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Abstract

We study the approximation gap between the dynamics of a polynomial-width neural network and
its infinite-width counterpart, both trained using projected gradient descent in the mean-field scaling
regime. We demonstrate how to tightly bound this approximation gap through a differential equation
governed by the mean-field dynamics. A key factor influencing the growth of this ODE is the local
Hessian of each particle, defined as the derivative of the particle’s velocity in the mean-field dynamics
with respect to its position. We apply our results to the canonical feature learning problem of estimating
a well-specified single-index model; we permit the information exponent to be arbitrarily large, leading
to convergence times that grow polynomially in the ambient dimension d. We show that, due to a certain
“self-concordance” property in these problems — where the local Hessian of a particle is bounded by a
constant times the particle’s velocity — polynomially many neurons are sufficient to closely approximate
the mean-field dynamics throughout training.
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1 Introduction

The Mean-field Regime. We consider the training of the following one-hidden-layer neural network with
m neurons via gradient-based optimization:

1
flx) = - o({x,w)), w1, W, ..., Wy, € Sd_l, (1.1)
i=1



where o : R — R is the nonlinear activation function (e.g., ReLU), and {wi}g’il are trainable parameters,
constrained to the sphere. Due to the nonlinearity of the activation function, the optimization landscape
is generally non-convex. In this context, two approaches have been developed to “convexify” the problem
through overparameterization (i.e., increasing the network width m) and to establish global optimization
guarantees: the neural tangent kernel (NTK) [JGH18, DZPS18, AZLS19,ZCZG20] and the mean-field anal-
ysis [NS17, CB18, MMNI18, RVE18, SS20]. The NTK approach linearizes the training dynamics around
initialization under appropriate scalings, ensuring that the trainable parameters remain close to their random
initialization [COB19]. However, this condition prevents feature learning and often leads to suboptimal
statistical rates, as it fails to capture the adaptivity of neural networks [GMMM19, CB20, YH20, BES*22].

The mean-field analysis, on the other hand, lifts (1.1) into the (infinite-dimensional) space of measures
by considering the empirical distribution of neurons p™ = m ™! >t dw,. Under certain regularity condi-
tions, one can establish weak convergence of the empirical distribution to the limiting mean-field measure as
the number of neurons tends to infinity: p™ M0 pME | and the trajectory of the limiting parameter distribu-
tion is characterized by a partial differential equation (PDE). This (McKean-Vlasov type) PDE description
can capture the nonlinear evolution of the neural network beyond the kernel (lazy) regime.

Studying the mean-field dynamics has several advantages, particularly with regard to learning sparse
or low-dimensional target functions such as multi-index models. First, in contrast to the NTK regime, the
mean-field dynamics describes feature learning which often leads to improved statistical efficiency (see
e.g., [Bacl7, CB20, AAM22, MZD*23]). Further, overparameterized neural networks are useful for fitting
functions that are not well-specified, for instance a multi-index function with an unknown link function.
In such instances, prior correlation loss analyses [AAM23, LOSW24] that ignore the interaction between
neurons cannot establish learnability'. Second, from a purely analytical perspective, the infinite-width limit
allows us to exploit certain problem symmetries that simplify the mean-field PDE into low-dimensional
descriptions as done in [AAM22, HC23, ASKL.23, CG24, MU25].

Propagation of Chaos. Since training infinite-width networks is computationally infeasible, the practical
significance of the above theoretical benefits hinges on having a quantitative connection between finite-width
networks and their associated mean-field limit. This is precisely the goal we embark upon in this work. The
dynamics of polynomial-width neural networks can be viewed as a finite (interacting) particle discretization
of the limiting mean-field PDE. Therefore, one of the main challenges in transferring learning guarantees of
the infinite-width limit to the finite-width system lies in the non-asymptotic control of particle discretization
error — known as the propagation of chaos [Szn91, CD22].

