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Abstract

Attention-based mechanisms are widely used in machine learning, most prominently in transformers.

However, hyperparameters such as the rank of the attention matrices and the number of heads are scaled

nearly the same way in all realizations of this architecture, without theoretical justification. In this work we

show that there are dramatic trade-offs between the rank and number of heads of the attention mechanism.

Specifically, we present a simple and natural target function that can be represented using a single full-rank

attention head for any context length, but that cannot be approximated by low-rank attention unless the

number of heads is exponential in the embedding dimension, even for short context lengths. Moreover,

we prove that, for short context lengths, adding depth allows the target to be approximated by low-rank

attention. For long contexts, we conjecture that full-rank attention is necessary. Finally, we present

experiments with off-the-shelf transformers that validate our theoretical findings.
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1 Introduction

Attention-based architectures are ubiquitous in contemporary machine learning. The most prominent examples

are transformers, which are constructed by stacking several layers of attention with MLPs, residual connections,

and normalization layers to represent functions on sequences or sets. This basic skeleton leaves the user free

to set several hyperparameters, although few of these have been carefully studied. In fact, in the thousands of

papers that use this architecture, many hyperparameters are kept the same or nearly the same as in the original

paper [VSP+17] (see Appendix A for a comparison). In this paper, we study the importance of the rank of the

attention mechanism.

An attention layer is a map between sequences of vectors in ℝ
3 . The size of an attention layer is

determined by the number of heads (�) and the rank of the query and key weight matrices (A), so that the

total number of parameters is of order 3�A. Notably, nearly every transformer architecture sets the number

of heads to be � = 3/A, and the few exceptions of which we are aware differ by a factor of 2 at most (see

Appendix A). In fact, this scaling is so standard that it is hard-coded into libraries like PyTorch [PGM+19]

and xFormers [LML+22], a fact which has probably discouraged experimentation with other scalings. The

original motivation for this scaling is to match the parameter count of a single full rank head, i.e. the case

� = 1, A = 3. We know of no a priori reason or experimental evidence that favors this scaling over any other,

as the trade-offs between the rank and the number of heads are still not well-understood. For example, most

transformers in the literature use a small rank of between 64 and 128, despite the embedding dimension 3

varying dramatically (e.g. 3 = 512 in the original transformers paper [VSP+17] and 3 = 8192 in LLaMA

[TLI+23]). It is not clear whether the expressive power of transformers is weakened by maintaining a fixed

rank as the dimension is increased.

A long line of work in the theory of deep learning has studied the relative importance of width and

depth in determining the expressive power of feedforward neural networks, as a first necessary step towards

understanding the practical tradeoffs (that also include optimization aspects). This paper is analogous in that

we study parameter trade-offs in transformers through the lens of expressive power, although transformers

have more hyperparameters than just width and depth (see Appendix A). For feedforward networks, depth 2

suffices for universal approximation [Cyb89], but greater depth may be required for efficient approximation.

That is, some functions can be efficiently represented by a three layer network but cannot be represented by a

two layer network unless it is exponentially wide in the input dimension [ES16, Dan17, SS17]). It is natural

to ask a similar question about attention architectures. How should we set the hyperparameters to make our

transformers efficient? In particular, is low-rank attention fundamentally weaker than high-rank attention, or

is the expressive power driven solely by the parameter product �A, acting as the analog of the width of an

MLP layer?

In this paper, we study precisely these fine-grained trade-offs in the expressive capacity of attention

layers. We present a simple target function arising naturally in semantic search that can be approximated

up to any accuracy by a single full rank attention head regardless of the context length. On the other hand,

approximating this target with low-rank attention requires the number of heads to be super-polynomial in the

input dimension, even for short context lengths. Specifically, using full-rank heads the required total number

of parameters is 3�A ≃ 32, while it becomes ≃ 31+n −1
if one uses low-rank heads instead, to reach relative

accuracy n . Increasing the depth allows for better approximation using only polynomially many heads, at

least for short context lengths. We complement these theoretical results with experiments on off-the-shelf

transformer architectures. Our results demonstrate a very stark trade-off between the rank and number of

heads in attention mechanisms and shed a new light on the standard scaling � = 3/A used in transformers.
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1.1 Our Contributions

• In Section 4, we prove a rank separation for representing the nearest neighbor function using multi-head

attention. This function can be approximated to any accuracy using only a single full-rank head. Yet

in the high-dimensional regime, at least Ω
(
(3/A)1/n ) heads of rank A are required to achieve relative

squared error n . Moreover, in the high-accuracy regime (n going to zero with 3 fixed), the required

number of heads is exponential: Ω(exp(3 − A log(3/A))).

• In Section 5, we use different techniques to establish exponential separation in the high-accuracy regime

for the biased nearest neighbor function. This target function can be approximated up to any accuracy

using single full-rank head with the addition of a bias, but Ω(exp(3 − A)) rank-A heads are required to

approximate it with better than $ (1/34) relative squared error.

• In Section 6, we explore ways to circumvent the weakness of low-rank attention. We show that

augmenting the attention architecture and adding a second, non-linear layer can achieve this using

polynomially many heads, but unlike full-rank attention, such constructions may not scale to long

sequence lengths.

• In Section 7, we support our theoretical results with experiments on standard transformer architectures

with multiple layers of attention and MLPs. We show that the full rank models easily learn the target to

high accuracy — even recovering our main construction — but the low rank models struggle to do so.

Users of standard transformers may not think that setting � = 2 could be much worse than � = 1, but

in this case, it is.

2 Related Work

Theory of transformers A growing line of work has sought to provide theoretical analysis of transformers

and the attention mechanism. Training dynamics, inductive biases, generalization, and in-context learning

have all received significant attention. However, papers in these areas nearly always assume that full-rank

attention is used [BCB+23, CDB24, FGBM23, SHT24a, EGKZ22, BCW+23, ZFB24, JBKM24, CSWY24,

DGTT23, TWCD23], even though many also assume there are multiple heads. Our work provides important

context for these results, showing that full-rank models may not be good proxies for the low-rank transformers

used in practice.

Expressive power of transformers Our work belongs to a body of research studying the representational

capacity of transformers. Unlike other topics in transformer theory, results in this area often do apply to

low-rank attention. [YBR+19] proves that (exponentially deep) transformers are universal approximators even

with rank one. [WCM22, MS23] show that transformers can simulate Turing machines if their size is allowed

to grow with the sequence length. [KKM22, KS23] show that transformers are capable of memorizing data.

[BHBK24] shows that transformers can efficiently implement a version of the nearest neighbor algorithm for

in-context classification of points on the sphere, but their construction uses attention that is full-rank with

respect to the input dimension. Our formulation of the nearest neighbor task is slightly different and can

be solved with full-rank attention almost trivially (see Fact 1). Finally, an important line of work analyzes

the representational capacity of transformers using classes of formal languages, finite automata, and circuits

[Hah20, LAG+22, HAF22, MSS22, SMW+24], but it does not capture separations in capacity due to rank.

Limitations of low-rank attention Several other studies have investigated the role of the rank of the

attention mechanism. [BYR+20] presents experiments that challenge the canonical � = 3/A scaling. They
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argue that fixing 3 and A based on the context length # and setting � independently leads to more powerful

and efficient models. They also prove that a full-rank attention head can produce any attention pattern

from any input (for some setting of the weights), but a low-rank attention head cannot; however, [LCW23]

shows that even rank A = log(#) suffices to represent any sparse attention pattern. [MLT24] asks how many

input-output pairs a low-rank multi-head attention layer can exactly memorize. For their problem, it is not

worth setting A > #; furthermore the memorization capacity depends on A� rather than on A or �, supporting

the standard scaling. We study the more realistic and practically motivated setting of approximating a natural

function over data drawn from a natural distribution. Unlike [LCW23, MLT24], we show that high rank is

sometimes essential, irrespective of �.

The paper closest to our own is [SHT24b], which proves two separations related to rank. First, they

present a function that can be well-approximated by a single attention head if and only if its rank is sufficiently

large. This result prompts the following question: can using multiple heads compensate for the weakness of

low-rank attention? We answer this question in the negative. Second, they present a one-dimensional function

on # inputs that is impossible to represent exactly unless A�? > # , where ? is the bits of precision. We

extend this result in that our lower bounds apply (1) even for # = 2, (2) for infinite or finite precision (3)

to function approximation over a natural distribution, not just exact representation. Additionally, our target

function engenders a stronger separation: while � ≥ Ω(1/A) suffices in their setting, ours requires � to grow

polynomially or even exponentially in 3/A to overcome the weakness of low-rank attention. However, their

target functions are more closely akin to the kinds of structured reasoning tasks to which transformers are

often applied. In particular, they highlight how attention is naturally suited to capturing pairwise interactions;

recurrent architectures struggle to do this efficiently, while transformers struggle to capture third-order

interactions.

Low rank compression and fine-tuning Much recent work in model compression [LZL+23, HRP+21,

BNG20] and fine-tuning [HysW+22] is based on the empirical observation that the weight matrices of

pretrained transformers (like those of other neural networks) can be replaced or fine-tuned by lower-

dimensional proxies without sacrificing performance, and in some cases even helping it [SAM24]. Such

results contextualize our work by showing that full-rank is not always better than low-rank.

Depth-width trade-offs in neural networks Many previous works studied separation between neural

networks of different depths, and between neural networks and kernel methods. [ES16, Dan17, SS17, VJOB22]

constructed functions that can be approximated efficiently with a 3-layer neural network, but for which

2-layer networks require the width to be exponential in the input dimension. [Tel16, CNPW19] show depth

separation for networks with constant input dimension and varying depths. Our lower bounds are also closely

related technically to separation results between neural networks and kernel methods. [YS19] prove that

random features (or any other kernel method) cannot learn even a single neuron unless the number of features

or magnitude of the weights is exponential in the input dimension. [KMS20] improved on their result by

removing the dependence on the magnitude of the weights. [GMMM21, MM23] study upper and lower

bounds in approximating polynomials with kernel methods. They show that essentially, it is necessary and

sufficient for the number of features to be exponential in the degree of the approximated polynomial. Our

lower bounds are inspired by this work.

3 Setting and Notations

Attention layers. A rank-A attention head is parameterized by the weight matrices Q,K,V ,O ∈ ℝ
3×A .

(Some authors call these W&,W ,W+ , and W$.) A multi-head attention layer is simply the sum of �

such attention heads. The input to a multi-head attention layer is a sequence of vectors x1, . . .x# ∈ ℝ
3
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called the target points and a sequence y1 . . . y" called the source points. (Note that the name “target points”

is unrelated to that of the “target function” we wish to approximate.) If the columns of X ∈ ℝ
#×3 and

Y ∈ ℝ
"×3 are the target and source points, respectively, then a softmax multi-head attention layer is a

function of the form
�∑
ℎ=1

OℎV
⊤
ℎ X sm

(
X⊤KℎQ

⊤
ℎY

)
∈ ℝ

"×3 , (1)

where sm(·) computes the softmax of each column of its input; that is, for each y, it outputs a probability

distribution over [#] based on the scores X⊤KℎQ
⊤
ℎ
y ∈ ℝ

# . A hardmax attention layer is the same, except

that the hardmax function hm(·) outputs e8∗ , where 8∗ is the index of the maximum score. Note that hardmax

heads are often considered to be a special case of softmax heads, since lim2→∞ sm(X⊤2KℎQ
⊤
ℎ
Y ) =

hm(X⊤KℎQ
⊤
ℎ
Y ) in pointwise convergence.

Above, we have described so-called cross-attention, which takes both source points and target points as

input. The familiar self-attention layers are a special case in which the source points and target points are

identical: X = Y . A given multi-head attention function can be applied to any number of source or target

points, since no part of this definition depends on # or " . In addition, it is invariant to permutations of the

target points and equivariant to permutations of the source points.

Generalized attention We prove our lower bounds against a class of functions that generalizes multi-head

attention. Rather than computing the attention distribution as sm(X⊤KℎQℎY ), we allow any function

depending on y and a rank-A projection of X that outputs a probability distribution over [#]. In addition, we

replace OℎVℎ with a single matrix Vℎ ∈ ℝ
3×3 . Thus, our model is

�∑
ℎ=1

VℎXqℎ
(
K⊤
ℎX ,Y

)
, (2)

where Kℎ ∈ ℝ
3×A , the function qℎ : ℝA×# ×ℝ

3 → Δ# is applied column-wise to Y and Δ# is the simplex.

Note that the function qℎ may vary between heads. Moreover, we allow Vℎ ∈ ℝ
3×3 to be full-rank. Note that

this class captures, beyond standard transformer architectures, the use of biases, additive positional encodings,

and other encoding schemes like RoPE [SAL+24] and ALiBi [PSL22] in the attention layer. We also capture

architectures from early works on attention [BCB14, XBK+15], which used feedforward networks to compute

the attention scores instead of the “multiplicative” or “dot product” attention scores X⊤KQY used in

transformers.

Nearest neighbor function The input to the nearest neighbor function consists of a sequence of # target

points x1, . . . ,x# ∈ S
3−1 (also denoted by X ∈ ℝ

3×# ) and a source point y ∈ S
3−1.

The nearest neighbor function outputs the target point that is closest to the source:

5 (x1, . . . ,x# ;y) := arg min
x∈{x1,...x# }

∥x − y∥2 . (3)

This function is analogous to performing a semantic search, in which the goal is to retrieve the entry or word

in a database or context window that most closely matches a query. This function is highly symmetric. Like

multi-head attention itself, it is defined for any # and is invariant to permutations of the target points. It

is also invariant to simultaneous orthogonal transformations of X and y, so it has no principal directions,

subspaces, or scales.
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Data distribution We draw target and source points uniformly from the sphere. For our lower bounds, it is

convenient to assume that the target points are orthogonal. For # ≤ 3, let D# (S3−1) denote the uniform

distribution over the set of sequences x1, . . .x# ∈ S
3−1 for which 8 ≠ 9 =⇒ x8 ⊥ x 9 . Such samples can be

generated by taking the first # columns of a random orthonormal matrix. Note that this is similar in essence

to drawing the data points independently from the unit sphere, as isotropic random vectors in high dimension

are nearly orthogonal. This distribution is invariant to orthogonal transformations of X and of y.

4 Low-Rank Separation for Nearest Neighbors

In this section, we study the capacity of multi-head attention to represent the nearest-neighbor function. We

show a separation in representational power based on rank. The target can be represented efficiently using

full-rank attention, but under the assumptions below, approximating it using low-rank attention requires a

much larger model. We begin with the upper bound using a single full-rank attention head:

Fact 1 (Full-rank Efficient Approximation, Equivariant Case). For the target function from Equation (3), any

n > 0, #, 3 ∈ ℕ there exist K,Q,V ∈ ℝ
3×3 such that:

E
y,x1,...,x#∼Unif (S3−1 )

[

 5 (X , y) − V X sm(X⊤KQ⊤y)


2

]
≤ n . (4)

The construction is straightforward. Consider for simplicity the hardmax case. Set V = KQ⊤ = I so

that ∥x8 − y∥2 = 2 − x⊤
8 KQ⊤y. Then hm(X⊤KQ⊤y) = e8∗ where 8∗ = arg min8∈[# ] ∥x8 − y∥2 and e8 is

the 8th standard basis vector. Note that this construction using hardmax works for any input distribution on

S
3−1 and any number of points # , as it represents the target function exactly. The softmax case is similar;

for the formal statement see appendix Appendix B.1. This construction (or one very similar to it) is easily

learned by gradient descent; see Figure 2.

We now turn to the lower bound. We show that approximating the target function with rank-A heads

requires the number of heads to be large unless A ∼ 3. For technical convenience, we set the number of target

points to two and draw them from the distribution D2(S3−1) in which they are always orthogonal. Our main

result establishes a strong quantitative separation between full-rank and low-rank self-attention layer, even

when the total number of parameters is of the same order:

Theorem 2 (Low-Rank Approximation Lower Bounds, Equivariant Case). There exist universal constants

2, 2′, � and �′ such that if either of the following sets of assumptions hold:

(i) High-accuracy regime: A ≤ 3 − 3, n ≤ 2
3+1

, and

� ≤ � · 23−(A+1) log2 (23/A ) . (5)

(ii) High-dimensional regime: 3 ≥ 5, n ≥ 2′

3−242 ·A and

� ≤ 1

2

(
1

24
· 3

A + �′/n

)�′/n
. (6)

Then, for any choice of � rank-A generalized attention heads qℎ : ℝA×2 → Δ1,Vℎ ∈ ℝ
3×3 ,Kℎ ∈ ℝ

3×A the

error of approximating the nearest neighbor function is bounded as follows

E
x1,x2∼D2 (S3−1 )
y∼Unif (S3−1 )






 5 (X;y) −
�∑
ℎ=1

VℎXqℎ
(
K⊤
ℎX , y

)





2

2

≥ n , (7)

where 5 is defined as in Equation (3).
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For the proof of Theorem 2, see Appendix B. Intuitively, the approximation problem becomes harder as

3 → ∞ and as n → 0. Theorem 2 combines guarantees in two different regimes. In the first regime, the

desired accuracy n is small. In this case, the necessary number of heads grows exponentially with 3 − A . In the

second regime, the dimension 3 is be large. In this case, the necessary number of heads grows polynomially

with 3/A. Informally, both regimes show that the error is at least n whenever � ≲ (3/A)1/n .

We emphasize that the data distribution is 1√
3
-close to the uniform product measure in Wasserstein

distance, and we expect our main proof techniques to generalise to this uniform measure, as well as other

rotationally invariant distributions. Additionally, while # = 2 is sufficient for our purposes to establish the

separation, we also believe the framework should extend to the general setting of # > 2, although this is out

of the present scope.

