
Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Christian Pedersen 1 2 Laure Zanna 1 2 Joan Bruna 1 2

Abstract

Autoregressive surrogate models (or emulators)

of spatiotemporal systems provide an avenue for

fast, approximate predictions, with broad applica-

tions across science and engineering. At inference

time, however, these models are generally unable

to provide predictions over long time rollouts due

to accumulation of errors leading to diverging tra-

jectories. In essence, emulators operate out of

distribution, and controlling the online distribu-

tion quickly becomes intractable in large-scale

settings. To address this fundamental issue, and

focusing on time-stationary systems admitting an

invariant measure, we leverage diffusion models

to obtain an implicit estimator of the score of this

invariant measure. We show that this model of

the score function can be used to stabilize autore-

gressive emulator rollouts by applying on-the-fly

denoising during inference, a process we call ther-

malization. Thermalizing an emulator rollout is

shown to extend the time horizon of stable pre-

dictions by two orders of magnitude in complex

systems exhibiting turbulent and chaotic behav-

ior, opening up a novel application of diffusion

models in the context of neural emulation.

1. Introduction

The modeling of dynamical systems is a cornerstone task

in the physical sciences and engineering, with applications

across weather (Pathak et al., 2022; Watt-Meyer et al., 2023;

Lam et al., 2023; Lang et al., 2024) and climate modeling

(Kochkov et al., 2024; Subel & Zanna, 2024; Lupin-Jimenez

et al., 2025). The standard approach to modeling these sys-

tems is to solve the underlying partial differential equation

(PDE) describing the system using numerical methods. In

the case of high-dimensional systems, the computational

1Courant Institute of Mathematical Sciences, New York Univer-
sity, USA 2Center for Data Science, New York University, USA.
Correspondence to: Joan Bruna <bruna@cims.nyu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

cost of numerical methods becomes extremely large. Tur-

bulent fluid flows, for example, involve dynamical coupling

across length scales spanning orders of magnitude, and accu-

rately modelling the full dynamical range is often intractable

for many important applications.

Deep learning (DL) methods have been applied in vari-

ous ways to mitigate the cost of obtaining PDE solutions.

One approach is to couple a coarse-resolution numerical

solver with a DL component, either as a learned correction

(Kochkov et al., 2021) or as an additional forcing term in the

PDE, formulated using the large-eddy simulation framework

(Duraisamy et al., 2019). DL models have also been applied

as surrogate models, or emulators, replacing the numerical

scheme entirely, and leveraging the speed of graphical pro-

cessing units (GPUs) to provide fast approximate solutions

(Sanchez-Gonzalez et al., 2020; Stachenfeld et al., 2021).

Such emulators are being applied in the context of weather

(Pathak et al., 2022; Lam et al., 2023; Bi et al., 2023) and

climate modelling (Kochkov et al., 2024; Watt-Meyer et al.,

2023; Subel & Zanna, 2024), with computational speedups

of up to five orders of magnitude (Kurth et al., 2023).

The standard approach to constructing a neural emulator

is to predict the state of the system at some future time

as a function of the current timestep. Simulated trajecto-

ries are then generated by a rollout of many autoregressive

passes, where the predicted state is fed back into the emu-

lator. This framework suffers from instabilities over long

timescales, as accumulation of errors leads to a drift of the

emulator trajectory away from the truth (Chattopadhyay

et al., 2023; Bonavita, 2024; Parthipan et al., 2024; Bach

et al., 2024). Eventually, the drift becomes large enough that

the state is out of distribution, and trajectories exponentially

diverge. Some proposed modifications to improving the

stability of rollouts include the addition of noise to train-

ing data (Stachenfeld et al., 2021), training over multiple

consecutive timesteps (Vlachas et al., 2020; Keisler, 2022),

predicting multiple timesteps at once (Brandstetter et al.,

2022), including additional input channels representing ex-

ternal forcings(Watt-Meyer et al., 2023; Subel & Zanna,

2024), and adding iterative refinement steps focusing on

different frequency components (Lippe et al., 2023).

The situation is further complicated by the fact that the sys-

tems that are being modelled are generally chaotic. Indeed,

1

a
rX

iv
:2

5
0
3
.1

8
7
3
1
v
2

[c

s.
L

G
]

 8
 J

u
l

2
0
2
5

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

a stationary measure, or, using again the continuous-time

formulation, when the associated Fokker-Plank equation

∂tµt = ∇ · (−Fµt) + ∆µt admits no equilibrium, due to

the fact that the irrotational component of F does not have

enough decay at infinity.

Mitigating distribution shifts. In the face of the previous

discussion, it is thus tempting to control the extent of distri-

bution shift by adding a regularisation term in the training

objective. Given a model Qθ for the one-step transitions,

and assuming again irreducibility, it has an associated in-

variant measure µθ, characterized as the (unique) Perron

eigenfunction of Qθ. Provided one can access (or estimate)

the true invariant measure µ of the system, one can thus

consider a learning objective that combines both sources of

error:

L(θ) = Ey∼µD(Q(·|y),Qθ(·|y)) + λD̃(µ, µθ) . (4)

Here, we keep the presentation informal, and consider

generic (and possibly distinct) probability metrics D, D̃, as

long as they admit Monte-Carlo estimators. The important

aspect of Eq (4), however, is the presence of µθ, which is

only known implicitly as the invariant measure of the kernel

Qθ. While some prior works, e.g. (Schiff et al., 2024), have

explored such learning objective in physical applications,

it presents an important computational challenge, since it

requires estimating the invariant measure µθ each time θ

is updated. In challenging situations where Qθ does not

have a substantial spectral gap, obtaining µθ from Qθ may

become prohibitively expensive. In the next section, we

introduce an alternative framework to address such distri-

bution shift, which also relies on having a model for the

invariant measure µ of the true system but crucially avoids

the computation of µθ.

