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Abstract

We study and compare the expressive power of transformers, RNNs, and transformers with
chain of thought tokens on a simple and natural class of problems we term Compositional Rea-
soning Questions (CRQ). This family captures problems like evaluating Boolean formulas and
multi-step word problems. Assuming standard hardness assumptions from circuit complexity
and communication complexity, we prove that none of these three architectures is capable of
solving CRQs unless some hyperparameter (depth, embedding dimension, and number of chain
of thought tokens, respectively) grows with the size of the input. We also provide a construction
for each architecture that solves CRQs. For transformers, our construction uses depth that is
logarithmic in the problem size. For RNNs, logarithmic embedding dimension is necessary and
sufficient, so long as the inputs are provided in a certain order. (Otherwise, a linear dimension is
necessary). For transformers with chain of thought, our construction uses n CoT tokens. These
results show that, while CRQs are inherently hard, there are several different ways for language
models to overcome this hardness. Even for a single class of problems, each architecture has
strengths and weaknesses, and none is strictly better than the others.

1 Introduction

Large language models [Touvron et al., 2023, Anil et al., 2023, Achiam et al., 2023] are increas-
ingly used to perform logical reasoning and other problems that require algorithmic thinking. To
understand the power and limitations of these models, it is essential to determine what kinds of
computational problems they are capable of solving. To this end, a long line of theoretical work
has studied the expressive power of various language modeling architectures using simple tasks
like copying strings, recognizing formal languages, and determining if a graph is connected [Jelassi
et al., 2024, Sanford et al., 2024b, Strobl et al., 2024]. Such studies typically provide constructions
or prove impossibility results for a particular architecture or paradigm—such as recurrent neural
networks, transformers, and transformers with test-time scaling (“chain of thought”)—following
the progress of the field.

In this paper, we take a broader view. We compare the abilities of several different language mod-
eling architectures to solve a class of problems, which we call Compositional Reasoning Questions
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Table 1: Comparison between our methods for solving CRQs on n nodes. Each architecture minimizes one
kind of resource at the expense of the others. For ease of comparison, we assume the depth of the CRQ tree
is log n. By parallel runtime, we mean the runtime using an unlimited number of parallel processors.

Architecture Num. Parameters Runtime Parallel Runtime

Deep transformer (Section 4) O(log2 n) O(n2 log2 n) O(log n)
RNN (Section 5) O(log n) O(n log n) O(n)
Chain of Thought (Section 6) O(1) O(n2) O(n)

(CRQs). Our findings prove that there are unavoidable trade-offs between the architectures we
consider. No architecture is capable of solving CRQs without some strong dependence on the size
of the problem. However, each architecture allows us to limit the use of some computational re-
source at the expense of the others (see Table 1). Thus, the CRQ task provides a crisp and formal
way to characterize the essential differences between these architectures.

Our Compositional Reasoning Questions are inspired by the complex, multi-step questions for
which LLMs are often used in practice. For example, consider the question: Amongst the record

title winners of each Grand Slam, who is the player with the fewest overall titles? Answering this
question requires solving several sub-questions. While some of them can be solved in parallel (i.e.,
finding the record holders for each Grand Slam), the overall question cannot be answered without
first gathering the answers to the sub-questions. It shares this structure with arithmetic and boolean
expressions like (6 + 2) · (4 − 5) and is also similar to word problems and logic puzzles. Problems
like these can be thought of as having an underlying tree structure. The leaves are the possible
answers, each non-leaf node represents a sub-question, and the overall answer is the answer to the
root node, see Figure 1 for an example. This type of compositional reasoning is a fundamental
challenge for LLMs.

We study the abilities of deep transformers, recurrent neural networks, and shallow transformers
with chain of thought to solve these problems. Our main contributions are as follows:

1. In Section 3.1, we present Compositional Reasoning Questions, a simple, formal framework
based on semantic similarity for studying LLM reasoning on arbitrary tree structures.

2. In Section 4, we prove that transformers with constant depth cannot solve arbitrary CRQs
(Theorem 4.3), but transformers with depth L can solve all CRQs of depth up to L (Theo-
rem 4.1).

3. In Section 5, we prove that RNNs with constant hidden dimension cannot solve arbitrary
CRQs (Theorem 5.5), but RNNs with O(log n) hidden dimension and constant depth can
solve all CRQs of size n (Theorem 5.4). This ability depends on the inputs being arranged in
a particular order (Algorithm 1); if they are ordered adversarially, RNNs require O(n) hidden
dimension (Theorem 5.2).

4. In Section 6, we prove that transformers augmented with O(log n) CoT tokens cannot solve
CRQs of size n, but transformers augmented with O(n) CoT tokens can (Theorem 6.1).
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Figure 1: Example of a compositional reasoning question. Inside each node is the vector corresponding to
this node. Red lines indicate the answer of each sub-question, given by argmax

u∈C(v){xv,xu}, where C(v)
are the children of node v.

These results demonstrate the trade-offs between different models (Table 1). While deep trans-
formers are highly parallelizable, they require O(log n) depth in the worst case, so the model size
must depend (albeit mildly) on the problem size. Likewise, RNNs use little compute but must grow
to handle larger problems. Chain of thought allows a single, constant-size model to handle any
CRQ, but it runs slowly and is not parallelizable. Overall, our work reveals a nuanced complexity
landscape for an important class of reasoning problems.

2 Related Work

Expressive power of transformers. Our work belongs to a large body of research studying
the representational capacity of transformers, chain of thought prompting and RNNs. Transform-
ers with unbounded depth are known to be universal approximators [Yun et al., 2019], and can
simulate Turing machines [Wei et al., 2022a, Merrill and Sabharwal, 2023b] if their size can grow
with the sequence length. Several works studied the expressive power of shallow transformers in
solving certain representative tasks. Sanford et al. [2024c] study problems like sparse averaging and
matching, Yehudai et al. [2024] study counting, and Amsel et al. [2024] study nearest neighbor.
A long line of work [Hahn, 2020, Hao et al., 2022, Merrill et al., 2022, Strobl et al., 2024] has
used circuit complexity classes to characterize the power and limitations of transformers. Merrill
and Sabharwal [2023c] show that constant-depth transformers can only compute functions that are
computable by Boolean circuits in the complexity class TC0. We use this result to prove that they
cannot solve CRQs either (Theorem 4.3).

Past work has also studied the expressive power of transformers with logarithmic-depth. [Sanford
et al., 2024a,b] focus on graph tasks, showing how the parallelism of transformers gives them an
advantage over other architectures. Liu et al. [2022] show the ability of logarithmic-depth trans-
formers to simulate finite automata, and Merrill and Sabharwal extend these results by weakening
their assumptions. We note that as implied by our Lemma 4.2, CRQs in general cannot be solved
by finite-state automata.
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Power of RNNs An older line of research studied the capacities of recurrent networks, usually by
relating them to automata [Merrill, 2019, Korsky and Berwick, 2019, Merrill et al., 2020]. However,
they generally assume that the order of the inputs is fixed and that the size of the network is constant
in the size of the input. We study models whose hyperparameters (size, number of CoT tokens)
change with the problem size, and we study the effect of both benevolent and adversarial orderings
of the inputs.

Chain of Thought prompting. Chain of thought (CoT) [Reynolds and McDonell, 2021, Wei
et al., 2022b, Nye et al., 2021] is a method that enhances the ability of transformers to solve
logical reasoning tasks. Rather than producing the answer all at once, the model is allowed to
autoregressively generate a series of intermediate tokens to help it carry out each step in the
solution. Li et al. [2024] show that constant-depth transformers that generate T CoT tokens can
simulate Boolean circuits of size T . Merrill and Sabharwal [2023b] prove that they can simulate
Turing machines that run in O(T ) steps.

Most closely related to our work is that of Feng et al. [2024], which studies the power of chain of
thought in solving arithmetic problems. Like CRQs, arithmetic expressions correspond to tree of
subproblems and are solved by working up the tree. Unlike their work, in which the tree structure is
indicated by parentheses in the sequence, we encode the tree structure into the positional encodings
of the tokens. However, both problems are NC

1-hard. Like Feng et al. [2024], we prove that
our task is solvable by a constant depth transformer using chain of thought, but not otherwise.
However, there are several differences: (i) We provide an explicit construction for solving CRQs
using logarithmic depth transformers without chain of thought. (ii) While their task is unsolvable
by RNNs with a hidden dimension of o(n/ log n), we provide an explicit construction of an RNN that
solves CRQs using only O(log n), but does not work for all orderings of the input. (iii) Our chain of
thought solution generates n tokens, while theirs requires Ω(n2) tokens. Such different conclusions
emphasize the importance of the input format; in particular our more favorable scalings hint at
the importance of leveraging prior information about the hierarchical structure. In Section 7 and
Appendix F we generalize our definition of CRQ to capture also arithmetic operations, which
captures the problem studied in Feng et al. [2024].

3 Problem Formulation and Preliminaries

Notations. We use bold-face letter to denote vectors, e.g. x,y. For a vector x ∈ R
d and

1 ≤ i < j ≤ d we define by (x)i:j ∈ R
j−i+1 the vector whose entries are the entries of x in

places i until j. We also define (x)−1 the last coordinate of x. For an integer n we denote by
[n] = {1, . . . , n}.

Let T = (V,E) be a rooted tree with root vr ∈ V . The depth of a node v ∈ V is the length of the
unique path from v ∈ V to vr. The depth of the tree is the largest depth of its nodes. The parent

of a node v ∈ V is the node connected to v on the path to the root and denoted by P(v). The
children of v are the nodes whose parent is v, and are denoted by C(v). The degree of a node is the
number of its children. Thus, leaves have a degree of 0. We say that a node u is a descendant of v
if there is i such that P(i)(u) = v, where P(i) is the parent function composed with itself i times.
We also say in this case that v is an ancestor of u.
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3.1 Compositional Reasoning Questions

We formally define the problem of Compositional Reasoning Questions as follows:

Definition 3.1. A Compositional Reasoning Question (CRQ) is a rooted tree T = (V,E)
with root vr ∈ V , where each node in the tree v ∈ V is labeled by a vector xv ∈ Γd. Here Γ ⊂ R is

some finite vocabulary of constant size and d ∈ N.