Our proof uses tools from harmonic analysis on the sphere. It is reminiscent of the original depth

separation work of Eldan and Shamir and Daniely [ES16, Dan17], which also exploited the inability of ridge

functions to approximate radially-symmetric targets with substantial high-frequency energy. Due to the

rotational symmetry of the target function, attention function, and data distribution, we can transform our

problem to depend on a pair of points x = x1 − x2 and y drawn uniformly from the sphere, rather than

x1,x2 and y. Our target is essentially given by a step function of the form (x, y) ↦→ sgn(x⊤y), which has

a slowly decaying spectrum with respect to the appropriate basis. We construct this basis using spherical

harmonics, and like them, our basis functions are organized into orthogonal subspaces based on degree ℓ

polynomials. Due to rotational symmetry, the energy of the target function is uniformly spread within each

harmonic subspace. In contrast, each attention head is tied to a few principal directions given by the span of

Kℎ. As a result, each head is spanned by only a fraction of the basis functions in each subspace. Thus, with a

limited number of heads, it is impossible to capture a substantial fraction of the energy of the target function.

We now comment on the tightness of this lower bound, focusing on the canonical setting of A = 1. In this

case, our lower bound simplifies and strengthens slightly. For fixed n and large 3, the error of approximation

is at least n whenever � = $
(
31/(4n ) ) . We can construct an upper bound for our problem by considering

rank-1 heads to be random features. In Appendix B.8, we argue that we can approximate our target function

in the RKHS associated with the feature map (x1 − x2, y) ↦→ sgn ((x1 − x2)⊤kq⊤y), where k and q are

drawn uniformly from the unit sphere. The associated kernel integral operator diagonalizes in the same basis

of tensorized spherical harmonics used to decompose the target function above, and thus the kernel ridge

regression approximation can be explicitly analysed by bounding the spectral decay of the kernel. Then, via

standard arguments from random feature expansions [Bac17b], one can transfer the approximation guarantees

from the RKHS to the random feature model, provided that � = Ω̃(32/n 2). Thus, for A = 1 and fixed n ,

the approximation lower bound of Theorem 2 captures the qualitatively correct behavior, though its precise

dependence on 3 may not be tight.

5 Exponential Separation for Biased Nearest Neighbors

In this section, we show another way to get exponential separation in the high-accuracy regime using different

techniques and a modified target function. Given b = [11, . . . 1# ]⊤, the biased nearest neighbor function is

defined as follows:

5b(x1, . . . ,x# ;y) = arg min
x8∈{x1,...,x# }

[
∥x8 − y∥2

2 + 18
]
. (8)

Like the unbiased nearest neighbor function of Equation (3), it is invariant to simultaneous orthogonal

transformations of X and y; however, it is not invariant to permutations of the target point X . We first show

that a single full-rank attention head can approximate this target exactly, provided that biases are added to the

architecture:
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Fact 3 (Full Rank Efficient Approximation, Biased Case). For any dimension 3, number of points # , and bias

b ∈ ℝ
# , a single biased full-rank hardmax attention head can exactly represent the biased nearest neighbor

function defined in Equation (8).

The construction is the same as that of Fact 1 with the addition of biases b inside the hardmax. That is,

the head implements X hm (X⊤y + b) in the hardmax case. In Appendix C we prove the softmax case. Note

that this architecture is a special case of standard attention with concatenated positional encodings. Let the

positional encoding for x8 be the scalar 18 , let the positional encoding for y8 be 1, and let KQ⊤ =

[
I3×3 ·
· 1

]
.

Then
[
X⊤ b

]
KQ⊤

[
y

1

]
= X⊤y + b.

We now present our main result for this section which shows that even for # = 2, there exists a biased

nearest neighbor function that is hard to approximate using low rank attention heads:

Theorem 4 (Low-rank Approximation Lower Bounds, biased case). There exists b = [11, 12]⊤ ∈ ℝ
2 such

that for the function 5b defined in Equation (8) the following holds: For any choice of rank-A heads 61, . . . , 6�
where 6ℎ = VℎXqℎ (KℎX , y), Kℎ is rank-A and qℎ are arbitrary functions that output a vector in the

simplex Δ1, if � · maxℎ ∥Vℎ∥ ≤ exp(21 (3−A ) )
3222

then:

E
x1,x2∼D2 (32

S
3−1 )

y∼N(0,I )







 5b(x1,x2, y) −

�∑
ℎ=1

6ℎ (x1,x2, y)







2

2


>

1

20
, (9)

for some universal constants 21, 22 > 0.

The full proof is deferred to Appendix C. The theorem states that unless the number of attention heads or

the magnitude of the output weights (or both) are exponential in 3 − A, then rank-A attention heads cannot

approximate the target, even up to a constant accuracy. This is in contrast to the fact that a single full-rank

head (with positional encoding) can approximate the target up to any given accuracy. Note that the exponential

separation is very strong in terms of the rank of the attention heads. Namely, having rank $ (3) is not enough

to break this separation, for example even if A = 99
100

· 3 there is still an exponential separation between full

rank and rank-A attentions heads for a large enough input dimension 3.

Remark 5 (Bound on the weights). Note that in contrast to Theorem 2, here we have an exponential upper

bound on the weights of the linear combination Vℎ, namely either the number of heads or the norm of the

weights needs to be exponential to break the separation. This bound is also found in [YS19] which inspires

our proof. In [KMS20] the authors were able to remove this bound by applying a more intricate analysis

using SQ-dimension arguments, however in our case it is not clear how to extend their technique because of

the dependence on A . We conjecture that it is still possible to remove this bound, and leave it for future work.

Proof intuition. The crux of the proof of Theorem 4 is to create a linear combination of many threshold

functions which behaves like a periodic function with high frequency. Our proof is inspired by and extends

the proof method of [YS19] for separation between kernel methods and 2-layer neural networks. In more

details, note that the target can be re-written as a sum of two threshold functions:

5b(x1,x2, y) = arg max
x8

⟨x8 , y⟩ + 18 = 1(⟨x1 − x2, y⟩ + 1∗ > 0)x1 + 1(⟨x1 − x2, y⟩ + 1∗ < 0)x2 , (10)

where 1∗ = 11 − 12 will be determined later. Denote by x := x1 − x2; we will focus on showing hardness of

approximation for the first threshold function 1(⟨x, y⟩ + 1∗ > 0), from which hardness of approximation for

8



5b follows by standard arguments. We define a periodic function k0 (I) : ℝ → ℝ in the interval [−0, 0] that

is a linear combination of 0 threshold functions (at different break points), where 0 = Ω(32) , and show that

for any function 6 which depends only on a projection K of x onto and A-dimensional subspace we have:

E
x,y

[|k0 (⟨x, y⟩) · 6(Kx, y) |] ≤ ∥6∥ · exp(−Ω(3 − A)) . (11)

In particular, if any single threshold function that is used to construct k0 can be approximated by a rank-A

attention layer with �/0 heads, then also k0 can be approximated by a rank-A attention layer with � heads.

However, this is not possible if A is small since 0 is only polynomial in 3, and the correlation between each

head and k0 is exponentially small. Hence, there exists some threshold function with a break point at 1∗

which is hard to approximate, unless the number of heads is of the order $
(

exp(3−A )
0

)
. In Theorem 4, the

inputs x1 and x2 are drawn from the unit sphere scaled by a factor of 32. We note that re-scaling the inputs is

similar to decreasing the required accuracy by the same factor. Hence, this exponential separation result is

akin to the high-accuracy regime of Theorem 2, although the techniques used in the proof are very different.

6 Efficient Approximation Using Depth

In the previous sections, we showed that a single layer of low-rank attention fails to represent the target unless

the number of heads is very large. In this section, we take up the question of whether additional layers of

depth can overcome this weakness. Depth can mean either adding an MLP after the attention layer or just

another attention layer; in this section we consider both options. We present a construction that approximates

the target function (with slightly modified inputs) using two layers and only polynomially many rank-1 heads.

However, we present constructions only for the case where the context length # = 2, which is also the setting

of our lower bounds. We conjuncture that any construction using low-rank heads introduces an unfavorable

dependence on # , a significant weakness compared to full-rank attention.

Our constructions are based on the strategy we call “majority voting”, which we briefly describe here.

Consider the case of # = 2 target points and hardmax attention. The output of each head, like the target

function itself, is either x1 or x2. A random rank-1 head is weakly correlated with the target; the probability

that it outputs the correct answer is 1/2 + Ω(1/
√
3). Thus, combining many such random heads together,

their mode (the output with the most “votes”) matches the target function with high probability. We use a

second layer to calculate the “majority vote” of the heads in the attention layer.

Standard attention mechanisms make it difficult to count the number of votes each target point received—or

even to remember what the target points x1 and x2 were—since the next layer gets only a linear combination

of them with unknown coefficients. Therefore, we slightly modify the attention layer to facilitate the majority

voting strategy. We concatenate labels to the vectors that allow us to count how many times x1 and x2 appear

in the sum. We then use a second layer of attention to look up the full vector corresponding to the majority

label. This labeling can be implemented by concatenating positional encodings to the input points. That

is, instead of inputting x1, . . .x# ∈ S
3−1 to the transformer, we now input

[
x1

b1

]
, . . . ,

[
x#
b#

]
for b8 ∈ ℝ

4.

A linear transformation can be used to map the output of this (3 + 4)-dimensional transformer back to ℝ
3 .

Note that our target function is permutation-invariant, so the order of the points is irrelevant to the task at

hand. Thus, these concatenated “positional encodings” function more like a modification to the architecture.

They provide extra input dimensions that serve as scratch space in which the model can perform discrete

operations like counting and indexing without corrupting the input data. Also note that, because they change

the dimension of the inputs and of the transformer, these concatenated positional encodings are different

from the positional encodings used in practice (including RoPE [SAL+24] and ALiBi [PSL22]), which are

included in our framework of generalized attention.
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Below, we give the formal definition of the multi-layer transformer architecture used in our construction.

It uses self-attention, meaning that the source and target points are the same. We modify the attention

mechanism by adding a self-excluding mask so that each input point cannot attend to itself (see below, where

we form X̃8 by deleting the 8th column of X). Following standard practice, we also use a skip connection. We

do not need a MLP or normalization layer, though our construction can easily be extended to include them.

Definition 6. A rank-A self-masked transformer layer with � heads is a function ) : ℝ3×# → ℝ
3×#

parameterized by rank-: attention heads {(Mℎ,Vℎ)}�ℎ=1
and defined as follows:

X̃8 :=


x1 · · · x8−1 x8+1 · · · x#


(12)

)8 (X) := x8 +
�∑
ℎ=1

VℎX̃8 sm
(
X̃8

⊤
Mℎx8

)
(13)

(14)

Here, )8 denotes the 8th output (or 8th column of the output)
[
)1(X) · · · )# (X)

]
.

A two layer, rank-A transformer with concatenated positional encodings is a function) : ℝ3×# → ℝ
3×#

parameterized by a positional encoding matrix E = ℝ
34×# and two (3 + 34)-dimensional self-masked

transformer layers, ) (1) and ) (2) , and an output-layer matrix A ∈ ℝ
3×(3+34 ) and defined as follows:

) (X) = A · ) (2)
#

(
) (1)

( [
X

E

] ))
. (15)

The following theorem describes our majority voting construction using random rank-1 heads and

concatenated positional encodings. For the proof, see Appendix D.3.

Theorem 7. There exist universal constants 21, 22 such that for all 3 > 21, and n ∈
(
0, 1

2

)
, and � ≥ 22 · 3

3

n 2 ,

there exists a two layer, rank-1 transformer ) with � heads and 34 = 2 (as defined in Definition 6) for which

E
x1,x2,y∼Unif (S3−1 )



 5 (x1,x2;y) − )
( [
x1 x2 y

] )

2

2
≤ n . (16)

One might wonder whether the concatenated positional encodings are necessary to make this construction

work, especially since they break permutation invariance in order to represent a permutation invariant target.

In Appendix D, we present an alternative construction (Theorem 34) that is permutation invariant. However,

it modifies the architecture by applying the MLP to the concatenation of the outputs of the attention heads

rather than to their sum.

Although our constructions assume for # = 2 source points, it seems feasible to generalize them to larger

# . However, the major drawback of such a generalization is that the size of the transformer will depend on

# . Even the simple step of calculating the majority between # possible terms does not seem to be possible

without at least a linear dependence on # . On the other hand, Fact 1 shows that the target function can be

approximated for any # using a single full rank attention. We conjecture that such a dependence on # is

necessary when using low-rank attention:

Conjecture 8. There is no multi-layer transformer (with fixed size and weight matrices) of rank A < 3 that

approximates the target of Equation (3) for all # .

That is, while it may be possible to construct a transformer that approximates the target for a given fixed

# (as we do above), we conjecture that there is no such construction that is independent of # . Proving or

10



refuting the above conjecture would have very different implications. A counterexample would mean that the

the weakness of low-rank can be compensated by depth, and thus the rank does not play a decisive role in the

expressive power of multi-layer transformers. A proof would show that, even in the multi-layer case, low-rank

attention is fundamentally weaker than high-rank attention.

7 Experiments

In this section, we complement our theoretical results with experiments on a broader class of architectures.

We train off-the-shelf transformers—which include multiple layers of self-attention, MLP layers, skip

connections, and normalization—on a slight modification of the nearest neighbor function. Our experiments

confirm the weakness of low-rank attention in this setting. They also show that the full-rank construction of

Fact 1 is easily learned by gradient descent. All code is available at https://github.com/NoahAmsel/

attention-formers.

Model and training details We use the Pytorch implementation of transformer encoders [PGM+19] with

two modifications. First, we generalize the standard scaling � = 3/A, allowing � to be any multiple of 3/A.
(In particular, we try � = 31.5/A and � = 32/A .) Second, we replace the layer normalization with RMSNorm

[ZS19], a standard choice in modern transformers [TLI+23, CND+24] that is also better suited to our target

function. We train with biases, but preliminary experiments showed that these make little difference.1 We run

each experiment on a single Nvidia GPU (usually a V100) for no more than a few hours.

Since we are using self-attention, there is no distinction between the source and target points. The #

input points are drawn uniformly and i.i.d. from S
3−1, and they are not constrained to be orthogonal. We

change our target function accordingly. For each input point, the target now outputs whichever of the other

points is farthest from it. We output the farthest instead of the nearest point because otherwise, each point

would map to itself. The loss function is the average mean squared error over the # points. We do not use

any attention mask. In particular, we allow points to attend to themselves. Our dataset is synthetic, so we

train and test on a stream of freshly generated samples that never repeat. We train on 105 batches of size 256

each. For all experiments, we use AdamW with the same learning rate of 0.01 and a learning rate schedule of

cosine annealing with a linear warm-up.

Rank separation Our first experiment studies the importance of rank across various numbers of heads

(�) and layers (!). We fix the dimension 3 = 64 and the number of points # = 16. In this experiment, we

use no positional encodings. Figure 1 plots the results, showing the best of five runs for each setting. Each

line uses a different number of heads, but the number of parameters per attention layer, A3� = 32+1, is kept

constant within each. The standard scaling is 32 parameters per layer. When ! = 1, the results suggest that

using full-rank (A = 64) is necessary and sufficient to learn the target function accurately; even 23 heads of

rank 3/2 fails. For ! > 1, the trade-off between rank and accuracy is more favorable, but low-rank attention

still significantly underperforms full-rank attention, even when it gets to use more parameters. The standard

five layer transformers (that is, ! = 5, parameters per layer = 32) seem to suffer from optimization difficulties

on this problem. Excluding that case, the best-performing model that is not full-rank (! = 5, 33 parameters

per layer, A = 32) performs no better than the worst full-rank model (! = 1, 32 parameters per layer, A = 64)

despite having 80x more parameters in its attention layers. In short, a standard transformer with � = 1

performs much better on this task than one with � even moderately larger.

1Note that biases in the key, query, and value transformations have a different role from additive positional encodings. These

biases differ between heads but are constant across tokens; in contrast, the positional encodings differ between tokens but not heads.

The biases implemented by Pytorch are also slightly different from those studied in Section 5.

11









8 Conclusions and Limitations

In this paper, we have investigated the role of rank in attention mechanisms. We question the nearly universal

practice of trading off the rank and the number of heads according to � = 3/A . We show that for a simple and

natural target function inspired by semantic search, low-rank attention is fundamentally weaker than full-rank

attention, even when � ≫ 3/A. We demonstrate this strict separation between the low-rank and high-rank

regimes both theoretically, by proving hardness of approximation in the shallow setting, and empirically,

through experiments with off-the-shelf transformers. Our results thus hint at a potentially beneficial tradeoff

between number of heads and rank that remains largely unexplored in applications.

That said, our theoretical analysis is inherently limited to the study of shallow transformers, and our

results of Section 6 illustrate how adding depth may overcome the limitations of low-rank self-attention in

some cases. However, we hope that our results will motivate theoreticians and practitioners to more carefully

consider the settings and scalings of transformer hyperparameters. In particular, they suggest that theoretical

models that use full-rank attention may not accurately describe transformers used in practice, and that much

remains to be understood about the successes and failure modes of attention-based architectures.

Several open questions remain for future work. The basic transformer architecture of [VSP+17] allows

the user to set a number of hyperparameters. Despite the ubiquity of this architecture, hyperparameter

settings other than the embedding dimension and number of layers are almost never significantly changed;

see Appendix A. While considerable prior work has studied scaling laws for the dimension and number of

layers, we believe that future research should also consider the other hyperparameters and seek to understand

the trade-offs, dependencies, and scaling laws between them. Here, we focus on the query/key rank and its

relationship to the number of heads, but the depth and width of the MLPs and value/output rank are also of

interest.

Additionally, the rotational invariance of the input data distribution is instrumental in establishing our

lower bounds. Given the inherently discrete nature of text-based transformers, a natural question is to

understand how to generalize our techniques beyond the rotationally-invariant setting. Another direction for

future work is to understand the relationship between the rank and the context length. Focusing on the # = 2

case suffices for us to prove rank separation, but we believe a similar result should hold at least for all # ≤ 3;

Figure 4 provides preliminary experimental evidence. Understanding the # > 2 case may also help address a

final open question: What is the relationship between rank and depth? In particular, does Conjecture 8 hold?
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A Hyperparameters of Transformer

The transformer architecture [VSP+17] leaves the user free to set the following hyperparameters:

• The embedding dimension (3)

• The number of layers (!)

