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EFFECTIVE EQUIDISTRIBUTION OF LARGE DIMENSIONAL
MEASURES ON AFFINE INVARIANT SUBMANIFOLDS

ANTHONY SANCHEZ

Abstract. The unstable foliation, that locally is given by changing horizontal

components of period coordinates, plays an important role in study of translation

surfaces, including their deformation theory and in the understanding of horocycle

invariant measures.

In this article we show that measures of large dimension on the unstable fo-

liation equidistribute in affine invariant submanifolds and give an effective rate.

An analogous result in the setting of homogeneous dynamics is crucially used in

the effective density and equidistribution results of Lindenstrauss-Mohammadi and

Lindenstrauss–Mohammadi–Wang.

1. Introduction

The recent advances of Lindenstrauss–Mohammadi [12] and Lindenstrauss–Mohammadi–
Wang [13, 14] mark a significant step forward in the quantitative behavior of orbits
in homogeneous dynamics. Their works provide a potential framework for establish-
ing effective results (such as effective density) in other settings including Teichmüller
dynamics. Their argument for this consists of three steps (see Mohammadi [15] for
an overview). While further investigation is needed to understand how the first two
steps would translate in the setting of Teichmüller dynamics, the main contribution
of this article is that their final step can be successfully adapted in this context. Es-
tablishing effective density in Teichmüller dynamics could shed light on a conjecture
of Forni [10] concerning the equidistribution of expanding horocyles in the moduli
space of translation surfaces.

Broadly speaking, their closing step allows one to conclude effective equidistribution
of expanding translates of subsets of the unstable foliation even when the dimension of
the subsets is not full. This allows Lindenstrauss–Mohammadi [12] to conclude effec-
tive density of horocycle flow for H

3 and H×H
2. Their closing step is greatly inspired

by one of Venkatesh [18] where the argument was used to prove sparse equidistribu-
tion of horocycles. Some aspects that complicate the analysis in this setting include
that the unstable foliation is not globally defined and the degeneration of certain
norms in the thin part of moduli space.
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We let M denote an affine invariant submanifold. These are properly immersed
smooth sub-orbifolds in the space of translation surfaces that are locally defined
by real homogeneous linear equations in period coordinates. By the breakthrough
work of Eskin–Mirzakhani [7] and Eskin–Mirzakhani–Mohammadi [8], these can be
equivalently described as GL+(2,R)-orbit closures of translation surfaces. Each affine
invariant submanifold supports an ergodic SL(2,R)-invariant probability measure that
we will denote by µM.

We set up notation needed for our main theorem and refer to Section 2 for formal
definitions. Given a unit area x * M and r > 0, we will consider certain neighbor-
hoods Br(x) of M that we call a period box and we call the largest r = r(x) with this
property the injectivity radius of x. Let

Mη = {x * M : r(x) g ·}.

Let at denote the action of Teichmüller geodesic flow and us denote the horocycle
flow on M. There is a foliation on M inherited from the linear structure of period
coordinates that we will call the unstable foliation. We choose this name because this
foliation acts as the unstable foliation with respect to at. This foliation first appeared
in Veech [17] where it was used to prove ergodicity of geodesic flow. Furthermore,
the (non-horocyclic parts of the) unstable foliation were an important ingredient in
the work on measure classification results for the horocycle flow [4–6] for certain
classes of translation surfaces. The classification of measures invariant under the
unstable foliation in special cases were considered in Lindenstrauss–Mirzakhani [11]
and Smillie–Smillie–Weiss–Ygouf [16]. Additionally, the unstable foliation was used
to effectively count simple closed curves of hyperbolic surfaces in Eskin-Mirzakhani-
Mohammadi [9]. In short, the unstable foliation has proved fruitful in the moduli
space of translation surfaces.

We denote the leaf of x under this foliation as W u(x). Let Bu
r (x) ¢ M denote the

connected component of x in Br(x)+W
u(x). Notice that the horocycle orbit of a point

x is contained inside of the leaf W u(x); we let W u(x)+H(0)(x) denote the remaining
directions andBu,0

r (x) denote the connected component of x in Br(x)+W
u(x)+H(0)(x)

the ball of radius r of unstable, non-horocyclic directions. Let µu
x denote the leafwise

measures of M along W u(x).

We will consider certain measures on H(0) that are “large”.

Definition 1.1. Let · > 0 and 0 < · < 1. Let Ã be a probability measure on Bu,0
r (x)

where x * M and 0 < r < r(x). We say Ã is ·-rich at scale · if for all y * Bu,0
r (x),

we have

Ã(Bu,0
δ (y)) < b1·

d2ε

where d is the dimension of M+W u(x) +H(0)(x) and b1 = b1(·, ·) > 0.

