2503.18731v2 [cs.LG] 8 Jul 2025

.
.

arxiv

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Christian Pedersen ! 2 Laure Zanna'2 Joan Bruna

Abstract

Autoregressive surrogate models (or emulators)
of spatiotemporal systems provide an avenue for
fast, approximate predictions, with broad applica-
tions across science and engineering. At inference
time, however, these models are generally unable
to provide predictions over long time rollouts due
to accumulation of errors leading to diverging tra-
jectories. In essence, emulators operate out of
distribution, and controlling the online distribu-
tion quickly becomes intractable in large-scale
settings. To address this fundamental issue, and
focusing on time-stationary systems admitting an
invariant measure, we leverage diffusion models
to obtain an implicit estimator of the score of this
invariant measure. We show that this model of
the score function can be used to stabilize autore-
gressive emulator rollouts by applying on-the-fly
denoising during inference, a process we call ther-
malization. Thermalizing an emulator rollout is
shown to extend the time horizon of stable pre-
dictions by two orders of magnitude in complex
systems exhibiting turbulent and chaotic behav-
ior, opening up a novel application of diffusion
models in the context of neural emulation.

1. Introduction

The modeling of dynamical systems is a cornerstone task
in the physical sciences and engineering, with applications
across weather (Pathak et al., 2022; Watt-Meyer et al., 2023;
Lam et al., 2023; Lang et al., 2024) and climate modeling
(Kochkov et al., 2024; Subel & Zanna, 2024; Lupin-Jimenez
et al., 2025). The standard approach to modeling these sys-
tems is to solve the underlying partial differential equation
(PDE) describing the system using numerical methods. In
the case of high-dimensional systems, the computational

!Courant Institute of Mathematical Sciences, New York Univer-
sity, USA 2Center for Data Science, New York University, USA.
Correspondence to: Joan Bruna <bruna@cims.nyu.edu>.

Proceedings of the 42" International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

12

cost of numerical methods becomes extremely large. Tur-
bulent fluid flows, for example, involve dynamical coupling
across length scales spanning orders of magnitude, and accu-
rately modelling the full dynamical range is often intractable
for many important applications.

Deep learning (DL) methods have been applied in vari-
ous ways to mitigate the cost of obtaining PDE solutions.
One approach is to couple a coarse-resolution numerical
solver with a DL component, either as a learned correction
(Kochkov et al., 2021) or as an additional forcing term in the
PDE, formulated using the large-eddy simulation framework
(Duraisamy et al., 2019). DL models have also been applied
as surrogate models, or emulators, replacing the numerical
scheme entirely, and leveraging the speed of graphical pro-
cessing units (GPUs) to provide fast approximate solutions
(Sanchez-Gonzalez et al., 2020; Stachenfeld et al., 2021).
Such emulators are being applied in the context of weather
(Pathak et al., 2022; Lam et al., 2023; Bi et al., 2023) and
climate modelling (Kochkov et al., 2024; Watt-Meyer et al.,
2023; Subel & Zanna, 2024), with computational speedups
of up to five orders of magnitude (Kurth et al., 2023).

The standard approach to constructing a neural emulator
is to predict the state of the system at some future time
as a function of the current timestep. Simulated trajecto-
ries are then generated by a rollout of many autoregressive
passes, where the predicted state is fed back into the emu-
lator. This framework suffers from instabilities over long
timescales, as accumulation of errors leads to a drift of the
emulator trajectory away from the truth (Chattopadhyay
et al., 2023; Bonavita, 2024; Parthipan et al., 2024; Bach
et al., 2024). Eventually, the drift becomes large enough that
the state is out of distribution, and trajectories exponentially
diverge. Some proposed modifications to improving the
stability of rollouts include the addition of noise to train-
ing data (Stachenfeld et al., 2021), training over multiple
consecutive timesteps (Vlachas et al., 2020; Keisler, 2022),
predicting multiple timesteps at once (Brandstetter et al.,
2022), including additional input channels representing ex-
ternal forcings(Watt-Meyer et al., 2023; Subel & Zanna,
2024), and adding iterative refinement steps focusing on
different frequency components (Lippe et al., 2023).

The situation is further complicated by the fact that the sys-
tems that are being modelled are generally chaotic. Indeed,

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

t=0s, step=0

t=1s, step=500

t=5s, step=2500

Numerical model

Emulator

Thermalized

t="7s, step=3500

t=10s, step=5000

t=20s, step=9999

103{ — Numerical model
~—— Emulator
—— Thermalized

/ IR

101+

e
™\

100 101 100 10 100 101

100 10t 100

Kinetic energy spectra from 40 different trajectories

Figure 1. Top 3 rows: Vorticity fields from a numerical model, emulated, and thermalized trajectories for Kolmogorov flow over a
trajectory of 10, 000 steps. Bottom row: Radially averaged kinetic energy spectra at each timestep, for 40 randomly initialized trajectories.

for such systems with intrinsically diverging trajectories,
recurrent architectures are unable to capture the dynamics
while maintaining stability during training (Mikhaeil et al.,
2021). Recent work has attempted to incorporate knowledge
of the chaotic system’s invariant measure into training to
stabilize predictions and improve the modeling of chaotic
dynamics (Li et al., 2022; Jiang et al., 2023; Schiff et al.,
2024).

In this work, we propose an alternative approach, based
on diffusion models, a framework developed for generative
modeling of images (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Ho et al., 2020), to stabilize autoregressive
emulator rollouts of chaotic systems. Diffusion models im-
plement a reversible measure transport between the data dis-
tribution and a reference distribution, typically the standard
Gaussian measure, by learning a one-parameter family of de-
noising operators, resulting in an efficient non-equilibrium
sampling scheme. As errors accumulate during emulator
rollouts, the state of the system moves to regions of low
probability, which are then transported back to equilibrium
by querying the reverse diffusion models with an appropri-
ately tuned noise level. Importantly, the reverse diffusion
defines a coupling between corrupted and equilibrium dis-
tributions that respects the temporal dynamics. This can be
thought of as a form of on-the-fly denoising that prevents the

emulated trajectory from diverging away from the training
distribution, thereby maintaining stability over arbitrarily
long time horizons; see Figure 2. We refer to this process
as thermalization, as the system is relaxed back towards
a stationary measure. One of the key advantages of our
scheme relative to prior work is the modularity of training:
we only require a pretrained black box emulator and a sep-
arately trained diffusion model for the stationary measure
of the dynamics. These two models are only combined at
inference time, and, as shown in the numerical experiments,
require only a small overhead in inference computational
cost.

Main Contributions. We present a novel application of
diffusion models in the context of using neural networks
to approximate the solutions to chaotic PDEs. We demon-
strate the thermalizer method on two high-dimensional tur-
bulent systems and show that arbitrarily long rollouts can
be achieved when an unstable neural emulator is coupled
with a thermalizer.

2. Preliminaries

Problem Setup. We consider data of the form (x;);cy as
the time discretization of an underlying dynamical system
(x¢)ier,» x¢ € RY, solving d;x; = F(x;), where F :

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

U

Figure 2. Schematic view of the thermalisation: in dashed grey,
two typical trajectories from 7, that preserve the equilibrium
distribution p, here idealised in terms of its typical set. In black,
an emulated trajectory, that eventually drifts away from the typical
set. In purple, the reverse diffusion, which defines an approximate
transport between fi¢, the law of x¢, and p, resulting in the red
‘thermalized’ trajectory.

R? — R is an unknown, time-independent, and generally
non-linear operator.

To account for the uncertainty in initial conditions, the time
and space discretization errors, as well as the chaotic na-
ture of some dynamics, it is convenient to adopt a prob-
abilistic description of the problem: we view (x;);cn as
a high-dimensional Markovian stochastic process m. By
the time-homogeneous Markovian assumption, its joint
law 7, := m(xy,...,X;) satisfies the recurrence equation
i1 (Xoy - s Xper1) = Qg1 |xe)m (%0, ..., %) for any
t > 0, where Q is the Markov kernel encoding the condi-
tional distribution of x;1; given x;. We denote by p; the
marginal distribution of x;. We also assume that this ker-
nel is irreducible, which implies the existence of a unique
stationary measure /i := fi, € P(R?), such that p = pQ.

Faced with this Markov structural assumption, it is thus
tempting to learn the system by focusing solely on the short-
time conditional kernel Q, given its small memory foot-
print, and the fact that it is sufficient to reconstruct the full
joint probability distribution. In other words, leveraging
the Markov kernel enables arbitrarily long generations at
inference time with a constant training budget.

In this work we are particularly concerned with the long-
time behavior of the system: given a possibly large time
horizon T (e.g., of the order of several decades in climate
models compared to days for weather forecasts), our goal is
to build a scalable generative model for trajectories, that is,
to efficiently sample a typical trajectory from 77, in such
a way that training and inference budget remains decou-
pled; ie, we can produce arbitrarily long trajectories with
a training cost independent of 7. As one could anticipate,
solely relying on the local Markovian structure turns out

to be insufficient in practice due to inherent instability; the
key scientific question of this work is, thus, how to over-
come this instability using scalable training and inference
algorithms.

Unstability of autoregressive modeling. Given observed
trajectories {(x},...,x%)}i<n, where (x4,...,x%) ~ 7p,
are independently drawn, one can estimate a model Q of
the one-step transitions Q. A standard choice is to as-
sume a Gaussian transition kernel of the form Q(-|y) =
N (®o(y),0?1,), where @y is a generic parametric map, e.g.
a neural network, so that the associated MLE corresponds
to the least-square objective ming £ 37 | >° <L x5, —
®y(x")[|>. This Gaussian model thus corresponds to a
general (non-linear) diffusion in continuous time, where
dx; = F(x;)dt + /20dB;, which in the limit of ¢ = 0
recovers deterministic dynamics. Note that, in practice, one
can replace the one-step transitions with k-step transitions
without loss of generality so that the emulated model ad-
vances k times faster than the numerical timestep.