• The width of the MLPs (F)

• The depth of the MLPs (�)

• The rank of the W& and W matrices for each head (A)

• The rank of the W+ and W$ matrices for each head (A2)

• The number of attention heads in each layer (�)

In this paper, we consider the dimension 3 to be given by the domain of the target function, rather than being

a hyperparameter as in language modeling. As Table 1 shows, only 3 and ! have been significantly changed

relative to the original model. For all models of which we are aware, F lies within a factor of two from

[VSP+17], A lies within a factor of four, and � and A2 are not changed at all. � has been scaled, but always

according to the standard scaling (up to a factor of 2).
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Table 1: Hyperparameter settings of popular transformer models (largest versions reported). Except for 3 and

!, they are strikingly consistent. See text of Appendix A for notation.

Year Model 3 ! F � A A2 �

2017 Attention is all you need [VSP+17] 512 6 43 2 64 A 3/A
2018 GPT, GPT-2 [RNS+18, RWC+19] 768 12 43 2 64 A 3/A
2019 Bert-Large [DCLT19] 1,024 24 43 2 64 A 3/A
2021 ViT-Huge [DBK+21] 1280 32 43 2 80 A 3/A

CLIP (text encoder) [RKH+21] 1,024 12 43 2 64 A 3/A
Jurassic-1 13,824 76 43 2 144 A 3/A
Gopher 280B [RBC+21] 16,384 80 43 2 128 A 3/A
LaMDA [TFH+22] 8192 64 83 2 128 A 23/A

2022 Chinchilla 70B [HBM+22] 8,192 80 43 2 128 A 3/A
GPT-3 [BMR+20] 12,288 96 43 2 128 A 3/A

2023 PaLM [CND+24] 18,432 118 43 2 256 A 23/3A
LLaMA, Llama-2 [TLI+23, TMS+23] 8,192 80 83/3 2 128 A 3/A

2024 OLMo [GBW+24] 8,192 80 83/3 2 128 A 3/A

B Proofs from Section 4

In this section, we prove the upper bound Fact 1, the lower bound Theorem 2 and some important properties

relating to the approximation of the target by random heads.

We begin with the proof of Fact 1 in Appendix B.1. In Appendix B.2, we review the basics of spherical

harmonics and describe the corresponding family of ultraspherical orthogonal polynomials on the interval. In

Appendix B.3, we construct a basis for functions of pairs of points on the sphere that we will use to analyze

the target and the attention mechanism. In Appendix B.4, we show how to expand the target function in this

basis, proving the critical properties of slow spectral decay and rotational invariance between basis elements

of the same degree. In Appendix B.5, we expand a single attention head in this basis, showing that the number

of basis elements with which it is correlated is limited by the rank of the attention head. In Appendix B.6, we

use these results to obtain a lower bound on the error of approximation that depends only on certain universal

constants related to the spherical harmonics, particularly the number of spherical harmonics of a given degree

and the coefficients of the ultraspherical expansion of the sign function. In Appendix B.7, we analyze this

expression to derive a bound on the necessary number of heads that depends only on the dimension 3, the

rank A , and the error level n . Finally, in Appendix B.8, we analyze a construction that approximates the target

function using random rank-1 heads.

B.1 Proof of Fact 1

Let n > 0. We set V = I , KQ⊤ = UI for U > 0 to be chosen later. Since x8 , y ∼ Unif (S3−1), for every

8 ∈ {1, . . . , #}, there exists X > 0 (which depends on n) such that for the set:

�X := {(x1, . . . ,x# , y) ∈ (S3−1)#+1 : ∀8 ≠ 9 , | (x8 − x 9)⊤y | > X} , (17)

we have that Pr((x1, , . . . ,x# , y) ∉ �X) ≤ n
2
. Note that:

X sm(UX⊤y) −→
U→∞

arg max
x8

(x⊤
8 y) = arg max

x8

∥x8 − y∥2 , (18)
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where the convergence is uniform on �X , and the equality follows since all the vectors are from the unit

sphere. In particular, there exists U > 0 such that:

sup
(x1,...,x# ,y) ∈�X





X sm(UX⊤y) − arg max
x8

∥x8 − y∥2






2

≤ n

2
. (19)

Combining both bounds and taking expectation over the vectors finishes the proof.

B.2 Spherical Harmonics

We begin by reviewing some basic results from the theory of spherical harmonics. Let g(·) denote the uniform

distribution over S3−1 and define the inner product ⟨·, ·⟩g over !2(S3−1) as follows

⟨ 5 , 6⟩g :=

∫
S3−1

5 (x)6(x)3g(x) (20)

A polynomial � : ℝ3 → ℝ is called harmonic and degree-ℓ homogeneous if

∇2� = 0, � (0x) = 0ℓ� (x) (21)

A spherical harmonic of degree ℓ is the restriction of a harmonic homogeneous polynomial to the sphere

S
3−1. That is, a function . : S3−1 → ℝ is a spherical harmonic of degree ℓ if and only if the ℝ

3 → ℝ

function defined by

x ↦→ ∥x∥ℓ.
(
x

∥x∥

)
(22)

is a harmonic homogeneous polynomial of degree ℓ. The set of spherical harmonics of degree ℓ on S
3−1 form

a function space Fℓ ⊂ !2(S3−1). These subspaces have the following dimensions (Theorem 4.4 of [FE12]):

# (3, ℓ) := dimFℓ =
2ℓ + 3 − 2

ℓ

(
ℓ + 3 − 3

ℓ − 1

)
. (23)

The reason spherical harmonics are so useful is that the Fℓ are linearly independent, and their direct sum is

!2(S3−1). That is, if {. 9
ℓ
}# (3,ℓ )
9=1

is an orthonormal basis of Fℓ , then ∪∞
ℓ=0

{. 9
ℓ
}# (3,ℓ )
9=1

is an orthonormal basis

of !2(S3−1) with respect to ⟨·, ·⟩g .
For a unit vector e, let D3 denote the distribution of x⊤e when x ∼ g. Then for C ∈ [−1, 1],

D3 (C) :=
�3−2

�3−1

· (1 − C2) 3−3
2 (24)

where �3−1 is the surface area of S3−1 (see Lemma 4.17 of [FE12]). Define the following inner product over

functions mapping [−1, 1] → ℝ:

⟨ 5 , 6⟩D3 :=

∫ 1

−1

5 (C)6(C)D3 (C)3C (25)

The ultraspherical polynomials %ℓ : [−1, 1] → ℝ for ℓ ∈ ℕ≥0 are defined by the following properties:

(i) %ℓ has degree ℓ

(ii) ℓ ≠ ℓ′ ⇐⇒ ⟨%ℓ , %ℓ′⟩D3 = 0

(iii) %ℓ (1) = 1
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These polynomials form an orthogonal basis for !2( [−1, 1], D3), which includes all bounded functions

on [−1, 1]. Moreover, they are intimately connected to the spherical harmonics. We exploit three such

connections. First (Equation 4.30 of [FE12])

∥%ℓ ∥2
D3

=
1

# (3, ℓ) (26)

Second, the addition formula states that each ultraspherical polynomial can be expressed in terms of the

spherical harmonics of the same degree and vice versa (Theorem 4.112 of [FE12])

%ℓ (x⊤y) = 1

# (3, ℓ)

# (3,ℓ )∑
9=1

.
9

ℓ
(x). 9

ℓ
(y) (27)

Finally, the Hecke-Funk formula (Theorem 4.24 of [FE12]) gives the relationship between the ultraspherical

expansion of C ↦→ 5 (C) and the spherical harmonic expansion of y ↦→ 5 (x⊤y). For any degree-ℓ spherical

harmonic .ℓ , 〈
5
(
⟨x, ·⟩

)
, .ℓ

〉
g

:=

∫
S3−1

5 (x⊤y).ℓ (y)3g(y) = .ℓ (x) ⟨ 5 , %ℓ⟩D3 (28)

We will make use of the ultraspherical expansion of two particular functions:

Definition 9. Let {Uℓ} be the ultraspherical series for arcsin and let {[ℓ} be the ultraspherical series for

sign. That is,

arcsin(C) =
∞∑
ℓ=0

Uℓ
%ℓ (C)
∥%ℓ ∥D3

(29)

sign(C) =
∞∑
ℓ=0

[ℓ
%ℓ (C)
∥%ℓ ∥D3

∀C ∈ [−1, 1] (30)

B.3 Orthonormal Basis for Target and Attention Heads

The goal of this section is to define the orthonormal basis that we will use to analyze the (surrogate) target

and attention functions. We define the input space for these functions as follows: X = S
3−1 × S

3−1. We

denote elements of this set by (x, y) or I for short. For any two functions, define their tensorization by

( 5 ⊗ 6) (I) = 5 (x) 5 (y) (31)

We let ḡ = g ⊗ g be the uniform measure on X. We also define a feature space Ω = S
3−1 × S

3−1 and denote

elements of this space by (q,k) or l. Of course, Ω = X, but since they are used in different contexts, we use

separate notation for readability.

We define the feature mapping that we will use to analyze the surrogate target and attention functions:

Definition 10. Define the “rank-1 head” function d : X ×Ω → {±1} by

d(I, l) := sign
(
x⊤kq⊤y

)
(32)

and the feature map linear operator T : !1(Ω) → !2(X) by

(TD) (I) :=

∫
Ω

d(I, l)D(l)3ḡ(l) (33)

2Note that [FE12] has an extra factor of �3−1 in the theorem statement. This is because they use a different normalization for the

spherical harmonics.
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The intuition is as follows. For a fixed value of l = (k, q), the function d(·, l) acts like a hardmax

attention head with rank 1. More precisely, if x = x1 − x2 and V = I , then d(I, l) is the output of the

head applied to the source y and targets x1 and x2, projected onto x. Furthermore, TD is a weighted linear

combination of all possible rank-1 hardmax heads.

We will construct a basis using functions of the form T (. ⊗ . ′) for spherical harmonics . and

. ′. The rationale for choosing this basis is as follows. T defines a positive semidefinite operator

T ∗T : !1(Ω) → !2(Ω), which is described by the following formula:

(T ∗TD) (l) =
∫
Ω

E
I∼ḡ

[d(I, l)d(I, l′)] · D(l′)3ḡ(l′) (34)

Functions of the form . ⊗ . ′ will turn out to be eigenfunctions of this operator. To see why, we must first

analyze the kernel EI∼ḡ [d(I, l)d(I, l′)], which we do in the following lemma.

Lemma 11.

E
I∼ḡ

[d(I, l)d(I, l′)] = 4

c2
arcsin(q⊤q′) arcsin(k⊤k′) (35)

Proof. To begin, we compute a closely related property – the probability that the signs are equal:

Pr
z∼ḡ

[d(z, l) = d(z, l′)] = Pr
z∼ḡ

[⟨x,k⟩ ⟨q, y⟩ ⟨x,k′⟩ ⟨q′, y⟩ > 0] (36)

(37)

Let \ be the angle between q and q′ and let q be the angle between k and k′. We have

Pr
y
[⟨y, q⟩ ⟨y, q′⟩ ≥ 0] = 1 − \

c
(38)

Pr
x
[⟨x,k⟩ ⟨x,k′⟩ ≥ 0] = 1 − q

c
(39)

Pr
x,y

[⟨y, q⟩ ⟨y, q′⟩ ≥ 0 ∧ ⟨x,k⟩ ⟨x,k′⟩ ≥ 0] =
(
1 − \

c

) (
1 − q

c

)
(40)

Pr
x,y

[⟨y, q⟩ ⟨y, q′⟩ ≤ 0 ∧ ⟨x,k⟩ ⟨x,k′⟩ ≤ 0] = \

c

q

c
(41)

Pr
x,y

[⟨x,k⟩ ⟨x,k′⟩ ⟨y, q⟩ ⟨y, q′⟩ ≥ 0] =
(
1 − \

c

) (
1 − q

c

)
+ \
c

q

c
(42)

A bit of algebra now shows

Pr
z∼ḡ

[d(z, l) = d(z, l′)] =
(
1 − \

c

) (
1 − q

c

)
+ \
c

q

c
(43)

=
1

2
+ 2

c2

(c
2
− \

) (c
2
− q

)
(44)

By definition, \ = arccos(⟨q, q′⟩) and q = arccos(⟨k,k′⟩). Using the identity arcsin(I) = c/2 − arccos(I),
we obtain

Pr
z∼ḡ

[d(z, l) = d(z, l′)] = 1

2
+ 2

c2
arcsin(q⊤q′) arcsin(k⊤k′) (45)

Finally,

E
z∼ḡ

[d(z, l)d(z, l′)] = Pr
z∼ḡ

[d(z, l) = d(z, l′)] − Pr
z∼ḡ

[d(z, l) ≠ d(z, l′)] (46)

= 2 Pr
z∼ḡ

[d(z, l) = d(z, l′)] − 1 (47)

=
4

c2
arcsin(q⊤q′) arcsin(k⊤k′) (48)

□
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The above lemma gives us a handy expression for T ∗T that allows to show the following:

Lemma 12. Let.,. ′ be spherical harmonics of degrees ℓ and ℓ′, respectively. Then. ⊗. ′ is an eigenfunction

of the operator T ∗T :

T ∗T (. ⊗ . ′) = 4

c2

UℓUℓ′√
# (3, ℓ)# (3, ℓ′)

· . ⊗ . ′ (49)

Proof. It is easily seen that

(T ∗ 5 ) (·) =
∫
X
d(I, ·) 5 (I)3ḡ(I) (50)

and thus, substituting and changing the order of integration

[T ∗T (. ⊗ . ′)] (l) =
∫
Ω

E
I∼ḡ

[d(I, l)d(I, l′)] · (. ⊗ . ′) (l′)3ḡ(l′) (51)

Applying Lemma 11 and expanding 3ḡ(l) and . ⊗ . ′,

=
4

c2

∫
Ω

arcsin(q⊤q′) arcsin(k⊤k′) · (. ⊗ . ′) (l′)3ḡ(l′) (52)

=
4

c2

∫
S3−1

arcsin(q⊤q′). (q′)3g(q′) ·
∫
S3−1

arcsin(k⊤k′). ′(k′)3g(k′) (53)

Applying the Hecke-Funke formula (Equation (28)) to the first integral,∫
S3−1

arcsin(q⊤q′). (q′)3g(q′) = . (q) ⟨arcsin, %ℓ⟩D3 (54)

= . (q)
〈
arcsin,

%ℓ

∥%ℓ ∥D3

〉
D3

· ∥%ℓ ∥D3 (55)

= . (q) Uℓ√
# (3, ℓ)

(56)

By the same logic, the second integral equals . ′(k′) · Uℓ′/
√
# (3, ℓ). Combining these proves the lemma. □

The previous lemma immediately implies that the functions T (. ⊗ . ′) form an orthogonal basis:

Lemma 13. Let � be a set of orthonormal spherical harmonics. Then the elements of {T (. ⊗. ′) | .,. ′ ∈ �}
are also orthogonal. Furthermore, if . and . ′ have degrees ℓ and ℓ′, then

∥T (. ⊗ . ′)∥2
ḡ =

4

c2

UℓUℓ′√
# (3, ℓ)# (3, ℓ′)

(57)

Proof. Let .8 , . 9 , .8′ , . 9′ ∈ �. Let . ′
8 have degree ℓ and . ′

9 have degree ℓ′. Then

〈
T (.8 ⊗ . 9),T (.8′ ⊗ . 9′)

〉
=

〈
.8 ⊗ . 9 ,T ∗T (.8′ ⊗ . 9′)

〉
(58)

=
〈
.8 ⊗ . 9 , .8′ ⊗ . 9′

〉
· 4

c2

UℓUℓ′√
# (3, ℓ)# (3, ℓ′)

(59)

But
〈
.8 ⊗ . 9 , .8′ ⊗ . 9′

〉
is one if .8 = .8′ and . 9 = . 9′ , and zero otherwise. □
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B.4 Expansion of the Target Function

We define a surrogate target function that will turn out to be the relevant one for our analysis.

Definition 14. The surrogate target function 5̃ : X → ℝ is

5̃ (I) := sign(x⊤y) (60)

After a change of variables (x,w) = (x1 − x2,x1 + x2), our original target function reduces simply to

5̃ (I)x +w. We now wish to expand 5̃ in the basis {T (. ⊗ . ′)}. We will first need the following lemma,

which describes the correlation of a rank-1 head with the surrogate target function.

Lemma 15. Fix l = (q,k) ∈ Ω. Then

〈
5̃ , d(·, l)

〉
ḡ
=

∞∑
ℓ=0

2ℓ%ℓ (q⊤k) (61)

where

2ℓ =
2

c
[ℓUℓ (62)

Proof. By definition, 〈
5̃ , d(·, l)

〉
ḡ
= E

x,y∼g

[
sign(x⊤y) sign(x⊤kq⊤y)

]
(63)

Let g+ denote the uniform measure on the hemisphere {x ∈ S
3−1 | x⊤k ≥ 0}, and g− the uniform measure

on the opposite hemisphere. Then we can decompose the expectation as follows:

E
x,y∼g

[sign(x⊤y) sign(x⊤kq⊤y)] = 1

2
E

x∼g+
y∼g

[sign(x⊤y) sign(q⊤y)] (64)

− 1

2
E

x∼g−
y∼g

[sign(x⊤y) sign(q⊤y)] (65)

Given any fixed unit vectors x, q we have that

Pr
y
[sign(x⊤y) = sign(q⊤y)] = 1 − arccos(x⊤q)

c
(66)

Therefore,

E
y
[sign(x⊤y) sign(q⊤y)] = Pr

y
[sign(x⊤y) = sign(q⊤y)] − Pr

y
[sign(x⊤y) ≠ sign(q⊤y)] (67)

= 2 Pr
y
[sign(x⊤y) = sign(q⊤y)] − 1 (68)

= 1 − 2 arccos(x⊤q)
c

(69)

Plugging this into the expression above,

=
1

2
E

x∼g+

[
1 − 2 arccos(x⊤q)

c

]
− 1

2
E

x∼g−

[
1 − 2 arccos(x⊤q)

c

]
(70)

= − 2

c

(
1

2
E

x∼g+

[
arccos(x⊤q)

]
− 1

2
E

x∼g−

[
arccos(x⊤q)

] )
(71)

= − 2

c

(
1

2
E

x∼g+

[
sign(x⊤k) arccos(x⊤q)

]
+ 1

2
E

x∼g−

[
sign(x⊤k) arccos(x⊤q)

] )
(72)

= − 2

c

(
E

x∼g

[
sign(x⊤k) arccos(x⊤q)

] )
(73)

(74)
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Using the identity arccos(C) = c
2
− arcsin(C) and the fact that Ex [sign(x⊤k)] = 0,

=
2

c
E

x∼g

[
sign(x⊤k) arcsin(x⊤q)

]
(75)

=
2

c

〈
sign(⟨·,k⟩), arcsin(⟨·, q⟩)

〉
g

(76)

We now expand sign(⟨·,k⟩) and arcsin(⟨·, q⟩) in a basis of spherical harmonics. By Hecke-Funk,〈
sign(⟨·,k⟩), . 9

ℓ

〉
g
= .