In the context of neural network theory, existing propagation of chaos results typically fall short of
delivering this non-asymptotic control. On one hand, exponential-in-time Gronwall-type estimates leverage
the regularity of the dynamics to propagate the Monte-Carlo error at initialization (at scale O(1/m)) to
obtain an estimate of the form sup;co 71 (fyr(z) — for (2))? < exp(T) - (m™' A n) where n > 0 is
the learning rate [MMN18, MMM19, DBDFS20]. Hence, this type of discretization error analysis is only
quantitative when the time horizon is short, such as 7" = O,4(1) for learning low “leap” functions [AAM22,
BMZ23, MU25] and T' = Oy(logd) for learning certain quartic polynomials [MZD%23]. On the other
hand, for the mean-field Langevin dynamics (MFLD) [HRSS19, NWS22, Chi22a], which introduces additive
Gaussian noise to the gradient updates, exponential dependency on time can be removed under a uniform
logarithmic Sobolev inequality (LSI), leading to uniform-in-time propagation of chaos [CLRW?24, SWN23,
KZC'24, Nit24]. However, the LSI assumption ultimately transfers the exponential dependency to the
runtime [SWON23, WMHC24, MHWE24, TS24]. Finally, [CRBVE20, PN21, Chi22b] proved uniform-in-
time fluctuations around the mean-field limit, but in the asymptotic width limit. To our knowledge, the only
work that coupled a poly-width network with the infinite-width limit for poly(d) time is [RZG23], which

'In Section 5, we give several concrete examples of this, along with simulations.



considered a specific bottleneck architecture for learning a symmetric target function.

Consequently, despite the feature learning advantage, the function class that can be learned by two-
layer neural networks trained via gradient descent in the mean-field regime with polynomial compute is
largely unknown, except for target functions reachable within finite (or at most log d) time horizon. It is
likely that for many interesting problems, this ' = Oy(log d) horizon is not sufficient for the mean-field
dynamics to converge to a low-loss solution. For instance, when the target function is low-dimensional,
prior works have shown that gradient-based feature learning often requires 7' > d®(*") runtime, where k* is
the information/leap exponent (IE) of the link function, which may be arbitrarily large [BAGJ21, AAM23,
BBPV23]. The goal of this work is to identify sufficient and verifiable conditions under which the mean-field
limit is well-approximated by m = poly(d) neurons up to 7" = poly(d) time horizon.

1.1 Our Contributions

In this work, we study a teacher-student setting where the target function is parameterized by finitely many
“teacher” neurons. Let pMF denote the distribution at time ¢ of the infinite-width mean-field dynamics trained
with projected (spherical) gradient flow on infinite data, and p;* the m-particle mean-field discretization of
this dynamics, trained with n samples. We establish a set of conditions under which p}"* is well approximated
by pMF up to the time required to learn the teacher model. The crux of these conditions is twofold:

1. The mean-field dynamics satisfy a certain local strong convexity (Assumption LSC), which states that
when a neuron is close to a teacher neuron, the local landscape is strongly convex.

2. A certain average stability parameter .J,yo (Assumption Stability) is at most O(1/T), where T is the
convergence time. Loosely speaking, J,v is a measure of the average sensitivity of the neurons with
respect to a small perturbation in any one neuron.

Denote f,(x) := E,[o((z,w))], | f|| := Ex[|f(2)|?]"/? and £(p, p) = || fo— f3||. We show in Theorem 1
that if the above conditions hold (along with several other regularity and technical conditions), then for
t < T, with high probability one has

£, ) 5 PO
~ min(y/m, /)
This means that poly(d,T) neurons suffice to approximate the mean-field limit up to the time of conver-
gence. This result also gives a non-asymptotic rate of convergence of p;* to an appropriate empirical mea-
sure of pMF with time dependence that goes beyond the pessimistic Gronwall estimate.

In Theorem 2, we apply our result to a setting of learning a single-index model (SIM) with high infor-
mation exponent £* > 4, for which gradient flow converges in time 7" = @(dk*/ 2). First, we prove that in
this setting, the limiting mean-field network, trained on the population loss, can learn the target function at
time 7. Then we use Theorem 1 to deduce that with m,n = d®*"), at time T the distance &(pMF, 51 is
small, and thus the finite-width model p;"* also achieves small population loss.