The size of the CRQ is defined as |V |. The answer to the CRQ is defined as A(vr) where the

function A is defined recursively: For a leaf u ∈ V we define A(u) = xu. For a non-leaf node v ∈ V
we define:

A(v) = argmax
xu,u∈C(v)

⟨A(u),xv⟩ .

We refer to every node v ∈ V which is not a leaf as a sub-question.

In the above definition we assume that the CRQs are defined over some finite vocabulary Γ. We
can think about the vocabulary as Γ = {0,±1, . . . ,±9} for simplicity, although other vocabularies
can be used (e.g. Γ = {±1}).

CRQs are thus inherently hierarchical tasks, where the usual sequential structure is replaced by a
tree structure. As a result, we will consider learning CRQs with models that can leverage this tree
structure. Each node v is embedded as the vector (xv, zv, zP(v), ℓ(v)), where xv is the label, zv is
a positional embedding, and ℓ(v) is the depth of v in the tree.

3.2 Transformers

We now provide a formal definition of the transformer architecture that will be used throughout
the paper. The input sequence is x1, . . . ,xn ∈ R

d. We concatenate Positional Encodings (PE)
to the inputs, which have the form e1, . . . , en ∈ R

e. The positional encodings cannot depend on
the values of the vectors xi, only on their positions (namely, on i). The input to the transformer is

the sequence x̃i =

(

xi

ei

)

∈ R
d+e.

The transformer backbone contains alternating layers of hardmax, single-head self-attention and
feed forward networks with skip connections. For simplicity, we do not use layer normalization
or attention masking (though the lower bounds generally hold against models that include them).

Formally, let h
(ℓ)
i denote the hidden embedding output after ℓ transformer blocks corresponding to

the ith input. Define:

h
(0)
i = x̃i (1)

h
(ℓ+1/2)
i = h

(ℓ)
i + Vℓ argmax

h∈{h
(ℓ)
1 ,...,h

(ℓ)
n }

(

h⊤K⊤
ℓ Qℓh

(ℓ)
i

)

(2)

h
(ℓ+1)
i = MLPθℓ

(

h
(ℓ+1/2)
i

)

(3)

where Vℓ,Kℓ,Qℓ ∈ R
(d+e)×(d+e) and θℓ are weight matrices and σ(·) is the ReLU function. Ties in

the argmax operation are broken arbitrarily.
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Finally, an unembedding layer discards entries corresponding to the positional encoding:

yi =

(

Id ·
· ·

)

h
(L)
i (4)

We consider yn to be the output of the model. Following previous work [Merrill and Sabharwal,
2023a,c], we assume that the inputs, weights, and intermediate representations of the network can
all be represented using O(log n) bits of precision.

4 Depth in Transformers is Necessary and Sufficient

In this section we provide two complementary results about the power of transformers to solve
CRQs. We first show that deep transformers can solve any CRQ so long as the depth of the
transformer is at least the depth of the CRQ tree. We then prove a conditional lower bound
showing that constant depth transformers cannot solve all CRQs. Combining both results, we
conclude that depth is both necessary and sufficient for transformers to solve CRQs.

4.1 Deep transformers can solve CRQs

This subsection presents our construction of a deep transformer that solves CRQs:

Theorem 4.1. For any L, n ∈ N there exists a transformer T with depth L − 1 and embedding

dimension O(d + log(n)) that solves all the compositional reasoning questions up to n nodes and

depth L.

The proof appears in Appendix A.1. First, note that the depth of the transformer depends only on
the depth of the tree of the CRQ. This is one of the main strengths of transformers: parallelism.
Namely, the transformer is able to solve all the sub-questions in the tree of the same depth with
just one layer.

We also emphasize that it is probably not possible to solve CRQs of size n with less than log(n)
precision. The reason is that a transformer without positional encoding is invariant to the order
of the tokens. However, the CRQ has an inherent structure, a tree, which without it it cannot be
solved. Thus, just to be able to provide even the simplest positional encoding which is numbering
the nodes of the tree from 1 until n requires O(log(n)) bits (cf. Merrill and Sabharwal [2023a]).
Our construction uses a more complex positional encoding that captures the tree structure while
still using only O(log(n)) bits.

We now give a short intuition for our construction. We first define a positional encoding vector
for each node that has four parts. For each non-leaf node v, we define an identifying vector
zv ∈ {±1}O(log(n)) such that ⟨zv, zu⟩ ≪ ∥zv∥2 for any nodes u, v ∈ V . For leaf nodes, we let
zv = 000O(log(n)). This is the first part. The second part of node v’s positional encoding vector is the
identifier of its parent, zP(v). The third part is the depth of v in the tree. The fourth is an indicator
variable that is 1 when the depth is L− 1, where L is the depth of the tree, and 0 otherwise. These
four parts are all concatenated to the value of the node xv.

6



We construct each layer of the transformer to be exactly the same. Using the positional encoding,
we construct the following attention pattern:

• Each non-leaf tokens that have depth smaller than L− 1 attends only to itself.

• Each non-leaf tokens that has depth L−1 attends only to its children. Specifically, it attends to
the child child that answers its sub-question, one whose value vector has the largest correlation
with the non-leaf token.

• Leaf tokens can do as they like, as they will not be attended to in succeeding levels.

By constructing this attention pattern, all the sub-questions in layer L−1 are solved simultaneously.
We then use the MLP to reorganize the tokens. We increase the counter of the depth of every token,
and update the indicator for nodes of depth L− 1. Nodes that in the previous iteration had depth
L− 1 are altered to resemble leaves, i.e. their zv vector is set to zero. For these nodes, we also set
their value vector xi to be the answer to their sub-question, as computing in the previous attention
layer. In the next attention layer, nodes previous in layer L − 1 will play the part of leaves and
be attended to by their parents, which were previously in layer L− 2. Applying this construction
L− 1 times will compute the answer to the root, which is the answer to the CRQ.

4.2 Constant depth transformers cannot solve CRQs

We will now show that solving CRQs using a constant size transformer cannot be done, conditional
on the assumption that TC0 ̸= NC

1. Our main result in this subsection is a reduction from Binary
Formula Evaluation Problem (BFEP), which is known to be NC

1-complete (see Buss [1987]), to
solving CRQ.

Lemma 4.2. The CRQ problem over a finite alphabet is NC
1-hard.

For a full proof, see Appendix A.2. The reduction is straightforward, and resembles the reduction
in Feng et al. [2024] from BFEP to arithmetic problems. The main idea is to define the vectors

t0 = t∧ =

(

0
1

)

and t1 = t∨ =

(

1
0

)

which correspond to 0 and 1 in Boolean formulas. Now note

that taking argmax of the dot product with t∧ corresponds to the ∧ operation, and the argmax
of the dot product with t∨ corresponds to the ∨ operation. The operation of ¬ is slightly more
intricate and defined in Figure 3. All the operations in the reduction can be done using TC

0 circuits,
which means that the CRQ problem is NC1-hard.

It was shown in Merrill and Sabharwal [2023c] that transformers with constant depth, polynomial
size and logarithmic bit- precision (all w.r.t n) are in TC

0. Thus, the following theorem follows
immediately from Lemma 4.2:

Theorem 4.3. Under the assumption that TC0 ̸= NC
1, for any L ∈ N and polynomial P (x), there

exists n ∈ N such that no transformer with depth L, a number of parameters that is smaller than

P (n) and O(log(n)) bit-precision can solve all CRQs of size n.

7



Combining the two results of this section, we see that transformers have the power to solve the CRQ
problem for each layer efficiently, however the number of layers of the transformer depends on the
size of the tree. This dependence is also mandatory under the assumption that TC

0 ̸= NC
1. One

concrete example, which will be relevant in the next section, is a balanced binary tree with n nodes,
and log(n) depth. There exists a transformer that can solve all CRQs of this shape with log(n)
layers, but not with a constant number of layers. In the next sections we will provide alternative
approaches to solve this problem with different models using constant depth.

We note that arithmetic problems, as presented in Feng et al. [2024], can also be embedded as
certain generalized CRQs. This embedding is presented in Section 7 and Appendix F. Thus, both
Theorem 4.1 and Theorem 4.3 can be applied to arithmetic problems, if they are presented in a
tree structure. It is in general possible to apply a preprocessing procedure using a depth O(log(n))
transformer to turn an arithmetic problem presented in a sequential form, into a tree structure
which captures the order of arithmetic operations.

5 Solution Using Shallow RNNs

In this section we will show that under certain assumptions, RNNs can solve CRQs. The proofs
for this section appear in Appendix C. We first define RNNs in the following way:

Definition 5.1. An RNN is a fully-connected neural network N : Rd+m → R
m. The inputs to the

RNN are x1, . . . ,xn ∈ R
d, and the RNN operates as N

((

xi

hi−1

))

= hi where h0, . . . ,hn ∈ R
m.

The hi’s are called the hidden states of the RNN. h0 is defined as part of the architecture, and

independent of the input data. The output of the RNN is hn
1.

Note that in contrast to transformers, RNNs are not invariant to changing the order of the inputs.
The reason is that the order in which the vectors x1, . . . ,xn are fed to the model is part of the
input itself, and not part of the architecture like positional encodings for transformers. We will
show that the way the nodes of the CRQs are ordered is crucial for having an efficient solution with
RNNs.

5.1 The order of the nodes matters

Our next result shows that there are bad orderings. This means that we can construct a family of
CRQs and order the nodes adversarially so that any RNN must have a hidden dimension of size
Ω(n) to solve them successfully.

Theorem 5.2. Let T = (V,E) be a balanced binary tree of size n. There exists an ordering of

the nodes with the following property: Any RNN that reads the inputs in that order and solves all

CRQs defined on T must have a hidden state of size Ω(n) bits. That is, if the hidden state is in

R
m and each entry is represented by p bits, then p ·m = Ω(n).