9

ℓ
(k) ⟨sign, %ℓ⟩D3 = .

9

ℓ
(k)[ℓ ∥%ℓ ∥D3 (77)〈

arcsin(⟨·, q⟩), . 9
ℓ

〉
g
= .

9

ℓ
(q) ⟨arcsin, %ℓ⟩D3 = .

9

ℓ
(q)Uℓ ∥%ℓ ∥D3 (78)

(79)

Thus, writing the inner product in the basis of spherical harmnoics,

2

c

〈
sign(⟨·,k⟩), arcsin(⟨·, q⟩)

〉
g
=

2

c

∞∑
ℓ=0

# (3,ℓ )∑
9=1

(
.
9

ℓ
(k)[ℓ ∥%ℓ ∥D3

) (
.
9

ℓ
(q)Uℓ ∥%ℓ ∥D3

)
(80)

=
2

c

∞∑
ℓ=0

©­«
[ℓUℓ ∥%ℓ ∥2

D3

# (3,ℓ )∑
9=1

.
9

ℓ
(k). 9

ℓ
(q)ª®¬

(81)

Applying the addition formula (Equation (26)),

=
2

c

∞∑
ℓ=0

[ℓUℓ ∥%ℓ ∥2
D3
# (3, ℓ)%ℓ (k⊤q) (82)

=

∞∑
ℓ=0

2

c
[ℓUℓ%ℓ (k⊤q) (83)

(84)

□

We now expand our surrogate target function 5̃ in our basis {T (. ⊗. ′)}. The following lemma shows that

5̃ is orthogonal to any basis element for which. ≠ . ′, and that the coefficient of T (. ⊗. ′) only depends only

on the degree of . . That is, the energy of 5̃ is evenly spread across all elements of {T (.ℓ ⊗ .ℓ) | .ℓ ∈ Fℓ}.
Lemma 16. Let .,. ′ be spherical harmonics of odd degree. Let ℓ be the degree of . . Then〈

5̃ ,
T (. ⊗ . ′)

∥T (. ⊗ . ′)∥ ḡ

〉
ḡ

=
[ℓ√
# (3, ℓ)

X.,. ′ (85)

where X.,. ′ = 1[. = . ′]. That is, if the basis element is built from two identical spherical harmonics of

degree ℓ, then its correlation with the target function depends only on ℓ; otherwise it is zero.

Proof. Expanding, switching the order of the integrals, and applying Lemma 15,

〈
5̃ ,T (. ⊗ . ′)

〉
ḡ
=

∫
X

∫
Ω

5̃ (z)d(z, l) (. ⊗ . ′) (l)3ḡ(l)3ḡ(z) (86)

=

∫
Ω

〈
5̃ , d(·, l)

〉
ḡ
(. ⊗ . ′) (l)3ḡ(l) (87)

=

∞∑
ℓ′=0

2ℓ′

∫
Ω

%ℓ′ (q⊤k) (. ⊗ . ′) (l)3ḡ(l) (88)
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Expanding the integral over Ω and applying Hecke-Funk (Equation (28)),

=

∞∑
ℓ′=0

2ℓ′

∫
S3−1

∫
S3−1

%ℓ′ (q⊤k). ′(k). (q)3g(k)3g(q) (89)

=

∞∑
ℓ′=0

2ℓ′

∫
S3−1

(
. ′(q) ⟨%ℓ′ , %ℓ′⟩D3

)
. (q)3g(q) (90)

=

∞∑
ℓ′=0

2ℓ′ ∥%ℓ′ ∥2
D3

⟨.,. ′⟩g (91)

=
2ℓ

# (3, ℓ) (92)

Finally, applying the formula for 2ℓ from Lemma 15 and the formula for ∥T (. ⊗ . ′)∥g from Lemma 13,

〈
5̃ ,

T (. ⊗ . )
∥T (. ⊗ . )∥ ḡ

〉
ḡ

=
2ℓ

# (3, ℓ) ·
1

∥T (. ⊗ . )∥ ḡ
=

2
c
[ℓUℓ

# (3, ℓ) ·
1√

4
c2U

2
ℓ (8)/# (3, ℓ)

=
[ℓ√
# (3, ℓ)

(93)

□

Up to now, we have constructed a basis without showing that its span includes our target function.

Lemma 27 (in Appendix B.8) verifies that, in fact, 5̃ lies in this span. This lemma is not needed for the proof

of Theorem 2, but is used in the kernel approximation of Appendix B.8. It also shows that this step of the

proof is tight. We do not lose anything by lower bounding the error only on the part of 5̃ that lies in the span

of our basis functions.

B.5 Expansion of the Head Functions

In this section, we expand the low-rank attention head function in our basis {T (. ⊗ . ′)}. Unlike the target

function, the energy of an attention head is not spread out, but concentrated on a few basis elements in each

harmonic. We first need the following lemma, which we will use to bound the number of these special basis

elements.

Lemma 17. Let Aℓ be the span of the harmonics of degree ℓ on S
3−1 that are zero after marginalizing onto

the first A coordinates. Then

dim(Fℓ/Aℓ) := " (A, ℓ) ≤
(
A + ℓ
ℓ

)
(94)

where Fℓ/Aℓ is the orthogonal complement of Aℓ in Fℓ . Furthermore, " (1, ℓ) = 1.

Proof. Let L : Fℓ → !2(�A ) be the linear operator which marginalizes a degree ℓ spherical harmonic

function on the first A coordinates. (Here, �A is the unit A-ball.) That is,

(L 5 ) (x) := E
y∼S3−A−1

5

( [
x

y
√

1 − ∥x∥2

] )
(95)

By definition, Aℓ is the null space of L. We will show below that the range of L contains only polynomials

of the first A coordinates of degree at most ℓ. The dimension of the space of polynomials in dimension A of

degree at most ℓ is
(A+ℓ
ℓ

)
. Thus, by the rank-nullity theorem,

dim(Fℓ) ≤ dim(Aℓ) +
(
A + ℓ
ℓ

)
(96)
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and therefore

dim(Fℓ/Aℓ) = dim(Fℓ) − dim(Aℓ) ≤
(
A + ℓ
ℓ

)
(97)

We will now show that the range of L contains only polynomials in the first A coordinates of degree at

most ℓ. Each spherical harmonic is the restriction to S
3−1 of a harmonic homogeneous polynomial on ℝ

3 , so

it suffices to show that L maps monomials of degree exactly ℓ in ℝ
3 to polynomials of degree at most ℓ in the

first A coordinates. Let

.

( [
x

y

] )
:= G

?1

1
· · · G?AA H

?A+1

A+1
· · · H?3

3
=

(
A∏
8=1

G
?8
8

) (
3∏

8=A+1

H
?8
8

)
(98)

be one such monomial. If any of ?A+1, . . . , ?3 is odd, then ! [. ] = 0. If all are even, then

! [. ] (x) =
(
A∏
8=1

G
?8
8

) (
E

y∼S3−A−1

3∏
8=A+1

(
H8

√
1 − ∥x∥2

) ?8 )
(99)

=

(
A∏
8=1

G
?8
8

) (
3∏

8=A+1

(
1 − ∥x∥2

) ?8/2) (
E

y∼S3−A−1

3∏
8=A+1

H
?8
8

)
(100)

is a polynomial in x whose highest degree term has degree
(∑A

8=1 ?8
)
+

(∑3
8=A+1 ?8

)
, which equals the degree

of the original monomial.

For the special case of A = 1, it suffices to show that L has rank one, or equivalently that its nullspace has

dimension # (3, ℓ) − 1. Let .1 = %ℓ (⟨ê1, ·⟩), where ê1 ∈ ℝ
3 is the first standard basis vector. By Theorem

4.10 of [FE12], .1 is a spherical harmonic of degree ℓ. Complete an orthonormal basis {.1, . . . .# (3,ℓ ) } of

Fℓ . Our goal is to show that L. 9 = 0 for all 9 ∈ {2, . . . # (3, ℓ)} (with equality in the weak sense).

To do this, it suffices to show that
〈
%ℓ ,L. 9

〉
= 0 for all ℓ:〈

%ℓ ,L. 9
〉
= E
G∼D3

[
%ℓ (G) (L. 9) (G)

]
(101)

= E
G∼D3

[
%ℓ (G) E

y∈S3−2
. 9

( [
G

y
√

1 − |G |2

] )]
(102)

= E
z∼g

[
%ℓ (G). 9 (z)

]
(103)

where z :=

[
G

y
√

1 − |G |2

]
∈ S

3−1. But by definition, %ℓ (G) = .1

( [
G

y
√

1 − |G |2

] )
for all y ∈ S

3−2. Continuing

from above,

= E
z∼g

[
.1(z). 9 (z)

]
=

〈
.1, . 9

〉
g
= 0 (104)

for all 9 ≠ 1. □

Lemma 18. Let X be a square matrix. Let D be the uniform distribution over orthogonal matrices. Then,

E
Q∼D

[Q⊤XQ] = tr(X) · I (105)

Proof. Let @:8 denote the entry in the :th row and 8th column of Q. Then the (8, 9) entry of the expectation is

E
Q∼D

[Q⊤XQ]8 9 =
∑
:

∑
ℓ

G:ℓ E
&
[@:8@ℓ 9] (106)
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So long as (:, 8) ≠ (ℓ, 9), then conditional distribution of @ℓ 9 given @:8 is symmetric, since negating the

ℓth row (or 9 th column) of Q would produce another orthonormal matrix. Thus, if (:, 8) ≠ (ℓ, 9), then the

expectation is zero. The only non-zero terms are

E
Q∼D

[Q⊤XQ]88 =
∑
:

G:: E
&
[@2
:8] (107)

Since the marginal distribution of each row (or column) is uniform on the unit sphere, the variance of each

entry is 1. □

Lemma 19. Define " (A, ℓ) as in Lemma 17. Assume the rank A < 3 and consider the functions 6ℎ (I) =
x⊤Vℎx · q̃ℎ (K⊤

ℎ
x, y) for q̃ℎ : ℝA × S

3−1 → ℝ and Kℎ ∈ ℝ
3×A for ℎ ∈ [�]. Then there exists a subspace

Aℓ ⊆ Fℓ of dimension at least # (3, ℓ) −� ·" (A, ℓ) such that T (.ℓ ⊗.ℓ) is orthogonal to 6ℎ for any.ℓ ∈ Aℓ

and any ℎ ∈ �.

Proof. The first part of the proof gives a construction for Aℓ . Fix y, q and ℎ and define

ℎK (k) := E
x∼g

[d(z, l)6ℎ (x)] = E
x∼g

[
sign(x⊤kq⊤y)x⊤V x · q̃ℎ (K⊤x, y)

]
(108)

Define K =
[
K k

]
. As a first step, we show that this function only depends on a particular projection

of V , not on V itself. Choose a basis such that the column span of K is span({e1, . . . , eA ′}, where

1 ≤ A ′ ≤ min(A + 1, 3). Then we can rewrite V =

[
A B

C D

]
where A ∈ ℝ

A ′×A ′ . The distribution of x is

isotropic and independent of y. Therefore, we can rotate it without affecting the expectation. In fact, we can

draw a random orthogonal matrix from any distribution, and Ex,Q [ 5 (Qx)] will equal Ex [ 5 (x)]. We draw

random orthogonal matrices that fix the column span of K, that is, matrices of the form Q =

[
I ·
· Q̃

]
, where

Q̃ ∈ ℝ
(3−A ′ )×(3−A ′ ) is a uniformly distributed orthogonal matrix. Then,

ℎK (k) = E
x,Q

[
sign(x⊤Q⊤kq⊤y)x⊤Q⊤VℎQx · q̃ℎ (K⊤Qx, y)

]
(109)

= E
x,Q̃

[
sign(x⊤kq⊤y)x⊤

[
A BQ̃

Q̃⊤C Q̃⊤DQ̃

]
x · q̃ℎ (K⊤x, y)

]
(110)

Moving the expectation over Q̃ inside, the off-diagonal blocks are both 0. Applying Lemma 18, the bottom

right block becomes tr(D) · I . Thus, letting A′ = A − tr(D) · I ,

E
Q̃

[
A BQ̃

Q̃⊤C Q̃⊤DQ̃

]
= tr(D) · I +UA′U⊤ (111)

where U =

[
I

·

]
is defined to be the column span of K. In all,

ℎK (k) = E
x

[
sign(x⊤kq⊤y)x⊤ (

tr(D) · I +UA′U⊤)
x · q̃ℎ (K⊤x, y)

]
(112)

Now that we have reduced V , we can more clearly see the implications of the rotational invariance of the

distribution of x. Let O be an arbitrary orthonormal matrix. Then

ℎK (k) = E
x∼g

[
sign(x⊤O⊤kq⊤y)x⊤O⊤ (

tr(D) · I +UA′U⊤)
Ox · q̃ℎ (K⊤Ox, y)

]
(113)

= E
x∼g

[
sign(x⊤O⊤kq⊤y)x⊤ (

tr(D) · I +O⊤UA′U⊤O
)
x · q̃ℎ (K⊤Ox, y)

]
(114)

= ℎO⊤K (O⊤k) (115)
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where the last step follows because O⊤U is precisely the column span of O⊤K. Thus by Weyl’s fundamental

theorem of invariant functions, there exists ℎ̃ : ℝA → ℝ such that

ℎK (k) = ℎ̃(K⊤k) (116)

Let gK denote the marginal distribution of g on the column space of K and let gK⊥ denote its marginal

distribution on the orthogonal complement of the column space ofK. Then the random vector v+v⊥√1 − ∥v∥,
where v ∼ gK and v⊥ ∼ gK⊥ is distributed uniformly on the sphere. Let . be a spherical harmonic that

is zero after marginalizing the onto the column space of K. (For example, if K⊤ =
[
K̃⊤

0A×3−A
]
, then

marginalizing onto the column space means taking the average of the function over the final 3 − A coordinates.)

Then

⟨ℎK , .⟩ =
∫
S3−1

ℎK (k). (k)3g(k) (117)

=

∫ ∫
ℎK (v + v⊥√1 − ∥v∥). (v + v⊥√1 − ∥v∥)3gK⊥ (v⊥)3gK (v) (118)

=

∫
ℎ̃K (v)

(∫
. (v + v⊥√1 − ∥v∥)3gK⊥ (v⊥)

)
3gK (v) (119)

= 0 (120)

Let Aℎ
ℓ
⊂ Fℓ be the space of spherical harmonics of degree ℓ that have this marginalization property with

respect to Kℎ. Let Aℓ = ∩ℎAℎ
ℓ
. Recall that # (3, ℓ) is the dimension of Fℓ , and " (A, ℓ) is the dimension of

the orthogonal complement of Aℎ
ℓ

in Fℓ , denoted Fℓ/�ℎℓ . Thus,

dim(Aℓ) = dim(Fℓ) − dim(Fℓ/Aℓ) = # (3, ;) − dim(⊕ℎ (Fℓ/Aℎ
ℓ )) ≥ # (3, ℓ) − � · " (A, ℓ) (121)

It remains to show that for all . ∈ Aℓ , T (.ℓ ⊗ .ℓ) is orthogonal to 6ℎ.

⟨T (. ⊗ . ), 6ℎ⟩ ḡ =
∫
Ω

E
z
[d(z, l)6ℎ (z)]. (k). (q)3g(k)3g(q) (122)

=

∫
S3−1

E
y

(∫
S3−1

E
x
[d(x, y, l)6ℎ (I)]. (k)3g(k)

)
. (q)g(q) (123)

But for any fixed y and q, ∫
S3−1

E
x
[d(x, y, l)6ℎ (I)]. (k)3g(k) =

〈
ℎKℎ

, .
〉
= 0 (124)

by the calculation above, where the final step follows because . ∈ Aℓ ⊂ Aℎ
ℓ
. □

B.6 Proof of Theorem 2

Theorem 2 (Low-Rank Approximation Lower Bounds, Equivariant Case). There exist universal constants

2, 2′, � and �′ such that if either of the following sets of assumptions hold:

(i) High-accuracy regime: A ≤ 3 − 3, n ≤ 2
3+1

, and

� ≤ � · 23−(A+1) log2 (23/A ) . (5)

(ii) High-dimensional regime: 3 ≥ 5, n ≥ 2′

3−242 ·A and

� ≤ 1

2

(
1

24
· 3

A + �′/n

)�′/n
. (6)

32



Then, for any choice of � rank-A generalized attention heads qℎ : ℝA×2 → Δ1,Vℎ ∈ ℝ
3×3 ,Kℎ ∈ ℝ

3×A the

error of approximating the nearest neighbor function is bounded as follows

E
x1,x2∼D2 (S3−1 )
y∼Unif (S3−1 )






 5 (X;y) −
�∑
ℎ=1

VℎXqℎ
(
K⊤
ℎX , y

)





2

2

≥ n , (7)

where 5 is defined as in Equation (3).