Once trained, one can sample arbitrarily long trajectories by
querying Q in an autoregressive fashion: foreach 7" > 0, we
denote by 77 the joint law of (xg, . .., X7), where x¢ ~ g

~

and x411|x; ~ Q(xy11]x¢). We easily verify that

KL(rr[[7r) = 3 Byn KL (QUIWIQCY)) - (1)

t<T

For large T, since pi; — p by ergodicity, the above identity
directly yields

KL(rrl[7r) = TEy, KL (Q(Iy)[Q(1y)) . @

This confirms the intuition that the law of the trajectories
will drift apart, as measured with cross-entropy, at a rate
which is linear in the horizon. Note that RHS is precisely
the test error of the regression objective — in accordance
with Girsanov’s theorem in the continuous-time limit.

While the above KL control measures whether typical sam-
ples from m, are typical under our model 7, the generative
setting, where we sample from 7;, corresponds instead to
the reverse KL divergence. Assuming that Q is also irre-
ducibAle, with invariant measure i, inverting the roles of Q
and Q now yields

KL(Frlmr) = TEy KL (Q(Iy)[QC1y) - G)

Crucially, we now have a shift between the test error distribu-
tion 71 and the training distribution p, leading to a dramatic
impact in the generalisation guarantees of the model and
consistent with the observed instability of emulator rollouts.
Note though that the ergodicity assumption on Qis merely
for convenience: in practice, it may be that Q is not irre-
ducible, e.g., when o2 =0, failing to converge towards

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

a stationary measure, or, using again the continuous-time
formulation, when the associated Fokker-Plank equation
Opr = V - (=Fut) + Apy admits no equilibrium, due to
the fact that the irrotational component of F does not have
enough decay at infinity.

Mitigating distribution shifts. In the face of the previous
discussion, it is thus tempting to control the extent of distri-
bution shift by adding a regularisation term in the training
objective. Given a model Qy for the one-step transitions,
and assuming again irreducibility, it has an associated in-
variant measure [, characterized as the (unique) Perron
eigenfunction of Qy. Provided one can access (or estimate)
the true invariant measure p of the system, one can thus
consider a learning objective that combines both sources of
error:

L(0) = Ey~,D(Q(1y), Qa(-[y)) + AD(1, p10) . (4)

Here, we keep the presentation informal, and consider
generic (and possibly distinct) probability metrics D, D, as
long as they admit Monte-Carlo estimators. The important
aspect of Eq (4), however, is the presence of 1y, which is
only known implicitly as the invariant measure of the kernel
Qp. While some prior works, e.g. (Schiff et al., 2024), have
explored such learning objective in physical applications,
it presents an important computational challenge, since it
requires estimating the invariant measure i each time 6
is updated. In challenging situations where Qg does not
have a substantial spectral gap, obtaining g from Qg may
become prohibitively expensive. In the next section, we
introduce an alternative framework to address such distri-
bution shift, which also relies on having a model for the
invariant measure p of the true system but crucially avoids
the computation of py.

Estimating the Invariant Measure using Diffusion Mod-
els. Diffusion models (Sohl-Dickstein et al., 2015; Song
& Ermon, 2019; Ho et al., 2020) have been tremendously
successful in the field of generative modeling. The frame-
work is based on modeling the inverse of an iterative noising
process, which is best thought of as the discretisation of an
underlying continuous diffusion process. Let us recall the
main ideas which will be needed to define our method.

Given X ~ vy := u, we consider the Ornstein-Ulhenbeck
(OU) process dXs = — X ds + V/2dBj, where By is the
standard Brownian motion. The law v, of X, solves the
associated Fokker-Plank equation 0;v5; = V - (zv;) + Avs,
which can also be written as the transport equation Jsvs =
V - ((x + Vlogv,)v,). It is well known that the law vg
converges exponentially fast (in KL) to the standard Gaus-
sian measure 4 = N(0,1), so vs =~ 74 for S large
enough. Now, by changing the sign of the velocity field
and introducing again the diffusive Laplacian term, this

transport equation can be formally reversed: if 75 solves
O0sVs = V- ((—x — 2V logrg_s)vs) + Alg, with iy = vg,
then s = 1. In other words, the reverse diffusion

dXs = (Xs +2V 10g VS—S(XS))dS + \/ist , ()

with X ~ Yd, satisfies Xg ~ 1 up to an exponentially
small error (due to the difference KL(vs||ya) = O(e™)).

The above procedure defines a non-equilibrium sampling
scheme that requires access to the scores V log v along the
OU semigroup. As it turns out, such scores can be efficiently
estimated from original samples of x4 via a denoising ob-
jective. Indeed, defining the Denoising Oracle D(y, o) :=
E[x|y], where y = x + 0z, x ~ p and z ~ -4, Tweedie’s
formula (Robbins, 1992), relates the score to the Denois-
ing oracle via an explicit affine relationship, V log v4(x) =
—a; (x + BsD(x, ay)) for explicit values of a5 and fs.
Finally, D(-, o) can be efficiently estimated from samples
using the MSE variational characterisation of the posterior
mean: D = argminp.rixpora [Exmwzmnro,n X —
F(X + 0Z)||?]do. Here oy and (3, are as defined in (Ho
et al., 2020).

The standard Denoising Diffusion Probabilistic Model
(DDPM) framework (Ho et al., 2020) introduced an effi-
cient implementation of the above scheme, by considering
appropriate discretization of the noise levels, and where the
denoiser D = Dy, is represented by a neural network with
parameters ¢. In the generative modeling case, the noise
scheduling spans the full range from the unperturbed data
distribution at s = 0, to pure Gaussian noise at s = S
(where S is generally in the range ~ 1000). As we shall see
next, we will introduce a different use of diffusion models.
Using the available data, we can estimate a diffusion model
for the equilibrium distribution g, that we will use to build
a coupling between fi, a perturbation of the equilibrium,
and p. This coupling can be interleaved with timestepping
performed by the emulator, constraining the emulated tra-
jectory to stay in regions of state space consistent with the
training data, a process we call thermalization. Compared
to the generative modeling approach, we are only interested
in small amounts of denoising at the very low noise end of
the scheduler, i.e. at low s.

3. Related work

Large-scale autoregressive models: In the context of cli-
mate and weather modelling, several large scale autoregres-
sive models have been developed (Pathak et al., 2022; Lam
et al., 2023; Bi et al., 2023; Lang et al., 2024; Kochkov
et al., 2024), and are indeed being deployed for commercial
and public use. Despite the tremendous success of these
models over short timescales, long-term instability due to
error accumulation over large numbers of timesteps is still a
common problem.

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Diffusion models for PDEs: In (Lippe et al., 2023), an au-
toregressive model is used to predict the next timestep, and
then a small number of “refinement” steps are applied to the
prediction. These refinement steps are trained on a denoising
loss, and can therefore be interpreted as DDPM denoising
steps, analogous to our thermalization steps. Therefore our
work is similar in nature, however with the key differences
that their denoiser is a conditional model, and that our de-
noising model is constructed separately to the emulator and
applied adaptively at inference time. Additionally, we in-
vestigate rollouts over many more autoregressive passes,
up to 1e® steps. Diffusion models have also been applied
to generating realizations of turbulent fields (Lienen et al.,
2023), and emulation in the form of autoregressive condi-
tional models (Kohl et al., 2023; Price et al., 2023), where
the probabilistic nature of predictions is able to improve
modeling of chaotic dynamics. To reduce the computa-
tional cost of generating next step predictions, (Gao et al.,
2024) performs the conditional generation in a learned, low-
dimensional latent space, and (Shehata et al., 2025) develops
a more efficient conditional generation algorithm. Diffusion
models have also been applied to large-scale weather mod-
elling, both for the purposes of emulation (Price et al., 2023;
Riihling Cachay et al., 2024) and for statistical downscaling
(Mardani et al., 2023; Wan et al., 2023).

Stabilizing rollouts: A central problem in fully learned au-
toregressive simulators is the accumulation of errors and re-
sultant instabilities. Several regularisation terms have been
proposed (Chattopadhyay et al., 2023; Schiff et al., 2024;
Guan et al., 2024). (Brandstetter et al., 2022) used training
over multiple consecutive timesteps to improve stability,
while the addition of training noise has also been demon-
stated to improve stability when using a single timestep
prediction (Stachenfeld et al., 2021). The study in (List
et al., 2024) investigated an approach to multi-timestep
training without propagating gradients. The inclusion of
forcing from external systems has been shown to stabilize
extremely long rollouts in emulation of ocean models (Watt-
Meyer et al., 2023; Subel & Zanna, 2024). Decomposing
the system into linear and non-linear components was also
demonstrated to improve stability in simple 1D non-linear
systems (Linot et al., 2023).