Remark. To our knowledge, our work is the first to prove propagation of chaos (i.e., the above bound
on E(pME, pin)) with polynomially many neurons at timescales longer than log(d). We remark that we do
not believe all the conditions we impose to be necessary — we discuss this in detail in Section 5. Existing
techniques (see [CD22] for review) primarily leverage either (a) convexity in the system, (b) Gronwall’s
method, or (c) a large diffusion term. Our techniques go beyond these approaches, and as such they could

be useful to establish quantitative propagation of chaos in interacting particle systems with little or no noise.



Outline. In Section 2, we provide preliminaries on the setting and explain the basic objects we will an-
alyze. In Section 3, we state our main results, as outlined in the contributions. In Section 4, we give an
overview of the proofs. In Sections 5 and 6, we discuss the assumptions of our settings, comment on their
necessity, and provide simulations. We conclude in Section 7. Full proofs are given in the Appendix.

Notations. P () denotes the space of probability distributions over Q. W7 (p, p’) denotes the 1-Wasserstein
distance between distributions p and p’. We will use lower-case letters (f, g, h) to denote functions defined
on S, Greek letters (A, &, etc) to denote vector-valued functions S 5 R4 and upper-case letters to
denote matrix-valued functions S¥~! — R%*4 or S9! x S¥~1 — RI*4 When i is an empirical measure of
the form i = L 3. 6,,, we will use the shorthand f(i) = f(w;), and denote E; f(i) := L 3. f(w;).
We write P := (I —ww'). For H € L*S% ! x ST 2 R, D ¢ L2S4 1 pu,R¥9) and
A€ L2(S4L u,RY), we use HA(w) = By, H(w,w')A(w'), and D ® A(w) = D(w)A(w). For
f € L2(R%,v), we write || f||? := E|f(x)|?, and omit the subscript when the context is clear.

Throughout this paper, we use the asymptotic notation O¢(X) to denote X times some constant that
depends arbitrarily on C. Whenever a term of the form C' (usually with some subscript) appears, this term is
referring to a constant, meaning that its value does not depend on m, n, d (which we will take to infinity). We
write “with high probability” when the probability approaches 1 as m or n goes to infinity. This probability
is taken over the neural network initialization {wi}ie[m] and the random sample of n data points.

2 Setting and Preliminaries

2.1 Projected Gradient Dynamics on Neural Networks

Consider a neural network to be parameterized by some distribution p € P(S%!), such that
folz) == EwNpa(wT:U),

for a link function (activation) 0. We require o to satisfy the regularity conditions in Assumption Regularity.

A supervised regression problem is parameterized by an initial distribution for the network weights, pg,
and a distribution D over points (z,y) € R? x R. Given (pg, D), we define f*(x) = Eply|z]. We will train
the neural network to minimize the squared loss

LD(p) = E(:p,y)ND(fp(x) - Z/)2 :

We study the projected gradient flow dynamics of p induced by moving each particle w ~ p in the
direction of the gradient of the loss Lp(p), and then projecting the particle back on the sphere:

Fw=vp(w,p) =~ —ww")Vyfp(w) + (I —ww")VyEyphp(w,w') 2.1)

where

fp(w) := E(%y)NDyU(waL‘) and hp(w,w') = E(x’y)wpa(w’Tx)a(wT:c).

In the case where we train on infinite data, the relevant problem parameters are (f*, po, D,), where D,, is
the z-marginal of D. In such setting, and when D, is clear from context, we will use v(w, p) (without
any distribution subscripted) to denote the case where = ~ D,, y = f*(x) deterministically. Whenever an
expectation over x appears in this paper without explicit distribution, it should be interpreted as over x ~ D,.
In this paper, we will primarily be interested in a teacher-student setting with a ground truth measure p*,
such that f*(z) = Eys~pro (2" w*). Thus we will sometimes describe a problem by (p*, po, Dy).



2.2 Coupling between Mean Field and Finite-Neuron Dynamics

We will study the evolution of two different learning dynamics in this paper.

Infinite-width, infinite-data mean-field dynamics. We denote the mean-field distribution at time ¢ by
pME € P(S?71), where we initialize p§If = po. Each particle w € S~ ! in the mean-field dynamics evolves
according to the infinite-data velocity v(w, pMF) € T,,S?1. & (w) € S?~! denotes the characteristic of a
particle initialized at w and evolved under the mean-field dynamics:

&) = v(&(w),p'")  o(wi) = w; .