Our main result shows that we can replace the natural measure on unstable, non-
horocylic directions with measures that are “large” in the sense of the above definition
and conclude effective equidistribution of expanding translates.
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Theorem 1.2. Let M be an affine invariant submanifold and suppose we had some
period box Br(x) ¢ M, where x * Mη and 0 < r < r(x), that supports a measure Ã
which is ·-rich at scale ·. There exists a rate »1 = »1(M), a threshold ·0 = ·0(»1) >
0, and constants L = L(M) and b2 = b2(M) such that if · < ·0, then for any
f * C>

c (M) we have
∣

∣

∣

∣

∫

Bu,0
r (x)

∫ 1

s=0

f(atusy) ds dÃ(y)2

∫

M

f dµM

∣

∣

∣

∣

< b2C(f)·
2Le2»1t,

for | log(δ)|
8

f t f | log(δ)|
4

and 0 < · = ·(t) j 1. Here C is a norm on the set of
compactly supported smooth functions of M.

Throughout, we use the notation A j B to mean that A f CB for some constant
C > 0.

Remark 1.3. The rate »1 in Theorem 1.2 ultimately comes exponential mixing of
Teichmüller geodesic flow of Avila-Gouëzel-Yoccoz [3].

We shall see that despite Theorem 1.2 giving effective equidistribution of measures of
expanding translates of the form ds dÃ, we still need to use an effective equidistribution
result of the leafwise measure µu

x on W u(x). This is done in Section 3 in Proposition
3.2. A version of this is proved in Eskin-Mirzakhani-Mohammadi [9], but ours takes
into account the cusp of moduli space. Additionally, the dependence of the cusp · on
time t comes from the proof of Proposition 3.2.

Acknowledgements. The author would like to thank Amir Mohammadi for many
enlightening conversations. This work was supported by the National Science Foun-
dation Postdoctoral Fellowship under grant number DMS-2103136.

2. Preliminaries

We review the basics of translation surfaces needed for this article. For a detailed
treatment of these topics, we refer the reader to the wonderful survey by Zorich [19].

2.1. On translation surfaces. A translation surface is a pair x = (M,Ë) where M
is a compact, connected Riemann surface of genus g and Ë is a non-zero holomorphic
1-form on M . We can also, equivalently, view a translation surface as a union of
finitely many polygons P1 * P2 * · · · * Pn in the Euclidean plane with gluings of
parallel sides by translations such that for each edge there exists a parallel edge of
the same length and these pairs are glued together by a Euclidean translation.

We denote the zeros of Ë by Σ. By the Riemann-Roch theorem the sum of order of the
zeros is 2g22 where g denotes the genus ofM . Thus, the space of genus g translation
surfaces can be stratified by integer partitions of 2g 2 2. If ³ = (³1, . . . , ³|Σ|) is an
integer partition of 2g22, we denote by H(³) the moduli space of translation surfaces
Ë such that the multiplicities of the zeroes are given by ³1, . . . , ³|Σ|.
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There is a natural action by SL2(R) on the space of translation surfaces. This is most
easily seen via the polygon definition: Given a translation surface (M,Ë) that is a
finite union of polygons {P1, . . . , Pn} and A * SL2(R), we define A · (M,Ë) to be the
translation surface obtained by the union of the polygons {AP1, . . . , APn} with the
same side gluings as for Ë. We are particularly interested in the Teichmüller geodesic
flow given by the action of

at =

(

et 0
0 e2t

)

,

and the horocycle flow given by the action of

us =

(

1 s
0 1

)

.

Let T H(³) denote the space of marked translation surfaces and Ã : T H(³) ³ H(³)
be the forgetful map that forgets the marking. The period map Φ : T H(³) ³
H1(M,Σ,C) given by integrating over a basis of relative homology of a translation
surface x = (M,Ë) provides local coordinates for the space of marked translation
surfaces. That is, given 2g + |Σ| 2 1 curves ³1, . . . , ³2g+|Σ|21 that form a basis for
H1(M,Σ,Z), the period map is defined by

Φ(x) =

(
∫

γi

Ë

)2g+|Σ|21

i=1

.

Consequently, period coordinates provide local coordinates for the space of translation
surfaces H(³). Due to the splitting

H1(M,Σ,C) = H1(M,Σ,R)·H1(M,Σ,R),

we often write Φ(x) = a + ib for a, b * H1(M,Σ,R).