4. Methodology
4.1. Emulator

We first describe the framework for the construction of the
emulator. We represent the neural-network model as ®g.
We found the best performance when using an emulator to
model the residuals between two timesteps, i.e., a predicted
state can be denoted X;11 = %X; + (%) + 7n where
the final term represents the stochastic component, so n ~
N(0,1) and we set 7 = le~® throughout the paper. The

neural network parameters 5 are optimized by minimizing
a MSE loss function:

N L-1

1 A
o= o33 [Bs(s) — (xbiy —xb) £ [P, ©)

k=1 t=0

where trajectories start from a simulation snapshot (X =
Xq), L represents the length of a training trajectory (through-
out this paper, we use L = 4), k indexes an individual
training trajectory, and the loss is averaged over a total
of N training trajectories. Gradients are backpropagated
through the full L timesteps, as done in (Brandstetter et al.,
2022; List et al., 2024). We note that the separation be-
tween training snapshots, At, is in general larger than the
numerical timestep. The neural network ® g is implemented
using two choices: a U-Net (Unet) style architecture (Ron-
neberger et al., 2015), where we set the number of filters
and downsampling layers such that the model has 48M pa-
rameters, and a Dilated ResNet (DRN) (Stachenfeld et al.,
2021) with 0.5M parameters. Further details on architecture
and optimization can be found in Appendix B. To build a
training and test set, we use numerical simulations to gen-
erate a total of N = 500, 000 trajectories. We use 450, 000
of these for training and the remaining 50,000 for vali-
dation and testing. The resulting network thus defines a
pAoint-estimate, associated with the local transition kernel
O(x]y) = é(x— (y + Ps(y))). a degenerate version of the
Gaussian transition kernel discussed in Section 2. Addition-
ally, we implement a stochastic emulator by including small
amounts of noise at each timestep, during both training and
inference. The solution manifold for dynamical systems is
commonly a fractal, leading to a singular invariant measure.
The problem of learning such a solution manifold can be
facilitated by applying small perturbations to the training
data (Zeeman, 1988; Gritsun & Branstator, 2007; Baldovin
et al., 2022). Note that this is naturally achieved in the case
of the diffusion model via use of the denoising score loss.

4.2. Thermalizer

We now introduce a procedure to stabilize trajectories that
operates at inference time, assuming a pretrained model for
local dynamics Q given by the previous emulator model,
and a pretrained diffusion model for p, consisting of the
denoiser D .

For each time ¢, let ji; denote the law of the current gen-
erated field x;. Unstability is to be expected as soon as
this law drifts sufficiently far away from p, that we re-
call corresponds to the distribution of y used to train the
model for local dynamics Q(-|y). For instance, one can
use the 2-Wasserstein distance W (i, 1) to quantify this
drift. This distance is interesting because it also prescribes
an optimal coupling I'; between [i; and x4 minimizing the
transportation cost: W3 (fit,) = Ex y)mr, [[x — y|I* =

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

t=0 days, step=0

t=104 days, step=500

t=208 days, step=1000

t=312 days, step=1500

t=417 days, step=2000

t=2083 days step =9999

Thermalized

] f""" P, oA o o N

Z},\;a ';-1 G B
3 --A.n."_ﬂ‘; 8 :‘.g._-\ oy h‘-.'ui'"}tl.'-': ¢?\--'\?'-",'.' :
'5 p hﬁ 'fJ '-|.— >4 '
g7 3 ..l'l?(\ ¥
z) lk-- it

-4’4

o T] t:.l
g ‘;.ﬂ) --"ﬂ:
g . \'ﬁ Lcd‘ 5

—— Numerical model
~—— Emulator

—— Thermalized
10% L

105 104

10*

Kinetic energy spectra from 20 different trajectories

10°

10* 10 104

10°

10*

Figure 3. Top 3 rows: QG trajectories over 10, 000 steps for the numerical model (top), neural network emulator (second row), and the
thermalized neural emulator (third row). We show the potential vorticity, g, in the top layer of the 2-layer QG system. Bottom row: Kinetic
energy spectra for each timestep, for 20 different trajectories. We show the layer thickness-weighted average of the spectra in both the

upper and lower layers.

Kolmogorov: Unet

Kolmogorov: DRN

10?2 102
10! 10!
I -
g 100 100
1 -1
10 —— Emulator 10
—— Thermalized
102 T T T 102 + T T T T
102 QG: Unet 102 QG: DRN
10* 10% 4
2]) -
E 10° 5 10° 5
107 4 107 4
102 02

0 2000 4000 6000 8000 10000

Emulator step

0 2000 4000 6000 8000 10000
Emulator step

Kolmogorov

W Unet
DRN

0-

6000 8000 10000

QG

12000

20 1

15

10

oL . - : :
0 2000 4000 6000 8000
Thermalization steps

Figure 4. Mean squared error between neural network trajectories and numerical model trajectories for different baseline architectures
(Unet and Dilated ResNet), starting from the same initial conditions. We show 40 Kolmogorov flow trajectories in the top two panels, and
20 QG flows in the lower two panels. Thermalized flows remain around a constant MSE long after non-thermalized flows have become
unstable. The region where state vectors are decorrelated in time, but stable, is shown in shaded pink. On the right, we show histograms
for the total number of thermalization steps along the full trajectories.

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

2. where we recall that a

minren (g, ,u) Exy)~rlx =yl
coupling I' € II(p1, o) is a joint distribution in R? x RY
such that its marginals are respectively p; and po. More-
over, under mild assumptions Chewi et al. (2024, Section
1.4), this optimal coupling is associated with an optimal
transport map 7; : R? — R?, such that (x, 7;(x)) ~ I';. In
other words, the current field x; ~ fi; can be mapped ‘back’
to the equilibrium distribution via 7¢(x;), and this map min-
imizes the expected distortion ||x; — 7;(x;)||? introduced
in the trajectory.

This defines an idealised stabilization method, which un-
surprisingly is unfeasible to implement. First, it rests on
the ability to estimate the law fi; from a single realization
x¢. While we have samples from in the training set, gen-
erating independent samples from [i; requires running the
emulator multiple times at inference, which can be quickly
prohibitively expensive. Even then, it is well-known that
optimal transport suffers from the curse of dimensionality
Weed & Bach (2019).

Instead, we will leverage the diffusion model to provide
an efficient approximation to these optimal transport maps.
Our approximated transport will consist of running the re-
verse diffusion (5) starting at a noise level s = s(t), that
we adjust as a function/\of Xy, and X, = xy, resulting in the
coupling (Xo, X;) ~ I';. The rationale behind this choice
of transport map is the following: one can view the samples
x¢ ~ [i; as a perturbation of ‘correct’ equilibrium states
coming from y; if these perturbations were isotropic Gaus-
sian, then the law [i; would agree with v, for some noise
level s = s(t), and the reverse diffusion would implement a
valid transport towards . While this transport is not the op-
timal transport, one has some control over the suboptimality
gap Albergo et al. (2023b, Prop 3.1).

Such guarantees are no longer valid for generic, non-
Gaussian perturbations. Instead, if one assumes an
ideal choice of the noise level, given by s*(t) =
arg ming KL(fi¢||vs), and [i; is the law of X conditioned
on X« = Xy ~ [iz, by the data-processing inequality one
has

KL (1]|p) < KL(fue|lvs=) < KL(fie| o) = KL (ke[p) -
@)

Thus, assuming that the noise level is correctly estimated,
and an accurate denoising model, the thermalizer step con-
tracts towards equilibrium. Moreover, for nearly Gaussian
perturbations, the LHS can be substantially smaller than the
original error. It is important to emphasize that even approx-
imate transports can go a long way to stabilize rollouts, as
long as they can mitigate the distribution shift.

It is interesting to compare this scheme with the Langevin
map, that runs the Fokker-Plank equation o,y = V -
((Vlog p)v) + Ay starting from vy = . While the

Algorithm 1 Algorithm for thermalized trajectories
fort =1to N do
n ~ N(0,1I)
X, =%x—1 + Pp(x4—1) + ™

Spred = argmax D;Q) (x¢)
if Spred > Sinic then
e~ N(0,1I)

Xt = \/aspredxt + \/]‘ - dsprede
for s = 5,104 10 Sstop dO

z ~ N(0,1I)
Xy = \/% (Xt - \}%Dg)(xt)) + VBsz
end for
end if
end for

Langevin map indeed maps any initial measure to p as
t — oo, it suffers from two important limitations: first,
its time to relaxation can be exponentially large in pres-
ence of meta-stability and multiple modes, even for initial
distributions /i close to equilibrium, affecting the resulting
transportation cost. Next, while the score V log i corre-
sponds to the zero-noise limit of the DDPM objective, this
score is only accurately learnt nearby the data distribution v,
and we found it unstable for our purposes. One can view our
proposed transport scheme as a non-equilibrium counterpart
of the Langevin map that provides improved robustness.

It remains to be discussed how to find a suitable noise level
s(t), given the current emulator state. To tackle this ques-
tion, we modify the standard implementation of the DDPM
framework, by adding a classifier output such that the noise
level s is predicted by the network, instead of being passed
as an input parameter. We denote these two outputs using a

superscript, where DE;) (x¢) € R? represents the denoised

field, and Dg) (x;) € R represents the predicted categori-
cal distribution over S noise levels. The details of how this
additional classifier head are added to the Unet are given in
Appendix C. The loss function we minimise is

N
1
Ly = N E [sies — D((pl)(xi +siei) |12
=1

S
+3 4 logDE (x; + sie)] . (8)

s=1

where s is uniformly sampled from s € [1,5], x; is the
training data, and y, € RS is a one-hot vector encoding
the true noise level. To implement the thermalizer, we
use the same Unet architecture as for the emulator, where
the network now has 53M parameters, with the additional
parameters constituting the noise-classifying head. To train
the thermalizer, we use the same N = 450, 000 training set

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

as for the emulator, except we take only the first snapshot
of each short trajectory to avoid training the thermalizer on
redundant data samples.