This dynamics can also be expressed though the continuity equation:% pME =V - (v(w, pMF) pMF).

Finite-width, finite-data dynamics. Let p;" denote the empirical measure defined by m neurons under the
projected gradient flow induced by the empirical loss from n training samples. Let D denote the empirical
distribution of the n training samples. We initialize pg* = % > ity 0w, Where w; ~ po ii.d. for each i €
[m]. Each particle w € S*~! in the finite dynamics evolves according to the empirical velocity v (w, pf).
This defines an ODE in (S%~1)®™, whose characteristics are now denoted by & (w;), and solve

L& (wi) = vp(&(wi), ) So(wi) =w; , i € [m].

We will study the setting where the training data are drawn i.i.d. from a sub-Gaussian distribution with
sub-Gaussian label noise (See Assumption Regularity, R2).

Coupling the dynamics. Let p"* be the distribution initialized at pg*, but that evolves according to the

dynamics v (-, pM'F). Thatis, pj* = L 37 5, (w,;)- Note that pi" is equivalent in distribution to a random

sample of m particles drawn iid from pMF. Define the coupling error at neuron w; as
Av(i) i= &w;) — &(w;) €RY, i€ [m],

such that Ag(7) = 0 for all <. Now by definition, W1 (p}", pi*) < E;||A¢(7)||; thus it is easy to show that
;|| A¢()]| gives a good bound on the function-error distance between pMF and p:

Lemma 1. Suppose Assumption Regularity holds. With high probability over the draw p(', we have

log(m).

e — fop 1P < Oc (Eill Ae(D)])* +

2.3 Description of the Dynamics of A

The main result of this section is Lemma 5, which gives a first-order approximation of the dynamics of
A(i). The quantities {A(7)}; evolve via their own particle interaction system, governed by two main
terms: a self-interaction term, and an interaction term. The self-interaction term is described by what we
call the local Hessian, the derivative of a particle’s velocity with respect to that particle’s position.

Definition 2 (Local Hessian). The local Hessian Dtl : S9=1 5 R of neuron w at time t is
Dif(w) := (Ve (&e(w), pp'™)) (I = &e(w)&r(w) ).

We will also use the abbreviated notation Di- (i) := Di-(w;).



Remark 1. We call this the local Hessian because it equals the negative Hessian of the landscape of the map
E(wi) — Up(&(wy)) == U(&(wy); pME), where U = % is the first-variation of the loss, so that V = VU,
and & (w;) is restricted to the manifold SP'. Thus if the local landscape Uy (&;(w;)) is convex on S, then
Di(i) is negative semi-definite.

The part of the dynamics driven by the other A4 () is described by what we term the interaction Hessian,
the (rescaled) derivative of a particle’s velocity with respect to the other particles’ position.

Definition 3 (Interaction Hessian). Define the interaction Hessian H;- : S9~1 x §4—1 — Rd*d py
HE-(w, ') = (1 = &(w)&(w) ") Ve ) Vi (6 (), &(w)) (1 = &(w)&u(w) ),
We will also use the abbreviated notation Hi-(i, j) := Hj (w;, w;).

Fact 4. For any w,w', Hi(w,w') is a positive semi-definite kernel.

Proof. By definition of Ap in Equation 2.1, one can check that H;" (w, w') = E,¢,(w)d.(w') ", where we
define the feature map ¢, (w) := (I — &(w)&(w) "o’ (& (w) T z) O

We make the following basic regularity assumptions on the activation function and the data.
Assumption Regularity (Regularity Assumptions).

R1 For a constant Cyeg, the activation o satisfies that for j = 0,1, 2,3 and any subGaussian variable X,
we have Ex|o0) (X)|° < (Creg/11)%, where o) denotes the jth derivative of .

R2 The distribution D, on the covariates is Cy.q-subGaussian, and the noise has covariance at most 1,
. 2
that is By p.(y — f*())* < L

We introduce the control parameters

o d3/?log(mT) _ Vdlog?(n)

€Em . T, €En - \/ﬁ .