Proof. We lower bound the error by projecting it onto the unit vector (x1 − x2)/(
√

2). For convenience, we

define a basis

x =
x1 − x2√

2
w =

x1 + x2√
2

(125)

The joint distribution of x and w is the same as that of x1 and x2. They are each uniformly distributed on the

sphere, and they are always orthogonal. The projection of the target function onto x yields the surrogate

target function of Definition 14:〈
x1 − x2√

2
, 5 (X; H)

〉
=

1
√

2
sign (⟨x1 − x2, y⟩) =:

1
√

2
5̃ (x, y) (126)

Let the attention weights produced by a softmax head be C1 and C2 = 1− C1. Then the output of the head before

multiplication with V is

Cx1 + (1 − C)x2 =
C1 − C2√

2
x + 1

√
2
w (127)

Letting q̃(K⊤x, y) = (C1 − C2)/
√

2, the inner product of the head with x is

x⊤V x · q̃(K⊤x, y) + x⊤V w (128)

Notice that, since the conditional distribution of w given x is symmetric, the correlation of the second term

above with the surrogate target is zero:

E
x1,x2∼D2 (S3−1 )

[
5̃ (x, y) · x⊤V w

]
= 0 (129)

Thus, we have the following lower bound:

E
x1,x2∼D2 (S3−1 )
y∼Unif (S3−1 )






 5 (X;y) −
�∑
ℎ=1

VℎXqℎ
(
K⊤
ℎ (x1 − x2), y

)





2

(130)

≥ E
x1,x2∼D2 (S3−1 )
y∼Unif (S3−1 )

〈
x, 5 (X;y) −

�∑
ℎ=1

VℎXqℎ
(
K⊤
ℎ (x1 − x2), y

)〉2

(131)

= E
x,w∼D2 (S3−1 )
y∼Unif (S3−1 )

1

2

(
5̃ (x, y) −

�∑
ℎ=1

x⊤Vℎx · q̃ℎ (K⊤
ℎ x, y)) −

�∑
ℎ=1

x⊤Vℎw

)2

(132)

≥ E
x,y∼Unif (S3−1 )

1

2

(
5̃ (x, y) −

�∑
ℎ=1

x⊤Vℎx · q̃ℎ (K⊤
ℎ x, y))

)2

(133)

=
1

2






 5̃ −
�∑
ℎ=1

6ℎ







2

ḡ

(134)
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where 6ℎ (I) = x⊤Vℎx · q̃ℎ (K⊤
ℎ
x, y). Construct the space Aℓ ⊆ Fℓ according to Lemma 19, and let

{. 8
ℓ
}dim Aℓ

8=1
be an orthonormal basis of Aℓ . Then each element in the following set is orthogonal to each

6ℎ (I): {
T (. 8

ℓ
⊗ . 8

ℓ
)

∥T (. 8
ℓ
⊗ . 8

ℓ
)∥ ḡ

}dim(Aℓ )

8=1

(135)

Furthermore, by Lemma 13, this set is orthonormal. Thus




 5̃ −
�∑
ℎ=1

6ℎ







2

ḡ

≥
∑
ℓ odd

dim(Aℓ )∑
8=1

〈
5̃ −

�∑
ℎ=1

6ℎ,
T (. 8

ℓ
⊗ . 8

ℓ
)

∥T (. 8
ℓ
⊗ . 8

ℓ
)∥ ḡ

〉2

(136)

=

∑
ℓ odd

dim(Aℓ )∑
8=1

〈
5̃ ,

T (. 8
ℓ
⊗ . 8

ℓ
)

∥T (. 8
ℓ
⊗ . 8

ℓ
)∥ ḡ

〉2

(137)

=

∑
ℓ odd

dim(Aℓ)
[2
ℓ

# (3, ℓ) (138)

where the final step follows from Lemma 16. By the construction of Aℓ (Lemma 19),

dim(Aℓ) ≥ # (3, ℓ) − � · " (A, ℓ) (139)

and thus

≥
∑
ℓ odd

(
1 − � · " (A, ℓ)

# (3, ℓ)

)
[2
ℓ (140)

Appealing either to Lemma 24 or to Lemma 25 finishes the proof. □

B.7 Asymptotics

Lemma 20. Let < > ℓ and ℓ odd. Then∫ 1

0

(
3

3C

)ℓ
(1 − C2)<3C = (−1)1+(ℓ−1)/2

(
<
ℓ−1

2

)
(ℓ − 1)! . (141)

Proof. We have

∫ 1

0

(
3

3C

)ℓ
(1 − C2)<3C = −

(
3

3C

)ℓ−1

(1 − C2)<
���
C=0

(142)

= −
(
3

3C

)ℓ−1 <∑
:=0

(
<

:

)
(−1):C2:

���
C=0

(143)

= (−1)1+(ℓ−1)/2
(
<
ℓ−1

2

)
(ℓ − 1)! . (144)

□

Lemma 21. Define [ℓ as in Definition 9. For odd ℓ, [2
ℓ
∼

√
3

ℓ3 (ℓ+3) .

Proof. From the definition, we have

[;,3 = 2

√
# (3, ;)�3−2

�3−1

∫ 1

0

%;,3 (C) (1 − C2) (3−3)/23C . (145)
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From the Rodrigues formula for %;,3 [FE12, Proposition 4.19], we have

[;,3 = 2

√
# (3, ;)�3−2

�3−1

(−1);
2; (; + (3 − 3)/2);

∫ 1

0

(
3

3C

) ;
(1 − C2);+(3−3)/23C . (146)

Now, using Lemma 20, we obtain

[;,3 = 2

√
# (3, ;)�3−2

�3−1

(−1);
2; (; + (3 − 3)/2);

(−1)1+(;−1)/2
(
; + (3 − 3)/2

;−1
2

)
(; − 1)! , (147)

and thus, using
�3−2

�3−1
∼ �′√3, we have

|[;,3 | ∼ �
√
3
√
# (3, ;)2−; (; − 1)!((3 − 3)/2)!

(; + (3 − 3)/2)!

(
; + (3 − 3)/2

;−1
2

)
. (148)

= �

√
3

;

√
# (3, ;)2−;

(;+(3−3)/2
;−1

2

)
(;+(3−3)/2

;

) (149)

= �

√
3

;

√
# (3, ;)2−;

;!
(
3−3

2

)
!(

;−1
2

)
!
(
3+;−2

2

)
!
. (150)

Using Stirling’s approximation, we obtain

# (3, ;) ∼ ; + 3
;

(
; + 3
;3

)1/2 (; + 3) (;+3−3)

; (;−1)3 (3−2) (151)

∼ (; + 3);+3−3/2;−;−1/23−3+3/2 , (152)

as well as

;!
(
3−3

2

)
!(

;−1
2

)
!
(
3+;−2

2

)
!
∼

√
;3

; (3 + ;) ;
(;+1)/23 (3−3)/2(3 + ;) (−3−;+2)/22; , (153)

∼ (; + 3) (−3−;+1)/2; (;+1)/23 (3−2)/22; , (154)

leading to

|[;,3 | ∼ (; + 3) (−3−;+1+;+3)/2−3/4;−1−;/2−1/4+;/2+1/231/2−3/2+3/4+3/2−1 (155)

∼ (; + 3)−1/4;−3/431/4 , (156)

as claimed. □

Lemma 21 shows that [2
ℓ

decays slowly with ℓ. Using
√

3
ℓ3 (ℓ+3) ≥ 1/ℓ2 and including by a fudge factor 2

that is slightly smaller than 1, we get a form that is better suited to the proof of our lower bounds:

Corollary 22. There exists a universal constant 2′′ such that [2
ℓ
≥ 2′′/ℓ2 for all sufficiently large 3 and ℓ

(say, for all 3, ℓ > 4).

Lemma 23 (Decay of Uℓ). For ℓ odd, we have Uℓ =
1
4
[2
ℓ
/
√
# (3, ℓ).
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Proof. We start from arcsin = c/2 − arccos and the kernel representation [Bac17a, Section 3.1]

1

2c
(c − arccos(G · H)) = E\∈S3−1 [1[G · \ > 0]1[H · \ > 0]] . (157)

Now, from the Hecke-Funk formula, we have, up to zeroth-harmonic terms, the following correspondence

between the Gegenbauer expansion of arcsin and that of of sign, given precisely by [ℓ . Fix any x ∈ S
3−1.

Then

%ℓ (1)⟨arcsin, %ℓ⟩ =
∫

arcsin(x · y)%ℓ (x · y)g(3y)

=
1

4

∫ ∫
sign(x · \) sign(y · \)%ℓ (x · y)g(3y)g(3\)

=
1

4
⟨sign, %ℓ⟩

∫
sign(x · \)%ℓ (x · \)g(3\)

=
1

4
%ℓ (1)⟨sign, %ℓ⟩2 . (158)

Since ⟨arcsin, %ℓ⟩ = Uℓ ∥%ℓ ∥ and ⟨sign, %ℓ⟩ = [ℓ ∥%ℓ ∥, so Uℓ =
1
4
[2
ℓ
∥%ℓ ∥ = 1

4
[2
ℓ
/
√
# (3, ℓ).

□

Lemma 24. There are universal constants 2 and � such that the following hold: Assume A ≤ 3 − 3, n ≤ 2
3+1

,

and � ≤ � · 23−(A+1) log2 (23/A ) . Then

∑
ℓ odd

(
1 − � · " (A, ℓ)

# (3, ℓ)

)
[2
ℓ ≥ n (159)

Proof.

# (3, ℓ) = 2ℓ + 3 − 2

ℓ

(
ℓ + 3 − 3

ℓ − 1

)
(160)

Applying Stirling’s approximation,

# (3, ℓ) ≳ ℓ + 3 − 3

ℓ

(ℓ + 3 − 3)ℓ+3−2.5

(ℓ − 1)ℓ−0.5(3 − 2)3−1.5
(161)

≥ (ℓ + 3 − 3)ℓ+3−1.5

ℓℓ+0.5(3 − 2)3−1.5
(162)

Meanwhile, Lemma 17 and Stirling’s approximation give

" (A, ℓ) ≤
(
A + ℓ
ℓ

)
≲

(A + ℓ)A+ℓ+0.5

AA+0.5ℓℓ+0.5
(163)

By assumption, A ≤ 3 − 3, so

" (A, ℓ)
# (3, ℓ) ≲

(
A + ℓ

ℓ + 3 − 3

)A+ℓ+0.5 (3 − 2)3−1.5

AA+0.5(ℓ + 3 − 3)3−A−2
(164)

≤ (3 − 2)3−1.5

AA+0.5(ℓ + 3 − 3)3−A−2
(165)
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The above expression is decreasing in ℓ. Thus for all ℓ ≥ `3 + 1,

" (A, ℓ)
# (3, ℓ) ≲

(3 − 2)3−1.5

AA+0.5((1 + `) (3 − 2))3−A−2
(166)

≤
(
3

A

)A+0.5
1

(1 + `)3−A−2
(167)

= (1 + `)−3+A+2+(A+0.5) log1+` (3/A ) (168)

By assumption, 2/n ≥ 3 + 1, so the above holds with ` = 1 for all ℓ ≥ 2/n :

" (A, ℓ)
# (3, ℓ) ≲ 2−3+(A+1) log2 (23/A ) (169)

Also by assumption, � ≤ � ·23−(A+1) log2 (23/A ) . Setting� appropriately,
(
1 − � · " (A ,ℓ )

# (3,ℓ )

)
≥ 1

2
for all ℓ ≥ 2/n

Finally, applying Corollary 22,

∑
ℓ odd

(
1 − � · " (A, ℓ)

# (3, ℓ)

)
[2
ℓ ≥

∑
ℓ≥2/n
ℓ odd

1

2
· 2

′′

ℓ2
(170)

≥ 2′′

4

∑
ℓ≥2/n

1

ℓ2
(171)

≥ 2′′

4
· n
2

(172)

Setting 2 = 2′′/4 completes the proof. □

Lemma 25. There is a universal constant 2 such that the following holds. If 3 ≥ 5,

22

n
<

3

242
− A , (173)

and

� ≤ 1

2

(
1

24
· 3

A + 2
n

) 2
n

, (174)

then ∑
ℓ odd

(
1 − � · " (A, ℓ)

# (3, ℓ)

)
[2
ℓ ≥ n (175)

(176)

Proof. Recall the formula for # (3, ℓ) from Equation (23). Lower bounding, for ℓ ≥ 1 and 3 ≥ 5,

# (3, ℓ) = 2ℓ + 3 − 2

ℓ

(
ℓ + 3 − 3

ℓ − 1

)
(177)

≥ ℓ + 3 − 3

ℓ

(
ℓ + 3 − 3

ℓ − 1

)ℓ−1

≥
(
ℓ + 3 − 3

ℓ

)ℓ
(178)

≥
(
3 + ℓ
2ℓ

)ℓ
(179)

(180)
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Meanwhile, Lemma 17 gives

" (A, ℓ) ≤
(
A + ℓ
ℓ

)
≤

(
4(A + ℓ)

ℓ

)ℓ
(181)

Thus
" (A, ℓ)
# (3, ℓ) ≤

(
24 · A + ℓ

3 + ℓ

)ℓ
≤

(
24 · A + ℓ

3

)ℓ
(182)

The above is a decreasing function of ℓ for all ℓ < 3
242 − A. Assume that 22

n
< 3

242 − A. Then the following

holds for all ℓ ∈
[
2
n
, 22
n

]
:

" (A, ℓ)
# (3, ℓ) ≤

(
24 ·

A + 2
n

3

) 2
n

(183)

Assume � ≤ 1
2

(
1
24

· 3
A+ 2

n

) 2
n

. Then for all ℓ ∈
[
2
n
, 22
n

]
:

1 − � · " (A, ℓ)
# (3, ℓ) ≥ 1

2
(184)

Finally, applying Corollary 22,

∑
ℓ odd

(
1 − � · " (A, ℓ)

# (3, ℓ)

)
[2
ℓ ≥

1

2

∑
ℓ odd

2′′

ℓ2
≥ 2′′

4

22/n∑
ℓ=2/n

1

ℓ2
≥ 2′′

4
· n

22
(185)

Setting 2 = 2′′/8 completes the proof. □

B.8 Kernel Ridge Regression and Random Feature Approximation

In this section, we analyze a simple approximation of the nearest neighbor function by standard rank-1

attention heads. We show that $ (n−432/n ) heads suffice to achieve a squared approximation error of n , nearly

matching the lower bound of Theorem 2. First, we reduce this problem to approximating the surrogate target

function 5̃ by rank-1 hardmax heads. Then we approximate 5̃ in the RKHS generated by rank-1 hardmax

attention heads (that is, generated by the feature map T ). Finally, we appeal to standard arguments to conclude

that we can approximate 5̃ by a finite linear combination of random rank-1 hardmax heads.

Recall that a standard rank-1 attention layer has the form
∑
ℎ oℎv

⊤
ℎ
Xsm

(
X⊤kℎq⊤ℎy

)
for qℎ,kℎ, vℎ, oℎ ∈

ℝ
3 . For simplicity, in this section we use rank-1 heads without a value/output transform, that is∑
ℎ UℎXsm

(
X⊤kℎq⊤ℎy

)
for U ∈ ℝ. Any such head can be constructed out of 3 standard rank-1 heads by

setting vℎ = e8 , v> = Ue8 for 8 ∈ [3], so this simplification does not meaningfully change our result.

Lemma 26. For any D ∈ !1(Ω), there exists a rank-1 attention layer that approximates the nearest neighbor

function 5 up to expected squared error 1
2
∥ 5̃ − TD∥2

ḡ , where T is defined as in Definition 10 and 5̃ is the

surrogate target function of Definition 14.

Proof. As in the proof of Theorem 2, define

x =
x1 − x2√

2
, w =

x1 + x2√
2

. (186)

We can rewrite the target function in terms of the surrogate target function as follows:

5 (x1,x2;y) = x
√

2
5̃ (x, y) + w

√
2
. (187)
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Likewise, we can write a rank-1 hardmax attention head as

X hm
(
X⊤kq⊤y

)
=

x
√

2
d(x, y; q,k) + w

√
2
,

where d(x, y; q,k) := sgn(x⊤kq⊤y) is defined as in Equation (32). An “averaging head” is an attention

head that always returns the average of the target points, regardless of the source point. It can be implemented

by a rank-1 softmax head by setting q = k = 0:

X sm
(
X⊤

0y
)
=
x1 + x2

2
=

w
√

2
.

We construct our approximation to 5 by taking a linear combination of hardmax heads with coefficients given

by D plus a single averaging head with coefficient 1 −
∫
Ω
D(q,k)3ḡ(q,k):

(X , y) ↦→
∫
Ω

D(q,k) X hm
(
X⊤kq⊤y

)
3ḡ(q,k) +

(
1 −

∫
Ω

D(q,k)3ḡ(q,k)
)
x1 + x2

2
. (188)

To analyze its error, we use the Pythagorean theorem. Due to the averaging head, the projection of the error

onto w is zero. What remains is the projection of the error onto x:

E
x1,x2∼D2 (S3−1 )
y∼Unif (S3−1 )





 5 (X;y) −
[∫

Ω

D(q,k) X hm
(
X⊤kq⊤y

)
3ḡ(q,k) +

(
1 −

∫
Ω

D(q,k)3ḡ(q,k)
)
w
√

2

]




2

(189)

= E
x,y∼Unif (S3−1 )

1

2

(
x̃⊤ 5 (X;y) −

∫
Ω

D(q,k) x⊤X hm
(
X⊤kq⊤y

)
3ḡ(q,k)

)2

=:
1

2



 5̃ − TD


2

ḡ
(190)

= E
x,y∼Unif (S3−1 )

1

2

(
5̃ (x, y) −

∫
Ω

d(x, y; q,k)D(q,k)3ḡ(q,k)
)2

=:
1

2



 5̃ − TD


2

ḡ
. (191)

□

By the above lemma, our task is to find a finitely supported signed measure D for which 5̃ ≈ TD. We next

show that it is possible to exactly represent 5̃ using a measure that is not finitely supported.

Lemma 27. The surrogate target function 5̃ lies in the span of {T (. 8
ℓ
⊗ . 8

ℓ
)}. Furthermore, 5̃ = TD where

D : Ω → ℝ is defined as follows:

D(l) = c

2

∑
ℓ odd

[ℓ

Uℓ
# (3, ℓ) · %ℓ (q⊤k) . (192)

Proof. For each odd ℓ, let {. 8
ℓ
}# (3,ℓ )
8=1

be an orthonormal basis for Fℓ . Applying Lemma 16, the norm of the

projection of 5̃ onto the span of {T (. 8
ℓ
⊗ . 8

ℓ
)} is

# (3,ℓ )∑
8=1

〈
5̃ ,

T (. 8
ℓ
⊗ . 8

ℓ
)

∥T (. 8
ℓ
⊗ . 8

ℓ
)∥ ḡ

〉2

ḡ

=

# (3,ℓ )∑
8=1

[2
ℓ

# (3, ℓ) = [2
ℓ . (193)

Summing across all (odd) degrees, the energy equals that of 5̃ itself.