During an emulator rollout, at each timestep we run a for-
ward pass of the classifier-component of the network to
predict the noise level, such that for a given state vector
x, the predicted noise level is Spreq = arg max D((;)(x).
If the predicted noise level exceeds a threshold, which we
call sini;, we then apply Siherm = Spred — Sstop Steps of
denoising to the state vector, where spyeq is the estimated
noise level in the state vector, and Sgiop, 1S SOMe minimum
acceptable noise level, below which we do not thermalize.
The steps for this process are detailed in Algorithm 1.

5. Experiments

Additional visualizations including videos are available
here.

5.1. Kolmogorov flow

To test our framework on turbulent flows, we use a fluid flow
described by 2D incompressible Navier-Stokes equations
with sinusoidal forcing, often referred to as Kolmogorov
flow, used in many works on DL for turbulence modelling
(Boffetta & Ecke, 2012; Kochkov et al., 2021; Lippe et al.,
2023; Schiff et al., 2024). The baseline emulator is con-
structed using the loss in equation 6, where we set At = 24t,
where 0t is the numerical model timestep, and the number
of recurrent passes used during training L = 4.

In Figure 1 we compare flow trajectories for three models:
in the top row, a direct numerical simulation, in the second
row, a neural network emulator constructed as outlined in
section 4.1, and in the third row, a flow trajectory using the
same emulator, but including applications of the thermalizer
model described in 4.2. Each trajectory is initialized at a
state obtained from the numerical model. Whilst initially,
the flow fields are all consistent after ~ 3500 passes, errors
begin to accumulate in the emulator field, and instabilities
become visible. By 5000 steps, the instabilities dominate
and the trajectory has entirely diverged. The thermalized
flow, however, remains stable and consistent with the nu-
merical model, as a result of the small corrections applied
dynamically during the emulator rollout. In the lowest row
of Figure 1, we show the kinetic energy spectra at each
timestep, for 40 different flow trajectories, demonstrating
that the stabilizing effect of the thermalizer is consistent
across all randomly initialized trajectories.

5.2. Quasi-geostrophic turbulence

As an additional test case, we repeat the experiment on a 2-
layer quasi-geostrophic (QG) turbulent system. This system

Autocorrelation

1.0 §

—— Kolmogorov
--- QG

—— Numerical model
—— Emulator

—— Thermalized

0.8

0.6

0.4

0.2 A

0.0 1 T T T r
0 200 400 600 800 1000
Emulator step

Figure 5. Autocorrelation over time for numerical model, and neu-
ral network trajectories.

represents a stratified fluid in a rotating frame. This kind
of turbulent dynamics is prevalent in climate science, and
plays a central role in both atmospheric and ocean dynamics
(Majda & Qi, 2018). The dataset construction procedure
is the same as with Kolmogorov flow, using dataset sizes
of N = 500, 000 fluid snapshots for both the emulator and
thermalizer, with the only change being that now a fluid
snapshot has 2 layers, and the emulator training timestep is
decreased to At = 54t. The model architectures are kept
the same, except with an additional input channel to accom-
modate the additional fluid layer. When training over L = 4
timesteps, we found that the Unet emulator trajectories went
unstable in the region of ~ 2¢* to 5e* timesteps, so to bring
the emulator in line with our other baselines, we reduced
the number of training timesteps to L = 2. For the DRN,
we keep L = 4 as with the Kolmogorov emulators. Details
on the numerical solver and configuration of the QG system
are given in Appendix A.2.

In Figure 3, we compare trajectories for the numerical
model, emulator and thermalized trajectories. As with the
Kolmogorov flow, after approximately 4000 timesteps the
un-thermalized trajectories accumulate sufficient error to di-
verge, but the thermalized flows remain stable. In the lower
panel we show the radially averaged kinetic energy spectra
for 20 trajectories at each timestep. This is the weighted
average of the kinetic energy spectra in the upper and lower
layers, weighted by the layer thickness.

In Figure 4, we show the MSE with respect to the numer-
ical model, for different neural network models and flow
configurations. We observe that initially the MSE increases
as trajectories diverge over the first few hundred steps, and
settle to approximately unity MSE. In this regime, shaded
in pink, the state vectors are stable but decorrelated. States
with MSE>> 1 are unstable. Over ~ 2000 timesteps emu-
lator trajectories all go unstable (with the exception of the

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

KE spectra after 100,000 steps

107 -

> —— Numerical model
o .
< —— Thermalized
2 108

w

©

T 103 1

c

> Kolmogorov

10! T r
10° 10!

3 100{ QG

Q

f=
w
I
© 1071 4
£
pv4

1075 1074

Wavenumber k

Figure 6. Radially-averaged kinetic energy for Kolmogorov (top)
and QG (bottom) trajectories from a thermalized Unet emulator
after 1e® timesteps.

Kolmogorov DRN, where many trajectories stay stable for
much longer). However all thermalized trajectories stay
stable for the full 10, 000 steps, due to the corrective steps
applied during the rollout. In the right panels, we show
the number of thermalization steps applied along the entire
trajectory for all models and flow configurations. In the
case of the QG Unet, the thermalization is highly efficient,
with just ~ 140 thermalization steps required on average to
stabilise each 10, 000 step trajectory. In terms of computa-
tional cost, we run a forward pass of the noise-classifying
head of the thermalizer at every timestep, which is 60%
the cost of a Unet emulator step, as we are only activat-
ing the downsampling and noise-classifying components of
the equivalent-sized thermalizer Unet. Additional forward
passes of the full thermalizer network are only run in the
case where Spreq > Sinit, SO given an accurate noise clas-
sifier, the algorithm is inherently efficient and only applies
corrective denoising steps when necessary.

Given the fact that thermalizing steps induce some small
distortion in the field, it is important to consider the effect on
the temporal consistency of the flow trajectories. In Figure 5,
we show the autocorrelation for both Kolmogorov and QG
fields, averaged across all 40 and 20 trajectories respectively.
We see no significant change in the autocorrelation between
the numerical model, and the thermalized flow, indicating
that the temporal disruption caused by the thermalization
steps is minimal. Finally, in figure 6, we show kinetic energy
spectra for Kolmogorov and QG thermalized flows after 1e®
steps, where the spectra demonstrate that all trajectories are
successfully stabilised over this long rollout. However we
note that there is some offset in the KE spectra of the QG
fields, which show consistently less kinetic energy than in
the numerical model.

6. Conclusion

We introduced the thermalizer, an algorithm for stabilis-
ing autoregressive surrogate models leveraging a pretrained
diffusion model of the stationary data distribution. This
diffusion model provides a family of transport maps from
Gaussian perturbations of the stationary measure back to its
equilibrium, which are shown to be robust to non-Gaussian
errors. As a result, this diffusion model can be deployed
at inference time to constrain trajectories to stay along the
solution manifold, mitigating the accumulation of error due
to autoregression of an approximate timestepping model.
An appealing aspect of the model is the lightweight training:
we treat the emulator as a pre-trained black-box, and train
the diffusion model of the equilibrium separately, using
standard pipelines.

A crucial component of the thermalizer algorithm is the
adaptive denoising steps, which serve to minimize both the
computational cost of the algorithm, and disruption of the
temporal dynamics of the flow trajectories. We demon-
strate this approach on two high-dimensional turbulent sys-
tems, a forced 2D Navier-Stokes flow, and a 2-layer quasi-
geostrophic turbulent flow, enabling stable predictions over
1e® emulator steps.

Limitations and Future Work. The main limitation of
our current framework is the underlying (isotropic) Gaus-
sianity assumption on the perturbations. Even though our
experiments demonstrate some form of robustness to such
misspecification, this comes at the expense of a careful
choice of hyperparameters. In particular, performance is
strongly dependent on the setting of sj,j, and sgy0p, Which
must be individually tuned for each combination of emu-
lator and thermalizer via brute force search. Also indeed
some configurations remain stable, however with imperfect
kinetic energy spectra at large timestep, as shown in Fig-
ure 6. We suspect that such limitations could be addressed
by replacing Gaussian diffusion models with a base mea-
sure more adapted to the errors introduced by the emulator;
stochastic interpolants aka flow matching (Albergo et al.,
2023a; Lipman et al., 2022) provide such flexibility. In that
respect, an interesting theoretical question is to understand
the robustness of the OU-based coupling to non-Gaussian
perturbations, beyond the data-processing inequality. Next,
we focused in the time-homogeneous setting, owing to its
importance in applications and the particularly lightweight
implementation of the thermalizer. The next natural step
is to consider autonomous systems, eg with a forcing term
having some temporal periodicity. Finally, another impor-
tant future direction is to consider other domains where
long autoregressive rollouts are often used — perhaps even
LLMs?

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Acknowledgements

The authors would like to thank Fabrizio Falasca, Pavel
Perezhogin, Stephane Mallat, Etienne Lempereur, Freddy
Bouchet, Eric Vanden-Eijnden and Edouard Oyallon for
many valuable discussions. This project is supported by
Schmidt Sciences, LLC.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References

Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E.
Stochastic interpolants: A unifying framework for flows
and diffusions. arXiv preprint arXiv:2303.08797, 2023a.

Albergo, M. S., Goldstein, M., Boffi, N. M., Ranganath, R.,
and Vanden-Eijnden, E. Stochastic interpolants with data-
dependent couplings. arXiv preprint arXiv:2310.03725,
2023b.

Bach, E., Crisan, D., and Ghil, M. Forecast error
growth: A dynamic-stochastic model. arXiv e-prints,
art. arXiv:2411.06623, November 2024. doi: 10.48550/
arXiv.2411.06623.