1It is often common to define two separate outputs of the RNN, the hidden state and the prediction. Here we
combine them for simplicity.
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The proof is given in Appendix C.1. Note that Theorem 5.2 doesn’t depend on the depth of the
RNN. This means that given certain ordering of the nodes, the RNN must encode many of them
into the hidden dimension. Also note that it is easy to construct an RNN with a hidden dimension
of size O(n) that solves all CRQs. The idea is just to encode all the nodes in the hidden state,
which can be done if we have enough memory, and then use a large enough neural network to solve
the CRQ. Finding such a neural network is also doable because 2-layer networks have the universal
approximation property [Cybenko, 1989, Leshno et al., 1993]. Since the number of possible outputs
is finite (because the alphabet is finite), we can approximate the solution up to a small enough
accuracy and then threshold over the output.

The proof of Theorem 5.2 (Appendix C.1) uses a communication complexity argument. Specifically,
we use a reduction from the set disjointness problem (see Claim C.1 for a formal definition). We then
construct a communication protocol between two parties, where each one of them has knowledge
of only half of the inputs. When using the bad ordering of the nodes, this communication protocol
forces the first party to encode all of its inputs into the hidden state when passing it to the second
party.

We also note that Feng et al. [2024] proved that a specific construction of RNNs that solve arithmetic
problems requires a hidden state of size Ω(n). Our results are stronger in the sense that: (1) Our
lower bound is general and applies to any possible construction, so long as the bad order is used,
and (2) We next show that the Ω(n) memory requirement can be greatly reduced just by re-ordering
the inputs.

5.2 Memory-rank sort

In this subsection, we restrict ourselves to CRQs with full binary trees. That is, the degree of each
node is 0 or 2. This simplifies the proofs and presentation. In Appendix D, we explain how to
extend the results from this section to non-binary trees. Also, note that every CRQ with a max
degree of k for each node can be converted into an equivalent CRQ with a binary tree, and the
number of nodes increases by a factor of at most 2 (see Appendix D.1). We also note that a node
of degree 1 is unnecessary in the context of CRQs, because a sub-question of degree 1 has only one
possible answer.

We will now introduce a sorting algorithm for trees that will allow us to solve any CRQs using an
RNN with a small hidden dimension. First, we to define the memory-rank of each node:

Definition 5.3 (Memory Rank). Let T = (V,E) be a rooted tree. The memory rank of a node

v ∈ V is defined recursively as: mr(v) = 0 if v is a leaf, and otherwise

mr(v) = max (amax, amin + 1)

where amax = max (mr(c1(v)),mr(c2(v)))

amin = min (mr(c1(v)),mr(c2(v)))

and c1(v) and c2(v) are the two children nodes of v. The memory rank of the tree mr(T ) is defined
as the memory rank of its root.

9
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Figure 2: Memory-rank sorting of a tree. Each node is labeled with its memory rank, which ranges from 0
to 2 in this case. The number below each node is its ordering according to Algorithm 1. Note that we first
traverse the right branch of the tree, since the right child of the root has a higher memory-rank than the left
child.

Intuitively, the memory rank is the smallest possible stack size needed for a stack machine to solve
the CRQ if we are allowed to pick the order of the nodes. A stack machine is an automaton
augmented with a stack that it can uses as memory. It processes the inputs sequentially, optionally
pushing and popping a finite number of elements from its stack at each step and performing
computations with the resulting vectors. We should order the inputs according to a post-ordering
depth-first search of the CRQ, meaning that the position of a node in the ordering corresponds
to when the depth first search last visits it. This ordering akin to reverse Polish notation, which
notates an arithmetic expression like (2 + 3) ∗ 6 as the following sequence: 2 3 + 6 ∗. By ordering
the inputs this way, we ensure that whenever the automaton reads a non-leaf node, the top two
elements on the stack are the solutions to the CRQs defined by that node’s two children. It can
simply pop them off, compute the solution to the current node, and push the result back onto the
stack to save it for later.

Even using a depth-first search ordering, the size of the stack used by this machine could grow
as large as n in the worst case. However, by ordering the children of each node carefully, we can
reduce the stack depth to only log n. To compute the CRQ corresponding to a given node v, we
(1) solve for one of its children, (2) save this result on the stack, then (3) solve for the second
child. If we solve c1(v) first, then the largest stack depth during the first stage is mr(c1(v)) and
the largest stack depth during the second stage is mr(c2(v))+ 1. The overall largest stack depth is
the maximum of these two. Thus, to use as little memory as possible, we should always start with
the child whose memory rank is larger. This sorting algorithm is defined formally in Algorithm 1.
See Figure 2 for an example of memory-rank sort of a tree. In Theorem 5.4, we will simulate this
stack machine using a RNN with hidden dimension of size mr(T ).

5.3 Shallow RNNs can solve CRQs

We are now ready to present the main theorem of this section:

Theorem 5.4. For any n ∈ N there exists an RNN with 5 layers and hidden dimension O(d log(n))
that solves any CRQ with a binary tree, if the nodes are ordered by Algorithm 1

10



The proof is given in Appendix C.2. The main idea of the proof is to simulate a stack machine
with the RNN. The stack will contain the vectors xi that are needed for future calculations, and
will have two possible operations: (1) pop out vectors, and (2) push a vector. The stack will
be transferred through the RNN in the hidden state. We include the depth of each node in its
positional embedding, which will help us determine which of the two operations (push or pop) to
use.

At each new input we check whether the last node in the stack has a larger depth by exactly 1. If it
doesn’t, then we insert v into the stack and move to the next input. If it does, then we pop out the
last two nodes from the stack, say u1 and u2, and calculate the inner products ⟨xv,xu1⟩ , ⟨xv,xu2⟩.
We insert back to the stack either xu1 or xu2 , whichever has a higher inner product, but with the
depth of the node v. All the above operations can be simulated using ReLU neural networks. The
memory-rank sort does the rest of the work, since it makes sure that if v is the current node to
be processed, the last two nodes in the stack must either be its children, or nodes with a smaller
depth. Doing this recursively over all the nodes will gradually solve the CRQ.

Note that in Theorem 4.1, we also needed the embedding dimension of the transformer to be
Ω(log(n)), but for a very different reason. There, the transformer is invariant to re-ordering of the
input tokens, and since the output does depend on the ordering (specifically, the structure of the
tree) we would need Ω(log(n)) bits just to label the tokens from 1 to n. For RNNs, the inputs are
already ordered, and we even defined a specific ordering algorithm that aligns with our task. The
reason that in Theorem 5.4 we need the size of the hidden dimension to be Ω(log(n)) is because
in order to solve CRQs, we need to store some of the inner calculations (i.e. answers to the sub-
questions) while we solve others. We emphasize that this hardness is not captured by the fact that
solving CRQs is NC1-hard. There are other NC1-hard problems that can be solved with a constant
size RNN, such as the word problem on S5 (see Definition 3.1 and Theorem 5.1 in Merrill et al.
[2024]).

Finally, note that the memory rank of any tree with n nodes is bounded by log(n) (see Lemma C.2).
In fact, for a given tree structure T , the hidden dimension of the RNN needed to solve all CRQs
with this structure is bounded by O(d ·mr(T )) using our construction. We next prove that the
memory-rank also provides a lower bound on the required size of the hidden state of the RNN to
solve CRQs:

Theorem 5.5. Let n ∈ N, let T be a rooted tree of size n with some ordering of the nodes from 1
to n. Suppose there exists an RNN that solves all CRQs with a tree structure of T if the nodes are

provided in the given ordering. Then, the hidden dimension of the RNN must have Ω(mr(T )) bits.
In particular, an RNN that solves all CRQs on all trees of size n for a given ordering must have a

hidden dimension with Ω(log(n)) bits.

The proof is given in Appendix C.3. Combining Theorem 5.4 and Theorem 5.5, we see that the
memory-rank provides a complete characterization of the memory required to solve CRQs using
RNNs.
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6 Solution Using Shallow Transformers with Chain of Thought

In this section we show that adding the ability to produce chain of thought tokens can also help
solve CRQs using a constant depth transformers. We assume in this section that the nodes are
ordered in reverse BFS ordering. Namely, for a tree with n nodes and depth L, the nodes are
numbered from 1 until n starting from the nodes at depth L, and going up until the root which is
numbered n. Our main result in this section is the following:

Theorem 6.1. There exists a 2-layer transformer that solves all the CRQs with trees containing n
nodes. The embedding dimension is O(d+log(n)), the bit-precision of the transformer is O(log(n)),
and the number of chain-of-thought tokens generated is n.

The proof idea is to solve all the sub-questions of the CRQ from the bottom-up. Each generated
CoT token will be a solution to one of the sub-questions represented by a non-leaf node. Each node
token contains two sets of positional encoding. The first one represents the tree structure and is
similar to the positional encoding from Theorem 4.1. The second one encodes the position in the
reverse BFS ordering of the nodes. The role of this embedding is so that at each operation of the
transformer, the last token that was generated will attend to the next token in the reverse BFS
order. This way, all the sub-question in the same layer are solved one after the other, before moving
on to the next layer. The construction of the transformer itself contains 2-layers of self-attention.
The first layer is similar to a single layer of the construction from Theorem 4.1. Its role is to solve
a single layer of sub-questions. The second layer make sure that the last generated token can only
attend to the next token in the reverse BFS order, using the designated positional encodings.

Our work leaves open the question of whether a constant-depth transformer can solve CRQs by
generating o(n) CoT tokens. In Li et al. [2024] it was shown that transformers with constant depth
that generate O(log(n)) CoT tokens lie in TC

0 (see also Theorem 4 of Merrill and Sabharwal). By
Lemma 4.2 we know that solving CRQs is NC1-hard. Thus, under the assumption that TC0 ̸= NC

1,
we know that transformers need more than logarithmically many CoT tokens to solve CRQs.
However, the gap between Ω(log(n)) and our solution with O(n) CoT tokens is still open.