Estimating the Invariant Measure using Diffusion Mod-

els. Diffusion models (Sohl-Dickstein et al., 2015; Song

& Ermon, 2019; Ho et al., 2020) have been tremendously

successful in the field of generative modeling. The frame-

work is based on modeling the inverse of an iterative noising

process, which is best thought of as the discretisation of an

underlying continuous diffusion process. Let us recall the

main ideas which will be needed to define our method.

Given X0 ∼ ν0 := µ, we consider the Ornstein-Ulhenbeck

(OU) process dXs = −Xsds +
√
2dBs, where Bs is the

standard Brownian motion. The law νs of Xs solves the

associated Fokker-Plank equation ∂sνs = ∇ · (xνs) +∆νs,

which can also be written as the transport equation ∂sνs =
∇ · ((x + ∇ log νs)νs). It is well known that the law νS
converges exponentially fast (in KL) to the standard Gaus-

sian measure γd := N (0, Id), so νS ≈ γd for S large

enough. Now, by changing the sign of the velocity field

and introducing again the diffusive Laplacian term, this

transport equation can be formally reversed: if ν̃s solves

∂sν̃s = ∇ · ((−x− 2∇ log νS−s)ν̃s) +∆ν̃s, with ν̃0 = νS ,

then ν̃S = ν0. In other words, the reverse diffusion

dX̃s = (X̃s + 2∇ log νS−s(X̃s))ds+
√
2dBs , (5)

with X̃0 ∼ γd, satisfies X̃S ∼ ν0 up to an exponentially

small error (due to the difference KL(νS ||γd) = O(e−S)).

The above procedure defines a non-equilibrium sampling

scheme that requires access to the scores ∇ log νs along the

OU semigroup. As it turns out, such scores can be efficiently

estimated from original samples of µ via a denoising ob-

jective. Indeed, defining the Denoising Oracle D(y, σ) :=
E[x|y], where y = x+ σz, x ∼ µ and z ∼ γd, Tweedie’s

formula (Robbins, 1992), relates the score to the Denois-

ing oracle via an explicit affine relationship, ∇ log νs(x) =
−α−1

s (x + βsD(x, αs)) for explicit values of αs and βs.

Finally, D(·, σ) can be efficiently estimated from samples

using the MSE variational characterisation of the posterior

mean: D = argminF :Rd×R→Rd

∫
Ex∼ν,z∼N (0,I)[∥X −

F (X + σZ)∥2]dσ. Here αs and βs are as defined in (Ho

et al., 2020).

The standard Denoising Diffusion Probabilistic Model

(DDPM) framework (Ho et al., 2020) introduced an effi-

cient implementation of the above scheme, by considering

appropriate discretization of the noise levels, and where the

denoiser D = Dϕ is represented by a neural network with

parameters ϕ. In the generative modeling case, the noise

scheduling spans the full range from the unperturbed data

distribution at s = 0, to pure Gaussian noise at s = S

(where S is generally in the range ≈ 1000). As we shall see

next, we will introduce a different use of diffusion models.

Using the available data, we can estimate a diffusion model

for the equilibrium distribution µ, that we will use to build

a coupling between µ̂, a perturbation of the equilibrium,

and µ. This coupling can be interleaved with timestepping

performed by the emulator, constraining the emulated tra-

jectory to stay in regions of state space consistent with the

training data, a process we call thermalization. Compared

to the generative modeling approach, we are only interested

in small amounts of denoising at the very low noise end of

the scheduler, i.e. at low s.

3. Related work

Large-scale autoregressive models: In the context of cli-

mate and weather modelling, several large scale autoregres-

sive models have been developed (Pathak et al., 2022; Lam

et al., 2023; Bi et al., 2023; Lang et al., 2024; Kochkov

et al., 2024), and are indeed being deployed for commercial

and public use. Despite the tremendous success of these

models over short timescales, long-term instability due to

error accumulation over large numbers of timesteps is still a

common problem.

4

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Diffusion models for PDEs: In (Lippe et al., 2023), an au-

toregressive model is used to predict the next timestep, and

then a small number of “refinement” steps are applied to the

prediction. These refinement steps are trained on a denoising

loss, and can therefore be interpreted as DDPM denoising

steps, analogous to our thermalization steps. Therefore our

work is similar in nature, however with the key differences

that their denoiser is a conditional model, and that our de-

noising model is constructed separately to the emulator and

applied adaptively at inference time. Additionally, we in-

vestigate rollouts over many more autoregressive passes,

up to 1e5 steps. Diffusion models have also been applied

to generating realizations of turbulent fields (Lienen et al.,

2023), and emulation in the form of autoregressive condi-

tional models (Kohl et al., 2023; Price et al., 2023), where

the probabilistic nature of predictions is able to improve

modeling of chaotic dynamics. To reduce the computa-

tional cost of generating next step predictions, (Gao et al.,

2024) performs the conditional generation in a learned, low-

dimensional latent space, and (Shehata et al., 2025) develops

a more efficient conditional generation algorithm. Diffusion

models have also been applied to large-scale weather mod-

elling, both for the purposes of emulation (Price et al., 2023;

Rühling Cachay et al., 2024) and for statistical downscaling

(Mardani et al., 2023; Wan et al., 2023).