Baldovin, M., Caprini, L., Puglisi, A., Sarracino, A., and
Vulpiani, A. The Many Faces of Fluctuation-Dissipation
Relations Out of Equilibrium, pp. 29-57. Springer Inter-
national Publishing, 2022. ISBN 9783031044588. doi:
10.1007/978-3-031-04458-8 3. URL http://dx.doi.
org/10.1007/978-3-031-04458-8_3.

Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and
Tian, Q. Accurate medium-range global weather fore-
casting with 3d neural networks. Nature, 619(7970):
533-538, July 2023. ISSN 1476-4687. doi: 10.1038/
s41586-023-06185-3. URL http://dx.doi.org/10.
1038/s41586-023-06185-3.

Boffetta, G. and Ecke, R. E. Two-dimensional turbu-
lence. Annual Review of Fluid Mechanics, 44(1):
427-451, January 2012. ISSN 1545-4479. doi: 10.1146/
annurev-fluid-120710-101240. URL http://dx.doi.
org/10.1146/annurev-f1luid-120710-101240.

Bonavita, M. On some limitations of current machine
learning weather prediction models. Geophysical Re-
search Letters, 51(12), June 2024. ISSN 1944-8007. doi:
10.1029/2023¢1107377. URL http://dx.doi.org/10.
1029/2023GL107377.

10

Brandstetter, J., Worrall, D., and Welling, M. Message pass-
ing neural pde solvers. arXiv preprint arXiv:2202.03376,
2022.

Chattopadhyay, A., Sun, Y. Q., and Hassanzadeh, P. Chal-
lenges of learning multi-scale dynamics with Al weather
models: Implications for stability and one solution.
arXiv e-prints, art. arXiv:2304.07029, April 2023. doi:
10.48550/arXiv.2304.07029.

Chewi, S., Niles-Weed, J., and Rigollet, P. Statistical opti-
mal transport. arXiv preprint arXiv:2407.18163, 2024.

Dresdner, G., Kochkov, D., Norgaard, P., Zepeda-Nuiiez, L.,
Smith, J. A., Brenner, M. P., and Hoyer, S. Learning to
correct spectral methods for simulating turbulent flows.
2022. doi: 10.48550/ARXIV.2207.00556. URL https:
//arxiv.org/abs/2207.00556.

Duraisamy, K., laccarino, G., and Xiao, H. Tur-
bulence modeling in the age of data. Annual
Review of Fluid Mechanics, 51(1):357-377, Jan-
uvary 2019. ISSN 1545-4479. doi: 10.1146/
annurev-fluid-010518-040547. URL http://dx.doi.
org/10.1146/annurev-£f1uid-010518-040547.

Gao, H., Kaltenbach, S., and Koumoutsakos, P. Gen-
erative learning for forecasting the dynamics of high-
dimensional complex systems. Nature Communica-
tions, 15(1), October 2024. ISSN 2041-1723. doi:
10.1038/s41467-024-53165-w. URL http://dx.doi.
org/10.1038/s41467-024-53165-w.

Gritsun, A. and Branstator, G. Climate response us-
ing a three-dimensional operator based on the fluctua-
tion—dissipation theorem. Journal of the Atmospheric
Sciences, 64(7):2558-2575, July 2007. ISSN 0022-4928.
doi: 10.1175/jas3943.1. URL http://dx.doi.org/10.
1175/JAS3943.1.

Guan, H., Arcomano, T., Chattopadhyay, A., and Maulik,
R. LUCIE: A Lightweight Uncoupled Cllmate Emu-
lator with long-term stability and physical consistency
for O(1000)-member ensembles. arXiv e-prints, art.
arXiv:2405.16297, May 2024. doi: 10.48550/arXiv.2405.
16297.

Gupta, J. K. and Brandstetter, J. Towards multi-
spatiotemporal-scale generalized PDE modeling. Trans-
actions on Machine Learning Research, 2023. ISSN
2835-8856. URL https://openreview.net/forum?
id=dPSTDbGtBY.

Ho, J., Jain, A., and Abbeel, P. Denoising diffu-
sion probabilistic models. ArXiv, abs/2006.11239,
2020. URL https://api.semanticscholar.org/
CorpusID:219955663.

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Jiang, R., Lu, P. Y., Orlova, E., and Willett, R. M. Training
neural operators to preserve invariant measures of chaotic
attractors. abs/2306.01187, 2023. URL https://api.
semanticscholar.org/CorpusID:259063696.

Keisler, R. Forecasting Global Weather with Graph Neural
Networks. arXiv e-prints, art. arXiv:2202.07575, Febru-
ary 2022. doi: 10.48550/arXiv.2202.07575.

Kochkov, D., Smith, J. A., Alieva, A., Wang, Q., Bren-
ner, M. P, and Hoyer, S. Machine learning—accelerated
computational fluid dynamics. Proceedings of the Na-
tional Academy of Sciences, 118(21), May 2021. ISSN
1091-6490. doi: 10.1073/pnas.2101784118. URL http:
//dx.doi.org/10.1073/pnas.2101784118.

Kochkov, D., Yuval, J., Langmore, 1., Norgaard, P., Smith,
J., Mooers, G., Klower, M., Lottes, J., Rasp, S., Diiben,
P., Hatfield, S., Battaglia, P., Sanchez-Gonzalez, A., Will-
son, M., Brenner, M. P., and Hoyer, S. Neural gen-
eral circulation models for weather and climate. Na-
ture, 632(8027):1060-1066, July 2024. ISSN 1476-
4687. doi: 10.1038/s41586-024-07744-y. URL http:
//dx.doi.org/10.1038/s41586-024-07744-y.

Kohl, G., Chen, L.-W., and Thuerey, N. Benchmarking Au-
toregressive Conditional Diffusion Models for Turbulent
Flow Simulation. arXiv e-prints, art. arXiv:2309.01745,
September 2023. doi: 10.48550/arXiv.2309.01745.

Kurth, T., Subramanian, S., Harrington, P., Pathak, J.,
Mardani, M., Hall, D., Miele, A., Kashinath, K., and
Anandkumar, A. Fourcastnet: Accelerating global high-
resolution weather forecasting using adaptive fourier neu-
ral operators. In Proceedings of the Platform for Ad-
vanced Scientific Computing Conference, PASC *23, New
York, NY, USA, 2023. Association for Computing Ma-
chinery. ISBN 9798400701900. doi: 10.1145/3592979.
3593412. URLhttps://doi.org/10.1145/3592979.
3593412.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirns-
berger, P., Fortunato, M., Alet, F., Ravuri, S., Ewalds,
T., Eaton-Rosen, Z., Hu, W., Merose, A., Hoyer,
S., Holland, G., Vinyals, O., Stott, J., Pritzel, A.,
Mohamed, S., and Battaglia, P. Learning skillful
medium-range global weather forecasting. Science,
382(6677):1416-1421, 2023. doi: 10.1126/science.
adi2336. URL https://www.science.org/doi/abs/
10.1126/science.adi2336.

Lang, S., Alexe, M., Chantry, M., Dramsch, J., Pinault, F.,
Raoult, B., Clare, M. C. A., Lessig, C., Maier-Gerber,
M., Magnusson, L., Bouallegue, Z. B., Nemesio, A. P,,
Dueben, P. D., Brown, A., Pappenberger, F., and Rabier,
F. Aifs — ecmwf’s data-driven forecasting system, 2024.
URL https://arxiv.org/abs/2406.01465.

11

Li, Z., Liu-Schiaffini, M., Kovachki, N. B., Azizzadenesheli,
K., Liu, B., Bhattacharya, K., Stuart, A., and Anandku-
mar, A. Learning chaotic dynamics in dissipative systems.
In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K.
(eds.), Advances in Neural Information Processing Sys-
tems, 2022. URL https://openreview.net/forum?
id=1C36tFZn7sR.

Lienen, M., Ludke, D., Hansen-Palmus, J., and Gunne-
mann, S. From zero to turbulence: Generative mod-
eling for 3d flow simulation. In International Confer-
ence on Learning Representations, 2023. URL https:
//arxiv.org/abs/2306.01776.

Linot, A. J., Burby, J. W., Tang, Q., Balaprakash, P., Gra-
ham, M. D., and Maulik, R. Stabilized neural ordinary
differential equations for long-time forecasting of dy-
namical systems. Journal of Computational Physics,
474:111838, February 2023. ISSN 0021-9991. doi:
10.1016/j.jcp.2022.111838. URL http://dx.doi.org/
10.1016/j.jcp.2022.111838.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and
Le, M. Flow matching for generative modeling. arXiv
preprint arXiv:2210.02747, 2022.

Lippe, P., Veeling, B. S., Perdikaris, P., Turner, R. E., and
Brandstetter, J. Pde-refiner: Achieving accurate long roll-
outs with neural pde solvers. ArXiv, abs/2308.05732,
2023. URL https://api.semanticscholar.org/
CorpusID:260775609.

List, B., Chen, L.-W., Bali, K., and Thuerey, N. Dif-
ferentiability in Unrolled Training of Neural Physics
Simulators on Transient Dynamics. arXiv e-prints, art.
arXiv:2402.12971, February 2024. doi: 10.48550/arXiv.
2402.12971.

List, B., Chen, L.-W., Bali, K., and Thuerey, N. Differen-
tiability in unrolled training of neural physics simulators
on transient dynamics. Computer Methods in Applied
Mechanics and Engineering, 433:117441, January 2025.
doi: 10.1016/j.cma.2024.117441.

Lupin-Jimenez, L., Darman, M., Hazarika, S., Wu, T,
Gray, M., He, R., Wong, A., and Chattopadhyay, A. Si-
multaneous emulation and downscaling with physically-
consistent deep learning-based regional ocean emulators.
arXiv e-prints, art. arXiv:2501.05058, January 2025. doi:
10.48550/arXiv.2501.05058.