∞∑
ℓ=0

[2
2ℓ+1 = ∥ sign ∥2

ḡ = 1 = ∥ 5̃ ∥2
ḡ . (194)
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Thus, the projection of 5̃ onto this basis equals 5̃ . In addition, this implies that 5̃ is in the range of T :

5̃ =
∑
ℓ odd

# (3,ℓ )∑
8=1

〈
5̃ ,

T (. 8
ℓ
⊗ . 8

ℓ
)

∥T (. 8
ℓ
⊗ . 8

ℓ
)∥ ḡ

〉
ḡ

T (. 8
ℓ
⊗ . 8

ℓ
)

∥T (. 8
ℓ
⊗ . 8

ℓ
)∥ ḡ

(195)

=

∑
ℓ odd

# (3,ℓ )∑
8=1

[ℓ√
# (3, ℓ)

· 1

2
c
Uℓ

√
# (3, ℓ)

T (. 8ℓ ⊗ .
8
ℓ ) (196)

= T
(
c

2

∑
ℓ odd

[ℓ

Uℓ

# (3,ℓ )∑
8=1

(. 8ℓ ⊗ .
8
ℓ )

)
(197)

= T (D) , (198)

where, by the addition formula,

D(l) = c

2

∑
ℓ odd

[ℓ

Uℓ
# (3, ℓ) · %ℓ (q⊤k) . (199)

□

Thus, it is possible to exactly represent the surrogate target with an infinite number of rank-1 heads, each

weighted according to D(·)3ḡ(·). See Figure 5 for an illustration of this function. We can think of D(·)3ḡ(·)
as a signed measure over rank-1 heads that depends only on ∠(q,k). Notice that the hardmax head function

d is odd in each of its arguments q and k. Since D(·) is also an odd function, we get the same results by

restricting this measure to [− c
2
, c

2
]. Figure 5 shows that for large 3, the (restricted) measure D(·) approaches

a Gaussian distribution centered at angle 0.

We have now shown how to represent 5̃ using T . This representation gives us a great deal of insight into

the structure of 5̃ for the following reason. Implicit in the discussion above is the reproducing kernel Hilbert

structure induced by the map T , as the following lemma shows:

Lemma 28. Let H ⊆ !2(X) be the image of T . Then H is a reproducing kernel Hilbert space with norm:

∥ 5 ∥H = inf{∥D∥ ḡ : D ∈ G, 5 = TD} (200)

and kernel:

(I, I′) ↦→ E
l∼ḡ

[d(I, l)d(I′, l)] . (201)

The proof is given in [Bac17a], Appendix A. Also note that kernel of this RKHS directly corresponds to

the operator TT ∗ by the following formula:

(TT ∗ 5 ) (I) =
∫
X

E
l∼ḡ

[d(I, l)d(I′, l)] 5 (I′)3ḡ(I′) . (202)

If our target function 5̃ were an element of this Hilbert space, we would immediately be able to approximate

it using random features. Unfortunately, 5̃ ∉ H because

∥ 5̃ ∥H = ∥D∥ ḡ =
∑
ℓ odd

(
[ℓ

Uℓ

)2

# (3, ℓ) = ∞ . (203)

However, we can approximate 5 by an element of H obtained from solving a ridge regression problem. For

any _ > 0, let 5̃_ be the solution to the following optimization problem:

min
5̂ ∈H

∥ 5̃ − 5̂ ∥2
ḡ + _∥ 5̂ ∥2

H . (204)
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By tuning _, we can find an function that accurately approximates 5̃ and that is smooth enough to be

approximated using random features. The following lemma constructs this 5̃_. Though we obtained this

construction by solving Equation (204), for brevity we do not prove that it is the solution since it is not

necessary for our construction.

Lemma 29. For any regularization parameter _ > 0, there exists a function 5̃_ ∈ H for which

∥ 5̃ − 5̃_∥2
ḡ ≤

∑
ℓ odd

[2
ℓ

(
_# (3, ℓ)

( 2
c
Uℓ)2 + _# (3, ℓ)

)2

. (205)

Proof. Define

5̃_ := T 6_ (206)

6_ :=
∑
ℓ odd

# (3,ℓ )∑
8=1

Wℓ · (. 8ℓ ⊗ .
8
ℓ ) (207)

Wℓ :=

2
c
Uℓ[ℓ

( 2
c
Uℓ)2 + _# (3, ℓ)

. (208)

Then by Lemma 28

∥ 5̃_∥2
H ≤ ∥6_∥2

ḡ =

∑
ℓ odd

# (3, ℓ)W2
ℓ (209)

≤
ℓ_∑
ℓ=1

# (3, ℓ)W2
ℓ +

∑
ℓ>ℓ_

# (3, ℓ)[2
ℓ

(
2
c
Uℓ

_# (3, ℓ)

)2

(210)

≤
ℓ_∑
ℓ=1

# (3, ℓ)W2
ℓ +

1

_2
(211)

< ∞ . (212)

Thus 5̃ ∈ H . Furthermore, by the representation 5̃ = TD of Lemma 27

∥ 5̃ − 5̃_∥2
ḡ = ∥T (D − 6_) ∥2

ḡ =







∑
ℓ odd

# (3,ℓ )∑
8=1

(
c

2

[ℓ

Uℓ
− Wℓ

)
· T (. 8ℓ ⊗ .

8
ℓ )







2

ḡ

. (213)

By Lemma 13, this is equal to

=

∑
ℓ odd

# (3,ℓ )∑
8=1

(
c

2

[ℓ

Uℓ
− Wℓ

)2

·


T (. 8ℓ ⊗ .

8
ℓ )



2

ḡ
(214)

=

∑
ℓ odd

# (3, ℓ)
(
c

2

[ℓ

Uℓ
− Wℓ

)2
4

c2

U2
ℓ

# (3, ℓ) (215)

=

∑
ℓ odd

(
[ℓ −

2

c
UℓWℓ

)2

(216)

=

∑
ℓ odd

[2
ℓ

(
_# (3, ℓ)

( 2
c
Uℓ)2 + _# (3, ℓ)

)2

. (217)

□
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We now derive an informal expression for the kernel ridge regression approximation using a tuned

regularization and describe its implications for random feature approximation in the high-dimensional regime.

From Lemma 21 and Lemma 23, we have [2
ℓ
≲ ℓ−3/2 and U2

ℓ
∼ [4

ℓ
/# (3, ℓ). By Lemma 29, for the kernel

ridge regression approximation 5̃_ to attain squared error n , we should set _ so that _# (3, ℓ∗) ≃ U2
ℓ∗ , where

ℓ∗ ∼ 1/n2. This roughly ensures that only degrees ℓ ≳ ℓ∗ are kept, while ℓ ≲ ℓ∗ are shrunk, and hence

∥ 5̃ − 5̃_∥ ≲
∑
ℓ≳ℓ∗
ℓ odd

[2
ℓ ≲

1

2

∑
ℓ≳n −2

ℓ−3/2 ∼ n . (218)

We thus obtain _ ∼ U2
ℓ∗/# (3, ℓ∗) ∼ n6# (3, n−2)−2.

Now that we have a sufficiently accurate kernel ridge regression approximation 5̃_ ∈ H , we can

approximate it using random features. The key quantity controlling the number of random features needed

is the degrees of freedom of the kernel integral operator, defined as � (_) := tr
[
TT ∗(TT ∗ + _I)−1

]
. The

eigenvalues of TT ∗ are the same as those of T ∗T . By Lemma 12, these are

{
4
c2

UℓUℓ′√
# (3,ℓ )# (3,ℓ′ )

| ℓ, ℓ′ ≥ 0

}
,

with the (ℓ, ℓ′)-th eigenvalue having multiplicity # (3, ℓ)# (3, ℓ′). Hence

� (_) =
∑
ℓ,ℓ′

# (3, ℓ)# (3, ℓ′) ·

UℓUℓ′√
# (3,ℓ )# (3,ℓ′ )
UℓUℓ′√

# (3,ℓ )# (3,ℓ′ )
+ _

≤
∑
ℓ,ℓ′

# (3, ℓ)# (3, ℓ′) ·

UℓUℓ′√
# (3,ℓ )# (3,ℓ′ )

_
. (219)

By Lemma 23,
UℓUℓ′√

# (3,ℓ )# (3,ℓ′ )
∼ [2

ℓ
[2
ℓ′

# (3,ℓ )# (3,ℓ′ ) , so

� (_) ∼ 1

_

∑
ℓ,ℓ′

[2
ℓ[

2
ℓ′ =

1

_

(∑
ℓ

[2
ℓ

)2

=
1

_
∼ # (3, n−2)2

n6
≲

1

n6
· (43n2)2/n 2

(220)

In the high-dimensional regime (where n is fixed and 3 goes to infinity), � (_) = Θ

(
32/n 2

)
.

By standard arguments about random feature expansions [Bac17b], if the number of random features � is

of the order � ≳ � (_) log(� (_)) = Θ̃

(
32/n 2

)
, then with high probability the random features achieve the

same approximation accuracy n as the associated kernel ridge regression solution 5̃_. It is likely that a better

rate can be obtained by drawing the random features from a problem-specific distribution instead of uniformly

at random. Observe that the condition required by our lower bound in the rank-1 case has the same form,

though a somewhat weaker dependence on 3. It is � ≤ 1
2
# (3, 1

4n
) or � = $

(
3

1
4n

)
for sufficiently large 3.3

C Proofs from Section 5

C.1 Proof of Fact 3

The proof is similar to the proof of Fact 1. The only difference is that here we consider the set �X :=

{(x1, . . . ,x# , y) ∈ (S3−1)#+1 : ∀8 ≠ 9 , | (x8 − x 9)⊤y + 18 − 1 9 | > X} .

3To see this from Equation (140), recall that " (1, ℓ) = 1, follow the final steps of Lemma 24, and use the fact that we can replace

2′′ by 1 for large 3.
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C.2 Proof of Theorem 4

In the following proofs when taking norms or inner products over functions, we always consider the expectation

over N (0, �), i.e. the distribution of y. When we consider the distribution over x1 and x2 we explicitly take

expectation. To normalize the expectation over y we introduce the constant 23 :=
(

1√
2c

)3
.

We will first construct a periodic functions using a linear combination of thresholds. Let 0 ∈ ℕ>2 and

denote �0 (G) = 1(G + 0 ≥ 0). We define the following function:

k0 (G) = �0 (G) +
20∑
==1

�0−= (G) · (−1)= − 1

2
. (221)

This function have the following properties:

Lemma 30. The function k0 (G) defined in Equation (221) satisfies that:

(i) It is a periodic function in the interval [−0, 0], and odd if 0 is an odd number.

(ii) For every w with ∥w∥ ≥ 3, if 0 > ∥w∥ then


k0 (⟨w, ·⟩)2



2 ≥ 1
40

Proof. Let G0 ∈ [−0, 0 − 2]. There is =0 ∈ {1, . . . , 20} such that ⌈G0⌉, ⌈G0 + 2⌉ ∈ [0 − =0, 0 − =0 + 2]. For

every = < =0 or = > =0 + 2 we have that �0−= (G0) = �0−= (G0 + 2), since the bump in the threshold is either

left of G0 or right of G0+2. We also have that �0−=0
(G0) +�0−=0+1(G0) = �0−=0

(G0+2) +�0−=0+1(G0+2) = 0.

Hence k0 (G0) = k0 (G0 + 2), which means it is a periodic function with a period of 2.

If 0 is an odd number, then for every G0 ∈ [−1, 0] we have k0 (G0) = −1
2

and for every G0 ∈ [0, 1] we

have k0 (G0) = 1
2
. Since it is periodic with a period of 2, it is odd in the interval [−0, 0].

For the second item, since x has a spherically symmetric distribution, we can assume w.l.o.g that

w = ∥w∥ e1. We now have that:

∥k0 (⟨w, ·⟩)∥2
= 23

∫
x∈ℝ3

|k0 (⟨w,x⟩) |24−
∥x∥2

2 3x (222)

= 23

∫ ∞

−∞
|k0 (∥w∥ G1) |24−

G2
1
2 3G1 ·

∫ ∞

−∞
4−

G2
2
2 3G2 · · ·

∫ ∞

−∞
4−

G2
3
2 3G3 (223)

=
1

∥w∥
√

2c

∫ ∞

−∞
|k0 (I) |24

− I2

2∥w∥2 3I (224)

≥ 1

∥w∥ 4
√

2c

∫ √
2∥w∥

−
√

2∥w∥
|k0 (I) |23I (225)

where we used that if I ≤
√

2 ∥w∥ then 4
− I2

2∥w∥2 ≤ 4−1. Since 0 > ∥w∥, then in the interval
[
−
√

2 ∥w∥ ,
√

2 ∥w∥
]

there are at least ⌊∥w∥⌋ intervals of the form [=, = + 2] for = ∈ {−0, ..., 0 − 2} where
∫ =+2

=
|k0 (I) |2 ≥ 1

4
. In

total, we can bound the norm by:

∥k0 (⟨w, ·⟩)∥2 ≥ 1

44
√

2c
≥ 1

40
(226)

□

We now show that the correlation of this function with any other function that depends only on F1, . . . , FA
is small:
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Theorem 31. Let 6(F1, . . . , FA , y) be some function that depends on the first A coordinates of w with

supx |6(x) | ≤ 1, and take 0 = 232 + 1. Then, we have that:

E
w∼U(3S3−1 )

[
E

y∼N(0,� )
[|k0 (⟨w, y⟩) · 6(F1, . . . , FA , y) |]

]
≤ exp(−2(3 − A)) (227)

for some universal constant 2 > 0.

Proof. For a vector v denote by v̄ its last 3 − A coordinates. Using the law of total expectation, we can rewrite

the expectation in the following way:

E
w∼U(3S3−1 )

[
E

y∼N(0,� )
[|k0 (⟨w, y⟩) · 6(F1, . . . , FA , y) |]

]

= E
F1,...,FA

[
E
w̄

E
H1,...,HA

[
E
ȳ

[�����k0
(
A∑
8=1

F8H8 + ⟨w̄, ȳ⟩
)
· 6(F1, . . . , FA , y)

����� |H1, . . . , HA

]
| F1, . . . , FA

] ]

= E
F1,...,FA

E
H1,...,HA

E
w̄
E
ȳ

[�����k0
(
A∑
8=1

F8H8 + ⟨w̄, ȳ⟩
)
· 6(F1, . . . , FA , y)

����� | H1, . . . , HA , F1, . . . , FA

]
. (228)

Namely, we consider the expectation conditioned on drawing the first A coordinates of both w and y. Note

that we could change the order of expectations since all the expectations are bounded and finite.

Let k̃ be a continuation of k0 from [−0, 0] to ℝ such that it is periodic. Fix F1, . . . , FA , H1, . . . , HA and

denote by B :=
∑A
8=1 F8H8 and ∥w̄∥ = 2d. Using Claim 32 we have that:

E
w̄∼U(2dS3−A−1 )

[��〈6(·), k̃(B + ⟨w̄, ·⟩)
〉��] ≤ 21 ·

(
exp(−22(3 − A)) +

∞∑
==1

exp(−=d2)
)
. (229)

Note that in the above equation, 6 is independent of w̄ (although it does depend on F1, . . . , FA ), and also

that ∥6∥ ≤ 1 since supx |6(x) | ≤ 1 (recall that the norm is w.r.t a Gaussian measure).

We now have that:

E
w̄∼U(2dS3−A−1 )

[|⟨6(·), k0 (B + ⟨w̄, ·⟩)⟩|]

≤ E
w̄∼U(2dS3−A−1 )

[��〈6(·), k̃(B + ⟨w̄, ·⟩)
〉��] + E

w̄∼U(2dS3−A−1 )

[��〈6(·), k0 (B + ⟨w̄, ·⟩) − k̃(B + ⟨w̄, ·⟩)
〉��] (230)

The first term in Equation (230) can be bounded by 21 ·
(
exp(−22(3 − A)) +

∑∞
==1 exp(−=d2)

)
by Equation (229).

For the second term, by Cauchy-Schwartz we have that:

E
w̄

[��〈6(·), k0 (B + ⟨w̄, ·⟩) − k̃(B + ⟨w̄, ·⟩)
〉��] (231)

≤ ∥6∥ · E
w̄

[

k0 (B + ⟨w̄, ·⟩) − k̃(B + ⟨w̄, ·⟩)


] (232)

≤ E
w̄
[Pr( |B + ⟨w̄, ȳ⟩ | > 0)] (233)

where we used that ∥6∥ ≤ 1 and it is independent of w̄, and that k0 (I) = k̃(I) for every |I | ≤ 0. We have

that B + ⟨w̄, ȳ⟩ = ⟨w, y⟩, and ⟨w, y⟩ ∼ N (0, 32) for every w of norm 3. In particular, for 0 ≥ 232 there is

some constant 23 such that Pr( |B + ⟨w̄, ȳ⟩ | > 0) ≤ exp(−233). Combining the above we have that:

E
w̄∼U(2dS3−A−1 )

[|⟨6(·), k0 (B + ⟨w̄, ·⟩)⟩|] ≤ 21 ·
(
exp(−22(3 − A)) +

∞∑
==1

exp(−=d2)
)
+ exp(−233) . (234)
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We now go back to Equation (228) and consider the conditional probability over H1, . . . , HA and F1, . . . , FA .

Note that when taking expectation over H1, . . . , HA we either have that | ⟨w, y⟩ | ≤ 0 which happens w.p

> 1− exp(−233) or | ⟨w, y⟩ | ≥ 0 in which case, since , |6(I) |, |k0 (I) | ≤ 1 for every I ∈ ℝ also their product

is bounded by 1.