Stabilizing rollouts: A central problem in fully learned au-

toregressive simulators is the accumulation of errors and re-

sultant instabilities. Several regularisation terms have been

proposed (Chattopadhyay et al., 2023; Schiff et al., 2024;

Guan et al., 2024). (Brandstetter et al., 2022) used training

over multiple consecutive timesteps to improve stability,

while the addition of training noise has also been demon-

stated to improve stability when using a single timestep

prediction (Stachenfeld et al., 2021). The study in (List

et al., 2024) investigated an approach to multi-timestep

training without propagating gradients. The inclusion of

forcing from external systems has been shown to stabilize

extremely long rollouts in emulation of ocean models (Watt-

Meyer et al., 2023; Subel & Zanna, 2024). Decomposing

the system into linear and non-linear components was also

demonstrated to improve stability in simple 1D non-linear

systems (Linot et al., 2023).

4. Methodology

4.1. Emulator

We first describe the framework for the construction of the

emulator. We represent the neural-network model as Φβ .

We found the best performance when using an emulator to

model the residuals between two timesteps, i.e., a predicted

state can be denoted x̂t+1 = x̂t + Φβ(x̂t) + τn where

the final term represents the stochastic component, so n ∼
N (0, I) and we set τ = 1e−5 throughout the paper. The

neural network parameters β are optimized by minimizing

a MSE loss function:

Lβ =
1

N

N∑

k=1

L−1∑

t=0

∥ Φβ(x̂
k
t)− (xk

t+1 − xk
t) + τn ∥2, (6)

where trajectories start from a simulation snapshot (x̂0 =
x0), L represents the length of a training trajectory (through-

out this paper, we use L = 4), k indexes an individual

training trajectory, and the loss is averaged over a total

of N training trajectories. Gradients are backpropagated

through the full L timesteps, as done in (Brandstetter et al.,

2022; List et al., 2024). We note that the separation be-

tween training snapshots, ∆t, is in general larger than the

numerical timestep. The neural network Φβ is implemented

using two choices: a U-Net (Unet) style architecture (Ron-

neberger et al., 2015), where we set the number of filters

and downsampling layers such that the model has 48M pa-

rameters, and a Dilated ResNet (DRN) (Stachenfeld et al.,

2021) with 0.5M parameters. Further details on architecture

and optimization can be found in Appendix B. To build a

training and test set, we use numerical simulations to gen-

erate a total of N = 500, 000 trajectories. We use 450, 000
of these for training and the remaining 50, 000 for vali-

dation and testing. The resulting network thus defines a

point-estimate, associated with the local transition kernel

Q̂(x|y) = δ(x− (y+Φβ(y))), a degenerate version of the

Gaussian transition kernel discussed in Section 2. Addition-

ally, we implement a stochastic emulator by including small

amounts of noise at each timestep, during both training and

inference. The solution manifold for dynamical systems is

commonly a fractal, leading to a singular invariant measure.

The problem of learning such a solution manifold can be

facilitated by applying small perturbations to the training

data (Zeeman, 1988; Gritsun & Branstator, 2007; Baldovin

et al., 2022). Note that this is naturally achieved in the case

of the diffusion model via use of the denoising score loss.

4.2. Thermalizer

We now introduce a procedure to stabilize trajectories that

operates at inference time, assuming a pretrained model for

local dynamics Q̂ given by the previous emulator model,

and a pretrained diffusion model for µ, consisting of the

denoiser Dϕ.

For each time t, let µ̂t denote the law of the current gen-

erated field xt. Unstability is to be expected as soon as

this law drifts sufficiently far away from µ, that we re-

call corresponds to the distribution of y used to train the

model for local dynamics Q(·|y). For instance, one can

use the 2-Wasserstein distance W2(µ̂t, µ) to quantify this

drift. This distance is interesting because it also prescribes

an optimal coupling Γt between µ̂t and µ minimizing the

transportation cost: W 2
2 (µ̂t, µ) = E(x,y)∼Γt

∥x − y∥2 =

5

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

minΓ∈Π(µ̂t,µ) E(x,y)∼Γ∥x − y∥2, where we recall that a

coupling Γ ∈ Π(µ1, µ2) is a joint distribution in R
d × R

d

such that its marginals are respectively µ1 and µ2. More-

over, under mild assumptions Chewi et al. (2024, Section

1.4), this optimal coupling is associated with an optimal

transport map Tt : Rd → R
d, such that (x, Tt(x)) ∼ Γt. In

other words, the current field xt ∼ µ̂t can be mapped ‘back’

to the equilibrium distribution via Tt(xt), and this map min-

imizes the expected distortion ∥xt − Tt(xt)∥2 introduced

in the trajectory.

This defines an idealised stabilization method, which un-

surprisingly is unfeasible to implement. First, it rests on

the ability to estimate the law µ̂t from a single realization

xt. While we have samples from µ in the training set, gen-

erating independent samples from µ̂t requires running the

emulator multiple times at inference, which can be quickly

prohibitively expensive. Even then, it is well-known that

optimal transport suffers from the curse of dimensionality

Weed & Bach (2019).

Instead, we will leverage the diffusion model to provide

an efficient approximation to these optimal transport maps.

Our approximated transport will consist of running the re-

verse diffusion (5) starting at a noise level s = s(t), that

we adjust as a function of xt, and Xs = xt, resulting in the

coupling (X0, Xs) ∼ Γ̂t. The rationale behind this choice

of transport map is the following: one can view the samples

xt ∼ µ̂t as a perturbation of ‘correct’ equilibrium states

coming from µ; if these perturbations were isotropic Gaus-

sian, then the law µ̂t would agree with νs for some noise

level s = s(t), and the reverse diffusion would implement a

valid transport towards µ. While this transport is not the op-

timal transport, one has some control over the suboptimality

gap Albergo et al. (2023b, Prop 3.1).