We will show in Lemma 19 that with high probability, the error ||v/(&;(w;), pMF) — v(&(w;), pi)|| due to
sampling only m neurons is uniformly (over ¢ and t) bounded by ¢,,. Similarly, we will show in Lemma 23
that the error || (& (wi), p7) — v(&(w;), p™)|| due to using the empirical data distribution D is uniformly
bounded by ¢,,.

Lemma 5 (Parameter-Space Error Dynamics). Suppose Assumption Regularity holds. With high probability,
forallt < T andi € [m],

d . ) . . ,
27 8(0) = Dy () A(0) = By Hy (5, 7) A4 () + €14,
where [|exi]| < 2em + en + 20 (184 ()] + E; | Ae(5)])-

We prove Lemma 5 by decomposing %At(i) =v(&(wi), pPMF) (& (w;), pi) into four differences (see
Figure 1), and separating the first order terms (in A;) from higher order terms in these differences.
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Figure 1: Decomposing %At(i) = v(&(w;), pMF) — V@(ét(w,;), p7). The approximate differences between the
terms in the rectangles are given above the arrows.

An integral form for A;(7). Duhamel’s principle gives us a way to solve the ODE in Lemma 5 using the
solution to a simpler dynamics which only involves the local Hessian.

Definition 6 (Local Stability Matrix). Define Jt%s (w) to be the matrix that solves
didis(w) = Dif(w) i (w); T (w) = (I = &(w)és(w) 7).

We call this the local stability matrix, because Jt{;(w) = J¢,  (&s(w)), where & s(u) denotes the position of
a neuron at time t which evolves in the mean field dynamics starting at position u at time s, and J denotes
the Jacobian. We use the shorthand J; s(i) := Ji s(w;).

On the same assumptions as Lemma 5, Duhamel’s principle yields
¢
8uli) = [T (“EHHG DA + eas)ds. 2
0

3 Main Result: Propagation of Chaos

3.1 Intuition and Key Challenges

To bound & (p7*, pMF), it suffices to analyze the dynamics of A; given by the ODE in Lemma 5:
F0(0) = Dy () As(6) = Bjeo Hi (6, ) A(G) + €15 Nlerill < e 3.1)

One might hope to leverage the linearity of (3.1) to solve this ODE in closed form, but unfortunately, the
time-dependent coefficient matrix, diag(Dj;-) — H;", does not commute at different times .

Going Beyond Gronwall. The conventional approach (see e.g., [MMN18, MMM19]), uses the maximum
Lipschitzness of v(w, p) — in our spherical case, this translates to a bound on sup; ; ; || Di"||, || Hf(i, j) || -
to bound the RHS of (3.1) as

d . . )
g 18D < 2Lippay sup [|A(g)] + e (3.2)

JEIM

In standard settings, this maximum Lipschitzness is a constant, so this method can achieve no better than the
bound W1 (p}™, pi*) < exp(O(t))e. The work of [MZD 23] goes further to bound (3.2) using a tight time-
dependent Lipschitz constant, yielding propagation of chaos for log(d) time. However, for problems with
polynomial-in-d time to converge, such as learning a SIM with a high information exponent, the approach in
(3.2) is overly pessimistic, because both the local Lipschitzness at neuron 4, and the ||A;(j)|| are extremely
non-uniform in ¢ and j (See Figure 2).

Equation (2.2) gives us an alternative way to approach (3.1) which can leverage the non-uniform Lips-
chitzness. Ignoring for a moment the interaction terms in Equation (2.2), we have || A ()] =~ fg Jtﬁs (1)€s,ids,
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Figure 2: Non-Uniform Dynamics in SIM with IE 4 (f*(z) = Hey(z w*) for # € R32.  We plot
D), | A ()], e (w;) = |w*& (w;)| for each neuron. Left: Top eigenvalue of the local hessians Dj" (7). Cen-
ter: |[A.(¢)]|, Right: Alignment cv;(w;) with the teacher neuron. A key challenge in the IE > 2 setting is the variance
in Lipschitzness among the different neurons, and in || A4 (7)]|.

where we recall that the perturbation matrix ths(z’) measures of the stability of & (w) with respect to pertur-
bations at time s. Naively, ths(wi) appears to grow at an exponential rate whenever the local landscape of
the linearized loss around &;(w;) (see Remark 1) is non-convex.