Finally, we consider the expectation over F1, . . . , FA . We need to show that with high probability,

d =
1
2
· ∥w̄∥ is large. Instead, we will consider the probability over FA+1, . . . , F3 (note that since ∥w∥ = 3, if

we lower bound ∥w̄∥ it will also upper bound

√∑A
8=1 F

2
8
). Since w is sampled uniformly from U(3S3−1), we

can instead consider sampling I8 from N(0, 1) and setting (w)8 = 3 · I8
∥z ∥ . By standard concentration bound

on the norm of Gaussian random variables (see Section 3.1 in [Ver18]) there is some constant 24 such that

Pr(∥w̄∥2
∉ [0.9(3 − A), 1.1(3 − A)]) ≤ exp(−24(3 − A)). Also,

∑3
8=A+1 I

2
8 has a j2 distribution with 3 − A

degrees of freedom. From Lemma 1 in [LM00] we have that Pr
(∑3

8=A+1 F
2
8 ≥ 1

2
· (3 − A)

)
≤ exp(−25(3 − A))

for some constant 25. Together, there is some constant 26 such that Pr(∥w̄∥2 ≥ 1
6
(3 − A)) ≤ exp(−26(3 − A)).

Note that if d > 2′
√
3 − A then

∑∞
8=1 exp(−=d2) ≤ exp(−2′(3 − A)). Combining all the above and

changing the constant terms appropriately, there is some universal constant 2 > 0 such that:

E
w∼U(3S3−1 )

[
E

y∼N(0,� )
[|k0 (⟨w, y⟩) · 6(F1, . . . , FA , y) |]

]
≤ exp(−2(3 − A)) (235)

□

Claim 32. For any 5 ∈ !2(N (0, �3)), odd periodic function k : ℝ → ℝ and B ∈ ℝ, if 3 > 2′ we have that:

E
w∼U(2US3−1 )

[|⟨ 5 (·), k(B + ⟨w, ·⟩⟩|] ≤ 21 ∥ 5 ∥ ·
(
exp(−223) +

∞∑
==1

exp(−=U2)
)
, (236)

here 2′, 21, 22 > 0 are some universal constants.

Proof. The proof is similar to the proof of Claim 1 from [YS19] (which is directly derived from Lemma 5 in

[Sha18]), except for two changes:

(i) Here we have an absolute value over the inner product, instead of a square as in Claim 1.

(ii) We consider a translation of k, namely our periodic function is k(B + ·) for a fixed B.

For the first item, this is a direct application of Jensen’s lemma:

E
w∼U(2US3−1 )

[√
|⟨ 5 (·), k(B + ⟨w, ·⟩⟩|2

]
≤

√
E

w∼U(2US3−1 )

[
|⟨ 5 (·), k(B + ⟨w, ·⟩⟩|2

]
, (237)

where now we can apply Claim 1 from [YS19]. For the second item, note that k(B + ·) is also a periodic

function, and Lemma 5 from [Sha18] applies to it in the same way as it does on k(·).
□

Theorem 33. There exists a bias term 1∗ ∈ ℝ such that for any choice of rank-A heads 61, . . . , 6� each of the

form 6ℎ (x1,x2, y) := +ℎ-qℎ ( ℎ-, y) and any +1, . . . , +� ∈ ℝ
3×3 , if � · maxℎ ∥+ℎ∥ ≤ exp(21 (3−A ) )

3222
then:

E
x1,x2∼Unif (32S3−1 ) ,y∼N(0,� )







1(⟨x1 − x2, y⟩ + 1∗ > 0)x1 −

�∑
8=ℎ

+ℎ6ℎ (x1,x2, y)







2
>

1

20
, (238)

where 21, 22 are some universal constants.
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Proof. Pick 0 = 232 + 1, and recall the definition of k0 from Equation (221). In the proof, unless stated

otherwise, the expectation is over x1,x2 ∼ Unif (3S3−1) and y ∼ N(0, �). In the last part of the proof we will

multiply the norm of x1 and x2 by 3. Assume towards contradiction that for every 1 9 ∈ {−0,−0 + 1, . . . , 0}
we can find +

9

1
, . . . , +

9

�
and rank-A heads 6

9

1
, . . . , 6

9

�
such that:

E
x1,x2,y








�∑
ℎ=1

+
9

ℎ
6
9

ℎ
(x1,x2, y) − 1(⟨x1 − x2, y⟩ + 1 9 > 0)x1







2

≤ n , (239)

and in addition there are V 0+1
1

, . . . ,V 0+1
�

and rank-A heads 60+1
1
, . . . , 60+1

�
with:

E
x1,x2,y








�∑
ℎ=1

V 0+1
ℎ 60+1

ℎ (x1,x2, y) +
1

2
· x1







2

≤ n , (240)

where n will be chosen later on. Define 0 9 = (−1) 9 , then we have that:

E
x1,x2,y








0+1∑
9=−0

�∑
ℎ=1

V
9

ℎ
6
9

ℎ
(x1,x2, y) − k0 (⟨x1 − x2, y⟩)x1







2

= E
x1,x2,y








0+1∑
9=−0

�∑
ℎ=1

V
9

ℎ
6
9

ℎ
(x1,x2, y) −

0∑
9=−0

0 91(⟨x1 − x2, y⟩ + 1 9 > 0)x1 +
1

2
x1







2

≤ ©­«
0∑

9=−0
E

x1,x2,y








�∑
ℎ=1

V
9

ℎ
6
9

ℎ
(x1,x2, y) − 1(⟨x1 − x2, y⟩ + 1 9 > 0)x1







2

ª®¬
2

+

+ ©­
« E
x1,x2,y








�∑
ℎ=1

V 0+1
ℎ 60+1

ℎ (x1,x2, y) +
1

2
· x1







2

ª®¬
2

≤n2 · (20 + 1)2 ≤ 5n202 . (241)

On the other hand, we have that :

E
x1,x2,y








0+1∑
9=−0

�∑
ℎ=1

V
9

ℎ
6
9

ℎ
(x1,x2, y) − k0 (⟨x1 − x2, y⟩)x1







2

≥ E
x1,x2,y

[∥x1∥2 · |k0 (⟨x1 − x2, y⟩) |2] − 2 E
x1,x2,y

[〈
0+1∑
9=−0

�∑
ℎ=1

V
9

ℎ
6
9

ℎ
(x1,x2, y), k0 (⟨x1 − x2, y⟩)x1

〉]

≥32
E

x1,x2,y
[|k0 (⟨x1 − x2, y⟩) |2] − 2

0+1∑
9=−0

�∑
ℎ=1

E
x1,x2,y

[���〈V 9

ℎ
6
9

ℎ
(x1,x2, y), k0 (⟨x1 − x2, y⟩)x1

〉���] (242)

We will now bound each term of the form Ex1,x2,y

[���〈V 9

ℎ
6
9

ℎ
(x1,x2, y), k0 (⟨x1 − x2, y⟩)x1

〉���] . Each rank-A

head can be written as (omitting the ℎ and 9 indices for brevity):

6(x1,x2, y) = V Xq(KX , y)) (243)

= V X

(
61(KX , y)
62(KX , y)

)
(244)

= V (x161(KX , y) + x262(KX , y)) (245)
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where K,Q ∈ ℝ
3×A and 61, 62 are some function with output bounded by 1. We can bound:

E
x1,x2,y

[|⟨V 6(x1,x2, y), k0 (⟨x1 − x2, y⟩)x1⟩|] (246)

= E
x1,x2,y

[|⟨V (x161(KX , y) + x262(KX , y)), k0 (⟨x1 − x2, y⟩)x1⟩|] (247)

≤ ∥V ∥ · 32
E

x1,x2,y
[|61(KX , y)k0 (⟨x1 − x2, y⟩) | + |62(KX , y)k0 (⟨x1 − x2, y⟩) |] (248)

≤32 max
ℎ, 9




+ 9ℎ




(

E
x1,x2,y

[|61(KX , y)k0 (⟨x1 − x2, y⟩) |] + E
x1,x2,y

[|62(KX , y)k0 (⟨x1 − x2, y⟩) |]
)
(249)

Since x1 and x2 have a symmetric distribution and K has rank-A , we can assume w.l.o.g that the image of  

lies in span{e1, . . . , eA }. Denote w := x1 − x2, and note that 61 and 62 can now be written as a function

of F1, . . . , FA , y. Also, by the assumption on the distribution we have x1 ⊥ x2, hence w ∼ U(
√

23S3−1).
Hence, we can use Theorem 31 to get a constant 21 > 0 such that:

E

w∼Unif (
√

23S3−1 ) ,y∼N(0,� )
[|61(F1, . . . , FA , y) · k0 (⟨w, y⟩) |] ≤ exp(−21(3 − A)) . (250)

Note that this is true for 61, 62 and any rank-A head. Hence, applying this and Lemma 30 (2) to

Equation (242) we have:

E
x1,x2,y








0+1∑
9=−0

�∑
ℎ=1

V
9

ℎ
6
9

ℎ
(x1,x2, y) − k0 (⟨x1 − x2, y⟩)x1







2

≥ 32

40
− 6�max

ℎ, 9




V 9

ℎ




 34 exp(−21(3 − A)) .

(251)

Combining this with Equation (241) we have:

32

40
− 6�max

ℎ, 9




V 9

ℎ




 34 exp(−21(3 − A)) ≤ 5n234 . (252)

Combining all the above results, we get that there exists a bias term 1∗, such that for all choice of heads

6ℎ and matrices Vℎ, if � · maxℎ ∥Vℎ∥ ≤ exp(21 (3−A ) )
632 ·

(
1
40

− 5n232
)
, then:

E
x1,x2,y








�∑
ℎ=1

Vℎ6ℎ (x1,x2, y) − 1(⟨x1 − x2, y⟩ + 1∗ > 0)x1







2
> n . (253)

To finish the proof we need to make sure that 1
40

− 5n232 > 0, to achieve this we will scale the problem by a

factor of 3. We multiply the above displayed equation by 3, and set n = 1
203

to get that there is a constant

22 > 0 such that if � · maxℎ ∥Vℎ∥ ≤ 22 exp(21 (3−A ) )
32 then:

E
x1,x2,y








�∑
ℎ=1

3Vℎ6ℎ (x1,x2, y) − 3 · 1(⟨x1 − x2, y⟩ + 1∗ > 0)x1







2
>

1

20
. (254)

Finally, we replace the distribution of x1,x2 by Unif (32
S
3−1), namely, we multiply the norm by 3. We also

multiply 1∗ by 3, hence the threshold function remains unchanged. Since the above is true for any function 6ℎ
and matrices Vℎ, we can also scale them by a factor of 3 to achieve the result.

□
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We are ready to prove the main theorem:

Proof of Theorem 4. By Theorem 33 there is 1∗ such that

E
x1,x2,y∼D







1(⟨x1 − x2, y⟩ + 1∗ > 0)x1 −

�∑
ℎ=1

Vℎ6ℎ (x1,x2, y)







2
>

1

20
, (255)

Pick b∗ =

(
1∗

0

)
, and write:

5 (x1,x2, y) = arg max
x8

⟨x8 , y⟩ + 18 = 1(⟨x1 − x2, y⟩ + 1∗ > 0)x1 + 1(⟨x1 − x2, y⟩ + 1∗ < 0)x2 . (256)

Denote 51(x1,x2, y) := 1(⟨x1 − x2, y⟩ + 1∗ > 0)x1 and 52(x1,x2, y) := 1(⟨x1 − x2, y⟩ + 1∗ < 0)x2 and

6(x1,x2, y) =
∑�
8=ℎ Vℎ6ℎ (x1,x2, y). With these notations, we want to lower bound:

E
x1,x2

[
∥ 51(x1,x2, ·) + 52(x1,x2, ·) − 6(x1,x2, ·)∥2

]
(257)

≥ E
x1,x2

[
1

∥ 5 (x1,x2, ·)∥2
· |⟨ 51(x1,x2, ·) + 52(x1,x2, ·) − 6(x1,x2, ·), 51(x1,x2, ·)⟩ |2

]
(258)

= E
x1,x2

[
1

∥ 5 (x1,x2, ·)∥2
· |⟨ 51(x1,x2, ·) − 6(x1,x2, ·), 51(x1,x2, ·)⟩ |2

]
(259)

where the norm is w.r.t the Gaussian measure (i.e. w.r.t y). We will now lower bound the terms inside the

expectation.

Note that if Prx1,x2,y (1(⟨x1 − x2, y⟩ + 1∗ > 0) = 1) ≤ 1
20

, then approximating 1(⟨x1 − x2, y⟩ +
1∗ > 0) with the zero function would achieve an approximation error better than 1

20
, in contradiction to

Theorem 33. Hence Prx1,x2,y (1(⟨x1 − x2, y⟩ + 1∗ > 0) = 1) ≥ 1
20

. Also, note that ∥ 51(x1,x2, ·)∥2
=

Ey [⟨ 51(x1,x2, y), 51(x1,x2, y)⟩] = Ey

[
∥x1∥2

1(⟨x1 − x2, y⟩ + 1∗ > 0)
]

is independent of the choice of

x1 and x2, since y has a spherically symmetric distribution, and the norm of x1 is constant. Hence:

E
x1,x2

[
1

∥ 5 (x1,x2, ·)∥2
· |⟨ 51(x1,x2, ·) − 6(x1,x2, ·), 51(x1,x2, ·)⟩ |2

]
(260)

≥ 1

32
E

x1,x2

[
|⟨ 51(x1,x2, ·) − 6(x1,x2, ·), 51(x1,x2, ·)⟩ |2

]
. (261)

We will bound the inner product inside the expectation. Let � := {(x1,x2, y) ∈ ℝ
3×3 : 1(⟨x1 − x2, y⟩ +

1∗ > 0) > 0}. Note that:

E
x1,x2,y

[
∥ 51(x1,x2, y) − 6(x1,x2, y)∥2 · 1((x1,x2, y) ∈ �)

]
≥ 1

20
, (262)

otherwise, taking 6(x1,x2, y) to be the zero function would approximate 51(x1,x2, y) with error less than
1
20

. Hence, we have that:

1

32
E

x1,x2,y

[
|⟨ 51(x1,x2, ·) − 6(x1,x2, ·), 51(x1,x2, ·)⟩ |2

]
(263)

≥ 1

32
E

x1,x2,y

[
|⟨ 51(x1,x2, ·) − 6(x1,x2, ·), 51(x1,x2, ·)⟩ |2 · 1((x1,x2, y) ∈ �)

]
(264)

=
1

32
E

x1,x2,y

[
∥ 51(x1,x2, ·) − 6(x1,x2, ·)∥2 · 1((x1,x2, y) ∈ �) ∥x1∥2

]
≥ 1

20
(265)

□
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D Proofs from Section 6 and an Additional Construction

In Section 6, we present a construction (Theorem 7) that uses concatenated positional encodings to facilitate

the majority voting strategy. This construction has the strange property that it breaks the permutation

invariance of standard attention layers in order to approximate a function that is permutation invariant. It also

increases the dimension of the transformer. This begs the question of whether these properties are necessary

to allow low-rank attention to represent the target. Below, we presenting an alternative construction that

does not have these properties. Instead, it modifies the attention mechanism by concatenating the outputs of

the heads together rather than summing them. It then passes the concatenated outputs to an MLP layer that

computes the mode.

Theorem 34 (Majority Voting Approximation Upper Bound). There exist universal constants 21, 22, 23, 24 > 0

such that for all 3 > 21, n ∈
(
0, 1

2

)
, and � ≥ 22 · 3

3

n 2 , there exist vectors q1, . . . , q� and a 4-layer feedforward

network 6 : ℝ3� → ℝ
3 of width 233

2� such that

E
x1,x2,y∼Unif (S3−1 )








 5 (x1,x2;y) − 6
©­­«

X sm(X⊤q1q

⊤
1
y)

...

X sm(X⊤q�q⊤�y)


ª®®¬









2

2

≤ n + exp(−243) . (266)

This construction shows that using a constant-depth MLP to combine the heads can overcome the weakness

of low rank attention. The full proof can be found in Appendix D.2. The idea behind the construction of the

MLP 6(·) is to perform an inner product between the outputs of the heads, allowing us to compare which one

of the outputs x1 or x2 received more votes. The inner products can be approximated by a ReLU network, as

long as the input vectors are not too close to each other, which happens with exponentially large probability.

This is the cause of the extra exponentially small term in the loss.

D.1 Lemmas

To prove Theorems 7 and 34 we will need several lemmas.

The first shows that for a fixed set of inputs, drawing a rank-1 head randomly will have the same output as

the target 5 with probability slightly larger than 1
2
. This lemma justifies our majority voting strategy.

Lemma 35. Fix x1,x2, y ∈ S
3−1 with | ⟨x1 − x2, y⟩ | ≥ 0 for some 0 > 0. Then for 3 > 21 we have that:

Pr
q∼U(S3−1 )

(
arg max

8
⟨x8 , q⟩ · ⟨y, q⟩ = arg max

8
⟨x8 , y⟩

)
≥ 1

2
+ 22 ·

0
√
3

(267)

for some universal constants 21, 22 > 0.