Such guarantees are no longer valid for generic, non-

Gaussian perturbations. Instead, if one assumes an

ideal choice of the noise level, given by s∗(t) =
argmins KL(µ̂t||νs), and µ̃t is the law of X0 conditioned

on Xs∗ = xt ∼ µ̂t, by the data-processing inequality one

has

KL(µ̃t||µ) ≤ KL(µ̂t||νs∗) ≤ KL(µ̂t||ν0) = KL(µ̂t||µ) .
(7)

Thus, assuming that the noise level is correctly estimated,

and an accurate denoising model, the thermalizer step con-

tracts towards equilibrium. Moreover, for nearly Gaussian

perturbations, the LHS can be substantially smaller than the

original error. It is important to emphasize that even approx-

imate transports can go a long way to stabilize rollouts, as

long as they can mitigate the distribution shift.

It is interesting to compare this scheme with the Langevin

map, that runs the Fokker-Plank equation ∂tνt = ∇ ·
((∇ logµ)νt) + ∆νt starting from ν0 = µ̂. While the

Algorithm 1 Algorithm for thermalized trajectories

for t = 1 to N do

n ∼ N (0, I)
xt = xt−1 +Φβ(xt−1) + τn

spred = argmaxD
(2)
ϕ (xt)

if spred > sinit then

ϵ ∼ N (0, I)
xt =

√
ᾱspredxt +

√
1− ᾱspredϵ

for s = spred to sstop do

z ∼ N (0, I)

xt =
1√
αs

(
xt − 1−αs√

1−ᾱs

D
(1)
ϕ (xt)

)
+
√
βsz

end for

end if

end for

Langevin map indeed maps any initial measure to µ as

t → ∞, it suffers from two important limitations: first,

its time to relaxation can be exponentially large in pres-

ence of meta-stability and multiple modes, even for initial

distributions µ̂ close to equilibrium, affecting the resulting

transportation cost. Next, while the score ∇ logµ corre-

sponds to the zero-noise limit of the DDPM objective, this

score is only accurately learnt nearby the data distribution ν,

and we found it unstable for our purposes. One can view our

proposed transport scheme as a non-equilibrium counterpart

of the Langevin map that provides improved robustness.

It remains to be discussed how to find a suitable noise level

s(t), given the current emulator state. To tackle this ques-

tion, we modify the standard implementation of the DDPM

framework, by adding a classifier output such that the noise

level s is predicted by the network, instead of being passed

as an input parameter. We denote these two outputs using a

superscript, where D
(1)
ϕ (xt) ∈ R

d represents the denoised

field, and D
(2)
ϕ (xt) ∈ R

S represents the predicted categori-

cal distribution over S noise levels. The details of how this

additional classifier head are added to the Unet are given in

Appendix C. The loss function we minimise is

Lϕ =
1

N

N∑

i=1

[
∥ siϵi −D

(1)
ϕ (xi + siϵi) ∥2

+
S∑

s=1

ys logD
(2)
ϕ (xi + siϵi)

]
, (8)

where s is uniformly sampled from s ∈ [1, S], xt is the

training data, and ys ∈ R
S is a one-hot vector encoding

the true noise level. To implement the thermalizer, we

use the same Unet architecture as for the emulator, where

the network now has 53M parameters, with the additional

parameters constituting the noise-classifying head. To train

the thermalizer, we use the same N = 450, 000 training set

7

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Acknowledgements

The authors would like to thank Fabrizio Falasca, Pavel

Perezhogin, Stephane Mallat, Etienne Lempereur, Freddy

Bouchet, Eric Vanden-Eijnden and Edouard Oyallon for

many valuable discussions. This project is supported by

Schmidt Sciences, LLC.

Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none of which we feel must be

specifically highlighted here.

References

Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E.

Stochastic interpolants: A unifying framework for flows

and diffusions. arXiv preprint arXiv:2303.08797, 2023a.

Albergo, M. S., Goldstein, M., Boffi, N. M., Ranganath, R.,

and Vanden-Eijnden, E. Stochastic interpolants with data-

dependent couplings. arXiv preprint arXiv:2310.03725,

2023b.

Bach, E., Crisan, D., and Ghil, M. Forecast error

growth: A dynamic-stochastic model. arXiv e-prints,

art. arXiv:2411.06623, November 2024. doi: 10.48550/

arXiv.2411.06623.

Baldovin, M., Caprini, L., Puglisi, A., Sarracino, A., and

Vulpiani, A. The Many Faces of Fluctuation-Dissipation

Relations Out of Equilibrium, pp. 29–57. Springer Inter-

national Publishing, 2022. ISBN 9783031044588. doi:

10.1007/978-3-031-04458-8 3. URL http://dx.doi.

org/10.1007/978-3-031-04458-8_3.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and

Tian, Q. Accurate medium-range global weather fore-

casting with 3d neural networks. Nature, 619(7970):

533–538, July 2023. ISSN 1476-4687. doi: 10.1038/

s41586-023-06185-3. URL http://dx.doi.org/10.

1038/s41586-023-06185-3.

Boffetta, G. and Ecke, R. E. Two-dimensional turbu-

lence. Annual Review of Fluid Mechanics, 44(1):

427–451, January 2012. ISSN 1545-4479. doi: 10.1146/

annurev-fluid-120710-101240. URL http://dx.doi.

org/10.1146/annurev-fluid-120710-101240.

Bonavita, M. On some limitations of current machine

learning weather prediction models. Geophysical Re-

search Letters, 51(12), June 2024. ISSN 1944-8007. doi:

10.1029/2023gl107377. URL http://dx.doi.org/10.