For x = (M,Ë) * H(³), we define the tautological plane, denoted by E(x), to be the
two dimensional subspace of H1(M,Σ,R) spanned by the real and imaginary parts
of Ë. Notice that the natural projection p : H1(M,Σ,R) ³ H1(M,R) defines an
isomorphism between E(x) and p(E(x)) ¢ H1(M,R). Let E(x)C ¢ H1(M,Σ,C)
denote the complexification of E(x) and note that it is SL(2,R)-equivariant. Denote
the symplectic compliment by

H
(0)
C

(x) = {c * H1(M,Σ,C) : p(c) ' p(E(x)C)}.

Similarly, we define H
(0)
R

(x) in a similarly manner and will use the simpler notation of
H(0)(x). The superscript comes from the fact that, at the level of absolute homology,
this subspace corresponds to cycles that have zero holonomy.

We will need the non-divergence results of Athreya [1]. See also Section 2.8 of Eskin-
Mirzakhani-Mohammadi [9].

Theorem 2.1. There exists a compact subset M0 ¢ M and some T0 = T0(x) > 0
with the following property. For every t0 and every x * M, there exists s * [0, 1/2]
and t0 f t f T0 such that atusx * M0.
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2.2. The AGY-norm and period boxes. We will utilize the norm defined in Avila-
Gouëzel-Yoccoz [3]. For x = (M,Ë) * M and any c * H1(M,Σ,C), we define

‖c‖AGY,x = sup
γ

|c(³)|

|
∫

γ
Ë|

where ³ is a saddle connection of x. It was shown in Avila-Gouëzel-Yoccoz [3] that
this defines a norm and the corresponding Finsler metric is complete.

We will often use the following lemma that allows us to compare the norm at points
on that differ by certain elements of SL2(R). See also Lemma 2.4 of Eskin-Mirzakhani-
Mohammadi [9].

Lemma 2.2 (Lemma 5.2, [3]). For c * H1(M,Σ,C), t g 0, and s * [0, 1] we have

e2222t‖c‖AGY,x f ‖(atus)7c‖AGY,atusx f e2+2t‖c‖AGY,x.

For r > 0 and x * T H(³), we define

Rr(x) := {Φ(x) + a2 + ib2 : a2, b2 * H1(M,Σ,R), ‖a2 + ib2‖AGY,x f r}.

By non-divergence results of the horocycle flow ut and the construction of a Margulis
function on the space of translation surfaces (See Lemma 2.6 of Eskin-Mirzakhani-
Mohammadi [9] for details), for any x * H(³) and any lift x̃ * T H(³), there exists
r(x) such that for all 0 < r < r(x), the restriction of the covering map Ã to

Br(x̃) := Φ21(Rr(x̃))

is injective.

In this case (i.e. for 0 < r f r(x)), we call Br(x) = Ã(Br(x̃)) a period box of radius r
centered at x and we call r(x) the injectivity radius of x. Additionally, when we want
to work with x in an affine invariant manifold M, we consider BM

r (x) := Br(x) +M
and continue to call it the period box of radius r centered at x. In fact, if we write
“x * M” we will only work with BM

r (x) and often suppress the superscript.

For convenience, we will also work with the following max norm,

‖c‖max,x = max
i

|»i|‖ci‖AGY,x

where c is written as a linear combination
∑

i »ici of any basis ci of H1(M,Σ;C).
Later we will allow the parameter · in Mη to depend on the time t and so we show
that the max norm and the AGY norm are comparable on Mη.

Lemma 2.3. For c * H1(M,Σ,C), and x * Mη, there exists n > 0 such that

·n‖c‖max,x f ‖c‖AGY,x f (2g + |Σ| 2 1)‖c‖max,x

where the implicit constant is absolute.
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Proof. Let c =
∑

i »ici * H1(M,Σ,C) and x * Mη where · = e2tb for some b * (0, 1).

By definition of ‖ · ‖max,x, we have

‖c‖AGY,x f (2g + |Σ| 2 1)‖c‖max,x.

Additionally, there exists some absolute constant 3 such that

‖c‖AGY,x2 g 3‖c‖max,x2

for any x2 * M0 for the fixed compact set M0 from the statement of non-divergence.
Furthermore, by non-divergence, there exists s * [0, 1/2] and t f t2 such that x2 :=
at2usx * M0. Then by using Lemma 2.2 twice we deduce,

e2t
2+2‖c‖AGY,x g ‖c‖AGY,x2 g 3‖c‖max,x2 g 3e22t222‖c‖max,x

for any x * Mη. Thus,

‖c‖AGY,x g 3e24t224‖c‖max,x.

So by choosing n g (4t2 + 42 log(3))/bt, we get

‖c‖AGY,x g e2nbt‖c‖max,x = ·n‖c‖max,x.

�

In particular, balls with respect to AGY and the max norm are comparable,

Bηn ¢ Bmax
r ¢ B(2g+|Σ|21)r.