Proof. In the proof, all probabilities are for q ∼ U(S3−1), thus we omit this notation. Denote w := x1 − x2,

and assume w.l.o.g that ⟨w, y⟩ > 0, the other direction is similar. We can write:

Pr
(
arg max

8
⟨x8 , q⟩ · ⟨y, q⟩ = arg max

8
⟨x8 , y⟩

)
=Pr (sgn(⟨w, y⟩) = sgn(⟨w, q⟩ · ⟨y, q⟩))
=Pr (⟨w, q⟩ · ⟨y, q⟩ > 0) .
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Since the above probability is rotation invariant w.r.t q, we can assume w.l.o.g that w = e1. Hence we can

write y =

(
0̃

ȳ

)
, where ȳ ∈ ℝ

3−1 and 0̃ = ⟨w, y⟩. Thus, the above probability is equal to:

Pr (@1(0̃@1 + ⟨q̄, ȳ⟩) > 0) (268)

=
1

2
Pr (@1(0̃@1 + ⟨q̄, ȳ⟩) > 0|@1 > 0) + 1

2
Pr (@1(0̃@1 + ⟨q̄, ȳ⟩) > 0|@1 < 0) (269)

=
1

2
Pr (0̃@1 + ⟨q̄, ȳ⟩ > 0|@1 > 0) + 1

2
Pr (0̃@1 + ⟨q̄, ȳ⟩ < 0|@1 < 0) (270)

=Pr (0̃@1 + ⟨q̄, ȳ⟩ > 0|@1 > 0) (271)

where the last equality is by the symmetry of the distribution of q. Note that if ⟨q̄, ȳ⟩ > 0 which happens w.p
1
2
, then the term inside the above probability is positive. Hence, we can write:

Pr (0̃@1 + ⟨q̄, ȳ⟩ > 0|@1 > 0)

=
1

2
+ 1

2
· Pr (0̃@1 + ⟨q̄, ȳ⟩ > 0|@1 > 0, ⟨q̄, ȳ⟩ < 0)

≥1

2
+ 1

2
· Pr

(
0̃@1 ≥ 20̃

√
3
|@1 > 0

)
· Pr

(
| ⟨q̄, ȳ⟩ | ≤ 0̃

√
3
| ⟨q̄, ȳ⟩ < 0

)
(272)

We will now lower bound each probability separately. First, note that if we sample u ∼ N
(
0, 1
3
�
)
, then

D1

∥u∥ has the same distribution as @1. By the concentration of the norm of Gaussian random variables (see

[Ver18] Section 3.1), there is a constant 21 > 0 such that w.p > 1 − exp(−213) we have ∥u∥ ∈ [0.9, 1.1].
There is also a constant 22 ∈

(
0, 1

2

)
such that Pr

(
D1 >

3√
3

)
> 22. This bounds the first probability term in

Equation (272). For the second term, note that ∥ȳ∥ ≤ ∥y∥ = 1. By the same reasoning as above we can write:

Pr

(
| ⟨q̄, ȳ⟩ | ≤ 0̃

√
3
| ⟨q̄, ȳ⟩ < 0

)
≥ Pr

(
| ⟨q̄, ȳ⟩ | ≤ 0

√
3
| ⟨q̄, ȳ⟩ < 0

)
(273)

=Pru∼N(0, 1
3
�)

(���� D2

∥u∥

���� ≤ 0
√
3

)
≥ (1 − exp(−213)) · PrD2∼N(0, 1

3 )
(
|D2 | ≤

0 · 0.9
√
3

)
(274)

The above probability is bounded by erf
(
0·0.9√
3

)
≥ 0·0.9√

3
, where this inequality is since erf(I) > I for I ∈

[
0, 1

2

]
.

In total, we can bound this probability by

Pr

(
| ⟨q̄, ȳ⟩ | ≤ 0

√
3
| ⟨q̄, ȳ⟩ < 0

)
≥ (1 − exp(−213)) ·

0 · 0.9
√
3

. (275)

We take 3 > 2̃ so that exp(−213) ≤ 1
2
, Combining the two bounds, and changing the universal constant

finishes the proof. □

The following lemma shows that a random draw of inputs will satisfy a certain condition which allows the

use of the previous lemma.

Lemma 36. Let n > 0, then:

Prx1,x2,y∼Unif (S3−1 ) (| ⟨x1 − x2, y⟩ | ≤ n) ≤ (1 − exp(−213)) · 2n
√
3 , (276)

where 21 > 0 is some universal constant.
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Proof. By the symmetry of the distribution, we can assume w.l.o.g that y = e1. Also, note that for

u, v ∼ N
(
0, 1
3
�
)
, we can view the distribution of (x1)1 and (x2)1 as

D1

∥u∥ and
E1

∥v∥ . Combining the above,

we get that:

Prx1,x2,y∼Unif (S3−1 ) ( | ⟨x1 − x2, y⟩ | ≤ n) = Pru,v∼N(0, 1
3
�)

(���� D1

∥u∥ − E1

∥v∥

���� ≤ n
)
. (277)

By the concentration of the norm of normal random vectors (see [Ver18] section 3.1) we have w.p

> 1 − exp(−213) that ∥u∥ , ∥v∥ ≤ 1.1 for some universal constant 21 > 0. Also I := D1 − E1 ∼ N
(
0, 2
3

)
.

Hence, the above probability can be upper bounded by PrI∼N(0, 2
3 ) ( |I | < 1.1n) ≤ erf

(
n
√
3
)
. Note that

erf(G) ≤ 2G for every G > 0, hence the above probability can be bounded by (1 − exp(−213)) · 2n
√
3 □

The following lemma shows a construction of the majority function over � input vectors. This construction

uses an approximation of the inner product of two inputs using a ReLU network.

Lemma 37. Let v1, . . . v� ∈ {x+,x−} ⊂ ℝ
3 , where ⟨x−,x+⟩ ≤ 0.1. Let v∗ be the mode of v1, . . . v� . Then

there exists a 4-layer feedforward network 6 : ℝ3 (�+2) → ℝ
3 with width 2 · 32� for some universal constant

2 > 0 and weights bounded by 2 such that

6

©­­­­­­«



v1

...

v�
x+
x−



ª®®®®®®¬
= 6

©­­­­­­«



v1

...

v�
x−
x+



ª®®®®®®¬
= v∗ (278)

Proof. Let x be the finally 3 coordinate of v :=
[
v1 · · · v� x− x+

]⊤ ∈ ℝ
3 (�+2) , and let x̂ be the

second to last block of 3 coordinates of v. Note that either x = x+ and x̂ = x− or the other way around.

We construct a network that calculates the inner product between x and each v8 up to accuracy of 1
10�

. By

Lemma 38 there is such a 2-layer network "1 : ℝ3 (�+2) → ℝ
23+1 with width 232� for some universal

constant 2 > 0 and weights bounded by 2. We add 23 more neurons which act as two identity matrices to

keep the last 23 coordinates of v. We add an additional output layer to "1 which sums all the outputs of the

inner products.

We now construct another network "2 : ℝ23+1 → ℝ
3 which either output x if the sums of the inner

product is larger than 0.2 ·� or x̂ otherwise. Note that by our assumption that ⟨x1,x2⟩ ≤ 0.1, "2 will output

the mode of the v8’s. This is because "1 calculates inner products up to an error of 1
10�

, summing over �

such inner products returns the exact sum plus an error which is bounded by 1
10

. Composing "1 and "2

provides an MLP which will output either x+ or x− depending on who is the mode.

The total width of the network is 233
2�, since we calculate inner products up to an error of 1

10�
, and the

depth of the network is 4. □

We next show that shallow neural networks can approximately compute the inner product of two vectors.

Lemma 38. Let n > 0. There exists a 2-layer network # :
(
S
3−1

)2 → ℝ with width 232

n
and weights bounded

by 2 that calculates ⟨x,x′⟩ up to accuracy n . Here 2 > 0 is some universal constant.

Proof. By Lemma 6 in [Dan17] there exists a depth 2 network #square : ℝ → ℝ that calculates G2

2
in [−2, 2]

with an error of n
3

, width of at most 323
n

and weights bounded by 2. For each coordinate 8 ∈ [3] we compose

the linear function (x)8 + (x′)8 with #square to get a depth 2 network that calculates
( (x)8+(x′ )8 )2

2
up to an error

of n
3

. Summing over these networks for every index 8 and subtracting 1 results in a network that calculates

⟨x,x′⟩ with an error of n and width 3232

n
□
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Finally, the following lemma shows that if we draw random rank-1 attention heads, taking their “majority

vote” will approximate the target function 5 . The rate of approximation depends on the number of sampled

heads and on the input dimension.

Lemma 39. Let " :
(
ℝ
3
)� → ℝ

3 be the majority function over � vectors in ℝ
3 . Namely, given a set of �

vectors, " outputs the vector which appears the most times in the set, and breaks ties randomly. For a vector

qℎ define 6ℎ (x1,x2;y) = arg maxx8
⟨x8 , qℎ⟩ · ⟨y, qℎ⟩. There exist universal constants 21, 22 > 0 such that if

� >
213

3

n 2 , then with probability at least 1 − exp(223) over samples q1, . . . , q� ∼ Unif (S3−1), we have that:

E
x1,x2;y∼Unif (S3−1 )

[


 5 (x1,x2;y) − "
(
{6(x1,x2;y}�ℎ=1

)


2
]
≤ n , (279)

Here, 5 is defined as in Equation (3).

Proof. Fix x1,x2, y with | ⟨x1 − x2, y⟩ | ≥ n . Denote by �ℎ the event over sampling q ∼ Unif (S3−1)
which output 1 if arg max8 ⟨x8 , qℎ⟩ · ⟨y, qℎ⟩ = arg max8 ⟨x8 , y⟩ and 0 otherwise. By Lemma 35 we have that

Pr(�ℎ = 1) ≥ 1
2
+ 22 · n√

3
if 3 > 21 for some universal constants 21, 22 > 0. Note that the events {�ℎ}�ℎ=1

are

independent when x1,x2, y are fixed. Hence, we can use Hoeffding’s inequality:

Pr@1,...,@�

(����� 1

�

�∑
ℎ=1

�ℎ −
(
1

2
+ 22 ·

n
√
3

)����� ≥ C
)
≤ 2 exp(−2�C2) . (280)

By setting C = 22n√
3

and � ≥ 32

n 2 we get that:

Pr

(
1

�

�∑
ℎ=1

�ℎ <
1

2

)
≤ 2 exp(−2223) . (281)

From now on, we condition on the event that q1, . . . , q� are sampled such that 1
�

∑�
ℎ=1 �ℎ ≥ 1

2
, which

happens w.p > 1 − 2 exp(−2223). Note that if this event happens, then the majority of the functions

6ℎ (x1,x2, y) will output the same vector as 5 (x1,x2, y).
By Lemma 36 we have that Pr ( | ⟨x1 − x2, y⟩ | ≤ n) ≤ (1−exp(−233)) ·2n

√
3 for some universal constant

23 > 0. Hence, we get that:

E
x1,x2,y∼Unif (S3−1 )

[


 5 (x1,x2, y) − "
(
{6(x1,x2, y}�ℎ=1

)


2
]

(282)

=Pr (| ⟨x1 − x2, y⟩ | ≤ n) · E
[


 5 (x1,x2, y) − "

(
{6(x1,x2, y}�ℎ=1

)


2 ���| ⟨x1 − x2, y⟩ | ≤ n
]
+ (283)

+Pr ( | ⟨x1 − x2, y⟩ | ≥ n) · E
[


 5 (x1,x2, y) − "

(
{6(x1,x2, y}�ℎ=1

)


2 ���| ⟨x1 − x2, y⟩ | ≥ n
]

(284)

≤(1 − exp(−233)) · 2n
√
3 · 1 + 1 · exp(−2223) ≤ 2 · n

√
3 (285)

where we choose 3 large enough such that 1− exp(−233) ≥ 1
2

and exp(−2223) ≤ 1
2

and changed the constant

2 > 0 accordingly. Replacing n with ñ = n

2
√
3

finishes the proof.

□
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D.2 Proof of Theorem 34

Proof. By Lemma 39 there exist q1, . . . , q�−2 ∈ S
3−1 such that if � ≥ 223

3

n 2 :

E
x1,x2,y∼Unif (S3−1 )

[


 5 (x1,x2, y) − "
(
{6(x1,x2, y}�ℎ=1

)


2
]
≤ n (286)

where 6ℎ (x1,x2, y) = arg maxx8
⟨x8 , qℎ⟩ ·

〈
x,qℎ

〉
and " is the majority function. We can take � − 2 instead

of � by increasing the constant by a factor of at most 2.

We define M8 = Uq8q
⊤
8 for 8 = 1, . . . , � − 2 for some U > 0 which will be defined later. We also

pick some q0 ∈ S
3−1 and define M�−1 = Uq0q

⊤
0

and M� = −Uq0q
⊤
0

. Note that if q0 ∉ {x1,x2, y} and

arg maxx8
x8M�−1y = x1 then arg maxx8

x8M�y = x2 and vice versa.

Let 6 : ℝ3� → ℝ
3 be the 4-layer network with width 213

2� as defined in Lemma 37 which simulates

the majority. Denote by v :=


X sm(X⊤M1y)

...

X sm(X⊤M�y)


and by vmax =


arg maxx8

(x⊤
8 M1y)

...

arg maxx8
(x⊤
8 M�y)


. We have that:

E
x1,x2,y∼Unif (S3−1 )

[
∥ 5 (x1,x2;y) − 6 (v)∥2

]
≤ E

x1,x2,y∼Unif (S3−1 )

[
∥ 5 (x1,x2;y) − 6 (vmax)∥2

]
+ E

x1,x2,y∼Unif (S3−1 )

[
∥6 (vmax) − 6 (v)∥2

]
. (287)

We will bound each term separately. For the first term in Equation (287) we can write:

E
x1,x2,y∼Unif (S3−1 )

[
∥ 5 (x1,x2;y) − 6 (vmax)∥2

]
(288)

=E

[
∥ 5 (x1,x2;y) − 6 (vmax)∥2 | ⟨x1,x2⟩ ≤ 0.1

]
· Pr(⟨x1,x2⟩ ≤ 0.1)+ (289)

+E
[
∥ 5 (x1,x2;y) − 6 (vmax)∥2 | ⟨x1,x2⟩ > 0.1

]
· Pr(⟨x1,x2⟩ > 0.1) . (290)

By Lemma 39 the first term is bounded by n . For the second term, note that ∥ 5 (x1,x2;y) − 6 (vmax)∥2 ≤ 2

since the output of each function is a unit vector. Also, by standard concentration of random vectors on the

unit sphere (see Section 3 in [Ver18]), there is a universal constant 23 > 0 such that Pr(⟨x1,x2⟩ > 0.1) ≤
exp(−233). Hence, we can bound E

[
∥ 5 (x1,x2;y) − 6 (vmax)∥2

]
≤ n + 2 exp(−233).

We will bound the second term in Equation (287) uniformly for any x1,x2, y. Note that 6 is a ReLU neural

network with 4 layers, width 213
2� and weights bounded by 2. Hence, we can bound its Lipschitz constant by

the multiplication of the Frobenius norm of its weights matrices, which is bounded by
(
4(213

2�))4
)
. Hence:

∥6 (vmax) − 6 (v)∥2 ≤
(
4(213

2�))4
)
· ∥vmax − v∥2 (291)

≤
(
4(213

2�))4
)
� · max

ℎ





X sm(X⊤Mℎy) − arg max
x8

(x⊤
8 Mℎy)






2

. (292)

There is X > 0 which depends on n such that for the set:

�X := {x1,x2, y ∈ S
3−1 : ∀qℎ, (x1 − x2)⊤qℎq⊤ℎy > X} , (293)

we have that Pr((x1,x2, y) ∉ �X) ≤ n

(4(213
2� ) )4)2�

. Note thatX sm(UX⊤qℎq⊤ℎy) −→
U→∞

arg maxx8
(x⊤
8 qℎq

⊤
ℎ
y)

uniformly on �X for every qℎ. Hence, we can find U > 0 large enough such that:

sup
x1,x2,y∈S3−1

max
ℎ





X sm(X⊤Mℎy) − arg max
x8

(x⊤
8 Mℎy)






2

≤ n(
4(2132�))4

)
�
. (294)
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This bounds Ex1,x2,y∼Unif (S3−1 )
[
∥6 (vmax) − 6 (v)∥2

]
≤ n .

Combining both bounds from Equation (287) we have:

E
x1,x2,y∼Unif (S3−1 )

[
∥ 5 (x1,x2;y) − 6 (v)∥2

]
≤ n + exp(−233) (295)

where we changed the constant 23 accordingly. □

D.3 Proof of Theorem 7

Proof. We first define the construction. Let q1, . . . , q� be such that the conclusions of Lemma 39 are satisfied

(e.g. by drawing them uniformly from the unit sphere). Let E =

[
1 −1 0

0 0 0

]
. We call the second dimension

of the positional encodings the “scratch space”. We construct the heads of the first layer as follows: For each

ℎ, let

M
(1)
ℎ

= U


qℎ
0

0


[
q⊤
ℎ

0 0
]

V
(1)
ℎ

=


0

0

1


[
0
⊤ 1 0

]
(296)

The number of heads in the first layer is �. The weights of the second layer of the transformer are defined as:

M
(2)
8

=


0

1

0


[
0
⊤ 0 1

]
V

(2)
8

= V


e8
0

0


[
e⊤8 0 0

]
(297)

for the standard basis vectors e8 , and V > 0 will be defined later. The number of heads in the second layer is

3. Finally, we set the output layer as A =
1
0

[
I3 0 0

]
.

We will now prove the correctness of the construction. For the following argument, assume that each

head uses hardmax instead of softmax. Note that by a similar argument used in the proof of Theorem 34, this

incurs an extra loss of n for any n > 0 at the cost of increasing U.

When the first layer is applied to the input y, the scratch space of the output of each head is 1 if

x⊤
1
qℎq

⊤
ℎ
y > x⊤

2
qℎq

⊤
ℎ
y and −1 otherwise. Let BH , Bx1

, Bx1
be the sum of the scratch spaces of all the � heads

(we will in fact only use By). Note that By > 0 if the majority of the heads outputted x1 and By < 0 if the

majority outputted for x2. All other dimensions of the output are 0. Thus, after the skip connection, the

output of the first layer is

) (1) ©­
«

x1 x2 y

1 −1 0

0 0 0


ª®
¬
=


x1 x2 y

1 −1 0

Bx1
Bx2

By


. (298)

For the second layer of attention, note that each head attends to x1 if By > 0 and to x2 otherwise. By summing

3 such heads, where each head corresponds to some standard basis vector, the output of the second layer is

) (2) ©­«
) (1) ©­

«

x1 x2 y

1 −1 0

0 0 0


ª®
¬
ª®
¬
=


y

0

By


+ V


x1

1

Bx1


(299)

if By > 0, and the same with x2 if By > 0. Finally, the after the output layer, the output of the entire

transformer is 1
V
y + x1 if By > 0, or 1

V
y + x2 otherwise.

By taking first take V > 1
n
, we get that the output of the transformer is the same as the output of the

majority of the rank-1 attention heads of the first layer of the transformer, up to an extra error of n . By

Lemma 39 and taking the number of heads � to be large enough, we get that the majority of the heads in the

first layer approximates the target up to an error of n . Scaling n appropriately finishes the proof.

□
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