1029/2023GL107377.

Brandstetter, J., Worrall, D., and Welling, M. Message pass-

ing neural pde solvers. arXiv preprint arXiv:2202.03376,

2022.

Chattopadhyay, A., Sun, Y. Q., and Hassanzadeh, P. Chal-

lenges of learning multi-scale dynamics with AI weather

models: Implications for stability and one solution.

arXiv e-prints, art. arXiv:2304.07029, April 2023. doi:

10.48550/arXiv.2304.07029.

Chewi, S., Niles-Weed, J., and Rigollet, P. Statistical opti-

mal transport. arXiv preprint arXiv:2407.18163, 2024.

Dresdner, G., Kochkov, D., Norgaard, P., Zepeda-Núñez, L.,

Smith, J. A., Brenner, M. P., and Hoyer, S. Learning to

correct spectral methods for simulating turbulent flows.

2022. doi: 10.48550/ARXIV.2207.00556. URL https:

//arxiv.org/abs/2207.00556.

Duraisamy, K., Iaccarino, G., and Xiao, H. Tur-

bulence modeling in the age of data. Annual

Review of Fluid Mechanics, 51(1):357–377, Jan-

uary 2019. ISSN 1545-4479. doi: 10.1146/

annurev-fluid-010518-040547. URL http://dx.doi.

org/10.1146/annurev-fluid-010518-040547.

Gao, H., Kaltenbach, S., and Koumoutsakos, P. Gen-

erative learning for forecasting the dynamics of high-

dimensional complex systems. Nature Communica-

tions, 15(1), October 2024. ISSN 2041-1723. doi:

10.1038/s41467-024-53165-w. URL http://dx.doi.

org/10.1038/s41467-024-53165-w.

Gritsun, A. and Branstator, G. Climate response us-

ing a three-dimensional operator based on the fluctua-

tion–dissipation theorem. Journal of the Atmospheric

Sciences, 64(7):2558–2575, July 2007. ISSN 0022-4928.

doi: 10.1175/jas3943.1. URL http://dx.doi.org/10.

1175/JAS3943.1.

Guan, H., Arcomano, T., Chattopadhyay, A., and Maulik,

R. LUCIE: A Lightweight Uncoupled ClImate Emu-

lator with long-term stability and physical consistency

for O(1000)-member ensembles. arXiv e-prints, art.

arXiv:2405.16297, May 2024. doi: 10.48550/arXiv.2405.

16297.

Gupta, J. K. and Brandstetter, J. Towards multi-

spatiotemporal-scale generalized PDE modeling. Trans-

actions on Machine Learning Research, 2023. ISSN

2835-8856. URL https://openreview.net/forum?

id=dPSTDbGtBY.

Ho, J., Jain, A., and Abbeel, P. Denoising diffu-

sion probabilistic models. ArXiv, abs/2006.11239,

2020. URL https://api.semanticscholar.org/

CorpusID:219955663.

10

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Jiang, R., Lu, P. Y., Orlova, E., and Willett, R. M. Training

neural operators to preserve invariant measures of chaotic

attractors. abs/2306.01187, 2023. URL https://api.

semanticscholar.org/CorpusID:259063696.

Keisler, R. Forecasting Global Weather with Graph Neural

Networks. arXiv e-prints, art. arXiv:2202.07575, Febru-

ary 2022. doi: 10.48550/arXiv.2202.07575.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Bren-

ner, M. P., and Hoyer, S. Machine learning–accelerated

computational fluid dynamics. Proceedings of the Na-

tional Academy of Sciences, 118(21), May 2021. ISSN

1091-6490. doi: 10.1073/pnas.2101784118. URL http:

//dx.doi.org/10.1073/pnas.2101784118.

Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith,

J., Mooers, G., Klöwer, M., Lottes, J., Rasp, S., Düben,

P., Hatfield, S., Battaglia, P., Sanchez-Gonzalez, A., Will-

son, M., Brenner, M. P., and Hoyer, S. Neural gen-

eral circulation models for weather and climate. Na-

ture, 632(8027):1060–1066, July 2024. ISSN 1476-

4687. doi: 10.1038/s41586-024-07744-y. URL http:

//dx.doi.org/10.1038/s41586-024-07744-y.

Kohl, G., Chen, L.-W., and Thuerey, N. Benchmarking Au-

toregressive Conditional Diffusion Models for Turbulent

Flow Simulation. arXiv e-prints, art. arXiv:2309.01745,

September 2023. doi: 10.48550/arXiv.2309.01745.

Kurth, T., Subramanian, S., Harrington, P., Pathak, J.,

Mardani, M., Hall, D., Miele, A., Kashinath, K., and

Anandkumar, A. Fourcastnet: Accelerating global high-

resolution weather forecasting using adaptive fourier neu-

ral operators. In Proceedings of the Platform for Ad-

vanced Scientific Computing Conference, PASC ’23, New

York, NY, USA, 2023. Association for Computing Ma-

chinery. ISBN 9798400701900. doi: 10.1145/3592979.

3593412. URL https://doi.org/10.1145/3592979.

3593412.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirns-

berger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds,

T., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer,

S., Holland, G., Vinyals, O., Stott, J., Pritzel, A.,

Mohamed, S., and Battaglia, P. Learning skillful

medium-range global weather forecasting. Science,

382(6677):1416–1421, 2023. doi: 10.1126/science.

adi2336. URL https://www.science.org/doi/abs/

10.1126/science.adi2336.