We now compare our result with the CoT solution from Feng et al. [2024] for arithmetic problems.
Both solutions use a transformer with O(1) layers and O(log(n)) bit precision. However, their
solution generated O(n2)2 CoT tokens, while ours generates only O(n) tokens. This is a significant
improvement, since for large sequences, a quadratic number of generated tokens can be infeasible
to generate during inference time. The reason for this improvement is that in our solution each
generated token solves exactly one sub-question, thus the number of tokens can be bounded by the
number of sub-questions. In the solution of Feng et al. [2024], each time one sub-problem is solved
(e.g. adding two numbers) the entire expression is rewritten. Thus, the number of tokens needed is
n+(n− 1)+ (n− 2)+ · · · = O(n2). However, we use a different input format that encodes the tree
structure directly into the positional encodings, rather than processing the arithmetic expression
from left to right.

2In the arithmetic problems from Feng et al. [2024] we refer to n as the number of symbols in the problems. i.e.
numbers, parenthesis and arithmetic operations.
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7 Generalization to Different Tasks

In our definition of CRQs (Definition 3.1) each sub-question is defined as the argmax over inner
products. There are two main reasons for this choice: (1) The argmax function aligns well with
the attention layers in transformers, allowing for simple constructions, and (2) CRQ is a flexible
framework that includes natural problems like Boolean expressions as special cases. However,
the CRQ framework can be modified to include many more tasks, which we term general CRQ

(Definition F.1). Our upper bounds can be adapted to general CRQs. Namely, consider k operators
f1, . . . , fk : R3d → R

d, where each operator can be implemented by a ReLU network. We can now
define CRQs over binary trees, where each non-leaf v node is labeled by both a vector xv and an
operator fi for some i ∈ [k], while leaf nodes are labeled only by a vector. The answer to the
sub-question of a node v with leaf children u1, u2 will be fi(xv,xu1 ,xu2).

To give a concrete example of the generality of this formalism, it allows to represent arithmetic
problems. Let d = 1 and consider the operators f+, f−, f×, f÷ defined as f+(xv,xu1 ,xu2) = xu1 +
xu2 (ignoring the vector xv) and analogously for the other operators. Now, an arbitrary arithmetic
formula can be parsed into a tree and reformulated as a general CRQ. In Appendix F we provide
a more extensive discussion about these generalizations, and explain how our constructions can be
readily adapted to solve them.

8 Discussion and Future Work

In this work we present a general framework of problems which we term compositional reasoning
questions. We show the depth trade-offs of solving CRQs using deep transformers, RNNs, and
shallow transformers with CoT. Our results indicate that although transformers are highly paral-
lelizable, they must be deep being able to solve CRQs with depth scaling with the depth of the
tree of CRQs, this depth requirement is necessary. On the other hand, RNNs and CoT can solve
CRQs with constant depth, although their solution is not parallelizable, and requires sequential
computation.

There are several open questions remaining. First, is our solution using constant depth transform-
ers that generates n CoT tokens optimal, or is it possible to solve CRQs while generating fewer
tokens? Second, our work only considers the expressiveness point of view, it would be interesting to
understand the optimization process of transformers and other models when solving CRQs. Finally,
it would be interesting to understand how general the solutions learned by transformers are. Do
they generalize to other trees with different structures, sizes and different question regimes?
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A Proofs from Section 4

A.1 Proof of Theorem 4.1

The following lemma is useful for defining the positional encodings:

Lemma A.1. For any k ≥ 2 there exist v1, . . . ,vk ∈ {±1}4 log(k) such that | ⟨vi,vj⟩ | ≤ 3 log(k) for
all i ̸= j.

Proof. We sample v1, . . . ,vk ∈ {±1}4 log(k) uniformly at random. Note that for any i ̸= j we have
that E[⟨vi,vj⟩] = 0. By Hoeffding’s inequality we have that:

Pr (|⟨vi,vj⟩| ≥ 3 log(k)) ≤ 2 exp(−4 log(k)) . (5)

Applying union bound on the above for all pairs i ̸= j we get that:

Pr (∀i ̸= j, |⟨vi,vj⟩| ≤ 3 log(k)) ≥ 1− 2 exp(−4 log(k)) · k2 ≥ 1− 2

k2
.

In particular, for k ≥ 2 this probability is non-zero, meaning that there exists such vectors
v1, . . . ,vk.

Theorem 4.1. For any CRQ with up to n nodes, there exist at most |Y | ≤ n possible queries. By
Lemma A.1 there exist vectors z1, . . . , zn ∈ {±1}4 log(n) such that | ⟨zi, zj⟩ | ≤ 3 log(n) for any i ̸= j.

We will first describe how we embed each node as an input token to the transformer, and then
describe the construction of the transformer itself. For each node v ∈ V that is not a leaf, we set
one of the vectors zi’s to be corresponded with this node, and denote it as zv. Recall that P(v)
is the parent of node v. Note that although each node may have several children, it only has one
parent.

Each node of the tree will be embedded as a vector in R
2d+8 log(n)+2. The input tokens corresponding

to a leaf node u and a non-leaf node v are defined as:

tu :=

















xu

0d
zP(u)

04 log(n)
0
0

















, tv :=

















xv

0d
zv

zP(v)

ℓ(v)
1(ℓ(v) = L− 1)

















, (6)

where ℓ(v) is the depth of node v (the length of the shortest path from v to the root).

The crux of the construction lies mainly in the way we choose the embedding: The embedding first
contains the value of the leaves or query of the corresponding node. The embedding also contains a
positional encoding (PE), where each leaf token contains its parent’s PE, and each non-leaf token
contains its own PE as well as its parent’s. In addition, there is a number representing the depth
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of each node and a flag on whether a node is in the second to last layer (i.e it is the deepest
intermediate node connected to a leaf).

We construct the weights of the transformer so it will work as follows: In the first layer, each token
representing an intermediate node will attend either to itself, if its depth is higher than L−1, or to
its children, if its depth is exactly L− 1. This means that only the tokens of nodes in depth L− 1
will change while all other tokens of intermediate nodes will remain the same. Using the positional
encodings, the tokens at depth L−1 will attend only to their children, not to themselves, and after
the self-attention layer (before applying the V matrix) will be equal to the token representing their
child with the highest correlation to their query. We now use the V matrix, residual connection
and MLP so that the tokens with depth L− 1 will have a similar embedding to the leaves tokens,
and decrease the depth of all other intermediate tokens. We also make sure that the flag after the
first layer will be equal to 1 for nodes of depth L−2. We now apply a similar layer exactly L times,
so that in the final layer the output of the token representing the root will be equal to the solution
to the CRQ.

We now turn to the formal construction of the transformer. The order of the input tokens is not
important for the construction, except for the root token which will be the last token since its final
embedding will include the answer to the CRQ. Let c ≥ 1 be some universal constant such that
∥x∥2 ≤ c for every x ∈ Γd, there exists such a constant since Γ is finite. The matrices of all the
layers of the transformer will be the same and equal to:

K =





I2d+8 log(n)

0
1



 ,

Q =













I2d
6cI4 log(n)

cI4 log(n)
0
−6c log(n)













,

V =





0d Id
Id 0d

08 log(n)+2



 .

Before defining the MLP, we will explain how the attention layer operates on the input tokens.
Since the attention mechanism contains a hardmax head, the output of each token will depend
only on the token to which it attends. We will first show the next two claims:

1. Each token non-leaf node v with (tv)−1 = 0 will attend to itself.

2. Each token non-leaf v with (tv)−1 = 1 will attend to tu with argmaxtu,u∈C(v) ⟨xu,xv⟩.

For the first claim, let v be some node with (tv)−1 = 0. Then we have that:

t⊤v K
⊤Qtv = ∥xv∥2 + 6c ∥zv∥2 + c

∥

∥zP(v)

∥

∥

2 ≥ 28c log(n) (7)
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Now, let u ̸= v be some other node. If u is a leaf then we have that:

t⊤uK
⊤Qtv ≤ | ⟨xu,xv⟩ |+ 6c|

〈

zP(u), zv
〉

|+ c|
〈

000, zP(v)

〉

|
≤ c+ 24c log(n)+ < 25c log(n) .

If u is not a leaf then we have that:

t⊤uK
⊤Qtv ≤ | ⟨xu,xv⟩ |+ 6c| ⟨zu, zv⟩ |+ c|

〈

zP(u), zP(v)

〉

|
≤ c+ 18c log(n) + 4c log(n) < 23c log(n) ,

where we used that | ⟨zu, zv⟩ | ≤ 3 log(n) for u ̸= v. This shows that tv can only attend to itself.

Next, let v be a node with (tv)−1 = 1. Let u be a node with u ∈ C(v) and let w ̸= v with w /∈ C(v).
We have that:

t⊤v K
⊤Qtu = ⟨xu,xv⟩+ 6c ∥zv∥2

≥ −c+ 24c log(n) ≥ 23c log(n)

t⊤v K
⊤Qtw ≤ | ⟨xw,xv⟩ |+ 6|

〈

z′, zv
〉

|+ |
〈

zP(w), zP(v)

〉

|
≤ c+ 18c log(n) + 4c log(n) < 23c log(n)

t⊤v K
⊤Qtv = ∥xv∥2 + 6c ∥zv∥2 + c

∥

∥zP(v)

∥

∥

2 − 6c log(n)

≤ c+ 24c log(n) + 4c log(n)− 6c log(n) < 23c log(n) .

Here z′ is some vector with z′ ̸= zv (n fact, z′ = zw or z′ = zP(w), depending on whether w is a
leaf). This shows that tv can only attend to its children. It is also clear that tv will attend to its
child u that maximized ⟨xu,xv⟩. This finishes the two claims above.

