative maintenance, and 
others. A higher count could show an older or trouble-prone 
vehicle component, potentially affecting repair difficulty. The 
number of repairs reveals the chronological nature of the data. A 
higher count could also indicate an older or trouble-prone 
vehicle. A short interval since the last repair might mean 
unresolved issues or recent maintenance means less work now. 
For categorical features, instead of one-hot encoding, we 
transform categorical features into learned embeddings.  

Each VIN gets an embedding in 16 dimensions to capture its 
unique propensity for repair durations. We embed the car Model 
in four dimensions. This represents differences such as trucks 
versus sedans or model-specific reliability. The Repair 
Description is embedded in four dimensions. Historical features 
are dynamic per record and give the model a temporal setting. 
We normalize continuous historical data using Z-scores [31]. 
This way, no feature dominates due to scale. For example, costs 
range in hundreds of dollars and do not overshadow hours, which 
are single digits simply due to magnitude.  
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FIGURE 2: MULTI-HEAD ATTENTION TRANSFORMER ARCHITECTURE 

We combine static categorical information with dynamic 
historical features to give the model a detailed view of each 
repair record.  
 
3. METHODOLOGY 

Our model draws inspiration from the Transformer’s 
encoder module [32], illustrated in Figure 2. The multi-head self-
attention mechanism is at its core, which helps the model learn 
interactions between input features.  
 
3.1 Multi-Head Attention Transformer 

Self-attention is designed initially in natural language 
processing to let a sequence model weigh the relevance of 
different words in a sentence to each other. Here, we apply it to 
the sequence of feature embeddings. The idea is to let the model 
learn, for each feature, how much attention to pay to other 
features when predicting the output. For example, embedding the 
Repair Description might pay attention to the VIN embedding if 
the vehicle’s identity influences that specific repair event. 

Given queries 𝑄 , keys 𝐾 , and values 𝑉, which in self-
attention are all derived from the input embeddings matrix 𝑋 
[32], the attention output is (Eq. 1): 
 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = softmax(
𝑄𝐾𝑇

√𝑑𝑘
)𝑉 (1) 

 
where 𝑑𝑘 is the dimensionality of the key vectors.  

Multi-head attention extends this by having multiple sets of 
𝑊  matrices, i.e., multiple attention heads, so the model can 
extract different types of relationships in parallel. Each head 𝑖 
computes its attention output, and the heads are concatenated and 
linearly transformed to form the final output. If we use ℎ heads, 

each with key dimensionality 𝑑𝑘 and value dimensionality 𝑑𝑣, 
then (Eqs. 1-2): 
 

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑋) = [ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ]𝑊
𝑜 (2) 

 
ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑋𝑊𝑖

𝑄 , 𝑋𝑊𝑖
𝐾 , 𝑋𝑊𝑖

𝑉) (3) 
 
where 𝑊𝑜 is an output projection and 𝑋 is a matrix containing 
the embeddings of categorical features for a single record.  

The structure of the model is displayed in Figure 2. We 
develop a deep learning architecture, TabTransformer [26]. 
TabTransformer leverages Transformer-based self-attention to 
convert categorical feature embeddings into contextual 
embeddings for both supervised and semi-supervised tasks. 
Applying this approach improves data interpretability.  

Categorical inputs, such as Model and VIN, are turned into 
embeddings. Since the features are distinct, a fixed embedding 
per feature can be added to its vector to indicate the feature 
identity. A Transformer encoder block consists of multi-head 
attention and a feed-forward network. This produces 
contextualized representations for each categorical feature. We 
apply a feed-forward network to each embedding, consisting of 
two dense layers, as in Transformers. Residual connections and 
layer normalization are connected with the multi-head attention. 
The outputs of the Transformer for each feature are concatenated 
into one vector. We also append the normalized numeric feature 
vector. This combined vector goes through a multi-layer 
perceptron containing dense layers with Gaussian Error Linear 
Unit (GELU) activation and, finally, a SoftMax layer that outputs 
probabilities for each duration group. 
 
3.2 Online Learning  

Online learning constitutes a class of machine learning 
approaches wherein a model addresses predictive or decision-
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making tasks by sequentially learning from individual data 
instances as they become available [28]. The objective is to 
improve prediction or decision accuracy based on knowledge 
acquired from prior outcomes and supplementary information. 
This approach differs from traditional batch or offline machine 
learning techniques, which train models using entire datasets 
simultaneously. Online learning is also different from fine-
tuning. Fine-tuning refers to updating a pre-trained model on a 
specific dataset to adapt it to a particular task. This includes a 
one-time adjustment of model weights to optimize performance, 
but online learning is a continuous model adaptation paradigm. 
Online learning has gained more attention due to its applicability 
for handling continuous data in various real-world applications. 