Lang, S., Alexe, M., Chantry, M., Dramsch, J., Pinault, F.,

Raoult, B., Clare, M. C. A., Lessig, C., Maier-Gerber,

M., Magnusson, L., Bouallègue, Z. B., Nemesio, A. P.,

Dueben, P. D., Brown, A., Pappenberger, F., and Rabier,

F. Aifs – ecmwf’s data-driven forecasting system, 2024.

URL https://arxiv.org/abs/2406.01465.

Li, Z., Liu-Schiaffini, M., Kovachki, N. B., Azizzadenesheli,

K., Liu, B., Bhattacharya, K., Stuart, A., and Anandku-

mar, A. Learning chaotic dynamics in dissipative systems.

In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K.

(eds.), Advances in Neural Information Processing Sys-

tems, 2022. URL https://openreview.net/forum?

id=1C36tFZn7sR.

Lienen, M., Ludke, D., Hansen-Palmus, J., and Gunne-

mann, S. From zero to turbulence: Generative mod-

eling for 3d flow simulation. In International Confer-

ence on Learning Representations, 2023. URL https:

//arxiv.org/abs/2306.01776.

Linot, A. J., Burby, J. W., Tang, Q., Balaprakash, P., Gra-

ham, M. D., and Maulik, R. Stabilized neural ordinary

differential equations for long-time forecasting of dy-

namical systems. Journal of Computational Physics,

474:111838, February 2023. ISSN 0021-9991. doi:

10.1016/j.jcp.2022.111838. URL http://dx.doi.org/

10.1016/j.jcp.2022.111838.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and

Le, M. Flow matching for generative modeling. arXiv

preprint arXiv:2210.02747, 2022.

Lippe, P., Veeling, B. S., Perdikaris, P., Turner, R. E., and

Brandstetter, J. Pde-refiner: Achieving accurate long roll-

outs with neural pde solvers. ArXiv, abs/2308.05732,

2023. URL https://api.semanticscholar.org/

CorpusID:260775609.

List, B., Chen, L.-W., Bali, K., and Thuerey, N. Dif-

ferentiability in Unrolled Training of Neural Physics

Simulators on Transient Dynamics. arXiv e-prints, art.

arXiv:2402.12971, February 2024. doi: 10.48550/arXiv.

2402.12971.

List, B., Chen, L.-W., Bali, K., and Thuerey, N. Differen-

tiability in unrolled training of neural physics simulators

on transient dynamics. Computer Methods in Applied

Mechanics and Engineering, 433:117441, January 2025.

doi: 10.1016/j.cma.2024.117441.

Lupin-Jimenez, L., Darman, M., Hazarika, S., Wu, T.,

Gray, M., He, R., Wong, A., and Chattopadhyay, A. Si-

multaneous emulation and downscaling with physically-

consistent deep learning-based regional ocean emulators.

arXiv e-prints, art. arXiv:2501.05058, January 2025. doi:

10.48550/arXiv.2501.05058.

Majda, A. J. and Qi, D. Strategies for reduced-order models

for predicting the statistical responses and uncertainty

quantification in complex turbulent dynamical systems.

SIAM Review, 60(3):491–549, January 2018. ISSN 1095-

7200. doi: 10.1137/16m1104664. URL http://dx.

doi.org/10.1137/16M1104664.

11

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Mardani, M., Brenowitz, N., Cohen, Y., Pathak, J., Chen,

C.-Y., Liu, C.-C., Vahdat, A., Kashinath, K., Kautz, J.,

and Pritchard, M. Residual Diffusion Modeling for Km-

scale Atmospheric Downscaling. arXiv e-prints, art.

arXiv:2309.15214, September 2023. doi: 10.48550/arXiv.

2309.15214.

Mikhaeil, J. M., Monfared, Z., and Durstewitz, D.

On the difficulty of learning chaotic dynamics with

rnns. In Neural Information Processing Systems,

2021. URL https://api.semanticscholar.org/

CorpusID:250626473.

Parthipan, R., Anand, M., Christensen, H. M., Hosking,

J. S., and Wischik, D. J. Defining error accumula-

tion in ML atmospheric simulators. arXiv e-prints, art.

arXiv:2405.14714, May 2024. doi: 10.48550/arXiv.2405.

14714.

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chat-

topadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z.,

Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., and

Anandkumar, A. FourCastNet: A Global Data-driven

High-resolution Weather Model using Adaptive Fourier

Neural Operators. arXiv e-prints, art. arXiv:2202.11214,

February 2022. doi: 10.48550/arXiv.2202.11214.

Price, I., Sanchez-Gonzalez, A., Alet, F., Andersson, T. R.,

El-Kadi, A., Masters, D., Ewalds, T., Stott, J., Mohamed,

S., Battaglia, P., Lam, R., and Willson, M. GenCast:

Diffusion-based ensemble forecasting for medium-range

weather. arXiv e-prints, art. arXiv:2312.15796, December

2023. doi: 10.48550/arXiv.2312.15796.

Robbins, H. E. An empirical bayes approach to statistics.

In Breakthroughs in Statistics: Foundations and basic

theory, pp. 388–394. Springer, 1992.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-

volutional networks for biomedical image segmenta-

tion. ArXiv, abs/1505.04597, 2015. URL https://

api.semanticscholar.org/CorpusID:3719281.

Rühling Cachay, S., Henn, B., Watt-Meyer, O., Brether-

ton, C. S., and Yu, R. Probablistic emulation of a

global climate model with spherical dyffusion. In

Globerson, A., Mackey, L., Belgrave, D., Fan, A.,

Paquet, U., Tomczak, J., and Zhang, C. (eds.), Ad-

vances in Neural Information Processing Systems,

volume 37, pp. 127610–127644. Curran Asso-

ciates, Inc., 2024. URL https://proceedings.

neurips.cc/paper_files/paper/2024/file/

e6a11b618402617342f38f5b49430937-Paper-Conference.

pdf.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,

Leskovec, J., and Battaglia, P. W. Learning to simulate

complex physics with graph networks. In International

Conference on Machine Learning, 2020.