After applying the V matrix and the residual connection from the previous layer, the output of
the self-attention layer on token tv is equal tv + ov, where (ov)(d+1:2d) = xv if (tv)−1 = 0 and
(ov)(d+1:2d) = argmaxxu,u∈C(v) ⟨xu,xv⟩ if (tv)−1 = 1. In words, the entries of each token in place
d + 1 until 2d after the self-attention layer is the solution to the sub-question for the deepest
non-leaves nodes of the tree, and for other nodes it is the queries themselves.

We now define an MLP that will reorganize the tokens before applying the next layer of self-
attention. The role of the MLP will be to perform the following operations on an input token
tv:

1. If the entries in places 2d+ 4 log(n) + 1 to 2d+ 8 log(n) are zero, then tv = 000.

2. If the last entry of tv is equal to 1, then replace the entries in places 2d+1 until 2d+4 log(n)
(which used to hold zv) with the entries in places 2d+4 log(n) + 1 until 2d+8 log(n) (which
used to hold zP(v)). Then, replace the entries in places 2d + 4 log(n) + 1 until 2d + 8 log(n)
with zeroes. This makes it a leaf embedding.

3. Replace between the entries in places 1 until d and d + 1 until 2d. Then replace the entries
in places d+ 1 until 2d with zeroes.

4. Add 1 to the entry in place 2d + 8 log(n) + 1. Then, if this entry is equal to L − 1, replace
the last entry with 1, if this entry is equal to L replace the last two entries with zeroes.

19



(

−1
−2

)

(

2
1

)

(

−2
1

)

φ

(

1
1

)

(

1
0

)

(

0
1

)

t0/t1

φ1 φ2

Figure 3: Left: Construction for ¬φ. Right: Construction for φ1 ∧ φ2 and φ1 ∨ φ2

The first operation zero out any token that corresponded to a leaf node, as they won’t be necessary
in later stages of the computation. The second operation turn tokens in the second to last layer to
have the same embedding as leaf nodes, namely that they only contain the PE of their parent, and
don’t have a PE of their own. The third operation update the value of xv, this only changes for
nodes that were in the second to last layer. For any other non-leaf node, since it attended to itself
both vectors are equal. The last operation updates the depth of each node. Now, each node that
was in the second to last layer will be embedded similarly to a leaf, while nodes in the third to last
layer will have 1 in their last coordinate.

Each such operation can be implemented by a 2-layer MLP with width bounded by O(d+ log(n)).
For example, to implement the first operation we use the function:

f(z) = σ(z + 1)− σ(z − 1/2) + σ(1− z)− σ(1/2− z) ,

that can be implemented by the first layer of an MLP. We concatenate the output of this function
on the 2d + 4 log(n) + 1-th coordinate of the input, to the input itself. Then, we use the output
layer to apply the function x̃ 7→ 000k ·(x̃)k+1+ x̃ ·(1−(x̃)k+1), where x̃ is the input concatenated with
the additional coordinate of the output of f , and k = 2d + 8 log(n) + 2. use similar constructions
to implement the rest of the operations.

After applying the MLP we have that each token is either equal to: (1) 000 if it was previously a leaf.
(2) An embedding of a leaf if it was previously in the second to last layer; or (3) An embedding of
a non-leaf node if it wasn’t a leaf or in the second to last layer. By applying the same construction
L times, we get that each node except the root is equal to 000, while the first d coordinates of the
root contain the answer to the CRQ, which is the final output of the transformer. This finishes the
proof.

A.2 Proof of Lemma 4.2

Our proof relies on a reduction to the Boolean Formula Evaluation Problem (BFEP). It was shown
in Buss [1987], that this problem is NC1-complete, thus a reduction of CRQ to BFEP would finish
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the proof. The BFEP is defined recursively over the alphabet: Σ = {1, 0,∨,∧,¬, (, )} in the
following way:

1. 0 and 1 are Boolean formula.

2. If φ is a Boolean formula, then (¬φ) is a Boolean formula.

3. If φ1, φ2 are Boolean formulas, then (φ1 ∨ φ2) and (φ1 ∧ φ2) are Boolean formulas.

The goal in BFEP, is given a Boolean formula to evaluate whether it is true or false (i.e. outputs 1
or 0). We will construct a translation function f from Boolean formulas to CRQ, and specifically
to a tree structure where each node is given a specific value. We will use vectors in R

2, while in
fact all the possible values of the vectors in the CRQ will be in {0,±1,±2}. We define the vectors

t1 =

(

1
0

)

and t0 =

(

0
1

)

. The translation function is defined recursively as follows:

1. For f(0) and f(1) we construct a node in the tree whose corresponding value is equal to t0
and t1 respectively.

2. Given two Boolean formulas φ1, φ2 we define f((φ1 ∧ φ2)) and f((φ1 ∨ φ2)) as the tree in
Figure 3 (right), where for ∧ we use t0 for the root, and for ∨ we use t1.

3. Given a Boolean formulas φ we define f((¬φ)) as the tree in Figure 3 (left).

We will first show that this construction can be done using TC
0 circuits, and then show its correct-

ness. Given a Boolean formula of length s, it is clear that the construction above creates a tree with
at most O(|s|) nodes, where the values of each nodes is a 2-d vectors with entries in {0,±1,±2}.
Thus, the total number of bits requires for the construction is also bounded by O(|s|).

The translation works recursively over the logical operators ¬,∧,∨, and to make the construction
work we need to know in which order to translate them. Namely, the root should begin with the
outmost logical operator, its children the second to outmost operators etc., until we reach either
0 or 1, which should be translated to leaves in the tree. We will show that this order can be
determined using TC

0 circuits. Given a Boolean formula φ we define by φi its character in place i.
We define:

ri =
∑

j<i

1
[

φj = ‘(’
]

−
∑

j<i

1
[

φj = ‘)’
]

. (8)

It is easy to see that ri can be calculated using TC
0 circuits. Now, the order in which the recursion

works is in increasing order w.r.t ri over the logical operators. Namely, begin with the logical
operator in place i where ri = 0, continue with ri = ±2 an so forth.

For the correctness of the reduction, it is an easy calculation to see that given ti for i ∈ {0, 1} the
construction for ¬φ outputs t1−i with the definition of a CRQ. Also, for ∧ and ∨ the construction
outputs correctly ti ∧ tj and ti ∨ tj for i, j ∈ {0, 1}. Therfore, this construction forms a reduction
from the BFEP to CRQ, and thus CRQ is NC1-hard.
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Algorithm 1: Memory-Rank Sort

Input: A Tree T = (V,E) with root vr and memory rank calculated for each node.
S = []
vcur ← vr
while |S| ≠ |V | do

if C(vcur) = ∅ or C(vcur) ⊆ S then
S ← vcur
vcur ← P(vcur)
Continue

vcur ← argmax
v∈C(vcur),v /∈S

mr(v)

Return: S

B Memory-rank sort

In this section we formally define the memory-rank sort. It is presented in Algorithm 1. We next
prove that performing memory-rank sort and calculting the memory-rank of all the nodes in a tree
can be done efficiently:

Lemma B.1. Let T = (V,E) be a rooted binary tree, then calculating the memory-rank of each

node and performing the memory-rank sort takes time O(|V |).

Proof. Calculating the memory rank of each node can be done using a reverse breadth-first search
(BFS) of the tree, traversing from the leaves to the root. BFS can be done in time O(|V |), and
calculating the memory rank of each nodes requires only knowledge of the memory rank of its
children. Thus, this can be done in a linear time by going over each node only once.

The time that Algorithm 1 runs is the number of iterations in the “while” loop. Note that each
leaf in the tree is visited at most once, since if vcur is a leaf, it is inserted to the list and not visited
again. For any non-leaf node, it is visited at most 3 times during the loop. Once for each one of
its children, and again when it is inserted into the list. In total the running time of the sorting
algorithm is bounded by 3|V |.

C Proofs from Section 5

C.1 Proof of Theorem 5.2

Proof. Our proof uses the following claim from communication complexity:

Claim C.1 (Lower bound for set disjointness [Yao, 1979]). Suppose Alice and Bob are given inputs

a, b ∈ {0, 1}n, respectively. Their goal is to calculate maxi aibi by alternately sending 1-bit messages

to one another over a sequence of communication rounds. Any deterministic protocol for computing

maxi aibi requires at least n rounds of communication.
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For simplicity of the proof, we use trees with 4n − 1 nodes instead of n, this will only effect the
constant in the Ω notation. We construct the following CRQ: The tree T = (V,E) is a balanced
binary tree with 4n− 1 nodes, thus it has 2n leaves. All the values of the leaves are in {±1}. The
nodes in the second to last layer are all equal to −1, and the rest non-leaf nodes are equal to 1. We
number the leaves as v1, . . . , v2n. Suppose we are given an instance of the set-disjointness problem,
where Alice is given the leaves v2i−1 and Bob the leaves v2i for i ∈ [n]. By the definition of CRQ,
the answer to the second to last layer nodes with leaves v2i−1 and v2i is 1 if v2i−1 = v2i = 1 and
−1 otherwise. In addition the answer to any other node will be 1 if one of its children is 1 and −1
otherwise. In total, the answer to the tree is 1 if there exists some i ∈ [n] with v2i−1 = v2i = 1 and
−1 otherwise.

Consider the following ordering of the nodes for the RNN: The first n nodes are v2i−1 for i ∈ [n],
the next n nodes are v2i for i ∈ [n]. The root is the last node in this ordering, and the rest of the
nodes are given in some arbitrary order. Suppose there is an RNN known to both Alice and Bob
that solves the CRQ problem above in the prescribed order of the nodes, and it has a hidden state
h ∈ R

m where each coordinate is represented by p bits. We will define the following communication
protocol to solve the set disjointness problem: Alice apply the RNN on her inputs. After each input
v2i−1 for i ∈ [n] she passes the hidden state hi to the next recurrence of the RNN. After n such
recurrences of the RNN, the hidden state hn is passed to Bob, he inputs his inputs v2j for j ∈ [n]
in the prescribed order, each time passing a hidden state. He continue to run the RNN on the rest
of the nodes, and output the answer to the CRQ. The number of bits transferred between Alice
and Bob is m · p, since the only communication between them is transferring hn and Alice finishes
processing her inputs. By Claim C.1 we have that mp = Ω(n), which finishes the proof.