A key observation of our work is that when w; escapes certain higher-order saddles, ||J7(i)|| will be
bounded polynomially in ¢ — s. We achieve this by showing a certain self-concordance-like property which
upper bounds Dj-(i) using the velocity (which is small near the saddle). Thus one part of our assumptions
will be a worst-case polynomial bound on || Jt’is (w)|| (see Assumption Stability).

The Interaction Term: A Blessing and a Curse. At first glance, the presence of the PSD interaction term
Hj- in (3.1) seems like it can only help us bound E;||A;(4)||. Indeed, if we ignore the local D;* terms in the
ODE, we would have that £A, = —H;"A,, and thus we could show that E;||A,(4)||%, an upper bound on
the Wasserstein-2 distance Wa(py, pMb), is non-increasing.

However, the interaction of H;* and Dj- can lead to precarious situations if the neurons move at non-
uniform rates. To see this possibility, suppose for some neuron w;, A;(7) first grows by a polynomial factor
due to D#(i), and then propagates that error, via the interaction term, to a different neuron w;. Later
on, when neuron w; escapes the saddle, it will grow A;(j) by a polynomial factor. The process can then
continue by “passing off” the error between neurons such that it grows in an exponential fashion, without
any neuron doing more than “polynomial growth” of the error itself.

To rule out such a scenario, we will impose an assumption that leverages the intuition that in many
teacher-student settings with uniform initialization, the neurons are dispersed before converging to the
teacher neurons. Thus on average, the interaction term — whose scale is dictated by inner product wiT w;
— is small, and cannot propagate too much error to these neurons. Specifically, the interaction term drives
changes in the error according to the interaction Hessian, H;-: an error of A;(j) at neuron w; causes a force
of —H;j(i,7)A(5) on the error of neuron w;. Following Equation (2.2), this force propagates into an error
of scale Ry (i, j)As(j) on neuron w; at time ¢, where Ry (i, j) := Ji5 (i) H- (i, j).

The second part of Assumption Stability states that the average of R, 5(i, j), over all neurons i far from
supp(p*), is small.

Behavior Near the Teacher Neurons. While the second part of Assumption Stability is quite powerful,
we cannot hope that it holds for neurons near the teacher neurons. Indeed, when ¢ and j are both near some
w* € supp(p*), then || Ry 4(4,7)|| = ||[Hi (i, §)|| = ©(1). Thus for neurons near supp(p*), we will need to
leverage the fact that H;- is PSD. A key contribution of our work is constructing a novel potential function
which can leverage this term. We discuss this at length in Section 4.



3.2 Theorem Statement

We will now present an informal version of our assumptions and propagation of chaos result. Due to the
technicality of some of the assumptions, we defer some full statements to Section 5. Define

B, = {w e $¥1: Juw* € supp(p®) : |w* —w|| < 7}

The following key assumption gives average and worst-case bounds on some of the stability parameters of
the MF dynamics.

Assumption Stability (Worst-Case and Average Stability). Suppose that we have

Jnav = sup ([T, Bumpo [T (w)]?) < poly(d, T).

s<t<T,weSd4—1
Further suppose that for all T > 0, and given a target horizon T" > 0,

Tagr) = b Bl ) B 0,0 el 6(w)  By) < PO,

s<t<T,w',veSd—1 T

Next, we will state our local strong convexity assumption. We remark that such an assumption can only
hold when p* is atomic (see Remark 2, and additional comments in Section 5.4).

Assumption LSC (abbv) (Local Strong Convexity (Abbreviated; see Assumption LSC)). We have (Csc, T)
locally strongly convex up to time T, meaning that for any t < T, for any w with &(w) € B, we have

D (w) = =Crsc Py e = f¥]|-

Both Stability and LSC (abbv) assumptions are verifiable via solving the deterministic mean-field dy-
namics pMF. For technical reasons, our result requires two additional conditions. First, our theorem depends
on the rank of the interaction Hessian as pMf — p* being a constant independent of the ambient dimension
d. This rank can be bounded by the following parameter, which will appear in our main theorem:

Cp 1= min(Jsupp(p*)], dim(supp(p"))2 LE<() 1), (33)

Here degree(o) is the degree of the polynomial o (or co if o is not a polynomial). We do not expect such
an assumption to be critical; see Section 5.7.

