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ABSTRACT

This paper introduces the nested heteroscedastic Gaussian process approach (NHGP) to tackle simulation
metamodeling with large-scale heteroscedastic datasets. NHGP achieves scalability by aggregating sub-
stochastic kriging (sub-SK) models built on disjoint subsets of a large-scale dataset, making it user-friendly
for SK users. We show that the NHGP predictor possesses desirable statistical properties, including being
the best linear unbiased predictor among those built by aggregating sub-SK models and being consistent.
The numerical experiments demonstrate the competitive performance of NHGP.

1 INTRODUCTION

Gaussian process (GP) models have become prominent nonparametric surrogate models in various science
and engineering domains (Rasmussen and Williams 2006). They offer not only accurate point estimates
of true function values but also quantification of the corresponding predictive uncertainty. In the context
of stochastic simulation, data are inherently subject to heteroscedasticity. For example, when simulating a
queueing system, the output variance varies significantly across the input space. Stochastic kriging (SK),
proposed by Ankenman et al. (2010), has demonstrated its effectiveness as a GP-based metamodeling
approach, which is used for approximating the mean function implied by a stochastic simulation model
(Chen and Zhou 2017; Wang and Chen 2018). However, the advent of big data and the continuous evolution
of computer hardware amplify the inherent challenges faced by traditional GP models, including SK. These
methods suffer from cubic complexity relative to data size, making them less feasible for applications that
yield large datasets. To navigate these challenges and retain the quality of predictions, the development of
scalable GP approaches has become imperative.

The development of scalable Gaussian process (GP) approaches has thrived as a result. Existing
scalable approaches typically fall into two main categories: global approximations, which process the
entirety of the dataset to distill essential information, and local approximations, which partition the dataset
for targeted learning via local experts in sub-regions (Liu et al. 2020). Specifically, global approximations
focus on sparsifying the full kernel matrix, which includes using sparse kernels and sparse approximations
(Quinonero-Candela and Rasmussen 2005; Titsias 2009; Shen et al. 2006). On the other hand, local
approximations aggregate predictions by local experts to improve scalability. Two major frameworks in
this category are mixture of experts (MoE) and product of experts (PoE). MoE, also studied as ensemble
learning, typically expresses the combination of local experts as a Gaussian mixture to enhance the overall
predictive accuracy and robustness. Unlike MoE, which employs a weighted sum to combine several
probability distributions associated with experts, PoE multiplies these probability distributions, hence the
name. This framework avoids the weight assignment required by MoE, thereby aggregating local experts’
predictions in a way that emphasizes mutual confirmation over individual contributions.

However, it has been shown that some aggregation methods in the PoE framework, including PoE,
generalized PoE (gPoE), Bayesian committee machine (BCM), and robust BCM (RBCM), ignore the
covariances between experts (or sub-models). As a result, they lack consistency properties (Szabó and
Zanten 2019; Bachoc et al. 2022). Recently, Rullière et al. (2018) proposed nested kriging (NK) which
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considers covariances between sub-models given by kriging models, leading to theoretically consistent
predictions.

Like most scalable GP approaches, however, NK, does not account for the heteroscedasticity inherent in
stochastic simulation outputs. A notable contribution that fills this gap with reported successful applications
is the distributed variational sparse heteroscedastic Gaussian process approach (DVSHGP) proposed by Liu
et al. (2021). DVSHGP offers scalable variational inference-based estimation of both the mean and variance
functions, facilitated by the use of inducing points. Despite its advancements, DVSHGP aggregates local
experts following the BCM formalism, rendering its potential inconsistency.

In this paper, we introduce the nested heteroscedastic Gaussian process (NHGP) approach, inspired
by the principles of NK. This method is specifically developed to address the challenges of metamodeling
large-scale heteroscedastic datasets. NHGP achieves scalability by aggregating sub-SK models built on
disjoint subsets of a large-scale dataset, making it user-friendly for SK users. We show that the NHGP
predictor possesses desirable statistical properties, including being the best linear unbiased predictor among
those built by aggregating sub-SK models and being consistent.

The paper is organized as follows. Section 2 provides a brief review of SK. Section 3 elaborates on
the NHGP approach. Section 4 presents numerical evaluations to demonstrate the performance of NHGP.
Section 5 concludes the paper.

2 REVIEW OF STOCHASTIC KRIGING

This section provides a brief review of stochastic kriging (SK) following Ankenman et al. (2010) and Chen
et al. (2012).