This allows us to compare measures of one type of ball with measures of the other.
The multiplicative constant that appears in the lower bound when considering norms
on Mη requires very careful analysis because it changes as t changes.

2.3. The unstable foliation. We follow Avila-Gouëzel [2] section 4. Given a point
x = (M,Ë) * M, the tangent space TxM c H1(M,Σ,C) decomposes as

TxM = Rv(x)·Eu(x)· Es(x)

where v(x) determines the direction of Teichmüller geodesic flow and has ‖v(x)‖AGY,x =
1, and

Eu(x) = TxM+DΦ21
x (H1(M,Σ,R)),

Es(x) = TxM+DΦ21
x (iH1(M,Σ,R)).

We call Eu(x) (respectively, Es(x)) the unstable (respectively, the stable) manifold.

Proposition 4.4 of Avila-Gouëzel [2] shows that the subspaces Eu,s(x) depend smoothly
on x and are integrable. We denote the corresponding leaves by W u(x) and W s(x),
respectively. We call W u(x) the unstable foliation and W s(x) the stable foliation.
These foliations are well defined on affine invariant submanifolds M even when we
restrict to surfaces of unit area by the paragraph proceeding Definition 3.4 of [16].
Going forward, we assume that we are working with the foliation on unit area surfaces
and by abuse of notation, we continue to denote the leaves by W u(x).

In the literature,W u(x) has also been the called the horospherical foliation or horizon-
tal foliation. Our choice for the name of W u(x) is due to the fact that this foliation



EFFECTIVE EQUIDISTRIBUTION OF LARGE DIMENSIONAL MEASURES 7

acts as the unstable foliation with respect to the Teichmüller geodesic flow. For
more on this foliation see Smillie–Smillie–Weiss–Ygouf [16] and Eskin-Mirzakhani-
Mohammadi [9].

Two points in period coordinates

z =

(

x1 · · · xn
y1 · · · yn

)

and z2 =

(

x21 · · · x2n
y21 · · · y2n

)

that are in the same chart will be in the same leaf W u(x) if they differ by some

w =

(

w1 · · · wn

0 · · · 0

)

. This way it is easy to see that the horocycle flow preserves

the leaf and contributes one dimension to the dimension of the leaf. More succinctly,
if we let Φ(x) = a + ib. Then, the unstable leaf W u(x) is locally identified with
Φ(x) + sb+ w for s * R and w * H(0)(x).

Let µu,s
x denote the leafwise measures of µM along W u,s(x). Since we work with

SL(2,R)-invariant measures, we have µu,s
x are simply the Lebesgue measure on the

leaf for a.e. x * M (Theorem 2.1 of Eskin–Mirzakhani [7]). If Br(x) is a period box
centered at x * M, then µM|Br(x) has a product structure of dLeb× dµu

x × dµs
x.

LetBu
r (x) ¢ M denote the connected component of x inBr(x)+W

u(x). As mentioned
in the introduction, the horocycle orbit of a point x is contained inside of the leaf
W u(x); we letBu,0

r (x) denote the connected component of x inBr(x)+W
u(x)+H(0)(x).

2.4. Smooth structure on affine manifolds. Following Avila-Gouëzel [2] and
Eskin-Mirzakhani-Mohammadi [9] we endow affine invariant manifolds with a smooth
structure. For a function × defined on an affine invariant manifold M, define

ck(×) = sup |Dk×(x, v1, . . . , vk)|

where the supremum is taken over x in the domain of × and v1, . . . , vk * TxM with
AGY-norm at most 1. We define the Ck-norm of × to be ‖×‖Ck =

∑k
j=0 cj(×).

We denote the space of compactly supported functions with finite Ck norm on M by
Ck

c (M) and define C>
c (M) similarly.

In this article we will only need the C1-norm of functions and we simplify our notation
by defining C(×) := ‖×‖C1. Note that by Lemma 2.2, we have C(fç(atus)) f e2+2tC(f)
for t g 0 and s * [0, 1].

Additionally, we state a result from Eskin-Mirzakhani-Mohammadi [9] that allows us
to replace characteristic function with smooth approximations.

Let W denote one of M or M+W u(x) for x * M. Let E be a compact subset of
W and r(E) = inf{r(x) : x * E}. For 0 < · < r(E)/10, we define the following open
neighborhood of W ,

EW
ε = {y * W : r(y) g · and Bε(y) + E 6= '}.