Majda, A. J. and Qi, D. Strategies for reduced-order models
for predicting the statistical responses and uncertainty
quantification in complex turbulent dynamical systems.
SIAM Review, 60(3):491-549, January 2018. ISSN 1095-
7200. doi: 10.1137/16m1104664. URL http://dx.
doi.org/10.1137/16M1104664.

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Mardani, M., Brenowitz, N., Cohen, Y., Pathak, J., Chen,
C.-Y., Liu, C.-C., Vahdat, A., Kashinath, K., Kautz, J.,
and Pritchard, M. Residual Diffusion Modeling for Km-
scale Atmospheric Downscaling. arXiv e-prints, art.
arXiv:2309.15214, September 2023. doi: 10.48550/arXiv.
2309.15214.

Mikhaeil, J. M., Monfared, Z., and Durstewitz, D.
On the difficulty of learning chaotic dynamics with
rmns. In Neural Information Processing Systems,
2021. URL https://api.semanticscholar.org/
CorpusID:250626473.

Parthipan, R., Anand, M., Christensen, H. M., Hosking,
J. S., and Wischik, D. J. Defining error accumula-
tion in ML atmospheric simulators. arXiv e-prints, art.
arXiv:2405.14714, May 2024. doi: 10.48550/arXiv.2405.
14714.

Pathak, J., Subramanian, S., Harrington, P., Raja, S., Chat-
topadhyay, A., Mardani, M., Kurth, T., Hall, D., Li, Z.,
Azizzadenesheli, K., Hassanzadeh, P., Kashinath, K., and
Anandkumar, A. FourCastNet: A Global Data-driven
High-resolution Weather Model using Adaptive Fourier
Neural Operators. arXiv e-prints, art. arXiv:2202.11214,
February 2022. doi: 10.48550/arXiv.2202.11214.

Price, 1., Sanchez-Gonzalez, A., Alet, F., Andersson, T. R.,
El-Kadi, A., Masters, D., Ewalds, T., Stott, J., Mohamed,
S., Battaglia, P., Lam, R., and Willson, M. GenCast:
Diffusion-based ensemble forecasting for medium-range
weather. arXiv e-prints, art. arXiv:2312.15796, December
2023. doi: 10.48550/arXiv.2312.15796.

Robbins, H. E. An empirical bayes approach to statistics.
In Breakthroughs in Statistics: Foundations and basic
theory, pp. 388-394. Springer, 1992.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmenta-
tion. ArXiv, abs/1505.04597, 2015. URL https://
api.semanticscholar.org/CorpusID:3719281.

Riihling Cachay, S., Henn, B., Watt-Meyer, O., Brether-
ton, C. S., and Yu, R. Probablistic emulation of a
global climate model with spherical dyffusion. In
Globerson, A., Mackey, L., Belgrave, D., Fan, A.,
Paquet, U., Tomczak, J., and Zhang, C. (eds.), Ad-
vances in Neural Information Processing Systems,
volume 37, pp. 127610-127644. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.
neurips.cc/paper_files/paper/2024/file/

complex physics with graph networks. In International
Conference on Machine Learning, 2020.

Schiff, Y., Wan, Z. Y., Parker, J. B., Hoyer, S., Kuleshov,
V., Sha, F., and Zepeda-Nufez, L. DySLIM: Dynamics
Stable Learning by Invariant Measure for Chaotic Sys-
tems. arXiv e-prints, art. arXiv:2402.04467, February
2024. doi: 10.48550/arXiv.2402.04467.

Shehata, Y., Holzschuh, B., and Thuerey, N. Improved
sampling of diffusion models in fluid dynamics with
tweedie’s formula. In The Thirteenth International
Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=0FbzC7B9xI.

Sohl-Dickstein, J. N., Weiss, E. A., Maheswaranathan,
N., and Ganguli, S. Deep unsupervised learning using
nonequilibrium thermodynamics. ArXiv, abs/1503.03585,
2015. URL https://api.semanticscholar.org/
CorpusID:14888175.

Song, Y. and Ermon, S. Generative modeling by estimat-
ing gradients of the data distribution. In Neural Infor-
mation Processing Systems, 2019. URL https://api.
semanticscholar.org/CorpusID:196470871.

Stachenfeld, K., Fielding, D. B., Kochkov, D., Cranmer,
M., Pfaff, T., Godwin, J., Cui, C., Ho, S., Battaglia,
P., and Sanchez-Gonzalez, A. Learned Coarse Models
for Efficient Turbulence Simulation. arXiv e-prints, art.
arXiv:2112.15275, December 2021. doi: 10.48550/arXiv.
2112.15275.

Subel, A. and Zanna, L. Building Ocean Climate Emulators.
arXiv e-prints, art. arXiv:2402.04342, February 2024.
doi: 10.48550/arXiv.2402.04342.

Vlachas, P., Pathak, J., Hunt, B., Sapsis, T., Girvan, M., Ott,
E., and Koumoutsakos, P. Backpropagation algorithms
and reservoir computing in recurrent neural networks
for the forecasting of complex spatiotemporal dynamics.
Neural Networks, 126:191-217, June 2020. ISSN 0893-
6080. doi: 10.1016/j.neunet.2020.02.016. URL http:
//dx.doi.org/10.1016/j .neunet.2020.02.016.

Wan, Z. Y., Baptista, R., Chen, Y.-f., Anderson, J., Boral,
A., Sha, F., and Zepeda-Nuifiez, L. Debias Coarsely,
Sample Conditionally: Statistical Downscaling through
Optimal Transport and Probabilistic Diffusion Models.
arXiv e-prints, art. arXiv:2305.15618, May 2023. doi:
10.48550/arXiv.2305.15618.

e6a11b618402617342£38£5b49430937- Paper-Confereftyt-Meyer, O., Dresdner, G., McGibbon, J., Clark, S. K.,

pdf.

Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R.,
Leskovec, J., and Battaglia, P. W. Learning to simulate

Henn, B., Duncan, J., Brenowitz, N. D., Kashinath, K.,
Pritchard, M. S., Bonev, B., Peters, M. E., and Brether-
ton, C. S. ACE: A fast, skillful learned global atmo-
spheric model for climate prediction. arXiv e-prints, art.

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

arXiv:2310.02074, October 2023. doi: 10.48550/arXiv.
2310.02074.

Weed, J. and Bach, F. Sharp asymptotic and finite-sample

rates of convergence of empirical measures in wasserstein
distance. 2019.

Zeeman, E. C. Stability of dynamical systems. Nonlinearity,
1(1):115-155, February 1988. ISSN 1361-6544. doi: 10.
1088/0951-7715/1/1/005. URL http://dx.doi.org/
10.1088/0951-7715/1/1/005.

13

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

A. Dynamical systems

We evaluate our method on two high-dimensional dynamical systems, exhibiting the kinds of chaotic, turbulent dynamics
that are prevalent in systems of practical interest.

A.1. Kolmogorov flow

A common fluid flow to test ML surrogates, is to use a forced variant of incompressible Navier-Stokes:
1
du+V-(u®u)=vViu—- -Vp+f)
p

where u = [ug, uy), v is the kinematic viscosity, p is the fluid density, p is the pressure, and f is an external forcing
term. Following (Kochkov et al., 2021), we use a constant sinusoidal forcing function. We use p = 1 and v = 0.001,
corresponding to a Reynolds number Re = 10, 000.

We numerically solve the equations using the pseudospectral method with periodic boundary conditions from the publicly
available code jax-cfd (Dresdner et al., 2022). We use a numerical timestep of ¢ = 0.001s, and simulate the system with
ng = ny = 512 spatial gridsteps. The fields are then downsampled to 64 x 64 for training and testing of the emulator. We
use the vorticity, w = V x u € R%4*64 a5 our state vector, unlike in some previous works which trained their emulators on
the velocity vector fields (e.g. Lippe et al. (2023)). All state vectors are normalized to unit variance before passing to the
neural network, and results in the main text are shown in normalised units for simplicity.

A.2. Quasi-geostrophic turbulence

We consider a two-layer, quasi-geostrophic system, where the prognostic variable is the potential vorticity, given by

fi

_ 2 _1\m
Gm = V=t + (=1) S

(1/)1 - Tﬁz),m S {172}7 (10)

where m = 1 denotes the upper layer, m = 2 denotes the lower layer, H,, is the depth of the layer, 1) is the streamfunction,
which is related to the fluid velocity by ., = (U, V) = (—0y¥m, Ox¥m). and fo is the Coriolis frequency. The time
evolution of the system is given by

atQm + & (qum) + Bmamwm + Umame = - 5m,2rekv2l/}m + ssd o Am, (11)

where U,,, is the mean flow in the x (zonal) direction, 3,, = 8+ (—1)"*! gf—g (Uy —Us), rek, is the bottom drag coefficient,
and 9y, 2 is the Kronecker delta.

We numerically solve these equations using a pseudo-spectral method, with an Adams-Bashforth 3rd order timestepper
in the Fourier domain and periodic boundary conditions. This was implemented in PyTorch, the code for which will be
made publicly available upon de-anonymization. Numerical simulations are run at a resolution of 256 x 256, and the
potential vorticity fields are downsampled to 64 x 64 for training and testing of the neural network models. We use the
2-layer potential vorticity, ¢ € R?*64%64 a5 our state vector representing a QG system, so all neural networks used in
QG experiments have an additional input channel compared to the architectures used in Kolmogorov flow. As with the
Kolmogorov experiments, all state vectors are normalized to unit variance before passing to the neural network, and results
in the main text are shown in normalised units for simplicity.