Given a simulation model, SK assumes that the simulation output generated on the jth replication at
design point x ∈ X ⊂ Rd can be modeled as

Y j(x) = Y(x)+ ε j(x) = h(x)⊤βββ +M(x)+ ε j(x), j = 1,2, . . . (1)

whereY(·)= h(·)⊤βββ +M(·) represents the unknown mean function to estimate, h(·)= (h1(·),h2(·), . . . ,hl(·))⊤
denotes the l×1 vector of known regression functions, and βββ = (β1,β2, . . . ,βl)

⊤ denotes the l×1 vector of
unknown regression parameters. The simulation noise terms ε1(x),ε2(x), . . . are independent and identically
distributed (i.i.d.) with mean zero and variance V(x) for x ∈ X . In Equation (1), M(·) is assumed to
be a random draw from a mean-zero stationary Gaussian process whose covariance function is given by
K(x̃,x′;τ2,θ) := Cov[M(x̃),M(x′)] for any x̃,x′ ∈X . Here K(·, ·;τ2,θ) denotes the kernel function which
determines the smoothness properties of M(·), and τ2 ∈R+ and θ ∈Rd

+ respectively represent the process
variance and the lengthscale parameters. To ease notation, we suppress τ2 and θ and use K(·, ·) in the
remainder of the paper.

A simulation experimental design for SK metamodeling specifies the set of design points X =
{x1,x2, . . . ,xn} and the number of replications ri to run the simulation model at each design point xi ∈ X.
Given the simulation dataset D = {xi,{Y j(xi)}ri

j=1, i = 1,2, . . . ,n}, one can obtain the n×1 vector of sample

average simulation outputs Ȳ =
(
Ȳ (x1), Ȳ (x2), . . . , Ȳ (xn)

)⊤, where

Ȳ (xi) =
1
ri

ri

∑
j=1

Y j(xi) = Y(xi)+ ε̄(xi),

with ε̄(xi) = r−1
i ∑

ri
j=1 ε j(xi). Denote the n×1 vector of average noise terms incurred at the design points

by ε̄ = (ε̄(x1), ε̄(x2), . . . , ε̄(xn))
⊤. Let the n×n matrix ΣΣΣε denote the variance-covariance matrix of ε̄ . In

this paper, we assume that common random numbers are not applied in simulation experiments. In this
case, ΣΣΣε reduces to the n×n diagonal matrix ΣΣΣε = diag{V(x1)/r1,V(x2)/r1, . . . ,V(xn)/rn}.

Let the n×n matrix K(X,X) = (K(xi,x j))1≤i, j≤n record the pairwise covariances between M(xi) and
M(x j) for any xi,x j ∈X. Given any prediction point x0, let the n×1 vector K(X,x0)= (K(x0,x1), . . . ,K(x0,xn))

⊤
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record the covariances between M(x0) and M(x j) for all x j ∈ X. Chen et al. (2012) show that the best
linear unbiased predictor (BLUP) of Y(x0) at any prediction point x0 ∈ X is given by

µ(x0) = h(x0)
⊤

β̂ββ +K(X,x0)
⊤(K(X,X)+ΣΣΣε)

−1
(
Ȳ −Hβ̂ββ

)
, (2)

where H = (h(x1),h(x2), . . . ,h(xn))
⊤ is the n× l model matrix of full rank, and β̂ββ is the generalized least

squares (GLS) estimator of βββ with its closed form given by

β̂ββ =
(

H⊤ (K(X,X)+ΣΣΣε)
−1 H

)−1
H⊤ (K(X,X)+ΣΣΣε)

−1 Ȳ . (3)

The corresponding mean square error (MSE) of the BLUP follows as K(x0,x0)−K(X,x0)
⊤(K(X,X)+

ΣΣΣε)
−1K(X,x0)+ γγγ⊤

(
H⊤(K(X,X)+ΣΣΣε)

−1H
)−1

γγγ , where γγγ = h(x0)−H⊤(K(X,X)+ΣΣΣε)
−1K(X,x0).

3 NESTED HETEROSCEDASTIC GAUSSIAN PROCESS

This section details the nested heteroscedastic Gaussian process (NHGP) approach, which extends nested
kriging (NK) proposed by Rullière et al. (2018) to tackle large-scale heteroscedastic datasets.