In practice, we will take E = Mη = {x * M : r(x) g ·}.
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Let r > 0 and L > 0. Let SW (E, r, L) denote the class of Borel functions 0 f f f 1
supported and defined everywhere in E with the following properties: For · f r/(10L)
there exists ×+,ε, ×2,ε * Cc(E

W
ε ) such that

(1) ×2,ε f f f ×+,ε,
(2) C(×±,ε) f ·2L, and
(3) ‖×+,ε 2 ×2,ε‖2 f ·1/2‖f‖2.

We need the following result from Eskin-Mirzakhani-Mohammadi [9] that allows us
to replace characteristic functions with smooth approximations.

Lemma 2.4 (Lemma 2.11, [9]). There exists some L depending only on M such that
for any 0 < r f r(x),

1Bu
r (x) * SBu

r (x)(E, r, L) and 1Br(x) * SBr(x)(E, r, L).

We fix one such L so that the above lemma holds and drop the dependence on L.
Additionally, we drop the dependence on W when the context is clear and similarly
for E when the compact set is not relevant except that it is a compact set containing
x.

2.5. Decay of correlations. We need the following two results on decay of correla-
tions.

Theorem 2.5 (Exponential mixing [3]). Let (M, µM) be an affine invariant subman-
ifold. There exists a positive constant »2 = »2(M, µM) such that if Ç, Ë * C>

c (M),
then

∣

∣

∣

∣

∫

Ç(atx)Ë(x)dµM(x)2

∫

Ç dµM

∫

Ë dµM

∣

∣

∣

∣

j C(Ç)C(Ë)e2κ2t

where the implied constants depend on (M, µM).

We equip SL(2,R) with the right-invariant metric d induced by the Killing form on
it’s Lie algebra. Recall that we choose

at =

(

et 0
0 e2t

)

,

and so d(at, e) = 2t. By using the Cartan decomposition of SL(2,R) and invariance of
M under SL(2,R), we obtain the following corollary (see also Proposition B.2 of [3]).

Corollary 2.6. Let (M, µM) be an affine invariant submanifold. There exists a
positive constant »M = »M(M, µM) such that if Ç, Ë * C>

c (M), then
∣

∣

∣

∣

∫

Ç(gx)Ë(x) dµM(x)2

∫

Ç dµM

∫

Ë dµM

∣

∣

∣

∣

j C(Ç)C(Ë)e2κMd(e,g)

where the implied constant depends on (M, µM).
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3. Effective Equidistribution of the unstable foliation

In this section we verify that the effective equidistribution of the unstable foliation
always holds in the setting of Teichmüller dynamics. We need the following result
of Eskin-Mirzakhani-Mohammadi [9] that relies on the exponential mixing of Te-
ichmüller geodesic flow Avila-Gouëzel-Yoccoz [3].

Proposition 3.1 (Prop 3.2, [9]). Let M be an affine invariant submanifold. There
exists »2 depending only on M with the following property. Let x * M, 0 < r f r(x),
and let Br(x) be a period box centered at x. Let Ëu * C>

c (Bu
r (x)). Then for any

Ç * C>
c (M) we have

∣

∣

∣

∣

∫

W u(x)

Ç(aty)Ë
u(y) dµu

x(y)2

∫

M

Ç dµM

∫

W u(x)

Ëudµu
x(y)

∣

∣

∣

∣

f C(Ç)C(Ëu)e2»2t.

We use the above and an approximation argument to obtain effective equidistribution
of the unstable foliation.

Proposition 3.2. Let M be an affine invariant submanifold. There exists »3 de-
pending only on M with the following property. Let x * Mη, 0 < r f r(x), and let
Br(x) be a period box centered at x. Then, there exists L > 0, and b3 = b3(L) such
that for any f * C>

c (M) we have

∣

∣

∣

∣

1

µu
x(B

u
r (x))

∫

Bu
r (x)

f(aty) dµ
u
x(y)2

∫

M

f(x) dµM(x)

∣

∣

∣

∣

< b3C(f)·
2Le2»3t

where t > 0 and 0 < · = ·(t) j 1.

Proof. By Lemma 2.1, we can find functions that approximate 1Bu
r (x) that are well

behaved in that they satisfy

(1) ×2,ε f 1Bu
r (x) f ×+,ε,

(2) C(×±,ε) f ·2L, and
(3) ‖×+,ε 2 ×2,ε‖2 f ·1/2‖1Bu

r (x)‖2

for any · < ·/10L.