Schiff, Y., Wan, Z. Y., Parker, J. B., Hoyer, S., Kuleshov,

V., Sha, F., and Zepeda-Núñez, L. DySLIM: Dynamics

Stable Learning by Invariant Measure for Chaotic Sys-

tems. arXiv e-prints, art. arXiv:2402.04467, February

2024. doi: 10.48550/arXiv.2402.04467.

Shehata, Y., Holzschuh, B., and Thuerey, N. Improved

sampling of diffusion models in fluid dynamics with

tweedie’s formula. In The Thirteenth International

Conference on Learning Representations, 2025. URL

https://openreview.net/forum?id=0FbzC7B9xI.

Sohl-Dickstein, J. N., Weiss, E. A., Maheswaranathan,

N., and Ganguli, S. Deep unsupervised learning using

nonequilibrium thermodynamics. ArXiv, abs/1503.03585,

2015. URL https://api.semanticscholar.org/

CorpusID:14888175.

Song, Y. and Ermon, S. Generative modeling by estimat-

ing gradients of the data distribution. In Neural Infor-

mation Processing Systems, 2019. URL https://api.

semanticscholar.org/CorpusID:196470871.

Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer,

M., Pfaff, T., Godwin, J., Cui, C., Ho, S., Battaglia,

P., and Sanchez-Gonzalez, A. Learned Coarse Models

for Efficient Turbulence Simulation. arXiv e-prints, art.

arXiv:2112.15275, December 2021. doi: 10.48550/arXiv.

2112.15275.

Subel, A. and Zanna, L. Building Ocean Climate Emulators.

arXiv e-prints, art. arXiv:2402.04342, February 2024.

doi: 10.48550/arXiv.2402.04342.

Vlachas, P., Pathak, J., Hunt, B., Sapsis, T., Girvan, M., Ott,

E., and Koumoutsakos, P. Backpropagation algorithms

and reservoir computing in recurrent neural networks

for the forecasting of complex spatiotemporal dynamics.

Neural Networks, 126:191–217, June 2020. ISSN 0893-

6080. doi: 10.1016/j.neunet.2020.02.016. URL http:

//dx.doi.org/10.1016/j.neunet.2020.02.016.

Wan, Z. Y., Baptista, R., Chen, Y.-f., Anderson, J., Boral,

A., Sha, F., and Zepeda-Núñez, L. Debias Coarsely,

Sample Conditionally: Statistical Downscaling through

Optimal Transport and Probabilistic Diffusion Models.

arXiv e-prints, art. arXiv:2305.15618, May 2023. doi:

10.48550/arXiv.2305.15618.

Watt-Meyer, O., Dresdner, G., McGibbon, J., Clark, S. K.,

Henn, B., Duncan, J., Brenowitz, N. D., Kashinath, K.,

Pritchard, M. S., Bonev, B., Peters, M. E., and Brether-

ton, C. S. ACE: A fast, skillful learned global atmo-

spheric model for climate prediction. arXiv e-prints, art.

12

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

arXiv:2310.02074, October 2023. doi: 10.48550/arXiv.

2310.02074.

Weed, J. and Bach, F. Sharp asymptotic and finite-sample

rates of convergence of empirical measures in wasserstein

distance. 2019.

Zeeman, E. C. Stability of dynamical systems. Nonlinearity,

1(1):115–155, February 1988. ISSN 1361-6544. doi: 10.

1088/0951-7715/1/1/005. URL http://dx.doi.org/

10.1088/0951-7715/1/1/005.

13

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

A. Dynamical systems

We evaluate our method on two high-dimensional dynamical systems, exhibiting the kinds of chaotic, turbulent dynamics

that are prevalent in systems of practical interest.

A.1. Kolmogorov flow

A common fluid flow to test ML surrogates, is to use a forced variant of incompressible Navier-Stokes:

∂tu+∇ · (u⊗ u) = ν∇2u− 1

ρ
∇p+ f (9)

where u = [ux, uy], ν is the kinematic viscosity, ρ is the fluid density, p is the pressure, and f is an external forcing

term. Following (Kochkov et al., 2021), we use a constant sinusoidal forcing function. We use p = 1 and ν = 0.001,

corresponding to a Reynolds number Re = 10, 000.

We numerically solve the equations using the pseudospectral method with periodic boundary conditions from the publicly

available code jax-cfd (Dresdner et al., 2022). We use a numerical timestep of δt = 0.001s, and simulate the system with

nx = ny = 512 spatial gridsteps. The fields are then downsampled to 64× 64 for training and testing of the emulator. We

use the vorticity, ω = ∇× u ∈ R
64×64 as our state vector, unlike in some previous works which trained their emulators on

the velocity vector fields (e.g. Lippe et al. (2023)). All state vectors are normalized to unit variance before passing to the

neural network, and results in the main text are shown in normalised units for simplicity.

A.2. Quasi-geostrophic turbulence

We consider a two-layer, quasi-geostrophic system, where the prognostic variable is the potential vorticity, given by

qm = ∇2ψm + (−1)m
f20

g′Hm

(ψ1 − ψ2),m ∈ {1, 2}, (10)

where m = 1 denotes the upper layer, m = 2 denotes the lower layer, Hm is the depth of the layer, ψ is the streamfunction,

which is related to the fluid velocity by um = (um, vm) = (−∂yψm, ∂xψm), and f0 is the Coriolis frequency. The time

evolution of the system is given by

∂tqm +∇ · (umqm) + βm∂xψm + Um∂xqm = − δm,2rek∇2ψm + ssd ◦ qm, (11)

where Um is the mean flow in the x (zonal) direction, βm = β+(−1)m+1 f2
0

g‘Hm

(U1−U2), rek is the bottom drag coefficient,

and δm,2 is the Kronecker delta.