The idea underpinning NHGP is to partition the dataset into disjoint subsets, upon which sub-SK
models are individually constructed. These sub-SK models are subsequently aggregated to form the NHGP
predictor. Specifically, we partition the design-point set X into p disjoint subsets Xk = {x(k)i , i = 1,2, . . . ,nk}
for k = 1,2, . . . , p, such that Xk ∩Xℓ = /0 for k ̸= ℓ,k, ℓ = 1,2, . . . , p and ∪p

k=1Xk = X. The subdataset

corresponding to Xk is denoted as Dk = {x(k)i ,{Y j(x
(k)
i )}r(k)i

j=1, i = 1,2, . . . ,nk}, where r(k)i denotes the number

of replications at the ith design point in Xk, x(k)i , i = 1,2, . . . ,nk.
Given each subdataset Dk, we apply the SK methodology and construct a sub-SK model. The resulting

predictive mean at any given x0 ∈ X follows from (2) and is given by

µk(x0) = h(x0)
⊤

β̂ββ k +K(Xk,x0)
⊤
(

K(XK ,Xk)+ΣΣΣ
(k)
ε

)−1(
Ȳk −Hkβ̂ββ k

)
= ωk(x0)

⊤Ȳk, k = 1,2, . . . p, (4)

where ωk(x0) denotes the nk ×1 vector given by

ωk(x0)
⊤ = h(x0)

⊤
(

H⊤
k

(
K(Xk,Xk)+ΣΣΣ

(k)
ε

)−1
Hk

)−1

H⊤
k

(
K(Xk,Xk)+ΣΣΣ

(k)
ε

)−1

−K(Xk,x0)
⊤
(

K(Xk,Xk)+ΣΣΣ
(k)
ε

)−1
Hk

(
H⊤

k

(
K(Xk,Xk)+ΣΣΣ

(k)
ε

)−1
Hk

)−1

H⊤
k

(
K(Xk,Xk)+ΣΣΣ

(k)
ε

)−1

+K(Xk,x0)
⊤
(

K(Xk,Xk)+ΣΣΣ
(k)
ε

)−1
,

K(Xk,Xk)= (K(x(k)i ,x(k)j ))1≤i, j≤nk , K(Xk,x0)= (K(x(k)1 ,x0),K(x(k)2 ,x0), . . . ,K(x(k)nk ,x0))
⊤, and Hk =(h(x(k)1 ),

h(x(k)2 ), . . . ,h(x(k)nk ))
⊤ denotes the nk× l model matrix corresponding to the kth subset. In (4), β̂ββ k denotes the

l×1 GLS estimator obtained based on Dk, Ȳk =
(
Ȳ (x(k)1 ), Ȳ (x(k)2 ), . . . , Ȳ (x(k)nk )

)⊤
denotes the nk×1 vector

of average outputs, and ΣΣΣ
(k)
ε denotes the nk ×nk diagonal noise variance-covariance matrix corresponding

to the kth subset.
Let −→µ (x0) = (µ1(x0),µ2(x0), . . . ,µp(x0))

⊤ denote the p×1 vector of predictive means given by the
p sub-SK models. Define the p× p variance-covariance matrix KUK(x0) = Cov[−→µ (x0),

−→
µ (x0)] and the
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p×1 covariance vector KUK(x0) = Cov[−→µ (x0),M(x0)] with their specific entries given by

(KUK(x0))k, j = Cov [µk(x0),µ j(x0)] = ωk(x0)
⊤K(Xk,X j)ω j(x0), k ̸= j,k, j = 1,2, . . . , p

(KUK(x0))k,k = Cov [µk(x0),µk(x0)] = ωk(x0)
⊤
(

K(Xk,Xk)+ΣΣΣ
(k)
ε

)
ωk(x0), k = 1,2, . . . , p (5)

(KUK(x0))k = Cov [µk(x0),M(x0)] = ωk(x0)
⊤K(Xk,x0), k = 1,2, . . . , p.

Assuming that KUK(x0) is invertible, NHGP provides the following predictor of Y(x0) by aggregating
those from all p sub-SK models:

µNHGP(x0) = ααα(x0)
⊤−→

µ (x0), (6)

where

ααα(x0)
⊤ =

(
111⊤p KUK(x0)

−1111p

)−1
111⊤p KUK(x0)

−1

− KUK(x0)
⊤KUK(x0)

−1111p

(
111⊤p KUK(x0)

−1111p

)−1
111⊤p KUK(x0)

−1 (7)

+ KUK(x0)
⊤KUK(x0)

−1,

and 1q denotes the q×1 vector of ones. The specific forms of KUK(x0) and KUK(x0) in (5) are derived in
Appendix A.