Without loss of generality, we suppose that

∫

Bu
r (x)

f(aty) dµ
u
x(y)2

∫

M

f(x) dµM(x) · µu
x(B

u
r (x)) > 0.
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Then,
∫

Bu
r (x)

f(aty) dµ
u
x(y)2

∫

M

f dµM · µu
x(B

u
r (x))

f

∫

W u(x)

f(aty)×+,ε(y) dµ
u
x(y)2

∫

M

f dµM · µu
x(B

u
r (x))

=

∫

W u(x)

f(aty)×+,ε(y) dµ
u
x(y)2

∫

M

f

∫

W u(x)

×+,ε +

∫

M

f

∫

W u(x)

×+,ε 2

∫

M

f · µu
x(B

u
r (x))

=

(
∫

W u(x)

f(aty)×+,ε(y) dµ
u
x(y)2

∫

M

f

∫

×+,ε

)

+

∫

M

f

(
∫

W u(x)

×+,ε 2 1Bu
r (x)

)

=

(
∫

W u(x)

f(aty)×+,ε(y) dµ
u
x(y)2

∫

M

f

∫

×+,ε

)

+

∫

M

f

(
∫

W u(x)

×+,ε 2 ×+,ε

)

A similar computation shows that we can achieve an analogous lower bound. Hence,
by applying Proposition 3.1 on the first term and Cauchy-Schwartz on the second
yields

|

∫

Bu
r (x)

f(aty) dµ
u
x(y)2

∫

M

f dµ · µu
x(B

u
r (x))| = C(f)C(×+,ε)e

2»2t + ‖f‖2‖×+,ε 2 ×2,ε‖

f C(f)(C(×+,ε) + C(×2,ε))e
2»2t + ‖f‖2‖×+,ε 2 ×2,ε‖.

Applying properties 2 and 3 of the functions from Lemma 2.1 and observing that we
are on a probability space yields
∣

∣

∣

∣

∫

Bu
r (x)

f(aty) dµ
u
x(y)2

∫

M

f dµ · µu
x(B

u
r (x))

∣

∣

∣

∣

f 2C(f)·2Le2»2t + C(f)·1/2µu
x(B

u
r (x)).

Now choosing · = ·/20L and only considering · f e2t»2/2, we obtain
∣

∣

∣

∣

∫

Bu
r (x)

f(aty) dµ
u
x(y)2

∫

M

f dµ · µu
x(B

u
r (x))

∣

∣

∣

∣

f 2C(f)(20L)Le2t»2·2L + C(f)·1/2µu
x(B

u
r (x))

f 2(20L)LC(f)e2t»2·2L.

Hence, the proof is completed by choosing »3 = »2 and C = 2(20L)L.

�

For the rest of the article, we will always assume · f e2t»2/2.

4. Proof of main theorem

In this section we prove Theorem 1.2. The argument is inspired by Venkatesh [18].
Broadly speaking, we will thicken the measure Ã to one on the full unstable foliation
using a certain function × that will be defined in the course of the proof. The
dimension condition of Ã implies that the L>-norm of the thickened integral is not



EFFECTIVE EQUIDISTRIBUTION OF LARGE DIMENSIONAL MEASURES 11

too large. We take an extra average in the horocyclic direction and take the square
of this thickening. We complete the proof by using the decay of correlations of us to
show terms of the square far from the diagonal are controlled and terms close to the
diagonal have small measure and are negligible.

Proof. We make a number of simplifications for ease of exposition. For example, we
only deal with the ball of radius 1, Bu,0

1 (x), but the proof works with small modifica-
tions for any ball. Additionally, without loss of generality, we assume

∫

M
fdµM = 0

and that f is a Lipschitz function. Note that by definition of C(·), the Lipschitz norm
is dominated by C(f).

Furthermore, it is convenient to work with the max norm ‖ · ‖max,x on H1(M,Σ,C).
By Lemma 2.3, the AGY norm and max norm are comparable on Mη.

Let Φ(x) = a+ib. Let d denote the dimension of M+W u(x)+H(0) and let w1, . . . , wd

be linearly independent cohomology classes that span M +W u(x) + H(0) and w =
(w1 . . . , wd). Recall, that the unstable leaf W u(x) is locally identified with Φ(x) +
sb+ w for w * H(0)(x).

By choosing N * N so that 1
N

f · < 1
N21

, we suppose that · = 1/N .

We will only work with the non-negative orthant of Bu,0
1 (x) since considering the

remaining parts only result in multiplication by a fixed multiplicative constant. For
a vector k * {0, . . . , N 2 1}d, define the ·-ball Ik set of directions one can move in
W u(x) +H(0)(x) by

Ik = {Φ(x) + r ·w * Bu,0
1 (x) : r = (r1, . . . , rd), rj * [kj·, (kj + 1)·), for each j}.

Define ck = Ã(Ik). Notice that since the ·-balls (Ik)k*{0,...,N21}d are disjoint and their

union is Bu,0
1 (x) that

∑

k*{0,...,N21}d ck = 1.