C.2 Proof of Theorem 5.4

We first need the following two lemmas:

Lemma C.2. For a binary tree T with n nodes, we have that mr(T ) ≤ log(n).

Proof. Let rk be the smallest number of descendants for a node with memory-rank k. It is easy
to see that r1 = 2, which happens when the node has only two children that are leaves. Let v be
a node with mr(v) = k, and let u1, u2 be its children. It can be seen that rk ≥ 2rk−1. This is
because, if mr(u1) ̸= mr(u2), then one of them must be equal to k, assume w.l.o.g it is u1. This
means that either u1 or one of its descendants have two children with a memory-rank of k − 1. In
particular, the number of descendants of v is larger than 2rk−1. If mr(u1) = mr(u2), then they are
both equal to k − 1, in which case the same conclusion follows. Applying the recurrence formula,
we get that rk ≥ 2k.

Let k be the memory rank of a tree with n nodes. We have 2k ≤ rk ≤ n. Thus, k ≤ ⌊log(n)⌋.
Hence, for any tree with n nodes, the largest possible memory-rank of the tree is bounded by log(n).
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Lemma C.3. Let R, ϵ > 0 and d ∈ N. There exists a 2-layer neural network N : R2d → R with

width O
(

d2R
ϵ

)

such that maxx,y∈[−R,R]d |N (x,y)− ⟨x,y⟩ | ≤ ϵ .

Proof. We can use Lemma 6 from Daniely [2017] to find a 2-layer network N : R2 → R with width
O
(

R
ϵ

)

such that maxx,y∈[−R,R]d |N(x, y)−x ·y| ≤ ϵ. Summing d such networks over the coordinates
of x and y, and replacing ϵ with ϵ′ = ϵ

d proves the lemma.

Theorem 5.4. The main crux of the proof is to simulate a stack using a ReLU network with constant
depth. The maximal size of the stack for a tree T = (V,E) will be O(d ·mr(T )). The RNN will
execute the following pseudo-code:

1. Given an input node v, check the last node u in the stack:

(a) If u has the same depth or a larger depth than v, then add v to the stack.

(b) If u has a depth that is lower by exactly 1 than v, then pop out the last two nodes from
the stack u and w. If ⟨u, v⟩ ≥ ⟨w, v⟩ then insert u into the stack and raise its depth by
1. Otherwise, inset w and raise its depth by 1.

2. The stack is the hidden state that is transferred to the next iteration of the RNN.

We now turn to the formal construction. Each node v ∈ V in the tree will be embedded as a vector
(

xv

ℓ(v)

)

∈ R
d+1, where ℓ(v) is the depth of v. The hidden state of the RNN at the beginning will

be h = 0d(log(n)+1). The input to the RNN will be the current input vector, concatenated to the
hidden state. Throughout the proof we refer to x̃ the vector that is inputted to the RNN, namely
the concatenation of the embedding of each node with the hidden state. We call the part of x̃ that
contains the hidden state h the stack, and each consecutive d+ 1 coordinates in it as a node that
is was inputted to the stack. The reason is that this part of the input will simulate a stack where
the RNN can only access its first and second nodes, namely the first 2d+2 coordinates. The RNN
will add at most 3 coordinates to x̃, which will simulate flags with values that are either 0 or 1.
The RNN contains the following layers:

1. Layer 1: Check whether the depth of the input node v is the same or larger than the depth
of the last node in the stack. If so, turn on a specific flag for this event.

2. Layer 2: If the flag is turned on, insert v into the stack by moving all the elements log(n)+1
entries forward and putting v at the top of the stack.

3. Layer 3: If the flag is turned off, extract the last two nodes from the stack u1 and u2, and
calculate ⟨xu1 ,xv⟩ , ⟨xu2 ,xv⟩.

4. Layers 4 & 5: If the flag is turned off, insert u1 or u2 to the stack, whichever has the higher
inner product with v. Also, increase the depth of this node by 1.

Note that the input to the RNN is of dimension d(log(n) + 1) + d + 1, which is a concatenation
of the embedding of the current input node and the hidden state. We will also need to following
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parameters: Let c > 0 be such that c > |a| for every a ∈ Γ, namely, it is larger than all possible
entries of the xv’s, and that c > L, the depth of the tree. We have that c = O(n) which is the
largest possible depth of the tree. Also, let ϵ > 0 such that mina,b∈Γ |a− b| < ϵ. We think about ϵ
as a constant independent of n and d, as it only depends on the possible values in Γ. Each layer is
constructed in the following way:

First layer: We denote the input vector to the RNN is x̃. The first layer add a coordinate
to the input. All the input coordinates are copied, while the last coordinate is constructed as:
σ((x̃)d+1 − (x̃)2d+1 + 1) − σ((x̃)d+1 − (x̃)2d+1). Note that this added last coordinate is equal to 1
if (x̃)d+1 − (x̃)2d+1 ≥ 0, meaning that the current node has an equal or larger depth that the last
node in the stack, and 0 if (x̃)d+1 − (x̃)2d+1 ≤ −1. The copying of the input can be done by a
ReLU network, since σ(z)− σ(−z) = z for every z ∈ R. Thus, adding two identity matrices to the
weights of the MLP with different signs, and adding their outputs together will copy the inputs.

Second layer: Let A =

(

Id+1 000
Id(log(n)+1) 000

)

be a d(log(n) + 1) + d + 1 square matrix. The second

layer will perform the following operation:

x 7→ σ
(

Ix(1:−2) − 2cIx(−1) + c111
)

+ σ
(

Ax(1:−2) − 2cI(−x(−1) + 1) + c111
)

− c111 .

This operation can be implemented by a 2-layer network, where the constant 111 vectors are added
using the bias terms. This operation will apply the identity matrix to the inputs if the flag (defined
in the previous layer) is 0, and apply the A matrix if it is 1. The A matrix will copy the first d+1
entries (the current input node), and will move also add it to the stack, while also moving all the
other entries d + 1 coordinates further down in the stack. The added c111 factor is so that if there
are negative values in the entries of the inputs, they will not be removed by the ReLU, this factor
is removed at the end to keep the original value. We will later on prove that the stack will not get
overflown, meaning that we don’t delete the last d+ 1 entries of it.

Third layer: This layer will be used to approximate inner products. Assume that v is a non-leaf
node and let u1 and u2 be its two children. If it is a leaf node, this layer will not effect its input. The
layer will add two coordinates to its input vector, corresponding to an approximation of ⟨xu1 ,x⟩
and ⟨xu2 ,x⟩.

By Lemma C.3 there exists a 2-layer neural network N : R2d → R with width O(d2) such that
maxx,y∈Γd |N (x,y)−⟨x,y⟩ | ≤ ϵ

4 . We will stack two such networks that approximate up to an error
ϵ
4 the inner products ⟨xu1 ,xv⟩ , ⟨xu2 ,xv⟩. If xu1 ̸= xu2 , then by the assumption on ϵ we have that
| ⟨xu1 ,xv⟩ − ⟨xu2 ,xv⟩ | ≥ ϵ. By the construction of N , we also have that:

| ⟨xu1 ,xv⟩ − ⟨xu2 ,xv⟩ | ≤ |N (xu1 ,xv)−N (xu2 ,xv)|+
ϵ

2
.

This means that |N (xu1 ,xv)−N (xu2 ,xv)| ≥ ϵ
2 . We use a similar construction to the previous layer

to apply this calculation and add N (xu1 ,xv) and N (xu2 ,xv) only if the flag in the last coordinate
is turned off. Otherwise, if the flag is turned on, we just copy the inputs.

Fourth and Fifth layers: In the last layer, we add an additional flag on whether ⟨xu1 ,xv⟩ >
⟨xu2 ,xv⟩ and 0 otherwise. This can be calculated by using the following function:

x 7→ 2

ϵ

(

σ((x)−2 − (x)−2)− σ((x)−2 − (x)−2 −
ϵ

2
)
)

.
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By the argument from the previous layer, this function will provide the additional flag. All the
other coordinates are copied as is. We use another layer to pop out the first 2d + 2 coordinates
from the stack, meaning that all the entries in the stack are moved upward by d + 1 coordinates,

and the first d + 1 are changed to either

(

xu1

ℓ(u1)− 1

)

or

(

xu2

ℓ(u2)− 1

)

, depending on whether the

new flag is 1 or 0. Again, we apply this operation only if the flag from the first layer is turned off,
by using a similar construction to the second layer. The rest of the coordinates are copied, and
the coordinates of the flags that were used throughout the computation are removed. The output
will be the hidden state to the next recurrence with the dimension as the hidden state that was
inputted.

Proof of correctness: First, it is clear from the construction that applying the RNN on a single
input node will perform the pseudo-code described in the beginning of the proof. We will show the
the construction outputs the correct answer to the CRQ. When a node is inputted to the RNN,
according to the ordering of the memory-rank sort, there are three options:

1. Its depth is equal to the the depth of the first node in the stack. This can only happen to
leaf nodes, in which case, according to the memory-rank sorting, the node in the stack must
be a sibling of the inputted node.

2. Its depth is larger than the depth of the first node in the stack. In this case, the first node in
the stack will be pushed down to the second place after applying the RNN.

3. Its depth is smaller by exactly 1 than the last node in the stack. In which case, it must be
its parent, and the second node in the stack is its sibling. After applying the RNN, both
nodes are popped out, and the node that correctly answer the query corresponding to v is
inputted back to the stack, but with an updated depth. In this case, all the descendants of
the inputted node have already being processed by the RNN, and the next inputted node will
necessarily be its parent or sibling.

By induction over the nodes of the tree, and using these three options we get that after applying
the RNN to the root (which is the last inputted node), the only node left in the stack is the answer
to the question given by the root, which is the answer to the CRQ.