Theorem 1 below shows that µNHGP(x0) given in (6) is the best linear unbiased predictor (BLUP) from
combining the sub-SK model predictors. It extends Proposition 1 in Rullière et al. (2018) and Proposition
10 in Bachoc et al. (2022) for NK to the heteroscedastic GP setting. The proof is provided in Appendix B.
Theorem 1 µNHGP(x0) in (6) is the BLUP of Y(x0) given by combining the sub-SK predictors, and the
corresponding MSE of µNHGP(x0) follows as

νNHGP(x0) = K(x0,x0)−2ααα(x0)
⊤KUK(x0)+ααα(x0)

⊤KUK(x0)ααα(x0).

Acknowledging the lack of knowledge in true noise variances, we follow Ankenman et al. (2010) and
consider the sample-variance-plugged-in NHGP predictor:

µ̂NHGP(x0) = α̂αα(x0)
⊤−̂→

µ (x0), (8)

where all quantities with hat are obtained by replacing ΣΣΣ
(k)
ε with Σ̂ΣΣ

(k)
ε = diag{V̂(x(k)1 )/r(k)1 , . . . , V̂(x(k)nk )/r(k)nk }

in their original expressions, and V̂(x(k)i ) = (r(k)i − 1)−1
∑

r(k)i
j=1(Y j(x

(k)
i )− Ȳ (x(k)i ))2, i = 1,2, . . . ,nk, k =

1,2, . . . , p.
Theorem 2 indicates that estimating noise variances via sample variances introduces no prediction bias.

The proof is deferred to Appendix C.
Assumption 1 (Assumption 1 in Ankenman et al. 2010) The Gaussian process M is stationary, and
ε1 (xi) ,ε2 (xi) , . . . are i.i.d. normally distributed with mean zero and variance V(xi), independent of ε j (xh)
for all j and h ̸= i, and independent of M.
Theorem 2 If Assumption 1 holds, then E(µ̂NHGP(x0)−Y(x0)) = 0.

Recall that several aggregation methods in the PoE framework that ignore the covariance between
sub-models, including PoE, gPoE, BCM, and RBCM, lack consistency. The next result ensures consistency
of the NHGP predictor.
Theorem 3 Under Assumption 1, assume that the model matrices corresponding to all subsets (if they
exist), Hk,k = 1,2, . . . , p, have full rank, and the design-point set X is recurrently dense, namely, for
all x0 ∈ X , limn→∞ min1≤i≤n ∥xi − x0∥ = 0. Then the NHGP predictor µNHGP(x0) is consistent, that is,
supx0∈X νNHGP(x0)→ 0 as n → ∞.
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We sketch the proof of Theorem 3. In light of Theorem 1, we note that, for any x0 ∈ X , νNHGP(x0)
is smaller than the MSE of any sub-SK model’s predictor µk(x0), k = 1,2, . . . , p. As n → ∞, there exists
a subset of design points, say, the k0th subset Xk0 , such that nk0 = |Xk0 | → ∞. Hence, it suffices to show
that the MSE of µk0(x0) at prediction point x0, νk0(x0)→ 0 as nk0 → ∞. To establish this, consider the
following two scenarios. First, the regression functions in h ̸= 0 and we need to estimate βββ . Theorem 2
in Wang and Hu (2018) shows that νk0(x0) decreases monotonically with nk0 when Hk0 has full rank, and
since νk0(x0) ≥ 0, we have νk0(x0)→ 0 as nk0 → ∞. Second, the regression functions in h = 0. In this
case, Theorem 3 in Koepernik and Pfaff (2021) establishes that supx0∈X νNHGP(x0)→ 0 as n → ∞ if the
design-point set X is recurrently dense. Theorem 3 also indicates that the properties of NHGP depend on
those of its constituent sub-SK models.

4 NUMERICAL EVALUATIONS

This section demonstrates the performance of NHGP through three numerical examples.

4.1 Methods in Comparison

We compare NHGP with a state-of-the-art approach, DVSHGP, proposed by Liu et al. (2021). Given a
simulation dataset D containing B observations collected at n distinct design points in X, both NHGP
and DVSHGP require specifying the number of subgroups to divide X into disjoint subsets; we use p1
for NHGP and p2 for DVSHGP to differentiate between the two parameters used in the two approaches.
Following the suggestions by Rullière et al. (2018) for NK and by Liu et al. (2021) for DVSHGP, we adopt
k-means clustering (Chapter 13 of Hastie et al. 2009) for partitioning the design points into disjoint subsets.
Rullière et al. (2018) provided a comprehensive discussion on the choice of p1 for NK. Specifically, a
small p1 is suitable for low-dimensional cases (d < 5), while a large p1 is preferable for high-dimensional
problems. We adhere to this suggestion when implementing NHGP and make adjustments in specific
examples. However, a rule-of-thumb for choosing p2 for DVSHGP is lacking. Therefore, we select its
value from a set of candidate choices that yield the best predictive performance in each example.