For each k * {0, . . . , N 2 1}d, let

Bk =

{

Φ(x) + sb+ r ·w * Bu
1 (x) : 0 f s f 1, rj *

(

kj·, kj· +
·

4

)

for each j

}

denote a thickening to the full unstable leaf W u(x). The sets Bk continue to be
disjoint for different indices k.

Then,

∫

Bu,0(x)

∫ 1

s=0

f(atusy) ds dÃ(y) =
∑

k

∫

Ik

∫ 1

s=0

f(at(Φ(x) + sb+ r ·w)) ds dÃ(r)

=
∑

k

∫

s*[0,δ)d

∫ 1

s=0

f(atus(Φ(x) + (·k + r) ·w)) ds dÃ(r).
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Thus,
∣

∣

∣

∣

∣

∫

Bu,0(x)

∫ 1

s=0

f(atusy) ds dÃ(y)2
∑

k

ck

∫ 1

s=0

f(at(Φ(x) + sb+ ·k ·w)) ds

∣

∣

∣

∣

∣

f
∑

k

∫

Ik

∫ 1

s=0

|f(at(Φ(x) + sb+ r ·w))2 f(at(Φ(x) + sb+ ·k ·w))| ds dÃ(r)

=
∑

k

∫

Ik

∫ 1

s=0

|f(atus(Φ(x) + r ·w))2 f(atus(Φ(x) + ·k ·w))| ds dÃ(r).

We now compare the difference between f(atus(Φ(x)+r·w)) and f(atus(Φ(x)+·k·w))
by recalling that we assume f is a Lipschitz function and that on the domain of
integration, the difference between the inputs of f is given by ‖atus(r

2 ·w)‖AGY,atusx

where r2 * [0, ·)d. Additionally, we utilize Lemma 2.2, Lemma 2.3, and that t f
| log(·)|/4, to obtain

|f(atus(Φ(x) + r ·w))2 f(atus(Φ(x) + ·k ·w))| f C(f)‖atus(r
2 ·w)‖AGY,atusx

j C(f)e2+2t‖r2 ·w‖max,x

j C(f)·21/2· = C(f)·1/2.

Thus, we obtain
∣

∣

∣

∣

∣

∫

Bu,0(x)

∫ 1

s=0

f(atusy) ds dÃ(y)2
∑

k

ck

∫ 1

s=0

f(at(Φ(x) + sb+ ·k ·w)) ds

∣

∣

∣

∣

∣

j
∑

k

∫

Ik

∫ 1

s=0

C(f)·1/2 ds dÃ(r) = C(f)·1/2
∑

k

Ã(Ik) = C(f)·1/2

and so it suffices to understand the behavior of f on the discrete points ·k ·w.

Let

× =
∑

k

µu
x(Bk)

21 · ck1Bk
.

By Lemma 2.3 and since Ã is ·-rich at scale ·, we have

Ã(Ik)

µu
x(Bk)

f
(2g + |Σ| 2 1)2b2·

d2ε

·nd42d·d
j ·2nd·2ε

where the implied constant is absolute.

Thus, we have the following pointwise bound

|×| j ·2nd·2ε
∑

k

1Bk
= ·2nd·2ε

1*kBk
·2nd·2ε f ·2nd·2ε

by the disjointness of Bk.
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We have, by noting that dµu
x = dr ds,

∣

∣

∣

∣

∣

∑

k

ck

∫ 1

s=0

f(atus(Φ(x) + ·k ·w)) ds2

∫

W u(x)

×(y)f(aty) dµ
u
x(y)

∣

∣

∣

∣

∣

f

∑

k

4d·2d · ck

∫

Bk

|f(atus(Φ(x) + ·k ·w))2 f(atus(Φ(x) + r ·w))| dr ds

j C(f)·1/2

where on the last line we bounded the difference of functions by C(f)·1/2 and we used
that

∑

k
ck = 1.

Thus, it suffices to study the thickening
∫

W u(x)
×(y)f(aty) dµ

u
x(y). Now, we introduce

an extra average in the horocycle direction,

A =
1

Ç

∫

W u(x)

∫ τ

0

×(y)f(atury) dr dµ
u
x(y).

We will eventually show that
∫

W u(x)
×(y)f(aty) dµ

u
x(y) is comparable to A. To see

this, notice that µu
x (urBk·Bk) j Çµu

x(Bk) since, locally W u(x) c Rdim(W u(x)) and
the latter enjoys the Folner property. Hence,
∣

∣

∣

∣

∫

Wu(x)

×(y)f(atury) dµ
u
x(y)2

∫

Wu(x)

×(y)f(aty) dµ
u
x(y)

∣

∣

∣

∣

f
∑

k

ck

∫

urBk·Bk

|f(aty)| dµ
u
x(y)

j
∑

k

ckÇµ
u
x(Bk)‖f‖>

j C(f)Ç.