We are left with showing that the stack does not overflow. We will show that the maximal number of
nodes in the stack is bounded by mr(T )+1. Since the number of coordinates in the representation
of each node is d + 1, using Lemma C.2 finishes the proof. Let v be some node with mr(v) = k.
We will first show by induction on k that at any point in time, before processing v, the maximal
number of nodes in the stacks that are also descendants of v is bounded by k. If k = 0 then v is a
leaf a doesn’t have any children. For the induction step, assume k > 0, and let u1, u2 be the two
children of v. If mr(u1) = mr(u2), then by the definition of memory rank, they are both equal to
k − 1. Assume w.l.o.g that u1 is processed before u2. Note that in this case, u2 is processed only
after all the descendants of u1 are processed. Then, by the induction step, the maximal number
of nodes in the stacks that are also descendants of u2 is bounded by k − 1. Hence, the maximal
number of nodes in the stack that are descendants of v is k, which includes u1. If mr(u1) ̸= mr(u2),
assume w.l.o.g that mr(u1) > mr(u2), then u1 is processed before u2 (resp. u2 before u1). In this
case, by the induction case, again the number of nodes in the stack the are descendants of v, are
either descendants of u1, in which case no nodes that are descendants of u2 have being processed,
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or descendants of u2, in which case u1 is in the stack, as well as at most k − 1 descendants of u2.
This finished the induction.

Now, we will show that the number of nodes that are not descendants of v and are in the stack
is bounded by 1 +mr(T ) − k. This will be by induction over P(i)(v), namely the ancestors of v.
We assume that mr(k) = v. If mr(P(v)) = k, then v is processed before its sibling, which by
the induction we showed before, the number of nodes in the stack that are descendant of P(i)(v)
is bounded by k. If mr(P(v)) = k + 1, then the sibling of v either have a memory-rank of k or
larger than k. In both cases it can be processed before v (as well as all its descendants), hence the
number of nodes in the stack that are descendants of P(v) is bounded by k + 1. Using the same
induction argument as before, applied for the sibling of P(i)(v), we get that the number of nodes
the are descendants of v that are in the stack is bounded by mr(P(i+1)(v)) + 1.

Combining the two inductive arguments above, we get that when v is processed into the RNN, the
number of nodes in the stack is bounded by mr(T ) + 1. This finishes the correctness proof.

By induction on mr(v). If mr(v) = 0, then it is a leaf. By Algorithm 1, since v doesn’t have
children, the only node that is processed before it can be its sibling. When its sibling was processed
necessarily all its children were already processed, hence there is at most 1 node in the stack.
Assume that if mr(u) = k, then there are at most k + 1 nodes in the stack, and let v with
mr(v) = k + 1. Denote by u1 and u2 the children of v, and assume w.l.o.g that mr(u1) ≥mr(u2).
If mr(u1) > mr(u2), then mr(v) = mr(u1). This means that u1 was processed before u2. Hence,
u1 is in the stack, and u2 was processed right before v, which by induction shows that there are
at most k + 1 nodes in the stack. If mr(u1) = mr(u2), the by the definition of memory-rank, it
necessarily happen that they are both equal to k. Assume w.l.o.g that u1 is processed before u2
(the order of them being processed is chosen arbitrarily in this case). Hence, when processing u2
there are at most k nodes.

C.3 Proof of Theorem 5.5

We begin with proving the theorem for balanced binary trees and then generalize to other trees.
Let T be a rooted balanced binary tree of size n with a given ordering of the nodes denoted as:

v1, . . . , vn. Let k := log2(n + 1). We define the vectors t0 =

(

0
1

)

, t1 =

(

1
0

)

, tnull =

(

0
0

)

. We

now define a set of CRQs given by xvi ∈ {t0, t1, tnull} for all i ∈ [n]. We will show that given an
RNN that solves all CRQs with this tree and this ordering of the nodes must have a hidden state
containing Ω(log(n)) bits.

As in Lemma 4.2, an intuitive way to look at these CRQs is as Boolean formulas. For leaf nodes
t0 represents 0 and t1 represents 1. For non-leaf nodes, t0 represents ∧ and t1 represents ∨. The
vector tnull is used by a hidden node to pass values up the tree without changing them, as described
below.

Let u1 be the last leaf node in the prescribed ordering. Denote its ancestors as u2, . . . , uk, where
uk is the root. Also, for each ui with i ̸= 1 denote its other child as wi−1 (i.e. the sibling of ui−1).
Suppose that the current input to the RNN is u1. We will show that the RNN needs at least k bits
in its memory at this point in the calculation to solve the CRQ.

27



We consider the set of CRQs defined by the following rules:

1. Each of the nodes w1 and u1, . . . , uk is equal to either t0 or t1.

2. For each node w2, . . . , wk−1, all its leaf descendants are identical to one another. Either they
are all t0, or they are all t1. Its non-leaf descendants, including itself, are all equal to tnull.

To solve the sub-question represented by u2, the RNN must use 1-bit of memory to remember
w1, since by assumption, w1 precedes u1 in the sequence. Similarly, to solve the sub-question
represented by u2, the RNN must know the answer to w2. Because of rule 2, each subquestion
in the subtree rooted at w2 results in a tie. Because all the leaves in this subtree are identical,
the answer to the subquestion rooted at w2 equals any of its descendant leaves. These leaves all
precede u1 in the sequence, so we must use 1-bit of memory to store their value. For each node
u2, . . . , uk, the RNN must store at least 1 bit of memory at the point when it processes u1. In total,
this amounts to log(n) − 1 bits of memory that needs to be transferred through the hidden state
of the RNN.

Now, let T be some rooted tree of size n, which is non necessarily a balanced binary tree. Denote
by ℓ := mr(T ), and recall this means that the root has a memory-rank of ℓ. We will find a subset
of T that forms a balanced binary tree whose depth equals ℓ. We will construct all the other nodes
to simply copy their inputs up the tree, and appeal to the case of a balanced binary tree proved
above.

We first show how to find such a subset. If the root has two children with a memory rank of
ℓ− 1, denote the root by u1. Otherwise, exactly one of its children has a memory-rank of ℓ; search
recursively through its children until a node with two children of rank ℓ−1 is found and label it u1.
We now apply the above procedure recursively on the two children of u1. This yields two nodes,
u2 and u3, each of which has two children with a memory rank of ℓ− 2. We apply this procedure
recursively until we defined nodes u1, . . . , u2ℓ , where each node is either a leaf or has two children
with the same memory-rank as one another. By the definition of memory rank, this process will
generate a subset that forms a (possibly non-consecutive) complete binary tree.

We now construct a family of CRQs on the original tree whose answer always equals that of the
complete binary subset {u1, . . . , u2ℓ}. Nodes in the subset are labeled with t0, t1, tnull, as above,
except we append an extra 1 to each of these vectors:

t0 =





0
1
1



 , t1 =





1
0
1



 , tnull =





0
0
1



 , (9)

Each node of the original tree that is not in the subset is labeled with one of the following two

vectors: t+ =





0
0
1



 or t− =





0
0
−1



. Specifically, leaf nodes that are not in the subset are labeled

with t−, and non-leaf nodes are labeled with t+. To see that the answer to this CRQ equals that
of the CRQ corresponding to the balanced binary subset, it suffices to show that the vectors t+
and t− are never chosen over t0 and t1 at any subquestion. First, we show that t− is never chosen
over t0 and t1. This can be seen be enumerating all the possible values that the parent (non-leaf)
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node can take on (t0, t1, tnull, t+) and seeing that each prefers t0 and t1 to t−. Second, t+ is never
even compared to t0 and t1, because no leaves are labeled with t+.

We now define a CRQ over u1, . . . , u2ℓ the same way as in the balanced binary tree case using
t0, t1, tnull. By construction, the depth of this synthetic tree is ℓ = mr(T ), so the RNN needs
memory of size mr(T ).

Finally, if an RNN solves all CRQs on trees of size n, it also solves them on balanced binary trees
of size n. Thus, the number of required bits in the hidden state of the RNN is Ω(log(n)).

D Extension of the RNN solution to non-binary trees

D.1 Converting non-binary to binary trees

Suppose we have a CRQ over a tree T with n nodes and max degree k. We can transform it to
an equivalent CRQ over a binary tree T ′ with 2n nodes and max degree 2. By equivalent we mean
that the answer to the two CRQs are the same.

The construction is as follows: Let v be some node with degree k and denote its leaves by u1, . . . , uk.
Suppose that k = 2ℓ for some integer ℓ. We create a balanced binary tree with at most 2k nodes
and depth ℓ. The leaves will have vectors xu1 , . . . ,xuk

and all the non-leaf nodes have a vector
equal to xv. It is easy to see that the answer to the sub-question of the root of this tree is the
same as the answer to the sub-question of the node v from the original tree. The number of nodes
is increased by a factor of at most 2. If k is not a power of 2, we can duplicate the last leaf node
until the number of leaves is a power of 2 and use the same construction.

Doing this for every node increases the size of the tree by a factor of at most 2, and the resulting
CRQ will have the same answer as the original CRQ.

D.2 Memory-rank for non-binary trees

In this sub-section we explain how to extend some of the results from Section 5 to non-binary trees.
We first define memory-rank for general trees:

Definition D.1 (Memory Rank for non-binary trees). Let T = (V,E) be a rooted tree. The

memory rank of a node v ∈ V is defined recursively as: mr(v) = 0 if v is a leaf. If v is not a

leaf, suppose it has k children denoted by u1, . . . , uk where mr(u1) ≥ · · · ≥mr(uk), then:

mr(v) = max (mr(u1),mr(u2) + 1, . . . ,mr(uk) + k − 1)

It is straightforward to see that this definition generalizes Definition 5.3. Also, Algorithm 1 readily
generalizes to Definition D.1, since it has no dependence on the degree of each node.