B. Baseline emulator
B.1. Loss function

Here we describe the construction of the baseline neural emulator. Training over multiple timesteps has been comprehensively
shown to improve long term stability (Brandstetter et al., 2022; Gupta & Brandstetter, 2023; List et al., 2024; 2025), and one
can imagine three different ways to build a neural network and loss function to do this. First, we can simply predict the state
at some future timestep, as a function of the current timestep, i.e. ®g : x; — X441, with MSE loss:

N L-1
1

Lo=5D D I a(x)) —xipy + | (12)

k=1 t=0

14

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

where k indexes a training trajectory (of a total of IV training trajectories, each of length L snapshots), x;11 = ®g(%X;) +n
denotes a predicted state (including stochastic component), and Xo = x such that we are starting from a simulation snapshot.
An alternative approach is to instead emulate the residual between two snapshots, i.e., X;+1 = %, + ®5(%;) + 7n. This can
be achieved using two loss functions - either by evaluating the loss on the predicted state as in equation 12:

N L-1

1 . .

Ls= Do I @pke) + %) —xfyy + | (13)
k=1 t=0

where all terms are the same as previous. Alternatively, one can evaluate the loss on the residual:

N
1)
Lg=—=> Y [®a(kf) — (xf, —xf)+ . (14)

After experimenting with all 3 loss functions, we found significantly better performance from the residual emulators, and
particularly from the residual loss function in equation 14, in terms of validation loss and MSE accuracy over 200 step
rollouts.

B.2. Architecture

We experiment with two architectures for the underlying emulator. First, we use a Unet (Ronneberger et al., 2015) style
image-to-image architecture, adapted from https://github. com/pdearena/pdearena (Gupta & Brandstetter, 2023)
(referred to as Modern Unet in that work). Our Unet configuration consists of 3 downsampling layers, where the number
of convolutional filters is doubled at each stage of downsampling. We set the number of convolutional filters in the initial
layer to 64, which leads to a total number of 48M parameters. We include residual connections between each stage of
downsampling, and use GeLU activations throughout the architecture. We experimented with and without batch and group
normalization, and found that these had no impact on emulator performance, so we use no normalization in the results
presented in this paper. Given that both of the PDE solution data we are training and testing on were generated with periodic
boundary conditions, all convolutional layers use circular padding.

MSE w.r.t numerical model: Kolmogorov flow

10?
—— 48M param Unet
0.5M param DRN
101 .
10° 4
1071 4
1072 T T T T T T T
0 1000 2000 3000 4000 5000 6000 7000

Emulator step

Figure 7. MSE with respect to a numerical model for emulated Kolmogorov flow trajectories for the Unet and DRN models. The DRN
exhibits better long-term stability than the Unet, despite the much smaller model having a higher initial MSE.

Secondly, we also use a Dilated ResNet (DRN) architecture (Stachenfeld et al., 2021). Our implementation for the DRN
is again adapted from (Gupta & Brandstetter, 2023). A DRN is composed of Dilated Blocks, each with 2 stacks of 7
consecutive convolutional layers. The filters of these convolutional layers have dilations of [1,2,4, 8,4, 2, 1] consecutively.
Our baseline DRN is composed of 2 layers of convolutional preprocessing layers with stride 1, and then 4 Dilated Blocks,
before finally passing through 2 final convolutional layers, again with stride 1. After each layer, we use GeLU activations,
and we include residual connections over all Dilated Blocks. Each convolutional layer consists of 32 convolutional filters,
and we do not use any batch or group normalization. The total number of parameters for the DRN is 0.5M.

15

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

B.3. Optimization

The network weights are optimized using the AdamW optimizer with momenta $; = 0.9 and 83 = 0.999, and a learning
rate of 5e~*. In practice, equation 6 is broken up into mini-batches of size 32. We train the model for 12 epochs, (longer
training runs were experimented but we found the loss curves did not improve with more epochs). The time horizon At = 2
was chosen by experimenting with a range of different values in the range [1,20], and selecting At based on emulator
performance in terms of MSE predictions over a time horizon of 200 step rollouts. Consistent with previous works, we
found that composing multiple passes of a network trained over shorter training time horizons produced better MSE than
training over larger timesteps (Lippe et al., 2023).

Importantly, we observed that improvements in validation loss often had little impact on long term stability. This can
be seen in Figure 7, where we compare the short term MSE for the Unet and DRN models. The larger Unet model has
significantly lower MSE over a short number of steps, but all trajectories quickly go unstable. Indeed, we observed that
long term stability varied significantly with network weight initialization, even for a fixed dataset, model architecture and
optimization algorithm.

C. Diffusion model thermalizer
C.1. Architecture

To implement the thermalizer as a diffusion model, we use the same core architecture as the Unet used for the emulator. As
discussed in section 4.2, a key component of the thermalizer is some prediction of the noise level. To augment this standard
Unet implementation with a noise-classifying head, we take the lowest-dimensional representation from the Unet, and add an
additional 2 convolutional layers, with kernel size of 3 and stride of 1. We then vectorize the output of the last convolutional
filter into a length 4096 vector. This is then passed through 2 more linear layers of size 1000. This final vector of length
1000 represents the predicted categorical distribution over noise levels for the input image. The total number of learnable
parameters for this network is 53M. We implement a method to run a forward pass through the noise-classifying component
of the network only, for computational efficiency during rollouts. Also note that since our network does not include the
noise level as an input scalar, our diffusion model does not need have additional timestep embedding components.

C.2. Optimization

To optimise the network, equation 8 is broken up into mini-batches of size 64. Again we use the AdamW optimizer, with
a learning rate of 2e~°, and train the thermalizer for 35 epochs. Given that at inference time, we generally only use low
noise levels of approximately s < 20, we experimented with training the model only on these low noise levels. However
we found that performance degraded significantly, so sample noise levels s uniformly across the full range during training.
Noise levels are set using a cosine variance scheduler. All model architecture, training and inference codes can be found at
https://github.com/Chris-Pedersen/thermalizer.

C.3. Thermalizer settings: si,;; and sgiop

A key component of the algorithm is the adaptive nature of thermalization - which allows for stabilisation with a minimal
interruption of temporal dynamics. There are two free parameters here - s;,;; which determines the estimated noise level at
which the thermalizer starts to apply corrections to the state vector, and s, Which sets the lowest noise level to which we
run the denoising process. To find the optimum settings, we run a simple grid search on sini € [10, 6] and sgop € [5, 2]
(note that we need Sgtart > Sstop- FOT €ach pair of sini; and ssiop, We run a thermalized trajectory for 1e4 steps. We chose
the combination of sin;; and sg¢p, in Which the kinetic energy spectra of the thermalized trajectories best matches the kinetic
energy in the numerical model. This experiment is repeated independently for each flow configuration, and each emulator -
so this procedure was run a total of 4 times. We found s;,,;; = 7 and sgtop, = 4 optimal for the Kolmogorov Unet, sin; = 10
and sg0p = 5 optimal for the Kolmogorov DRN. For QG we use si,it = 9 and s40p = 4 for the Unet, and s;,;; = 6 and
Sstop = 3 for the DRN emulator.

D. Inspecting a single thermalization step

It is possible to investigate the effect of a single thermalization step on a rollout. We randomly select a snapshot from the
thermalized trajectories show in Figure 3, and take emulator steps from this snapshot until the predicted noise level reaches

16

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Step 0 Step 1000 Step 2000 Step 3000 Step 4000
S L 3 > T
% ‘} 3‘ Asiad 4 ’ S 10 - \-’WS_.-):'\%_‘:\ L 2000 |; RO 250000
e A7)’ S i ¥
WA RN 2 Ty L 29
S AR= o - I AN [0
g 9 ':"“t‘-’l 0 3 ;'n Lo 7
£ -'.‘.ﬂ';?.-‘,'." [2 -2 10 | i —250000
s [AUSINSS p 4 —
— = 4

e FORTT TR PP ¥ TN . 10000
Sl Y| SRR | B TR0 | IS
el (St Y A PPN 1\ B\] £ 2
E ey q\-y Lo . « ARV ,-,‘O‘, .)
2 DA™ AW oy L8 |0 %2 0 -0 0
=] '., =\ .“ ".v‘ o B LS
g ‘!"35'!'?;-‘" [2 ;I"l} U2 ‘Lt-',‘ S|
= 1 \."’ e = = !'¢ i " - —50

SO : 10 - 2000 250000

-0.05 LA e iy
L 2 k; e L
= B \\ 7w s) et vl 0
a - 0.00 !;:.: ,:q\ r 0 » 74 : 0 o
L 005 | %% A2 ". - ~250000
i Pl
e 400, -10 e
-5

Figure 8. Inspecting the effect of a single thermalization step on the stability of a QG rollout. Top row shows an emulator rollout starting
from a snapshot at noise level sprcq = 10. The middle row shows the same rollout, except starting from the same snapshot after applying
a thermalization step. The development of instability is delayed by this single thermalization step.

the sini, = 10. We then take siherm = Sinit — Sstop = 4 thermalizing steps on this snapshot. The corresponding fields
before and after thermalizing are shown in the leftmost panel of Figure 8, where the total effect of the thermalization step is
shown in the lowest left panel.

We can then continue running the emulator on the snapshots with (middle row) and without (top row) applying this single
thermalization step, and observe that the eventual instability develops sooner in the non-thermalized (top) row. This can be
seen both visually in the potential vorticity fields as accumulation of high-frequency signal, and the growing field magnitudes
shown by the colorbars. This experiment illustrates the effect that the subtle thermalization steps have on the stability of
rollouts. The same procedure is repeated for other randomly selected snapshots in Figures 9 and 10.