Integrating the above over [0, Ç ] and multiplying the above by 1/Ç yields

(1)

∣

∣

∣

∣

∫

W u(x)

×(y)f(aty) dµ
u
x(y)2A

∣

∣

∣

∣

j C(f)Ç

We choose Ç to be of the form e(
1

l
22)t for l g 2. Then, by equation (1) and noting

that | log(·)/8| f t we have
∣

∣

∣

∣

∫

W u(x)

×(y)f(aty) dµ
u
x(y)2A

∣

∣

∣

∣

j C(f)·1/16,

and, as such, we have reduced our analysis to that of A.

By the Cauchy-Schwarz inequality, we have

|A|2 f

∫

W u(x)

(

1

Ç

∫ τ

0

f(atury) dr

)2

×(y) dµu
x(y).
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Now that all the terms we are dealing with are non-negative, by utilizing the upper
bound on × we deduce

|A|2 j
·2nd·2ε

Ç 2

∫ τ

0

∫ τ

0

∫

Bu

1
(x)

f̂r1,r2(aty) dµ
u
x(y) dr1 dr2(2)

where f̂r1,r2(y) = f(atur1a2ty)f(atur2a2ty).

Observe that

C(f̂r1,r2) f (e2tÇ)2C(f)2 = e
2

l
tC(f)2.

By the above and by choosing a fixed l2 large enough so that l = 4l2»3
21 g 2, we have

C(f̂r1,r2) f e»3t/2C(f)2.

Combining this observation, Equation (2), and Proposition 3.2 we deduce

·2nd·2ε

∣

∣

∣

∣

∣

∫

Bu

1
(x)

f̂r1,r2(aty) dµ
u
x(y)

∣

∣

∣

∣

∣

f ·2nd·2ε

∫

M

f̂r1,r2(x) dµM(x)

+ ·2ndb3·
2εe2»3t/2C(f)2·2L.

Combining the above with Equation (2) yields

|A|2 j
1

Ç 2

∫ τ

0

∫ τ

0

(

·2nd·2ε

∫

M

f̂r1,r2(x) dµM(x)(3)

+ ·2ndb3·
2εe2»3t/2C(f)2·2L

)

dr1 dr2.

Now we analyze the first term on the right of inequality (3). We do this by splitting
the integral over [0, Ç ]2 into two regions; one where |r12 r2| > e22tet/2l and so we can
take advantage of the decay of correlations (Corollary 2.6) and one where |r1 2 r2| <
e22tet/2l where we use that the region is of small measure.

When |r1 2 r2| > e22tet/2l, then by the decay of correlations of Corollary 2.6, and
observing that d(e, ue2t(r12r2)) g e2t|r1 2 r2| > et/2l > t

2l
, we have

∫

M

f̂r1,r2(x) dµM(x) j e2κMe2t|r12r2|C(f)2

f e2κM
t
2lC(f)2.

Thus, after integrating over [0, Ç ]2 and dividing by Ç 2, we have the following bound
on the first term on the right of (3) of

4db1·
2ε

∫

M

f̂r1,r2(x) dµM(x) j ·2εe2κM
t
2lC(f)2

whenever |r1 2 r2| > e22te
t
2l .
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Finally, we consider the region close to the diagonal (|r1 2 r2| < e22tet/2l = Çe2t/2l).
Notice this region has area 2Ç 2e2t/2l. By invariance of µM and using that the ‖ · ‖>
is dominated by C(·) we obtain
∫

M

f̂r1,r2(x) dµM(x) =

∫

M

f(ue2t(r12r2)x)f(x) dµM(x) f 2Ç 2e2t/2l‖f‖2> f 2Ç 2e2t/2lC(f)2.

Integrating over the region |r1 2 r2| < e22tet/2l and dividing everything by Ç 2 we get
that the first term of the right side of inequality (3) is smaller than

j
1

Ç 2
C(f)2 · 2Ç 2e2t/2l j C(f)2 · e2t/2l.

In total, we get this estimate of the right side of inequality (3),

|A|2 j ·2LC(f)2·2ε
(

e2κMt/2l + e2t/2l + e2»3t/2
)

j ·2LC(f)2·2εe2κMt/2l.

We recall that we have l = 432»3
21 and e28t f ·. Let · = e2bt for some b * (0, 1). By

choosing

b f
»M»3
1632nd

and · f
»M»3
25632

we get
|A|2 j C(f)2·2Le2tκM»3/32l2

and this finishes the proof. �
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