Regarding hyper-parameter estimation, NHGP has the lengthscale parameters in θθθ and the process
variance τ2 to estimate. We adopt a two-step leave-one-out procedure that employs stochastic gradient
descent detailed in Rullière et al. (2018) for their estimation. Furthermore, to facilitate a fair comparison
with DVSHGP, we adopt the Gaussian kernel in our implementation and set the regression functions
hi(x) = 0 for i = 1,2 . . . , l, eliminating the need to estimate βββ .

The parameters for DVSHGP to estimate include the kernel parameters for GP modeling of the mean
and variance functions, the B variational parameters, and the (m+u)×d inducing-point location parameters,
where m (respectively u) denotes the number of inducing points used for mean (resp. variance) function
estimation. Liu et al. (2021) adopts a hybrid estimation strategy that combines natural gradient descent
with the Adam method to seek optimal parameter values. We follow Liu et al. (2021) and set m = u in
our implementation.

4.2 General Experimental Setup

We provide a brief description of the general experiment setup used in all examples. A simulation experiment
is performed with a total budget of B simulation replications to expend at n distinct design points, with ri
replications allocated at design point xi, for i = 1,2, . . . ,n. We consider three budget allocation schemes:
equal allocation, unequal allocation 1, and unequal allocation 2. Specifically, the equal allocation prescribes
ri = ⌈B/n⌉, where ⌈a⌉ denotes the smallest integer greater than or equal to a. Unequal allocation 1 sets

ri =
⌈

V(xi)
∑

n
j=1 V(x j)

B
⌉

and unequal allocation 2 assigns ri =
⌈ √

V(xi)

∑
n
j=1

√
V(x j)

B
⌉

.

For all examples considered, we repeat the simulation experiment for 100 independent macro-replications
and calculate the empirical root mean squared error (RMSE) achieved by NHGP and DVSHGP on each
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macro-replication for assessing their predictive accuracy. Specifically, a check-point set comprising npred
points from X is generated according to the Sobol’ quasi-random sequence, and the RMSE achieved on
the ℓth macro-replication is given by

RMSEℓ =

√
1

npred

npred

∑
i=1

(µℓ(x0,i)− f (x0,i))
2, ℓ= 1,2, . . . ,100, (9)

where µℓ(x0,i) denotes the predictive mean obtained by a given method at x0,i on the ℓth macro-replication,
and f (x0,i) denotes the corresponding true mean function value to estimate.

4.3 Examples

In each example, we generate simulation outputs according to the following model:

Y j(x) = f (x)+ ε j(x), for j = 1,2, . . .

where f (·) denotes the true mean function of interest, and the simulation noise terms ε j(x)’s are i.i.d.
normally distributed with mean zero and variance V(x), for any x ∈ X . The input space X , the mean
function f (·), and the variance function V(·) are to be specified separately for each example.

1-D Sinc. Consider the following 1-dimensional example, which is also studied by Liu et al. (2021).
The input space is X = [−10,10]. For any x ∈ X , the mean function is given by

f (x) =

{
sin(πx)/(πx) x ̸= 0

1 x = 0
.

The noise variance function is given by V(x) = (0.05+0.2(1+ sin(2x))/(1+ e−0.2x))2 for x ∈ X . Figure
1 (a) and (b) illustrates the mean and noise variance functions for the 1-D Sinc example.

(a) f (·) (b) V(·)

Figure 1: 1-D Sinc: the mean and variance functions.

2-D Branin. Consider the following two-dimensional example where the input space is X = [0,5]2.
For any x = (x1,x2) ∈ X , the mean and variance functions are respectively given by

f (x) =
(

x2 −
5

4π2 x2
1 +

5
π

x1 −6
)2

+10
(

1− 1
8π

)
cos(x1)+10, V(x) = 0.01| f (x)|.
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2-D Sine. Consider the following two-dimensional example with the input space given by X =
[−1,1]2. For any x = (x1,x2) ∈ X , the mean and variance functions are respectively specified as

f (x) = sin(9x2
1)+ sin(9x2

2), V(x) = 2+ cos(π +(x1 + x2)/2).

The mean functions of the two 2-D examples are illustrated in Figure 2(a) and (b), showing very distinct
features. We observe that the mean response surface of the Branin example changes relatively smoothly
across its input space, despite the wide range of its function values. In contrast, the mean response surface
of the Sine example has a narrow range of function values, yet it displays a more complex and rapidly
changing landscape.