Extending Theorem 5.4 to general trees with maximal degree of k can be done in a straightforward
way by having an RNN with hidden dimension of O(dk log(n)) and O(k) layers. The idea is to add
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for each node an additional coordinate representing its degree. Now, in the proof of Theorem 5.4,
when the last two nodes are extracted from the stack (layer 3 in the construction), we split this
into k layers. Each layer checks the degree of the parent node from 2 until k and for degree i
extracts the last i nodes from the stack. This can be implemented by a ReLU network of depth
O(k). Finally, the node with the highest inner product to the parent is inserted back to the stack
with an updated depth (similarly to layers 4 and 5 from the proof of Theorem 5.4).

We believe it is also possible to extend this construction to having depth O(1) and hidden dimension
O(d log(n)) for general trees by changing the sorting algorithm. This can be done by splitting the
argmax operation over k inputs into k − 1 argmax operations, each over 2 inputs, where these
operations are nested. We leave this construction for future works.

E Proofs from Section 6

The main idea of the construction is to iteratively use the self-attention layer constructed in The-
orem 4.1, while wrapping it with a construction that allows outputting CoT tokens in the right
order.

By Lemma A.1 there exist vectors z1, . . . , zn ∈ {±1}4 log(n) such that | ⟨zi, zj⟩ | ≤ 3 log(n) for any
i ̸= j. We will use these vectors twice, and for two different use cases. The first one is similar to
the construction of Theorem 4.1. Namely, for each node v ∈ V that is not a leaf, we set one of the
vectors zi to be corresponded with this node and denote it as zv.

We also assume that the tree has a reverse BFS ordering. This means that we do a standard BFS
ordering of the tree, and order of node i in the reverse order is n − i + 1. For a node v, let I(v)
be be its place in the reverse BFS ordering. We also correspond one of the vectors defined above
to each place in this order we denote this vector as wI(v). For the root vr we have I(vr) = n, and
define wI(vr)+1 = w1. We use a different notation for the BFS ordering to not confuse them with
the other set of positional encoding, although this is the same set of vectors. It is also possible to
find another set of vectors with the same property, although it won’t matter for the construction.
The embedding for a leaf node u and a non-leaf node v are defined as:

tu :=





















xu

0d
zP(u)

04 log(n)
wI(u)

wI(u)+1

0





















, tv :=





















xv

0d
zv

zP(v)

wI(v)

wI(v)+1

1





















∈ R
2d+16 log(n)+1 . (10)

As in Theorem 4.1, all the coordinates of the positional encoding are in ±{1}, and the matrices that
operate over these coordinates will have all their entries in {−1, 0, 1}. We will first give an intuitive
explanation of the embedding and how the transformer will work. The embedding first contains the
vector x corresponding to the node. It also contains its own positional encoding zv if its a non-leaf,
and the positional encoding of its parent. Next, it contains the vector representing its place in the
reverse BFS ordering, as well as the subsequent vector in the order. The last coordinate is a flag
for whether a node is a leaf.
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The transformer will contains 2 self-attention layers, and an MLP with O(1) layers after each self-
attention layer. The first self-attention layer and the MLP afterwards is similar to the construction
in Theorem 4.1. Their goal is to solve the sub-questions in the CRQ. This layer will use the z’s
positional encoding vectors. The second self-attention layer will make sure that the last CoT token
that was created will attend to the next token corresponding to the node after it in the reverse BFS
ordering. This way, each CoT token will provide an answer to one sub-question of the CRQ, and
using the reverse BFS order we make sure that any subsequent questions will have the questions of
their children already solved.

We now turn to the formal construction: Let c ≥ 1 be some constant such that ∥x∥2 ≤ c for every
x ∈ Γd. The matrices for the first self-attention layer are equal to:

K =













Id
000d×d √

c · I4 log(n)
00012 log(n)×12 log(n) √

3c













Q =













Id
000d×d √

c · I4 log(n)
00012 log(n)×12 log(n)

−
√
3c













,

V =





000d×d Id
Id 000d×d

00016 log(n)×16 log(n)+1



 .

We will first show to which each token can attend to. Let v be some non-leaf node, and u a child
of v which is a leaf, and w some other node. We will show that v can only attend to u:

t⊤v K
⊤Qtu = ⟨xv,xu⟩+ c ∥zv∥2 ≥ 4c log(n)− c

t⊤v K
⊤Qtv = ∥xv∥2 + c ∥zv∥2 − 3c ≤ 4c log(n)− 2c

t⊤v K
⊤Qtw = ⟨xv,xu⟩+ c ⟨zv, zu⟩ − 3c ≤ 4c log(n)− 2c

This shows that t⊤v K
⊤Qtu ≥ t⊤v K

⊤Qtv and t⊤v K
⊤Qtu ≥ t⊤v K

⊤Qtw. In particular, v will attend
to its child with maxu∈C(v) ⟨xv,xu⟩, which is the correct answer to the sub-question represented by
v. After applying the V matrix and adding the residual connection, the to embedding of v is equal
to:

t̃v =





















xv

xu

zv
zP(v)

wI(v)

wI(v)+1

1





















,

where xu maximizes the inner product with xv over its children. The first layer of the MLP doesn’t
change the input. This can be easily done with a ReLU network since σ(z)− σ(−z) = z for every
z ∈ R.
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The second self-attention layer will have the following weights:

K =









0002d×2d

0004 log(n)×4 log(n) I4 log(n)
0004 log(n)×4 log(n) 0004 log(n)×4 log(n)

0









,

Q =









0002d×2d

I4 log(n) 0004 log(n)×4 log(n)

0004 log(n)×4 log(n) 0004 log(n)×4 log(n)

0









,

V =













000d×d Id
000d×d 000d×d

0004 log(n)×4 log(n) I4 log(n)
0004 log(n)×4 log(n) 0004 log(n)×4 log(n)

I8d log(n)+1













.

The second MLP will again just copy the input, and we will not use the residual connection for the
second layer 3.

We now turn to prove the correctness of the construction. The second self-attention layer forces
each token v to attend to the token u with I(u) = I(v) + 1, namely the consecutive token in the
reverse BFS order. The V matrix of the second self-attention layer transform the embedding of this
token to be similar to that of an embedding of a node. Suppose we constructed k − 1 CoT tokens
already, and for a node v, I(v) = k. By the ordering, this means that all the descendants of v
have being processed. Also, if v have descendants that are non-leaves, then the first layer correctly
solved the corresponding sub-question to them, and they were outputted as CoT tokens with a
similar embedding to a leaf node. Hence, in the current iteration, the token corresponding to v will
necessarily attend the token corresponding to its child that solves the sub-question. In addition,
the last token CoT token that was created will necessarily attend to the token corresponding to
v by the construction of the second self-attention layer. This means that the new CoT token will
be the answer to the sub-question corresponding to v, with and embedding similar to a leaf. This
is true for any node v, hence the last CoT token will contain the answer to the root, which is the
answer to the CRQ.

F General CRQs

In this appendix we present a generalization of CRQs by allowing different operators. For simplicity
we only consider binary trees. Given a CRQ over a non-binary tree we can always define an
equivalent CRQ over a binary tree, where the number of nodes increase by a factor of at most 2,
see Appendix D. We begin with a formal definition:

Definition F.1. A General Compositional Reasoning Question (GCRQ) is a rooted binary

tree T = (V,E) with root vr ∈ V , and a set of operators f1, . . . , fk : R3d → R
d. Each node v ∈ V is

3It is always possible to ignore the residual connection (if it exists) by doubling the embedding dimension. This can
be done by adding zero coordinates, then use the V matrix to copy the original vector intro those added coordinates,
and use another linear layer from the MLP to move back the vector to the first coordinates while removing what was
added from the residual connection.
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labeled by a vector xv ∈ Γd, and non-leaf nodes are also labeled by a number iv ∈ [k]. Here Γ ⊂ R

is some finite vocabulary of constant size and d ∈ N.

The answer to the GCRQ is defined as A(vr) where the function A is defined recursively: For a

leaf u ∈ V we define A(u) = xu. For a non-leaf node v ∈ V with children u1, u2 we define:

A(v) = fiv(xv,A(u1),A(u2)) .

We refer to every node v ∈ V which is not a leaf as a sub-question.

For a concrete example, we show how to implement arithmetic problems using GCRQs. Let Γ =
{0,±1, . . . ,±A} for some constant integer A. Also assume that d = 1. We define the operators:
f+, f−, f×, f÷ as:

f+ = (xv,xu1 ,xu2) = xu1 + xu2 , f− = (xv,xu1 ,xu2) = xu1 − xu2 ,

f× = (xv,xu1 ,xu2) = xu1 × xu2 , f÷ = (xv,xu1 ,xu2) = xu1 ÷ xu2 .

Note that each such operator can be represented by a ReLU network. For f+ and f− this is clear,
since these are linear operators. For f× we can use Lemma C.3 to approximate (x, y) 7→ x · y up
to an accuracy of 1

4 with a 2-layer network. Since the alphabet is finite, We can threshold over
integers using another ReLU layer to get an exact representation of multiplication over a finite set
of integers. A similar construction can be used for f÷.

We now explain how to change our constructions to work with GCRQs. Note that the only place in
the proofs of Theorem 4.1 and Theorem 6.1 we use the fact that the operator is argmax, is where
we use a single self-attention layer to calculate inner products. Instead, we can use such a layer so
that the parent node will attend to both its children with the output being a concatenation of their
vectors. In more details, assume that each two siblings u1 and u2 in the tree are labeled by vectors
(

xu1

000d

)

and

(

000d
xu2

)

. Then, their parent can attend to both of them with the same weight using

the positional embeddings, in the same way as done in the proofs of the mentioned theorems. We
also construct the MLP so that its input will include the reference to the operator iv. The MLP
will simulate an ”if“ statement over the k operators and apply the relevant one over the vectors
xv,xu1 ,xu2 . This ”if“ statement can be simulated by a k-layer ReLU network (we assume the k is
independent of n).

A similar construction will work for the proof of Theorem 5.4, where here the MLP will output the
last two inputs from the stack and apply the operator iv. Again, it will increase the depth of the
MLP by k. We leave exact constructions for future work.
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