We numerically solve these equations using a pseudo-spectral method, with an Adams-Bashforth 3rd order timestepper

in the Fourier domain and periodic boundary conditions. This was implemented in PyTorch, the code for which will be

made publicly available upon de-anonymization. Numerical simulations are run at a resolution of 256 × 256, and the

potential vorticity fields are downsampled to 64 × 64 for training and testing of the neural network models. We use the

2-layer potential vorticity, q ∈ R
2×64×64 as our state vector representing a QG system, so all neural networks used in

QG experiments have an additional input channel compared to the architectures used in Kolmogorov flow. As with the

Kolmogorov experiments, all state vectors are normalized to unit variance before passing to the neural network, and results

in the main text are shown in normalised units for simplicity.

B. Baseline emulator

B.1. Loss function

Here we describe the construction of the baseline neural emulator. Training over multiple timesteps has been comprehensively

shown to improve long term stability (Brandstetter et al., 2022; Gupta & Brandstetter, 2023; List et al., 2024; 2025), and one

can imagine three different ways to build a neural network and loss function to do this. First, we can simply predict the state

at some future timestep, as a function of the current timestep, i.e. Φβ : xt → xt+1, with MSE loss:

Lβ =
1

N

N∑

k=1

L−1∑

t=0

∥ Φβ(x̂
k
t)− xk

t+1 + τn ∥2 (12)

14

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

B.3. Optimization

The network weights are optimized using the AdamW optimizer with momenta β1 = 0.9 and β2 = 0.999, and a learning

rate of 5e−4. In practice, equation 6 is broken up into mini-batches of size 32. We train the model for 12 epochs, (longer

training runs were experimented but we found the loss curves did not improve with more epochs). The time horizon ∆t = 2
was chosen by experimenting with a range of different values in the range [1, 20], and selecting ∆t based on emulator

performance in terms of MSE predictions over a time horizon of 200 step rollouts. Consistent with previous works, we

found that composing multiple passes of a network trained over shorter training time horizons produced better MSE than

training over larger timesteps (Lippe et al., 2023).

Importantly, we observed that improvements in validation loss often had little impact on long term stability. This can

be seen in Figure 7, where we compare the short term MSE for the Unet and DRN models. The larger Unet model has

significantly lower MSE over a short number of steps, but all trajectories quickly go unstable. Indeed, we observed that

long term stability varied significantly with network weight initialization, even for a fixed dataset, model architecture and

optimization algorithm.

C. Diffusion model thermalizer

C.1. Architecture

To implement the thermalizer as a diffusion model, we use the same core architecture as the Unet used for the emulator. As

discussed in section 4.2, a key component of the thermalizer is some prediction of the noise level. To augment this standard

Unet implementation with a noise-classifying head, we take the lowest-dimensional representation from the Unet, and add an

additional 2 convolutional layers, with kernel size of 3 and stride of 1. We then vectorize the output of the last convolutional

filter into a length 4096 vector. This is then passed through 2 more linear layers of size 1000. This final vector of length

1000 represents the predicted categorical distribution over noise levels for the input image. The total number of learnable

parameters for this network is 53M. We implement a method to run a forward pass through the noise-classifying component

of the network only, for computational efficiency during rollouts. Also note that since our network does not include the

noise level as an input scalar, our diffusion model does not need have additional timestep embedding components.

C.2. Optimization

To optimise the network, equation 8 is broken up into mini-batches of size 64. Again we use the AdamW optimizer, with

a learning rate of 2e−5, and train the thermalizer for 35 epochs. Given that at inference time, we generally only use low

noise levels of approximately s ≲ 20, we experimented with training the model only on these low noise levels. However

we found that performance degraded significantly, so sample noise levels s uniformly across the full range during training.

Noise levels are set using a cosine variance scheduler. All model architecture, training and inference codes can be found at

https://github.com/Chris-Pedersen/thermalizer.

C.3. Thermalizer settings: sinit and sstop

A key component of the algorithm is the adaptive nature of thermalization - which allows for stabilisation with a minimal

interruption of temporal dynamics. There are two free parameters here - sinit which determines the estimated noise level at

which the thermalizer starts to apply corrections to the state vector, and sstop, which sets the lowest noise level to which we

run the denoising process. To find the optimum settings, we run a simple grid search on sinit ∈ [10, 6] and sstop ∈ [5, 2]
(note that we need sstart > sstop. For each pair of sinit and sstop, we run a thermalized trajectory for 1e4 steps. We chose

the combination of sinit and sstop in which the kinetic energy spectra of the thermalized trajectories best matches the kinetic

energy in the numerical model. This experiment is repeated independently for each flow configuration, and each emulator -

so this procedure was run a total of 4 times. We found sinit = 7 and sstop = 4 optimal for the Kolmogorov Unet, sinit = 10
and sstop = 5 optimal for the Kolmogorov DRN. For QG we use sinit = 9 and sstop = 4 for the Unet, and sinit = 6 and

sstop = 3 for the DRN emulator.

D. Inspecting a single thermalization step

It is possible to investigate the effect of a single thermalization step on a rollout. We randomly select a snapshot from the

thermalized trajectories show in Figure 3, and take emulator steps from this snapshot until the predicted noise level reaches

16