E. Additional results and figures

In Figure 11 we show a schematic illustrating the principle of the thermalizer. In Figure 12, we show sy..q along the full
10000 step trajectory, for the Unet emulator in both Kolmogorov and QG flows. In gray lines we show s;,..q for the emulator
trajectories, thermalized trajectories are shown in blue, and the numerical model in red. Initially, spyeq is low for all three
different models, as the state vector has not had a chance to accumulate significant error. We see that s;,,.q increases as
the un-thermalized trajectories accumulate error - eventually going unstable, at which point our noise-classifying output
becomes unreliable, leading to the vertical gray lines. In contrast, the blue lines are constrained to stay at a low noise level,
never exceeding sp.eq = 16. This is the consequence of the thermalizer keeping states in-distribution. Finally the red lines
for the numerical model are shown as a sanity check that our noise-classifying head is able to consistently identify that the
numerical model states are all in-distribution.

In Figure 13, we inspect the number of thermalization steps along a 500 step segment of the trajectories show in Figures 1
and 15. For each of the 40 trajectories, and each of the 500 steps between timesteps 5, 000 and 5, 500, we show the number
of thermalization steps applied to the state vector. We see that the amount of thermalization applies varies strongly along a
trajectory, with steps ranging from O to 16. This indicates that the flow oscillates between periods of no correction, and
periods where significant correction is applied.

Next we show the vorticity fields for 25 random samples from the 40 trajectories shown in Figure 1, at the end of the 10, 000
steps. In In Figure 16, we show results for the numerical model. Above each panel, we show the predicted noise level for
each flow state. In Figures 17 and 18, we show the equivalent for the emulator and thermalized trajectories. Note that in the
emulator case, after 10, 000 steps the fields have gone so far out of distribution that the predicted noise levels are unreliable.

17

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Step 3000

Without therm step

With therm step

Diff

Figure 9. Same as Figure 8, except with a different initial condition.

In Figures 19, 20 and 21, we show the upper layer potential vorticity for all 20 QG trajectories after 10, 000 steps, for the
numerical, emulator, and thermalized models respectively.

18

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Step 1000 Step 2000 Step 3000

Without therm step

With therm step

1 0.05

r 0.00

Diff

- —0.05

Figure 10. Same as Figures 8 and 9, except with a different initial condition.

P(RY)

Figure 11. Schema for the thermalization in the space of marginal distributions P(]Rd). In yellow, the OU diffusion path is defining a
transport between the equilibrium x4 and the Gaussian measure . In green, the current law [i; of x;. In purple, the (stochastic) transport
map I'; defined by the reverse diffusion. While by construction it transports vs back to p, when applied to /i it produces the corrected
measure i, reducing the error as per (7).

19

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Predicted noise level during rollouts

T 1| Kolmogorov

8000 10000

2000 4000 6000

0
801 —— Numerical model
—— Emulator
60 - —— Thermalized
ki
& 40
G
ol 2
0 ! . ! .
0 2000 4000 6000 8000 10000

Emulator step

Figure 12. Predicted noise level, spreq during rollouts for the numerical model, emulator, and thermalized trajectories. In the top panel we
show results for the 40 Kolmogorov trajectories using the Unet emulator shown in figure 1, and in the bottom panel we show the 20 QG
trajectories shown in figure 3.

Trajectory #

Trajectory #

Number of thermalization steps during a rollout, for Kolmogorov flow

R
N B O
uLIBY] JO #

=
o

o N B~ O
sdajs uopjez|je

Timestep

Figure 13. Number of thermalization steps along thermalized trajectories. We inspect the number of thermalization steps for each of the
40 trajectories at each timestep, between timestep 5000 and 5500, for both the Unet and DRN emulators on Kolmogorov flow.

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Numerical model

Thermalized

t=10s, step=4750

t=0s, step=0 t=3s, step=1500 t=5s, step=2500 t=15s, step=7500 t=20s, step=9999

Numerical model

Emulator

)

k]
(3]
N
N
E
&
107
—— Numerical model
~—— Emulator
—— Thermalized N
10!
100 10! 100 10t

Kinetic energy spectra from 40 different trajectories

Figure 14. Equivalent figure as in Figure 1, but with the Dilated ResNet (DRN) emulator.

t=521 days, step=2500

t=1042 days, step=5000 t=2083 days, step=10000
- - -)

t=0 days, step=0 t=52 days, step=250 t=208 days, step=1000
b w C

Emulator

Kinetic energy spectra from 20 different trajectories

Figure 15. Equivalent figure as in Figure 3, but with the Dilated ResNet (DRN) emulator.

21

%
= A . 4 - -y * A
\ o | . = -GN A e =1) ¥y
ST s " b Ay Pt e " - : . T LY
L \". : l-_ T '-' - - - .\l. - - { - .
o .-‘L e LT Ao "'}..:'.\ =% ""o;‘[. 'J». -
3 h L J &g 1 L e . ’ . y 4
. o e ST LY e o e PRy A
L e ol ey §uhrt . § v o N
’ AL N e r = . .
= - e -, E s v E r % i A
- TN - [
- 5 ¥
L p e i
Y LS i o -
T o
N A - {
ol w =i et -
- ! ’
. ¥ - . L '-H-Q;‘
0 .l Y .wl 4 \'v =
ALY ’ L
e AR
= L Z 7 Xy e "
. g s -, e WY b - L =%
T i, F # “w =~ -
' v . "I- = - - o F M| b % » =
YN AN S P b Sl L Ty,
By 59 » =i - . = 1 ‘..': i . R
.) f = “r ' - 1 4 %
. - Wy = = "
0 # .wi sIN. e # o - . Ll é
iy 1§ [1 L —
T Y =1 1 O — . [
o 38, F - i . >
Z 4
Z
~—— Numerical model 2
—— Emulator
—— Thermalized
1
10° 10* 10° 10* 10° 10* 105 10* 105 10* 105 10*

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Numerical model, step 9999

0 0 0
- _ _ _
L4 .5 L 5.0
L2
L 25
» I
o 0.0
. L 0.0
- L 25
2 L 25
L2 L
- U LF-50 U
0 3 3 0
L2
Lo
L2
L4
0 0 0
- - _
L 2 | 2 i 2
L 0 | 0 [0
L2
L 2 L2
L4
-4 LF—4 L
0 0 0
L 5.0
L25
L 25
L 0.0
L 0.0
L 25
L 25
i lF-5.0
0 0 0 0
»
.
-

Figure 16. Kolmogorov vorticity snapshots after 10, 000 steps, from the numerical model. The predicted noise level is shown above each
fluid state.

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Emulator only, step 9999
93 1620 93 1e21 93 1e19

e20

e2
e2
e2

1
Figure 17. Kolmogorov vorticity snapshots after 10, 000 steps, from the neural network emulator. The predicted noise level is shown
above each fluid state.

93 1
93 1
93 1
93

23

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

Thermalized states, step 9999

3
M+ 5.0 M
-2
2.5
-0
k0.0
- -2
L 2.5
-4
4
n
¥)
-0
-2
-4
7
L2
2.5
Lo
0.0
L -2.5 -2
3
T4
2.5
L2
k0.0
-0
2.5
F-2
I -5.0
3
F5.0
F2.5
- 0.0
L 2.5

Figure 18. Kolmogorov vorticity snapshots after 10, 000 steps, for the thermalized trajectories. The predicted noise level is shown above
each fluid state.

24

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

QG Numerical model, step 9999

2.5
r0.0

r—2.5

2.5
| [10.0

-—2.5

Figure 19. QG upper layer potential vorticity snapshots after 10, 000 steps, from the numerical model. The predicted noise level is shown

above each fluid state.

25

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

QG Emulator only, step 9999

0 0.10 0 0.10 0 0.10 9 0.10 0 0.10
0.05 0.05 0.05 0.05 0.05
0.00 0.00 0.00 0.00 0.00
—0.05 —-0.05 -0.05 -0.05 —0.05
—0.10 -0.10 -0.10 -0.10 -0.10
0 0.10 0 0.10 0 0.10 0 0.10 0 0.10
0.05 0.05 0.05 0.05 0.05
0.00 0.00 0.00 0.00 0.00
—0.05 —-0.05 —-0.05 -0.05 -0.05
-0.10 -0.10 -0.10 -0.10 -0.10
0 0.10 0 0.10 0 0.10 0 0.10 0 0.10
0.05 0.05 0.05 0.05 0.05
0.00 0.00 0.00 0.00 0.00
—0.05 -0.05 -0.05 -0.05 —0.05
-0.10 -0.10 -0.10 -0.10 -0.10
0 0.10 0 0.10 0 0.10 9 0.10 0 0.10
0.05 0.05 0.05 0.05 0.05
0.00 0.00 0.00 0.00 0.00
—0.05 -0.05 -0.05 -0.05 -0.05
-0.10 -0.10 -0.10 -0.10 -0.10

Figure 20. QG upper layer potential vorticity snapshots after 10, 000 steps, from the neural network emulator. The predicted noise level is
shown above each fluid state.

26

Thermalizer: Stable autoregressive neural emulation of spatiotemporal chaos

QG Thermalized states, step 9999

5.0

L4
£2.5 L2
0.0 0
- —2.5 -2
4 5.0
-2 L 2.5
B L0.0
-2 L 2.5
" 5.0
L) L2.5
-0 L 0.0
-2 | | —2.5
-4 -4
») -2
-0 L0
-2 -2

Figure 21. QG upper layer potential vorticity snapshots after 10, 000 steps, for the thermalized trajectories. The predicted noise level is
shown above each fluid state.

27