We apply a supervised online learning strategy wherein 
predictive models incrementally update their parameters using 
complete feedback information as new outcomes become 
available. The online learning flowchart is presented in Figure 3. 
Specifically, the pre-trained model initially predicts over the first 
four months of 2021 and then incorporates ground truth data 
through fine-tuning to improve its predictive accuracy. This 
iterative updating maintains high accuracy when forecasting the 
next four months of 2021. 
 

 
FIGURE 3: THE FLOW CHART OF ONLINE LEARNING 

 
When using online learning, we should be cautious to 

prevent the model from forgetting past patterns and overfitting 
to recent data. One strategy is to train the model for a few epochs 
on new data with a lower learning rate. We use a small batch size 
to preserve past knowledge, reduce overfitting, and limit the 
number of training epochs. 

 
4. RESULTS AND DISCUSSION 

This section presents the results in detail and interprets each 
finding. First, we discuss data preprocessing and model training. 
Then, we present the Transformer’s prediction results.  

 
4.1 Data Preprocessing and Model Training  

The pre-training dataset consists of 7,861 records spanning 
from 2013 to 2020, which are partitioned into 85% training and 
15% validation sets. The target distribution for Repair Duration 
is around 41% for 1 hour, 13% for 1-2 hours, 13% for 2-4 hours, 

8% for over 4 hours in 1 day, 14% for 2-7 days, and 11% for 
more than 7 days. We use stratified sampling to keep the target 
distribution consistent between the training and validation sets. 
Data from 2021 is set aside to test incremental learning. 

The model is trained using categorical cross-entropy loss 
and optimized with Adam (learning rate = 0.001) for up to 100 
epochs, with early stopping based on validation loss to prevent 
overfitting. During training, precision and recall for minority 
classes are monitored to verify that the model detects them 
correctly.  
 
4.2 Results of Multi-Head Attention Transformer 

We evaluate the model by classifying repairs based on their 
duration. The model achieves an overall accuracy of 77.88% on 
the validation set. Table 3 lists the detailed predicted accuracy 
per class, and Figure 4 shows the confusion matrix. 
 

TABLE 3: VALIDATION PREDICTION ACCURACY 
Repair Duration Accuracy 

1 hour 0.771 
1-2 hours 0.677 
2-4 hours 0.814 

Over 4 hours in 1 day 1.000 
2-7 days 0.636 

Over 7 days 0.947 
Overall 0.779 

 

 
FIGURE 4: TRANSFORMER VALIDATION PREDICTION 

CONFUSION MATRIX 
 

4.3 Comparison Results of Feed-Forward Neural 
Network and Random Forest  

To benchmark the Transformer, we compare it against two 
baselines: a feed-forward neural network that mirrors the 
Transformer’s dense blocks, and a random forest as a classical 
ensemble reference. The feed-forward model maintains 
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architectural components with the Transformer’s feed-forward 
sublayers, while the random forest provides a non-deep-learning 
point of comparison. Quantitative evaluation is displayed in 
Table 4. 

 
TABLE 4: MODEL ACCURACY COMPARISON 

 Transformer 
Feed-Forward 

Neural 
Network 

Random 
Forest 

Accuracy 77.88% 76.69% 96.95% 
  

The feed-forward model utilizes identical input features but 
differs in architectural complexity. It employs simple embedding 
layers followed by dense connections rather than the 
Transformer’s self-attention mechanisms and positional 
encodings. The model achieved an accuracy of 76.69% on the 
validation set, while the Transformer reached a higher accuracy 
of 77.88%. The confusion matrix is displayed in Figure 5.  
 

 
FIGURE 5: FEED-FORWARD NEURAL NETWORK 
VALIDATION PREDICTION CONFUSION MATRIX 
 
The Transformer’s performance can be attributed to three 

main factors: its attention mechanism’s ability to model complex 
interdependencies between repair attributes, its capacity to learn 
contextual representations of categorical variables through 
embedding transformations, and its deeper architecture to 
capture higher-order patterns in the temporal aspects of vehicle 
repairs. These architectural advantages are valuable for 
modeling the sequential and relational nature of repair duration 
prediction tasks.  