We conduct numerical evaluations according to Subsections 4.2 and 4.1, with specific parameter settings
used in the three examples summarized in Table 1.

Table 1: Parameter settings for all three examples.

B n npred
NHGP DVSHGP

# subsets p1 # subsets p2 # inducing points m
1-D Sinc 5000 {100,200,500,103} 500 5 5 10
2-D Branin 25000 {500,103,2500,5000} 2500 3 10 30
2-D Sine 25000 {500,103,2500,5000} 2500 5 10 20

(a) f (·) for Branin on [0, 5]2 (b) f (·) for Sine on [-1, 1]2

Figure 2: The mean functions for the Branin and Sine examples.

4.4 Results

Figure 3(a) and (b) show the RMSEs obtained by NHGP and DVSHGP for the 1-D Sinc example across
100 macro-replications. We observe that NHGP and DVSHGP’s performance is comparable, but the former
outperforms the latter by delivering smaller RMSEs. Furthermore, varying the number of distinct design
points n given a fixed budget B has little impact on the performance of NHGP and DVSHGP in this 1-D
Sinc example. Using unequal allocation schemes yields a narrower range of RMSEs compared to using
the equal allocation scheme for NHGP, an observation not as evident for DVSHGP.

Figure 4(a) and (b) summarize the RMSEs obtained by NHGP and DVSHGP for the 2-D Branin
example. It is observed that while NHGP and DVSHGP exhibit comparable performance, the latter slightly
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(a) NHGP (b) DVSHGP

Figure 3: 1-D Sinc: RMSEs obtained by NHGP and DVSHGP with varying numbers of design points
under three budget allocation rules.

outperforms the former. Notably, NHGP and DVSHGP demonstrate different behaviors under varying
budget allocation schemes and as the number of design points increases given a fixed budget. Specifically,
NHGP’s RMSEs remain comparable across different budget allocation schemes, whereas the unequal
allocation schemes assist DVSHGP in achieving lower RMSEs compared to the equal allocation scheme.
Furthermore, under a fixed budget B, the RMSEs obtained by DVSHGP decrease with an increasing number
of design points n, whereas for NHGP, the RMSEs first decrease and then increase with n. This divergence
in behaviors of NHGP and DVSHGP can be explained as follows: NHGP uses output data at the sample
average level. Given a fixed budget B to expend, NHGP faces a clear trade-off between increasing the
number of distinct design points n and increasing the simulation efforts allocated at each design point to
achieve high predictive accuracy while tackling the impact of strong heteroscedasticity in this example. In
contrast, DVSHGP exploits information from all B outputs at an individual observation level, resulting in
a different behavior given a fixed budget B to expend.

(a) NHGP (b) DVSHGP

Figure 4: 2-D Branin: RMSEs obtained by NHGP and DVSHGP with varying numbers of design points
under three budget allocation rules.
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Finally, the RMSEs obtained by NHGP and DVSHGP for the 2-D Sine example are shown in Figure 5(a)
and (b). We have the following observations. First, NHGP outperforms DVSHGP by yielding much smaller
RMSEs, demonstrating NHGP’s promising capability in approximating mean functions with intricate,
complex patterns. Second, the RMSEs obtained under the two unequal allocation schemes are lower
than those obtained under the equal budget allocation scheme for both NHGP and DVSHGP. However,
NHGP’s RMSEs remain comparable across different budget allocation schemes, whereas the benefit of
using unequal allocation schemes is more pronounced for DVSHGP. Furthermore, the RMSEs obtained by
both NHGP and DVSHGP decrease with the number of design points n, given a fixed budget B to expend.
This observation for NHGP contrasts with that made in the 2-D Branin example; recall from Figure 2 that
the mean response surface of this 2-D Sine example is more complex. Therefore, to achieve high predictive
accuracy with NHGP given a fixed budget B, it is more effective to prioritize using a greater number of
distinct design points to capture the rapidly changing landscape rather than allocating more simulation
efforts at each design point to address the impact of heteroscedasticity in this example.

(a) NHGP (b) DVSHGP

Figure 5: 2-D Sine: RMSEs obtained by NHGP and DVSHGP with varying numbers of design points
under three budget allocation rules.