To further assess model performance, we include a random 
forest baseline. Random forests handle categorical features 
without the need for embedding transformations. Also, the 
nonlinear decision boundaries created by tree-based models 
might match the patterns of repair duration data better than the 

Transformer’s approach. In our experiments, the random forest 
outperformed the more complex Transformer. Therefore, a 
simpler tree-based model can represent the underlying data 
relationships in this case. 

Although the random forest outperforms, the Transformer is 
still valuable, as it provides a foundation for identifying complex 
patterns and can support future tasks with sequential or 
unstructured data. 
 
4.4 Results of Attention Mechanism   

The multi-head attention mechanism provides some 
interpretability. We examine the attention weight matrices for 
validation examples presented in Table 5. For many samples of 
long repairs, the VIN and Historical Features receive strong 
attention, which suggests that the model considers the 
combination of vehicle identity and past repair events when 
identifying long repairs. Meanwhile, the VIN appears as the 
dominant feature and shows the importance of vehicle-specific 
characteristics in determining repair duration. 

 
TABLE 5: MULTI-HEAD ATTENTION IMPORTANCE 

 Model Repair 
Description VIN Historical 

Features 
Attention 

Importance 3.8% 3.9% 85.6%   6.7% 

 
Both Model and Repair Description features exhibit 

minimal influence. The Model embedding often has lower 
attention weights, except in cases where the vehicle model is 
unusual in repair duration. The numeric features, such as age, 
number of repairs, and time between repairs, consist of Historical 
Features. They reveal previous repair patterns and temporal 
information. Overall, attention is distributed among factors, 
which indicates the model’s integrated use of all inputs. 
 
4.5 Results of Online Learning  

To maintain performance over time, we periodically retrain 
or fine-tune the model as new data comes in, such as quarterly or 
semi-annually. This helps the model respond to changes in new 
vehicle models, aging, or changing maintenance practices. 

Applying the Transformer model pre-trained in 2013-2020, 
we first fine-tune the model using recent observations in 
January-April 2021 and later predict repair durations for 
subsequent months in May-August 2021. The implementation 
uses feature engineering with temporal and historical indicators 
and strategic hyperparameter optimization, including learning 
rate modulation and early stopping protocols. Results achieve a 
performance improvement of 74.3% in prediction accuracy, 
from 19.55% to 34.08%, following online learning 
implementation. 

The results show the value of online learning techniques in 
mitigating model drift within temporal prediction systems. 
Class-specific metrics demonstrate gains in extreme duration 
categories, with accuracy improvements of 50.90% for 1-hour 
repair durations and 32.61% for repair durations of over 7 days. 
This performance improvement can be attributed to factors such 
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as adaptation to temporal data drift patterns, restoration of 
classification capability in previously undetected classes, and 
improved calibration over the prediction spectrum.  

 

5. CONCLUSION 
This study developed an end-to-end predictive framework 

for classifying repair durations using a multi-head attention 
Transformer with online learning. The model processes 
categorical and numerical historical data to identify the 
meaningful relationships between vehicle identifiers, repair 
types, and maintenance history. A weighted loss function has 
been applied to address class imbalance in the dataset. Also, an 
incremental learning strategy has been used to help the model 
adjust to changes in repair trends over time. 

The model is trained on a dataset of vehicle repair records 
from 2013 to 2020, covering various repair categories and 
durations. It achieves 78% accuracy on the validation dataset. 
Analysis of attention weights demonstrates repair type and 
vehicle characteristics as the most influential factors. The model 
performs well; however, it has some limitations. The 
Transformer model might be overparameterized for this dataset 
size. The performance of the Transformer model can be 
improved by modifying the model structure and designing more 
extensive hyperparameter tuning. Also, the pre-trained model 
has limited performance on the unseen data.   

The work can be extended in several ways. Future work will 
investigate self-supervised learning to improve feature 
extraction from limited data and uncertainty quantification to 
assess confidence in predictions. Hybrid models that combine 
deep learning with traditional machine learning methods may 
also increase accuracy. Future work will expand our dataset to 
include repair records from more manufacturers, electric and 
hybrid vehicles, and diverse regions to improve generalizability. 
Moreover, the emergence of smart vehicles facilitates the 
implementation of in-vehicle diagnostics and Internet of Things 
(IoT) sensors to build large, real-time datasets. Lightweight 
models at the edge can provide instant duration estimates, while 
cloud-based architectures such as Transformers, learn from IoT 
streams. Another direction of future work is to revise online 
learning strategies to make updates more responsive while 
avoiding overfitting to recent data. Finally, incorporating real-
time feedback from repair shops could optimize predictions and 
make the system more practical. 
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