Our preliminary numerical evaluations in this section provide the following insights. DVSHGP’s
primary advantage lies in its use of all outputs at an individual observation level, permitting a wider range
of simulation experimental designs given a fixed budget to expend. However, the performance of DVSHGP
relies on reliably estimating a collection of parameters, which becomes increasingly challenging as the
number of inducing points grows, especially when the total budget B and the input space dimensionality d
become large. In contrast, the proposed NHGP builds on sub-SK models and has only a few parameters
to estimate. NHGP demonstrates competitive, robust performance under various experimental settings,
particularly with respect to approximating complex mean functions.

5 CONCLUSION

In this paper, we proposed a scalable heteroscedastic simulation metamodeling approach called NHGP.
NHGP achieves scalability by aggregating sub-SK models built on disjoint subsets of a large-scale dataset and
is shown to provide the best linear unbiased predictor among those built by aggregating sub-SK models. The
weights obtained by NHGP for its predictor consider all pairwise covariances between the sub-SK models,
ensuring the consistency of the NHGP predictor and avoiding pitfalls due to the restrictive covariance-free
aggregation adopted by some state-of-the-art methods in the PoE framework, including DVSHGP. Our
preliminary numerical evaluations demonstrate that NHGP compares favorably with DVSHGP.
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Looking ahead, we identify several avenues for further research. First, extending NHGP to accommodate
settings where only a single replication is available at some design points by exploring alternative methods
for noise variance estimation. Second, leveraging parallel computing for NHGP parameter estimation and
prediction represents a critical next step in advancing NHGP’s applicability and efficiency.
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A FORMS OF KUK(x0) AND KUK(x0)

Recall that

ωk(x0)
⊤ := h(x0)

⊤
(

H⊤
k

(
K(Xk,Xk)+ΣΣΣ

(k)
ε

)−1
Hk

)−1

H⊤
k

(
K(Xk,Xk)+ΣΣΣ

(k)
ε

)−1

−K(Xk,x0)
⊤
(

K(Xk,Xk)+ΣΣΣ
(k)
ε

)−1
Hk

(
H⊤

k

(
K(Xk,Xk)+ΣΣΣ

(k)
ε

)−1
Hk

)−1

H⊤
k

(
K(Xk,Xk)+ΣΣΣ

(k)
ε

)−1

+K(Xk,x0)
⊤
(

K(Xk,Xk)+ΣΣΣ
(k)
ε

)−1
,

and we can write µk(x0) = ωk(x0)
⊤Ȳ (Xk). Hence for ∀ j ̸= k, j,k ∈ {1,2, ..., p},

Cov [µk(x0),µ j(x0)] = Cov
[
ωk(x0)

⊤Ȳ (Xk),ω j(x0)
⊤Ȳ (X j)

]
= ωk(x0)

⊤Cov[Ȳ (Xk), Ȳ (X j)]ω j(x0)
⊤

= ωk(x0)
⊤Cov[Y(Xk)+ ε̄(Xk),Y(X j)+ ε̄(X j)]ω j(x0)

⊤ = ωk(x0)
⊤K(Xk,X j)ω j(x0)

⊤.

Similarly, we can obtain that for k = 1,2, . . . , p,

Cov [µk(x0),µk(x0)] = ωk(x0)
⊤
(

K(Xk,Xk)+ΣΣΣ
(k)
ε

)
ωk(x0),

Cov [µk(x0),M(x0)] = ωk(x0)
⊤K(Xk,x0).

The forms of KUK(x0) = Cov[−→µ (x0),
−→
µ (x0)] and KUK(x0) = Cov[−→µ (x0),M(x0)] then follow.

B PROOF OF THEOREM 1

Proof. To find the BLUP predictor of Y(x0) = h(x0)
⊤βββ +M(x0) among all linear predictors in the form

of λ0 +λλλ
⊤−→

µ (x0), we formulate and solve the following minimization problem:

min E
[(

Y(x0)−λ0 −λλλ
⊤−→

µ (x0)
)2

]
s.t. E

[
Y(x0)−λ0 −λλλ

⊤−→
µ (x0)

]
= 0,

(10)

where λ0 is a scalar and λλλ is a p×1 vector.
The constraint is equivalent to λ0 = 0 and λλλ

⊤(h(x0)
⊤βββ )111p = h(x0)

⊤βββ for all βββ , where the second
equation holds since E[µk(x0)] = h(x0)

⊤βββ for k = 1,2, . . . , p, hence λλλ
⊤111p = 1. Following similar steps

given in Section 1.5 of Stein (2012), we can show that for λλλ
⊤−→

µ (x0) to be a BLUP of Y(x0), there must
be a scalar η such that the following condition holds:(

KUK(x0) 111p

111⊤p 0

)(
λλλ

η

)
=

(
KUK(x0)

1

)
.
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Since KUK(x0) is assumed invertible, we have

λλλ
∗ =

(
KUK(x0)

−1 −KUK(x0)
−1111p

(
111⊤p KUK(x0)

−1111p

)−1
111⊤p KUK(x0)

−1
)

KUK(x0).

Substituting λλλ
∗ into λλλ

⊤−→
µ (x0), we obtain the BLUP predictor µNHGP(x0) = ααα(x0)

⊤−→µ (x0), where ααα(x0)
⊤

is as defined in (7).

Remark. Notice that if βββ is known or h = 000, the unbiasedness constraint is not required. Therefore, we
are seeking an MSE-optimal predictor via solving the following unconstrained optimization problem:

min
λ0,λλλ

E
[(

Y(x0)−λ0 −λλλ
⊤−→

µ (x0)
)2

]
.

Below we consider the case where βββ is known; the case where h = 000 is similar. We can get

E
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Y(x0)−λ0 −λλλ
⊤−→

µ (x0)
)2

]
= E
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⊤
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⊤
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]
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⊤111p(h(x0)
⊤
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]
+2E
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⊤
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⊤111p(h(x0)
⊤

βββ )
)(

M(x0)−λλλ
⊤−→

µ (x0)+λλλ
⊤111p(h(x0)

⊤
βββ )

)]
=
(

h(x0)
⊤

βββ −λ0 −λλλ
⊤111p(h(x0)

⊤
βββ )

)2
−E

[(
M(x0)−λλλ

⊤−→
µ (x0)+λλλ

⊤111p(h(x0)
⊤

βββ )
)2

]
=
(

h(x0)
⊤

βββ −λ0 −λλλ
⊤111p(h(x0)

⊤
βββ )

)2
+K(x0,x0)−2λλλ

⊤KUK(x0)+λλλ
⊤KUK(x0)λλλ .

The MSE-optimal weights follow as λ ∗
0 = h(x0)

⊤βββ −λλλ
⊤111p(h(x0)

⊤βββ ) and λλλ
∗ =KUK(x0)

−1KUK(x0).
With these weights, the MSE-optimal predictor (when βββ is known) follows as

µNHGP(x0) = h(x0)
⊤

βββ +KUK(x0)
⊤KUK(x0)

−1(−→µ (x0)− (h(x0)
⊤

βββ )111p),

and the corresponding MSE is given by

νNHGP(x0) = K(x0,x0)−KUK(x0)
⊤KUK(x0)

−1KUK(x0).

C PROOF OF THEOREM 2

Proof. The proof follows the same line of argument as given in the proof of Theorem 1 in Ankenman et al.
(2010). First, we show that for any fixed positive definite covariance matrices (ΣΣΣ

(k)
ε )′, k = 1,2, . . . , p, the

predictor µ̂ ′
NHGP(x0) = α̂αα

′
(x0)

⊤−̂→µ
′
(x0) is unbiased, where α̂αα

′
(x0)

⊤ and −̂→
µ

′
(x0)

′ are obtained by replacing
ΣΣΣ
(k)
ε in the forms of ααα and −→

µ (x0) with (ΣΣΣ
(k)
ε )′. This follows immediately from E(µ̂ ′

NHGP(x0)−Y(x0)) =

h(x0)
⊤βββ −h(x0)

⊤βββ = 0.
Next, for k = 1,2, . . . , p, notice that the sample variance at design point x(k)i in the kth subset Xk follows

as

V̂(x(k)i ) =
1

r(k)i −1

r(k)i

∑
j=1

(
Y j(x

(k)
i )− Ȳ (x(k)i )

)2
=

1

r(k)i −1

r(k)i

∑
j=1

(
ε j(x

(k)
i )− ε̄(x(k)i )

)2
, i = 1,2, . . . ,nk,
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where ε̄k is the average noise vector incurred at design points in Xk. Under Assumption 1, V̂(x(k)i ) is
independent of Ȳk by the properties of the multivariate normal distribution (recall that M is also independent
of ε j(x

(k)
i ) ). Then, it follows that

E(µ̂NHGP(x0)−Y(x0)) = E
[
E
(

µ̂NHGP(x0)−Y(x0) | Σ̂ΣΣ
(1)
ε , Σ̂ΣΣ

(2)
ε , . . . , Σ̂ΣΣ

(p)
ε

)]
= E

(
h(x0)

⊤
βββ −h(x0)

⊤
βββ

)
= 0.
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