Second, we require a technical symmetry condition stated in Assumption Symmetry (in Section 5).
Loosely, this requires that the atomic set supp(p*) is transitive with respect to the group of rotational sym-
metries that describe the problem. We remark that such an assumption still covers many non-trivial prob-
lems, for instance, learning two teacher neurons in non-orthogonal positions, many neurons in orthogonal
positions, or a ring of evenly spaced neurons in a circle. See Section 5.6 for further discussion.

We are now ready to state the main theorem.

Theorem 1 (Propagation of Chaos). Assume that Regularity, Stability, LSC and Symmetry hold up to time
T (if relevant). Let C be a constant depending on Cieg, Cisc, T, Cpyx, and 07 := ||fp¥p — f*||- Suppose n, m
are large enough such that J*, T3 (e, + e,) < 1/C. Then with high probability over the draw Py’ for all
t<T,

. 1
1 — Farll? < Oy (Ball A + 2 < (Ot + )

m

1/2 3/2 2
where €, = log(mT) max(d"/* Jnax,d>/ %) and €, = Vdlog (n)

i Vn
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Theorem 1 follows directly from Lemma 1 and Corollary 44 in Section D. In Theorem 2, we will apply

this theorem to the example of learning a single-index function with high information exponent which takes
T = poly(d) time to learn.
Remark 2 (Local Strong Convexity). Our local strong convexity is similar to assumptions appearing in
prior mean-field analyses [Chi22b, Assumption A5 [[CRBVE20, Lemma D.9]. In comparison to these works,
our assumption is stronger in that we require it for all t, not just as t — oo, this is necessary for our
non-asymptotic analysis. However, our assumption is also weaker in that we allow the strong convexity
parameter to depend on the loss, similarly to the notion of one-point strong convexity (see e.g., [SYS21]).
Attaining the stronger non-loss-dependent strong convexity requires a strongly convex regularization term.

In problems where the mean-field dynamics converge to p*, our local strong convexity condition enforces
that when a neuron wy is close a teacher neuron w* € supp(p*), it will be attracted to w* and thus any small
perturbations are dampened. Local strong convexity can only hold when p* is atomic. Similar properties
have been shown for various sparse optimization problem over measures [FDGW21, PKP23].

3.3 Application to Single-index Model with High Information Exponent

We now study the setting of learning a well-specified single-index function f*(z) = o(x'w*), where

w* € S¥71, and o(2) = ZkK:k,* ckHeg(2), where (a) k* > 4, and C’sﬁ < ¢p» < Cspvmaxy ¢k, (b) o
is an even function’. We restrict to the case when k* > 2 because because the escape time for k* = 2 is
logarithmic in d, and thus can be handled via Gronwall’s inequality; see Remark 3 for further comments.
We assume the initial distribution pg of the neurons is uniform on S, and the data is drawn i.i.d from the
distribution D, which has Gaussian covariates, and subGaussian label noise: that is,

2~ N0,1g),  y=f"(2)+{(x); E[@)]=0 E[((z)’ <1

Theorem 2 (PoC in Single-Index Model). Fix any 6 > 0, and suppose d is large enough in terms of 6,
Csi and K. Let T(5) := argmin{t : || fwr — 1> < 6%}, Then T(5) = OK,CS,M(\/glC _25_('“*_1)). If

n > d"* and m > d'3*°, then with high probability, for all t < T(9),

O s(d%F
| fope — far |l < Hm <367
Remark. The above theorem provides, to the best of our knowledge, the first polynomial-width learning
guarantee for one-hidden-layer neural network in the mean-field regime that holds for polynomial-in-d
time horizon. When degree(o) > k¥, our result demonstrates the statistical advantage of the mean-field
parameterization over the lazy/NTK alternative; specifically, under the NTK parameterization, when the
width m is sufficiently large, the sample complexity of gradient descent training on the empirical risk must
scales asn 2 dOdegree()) IGMMM?21], whereas the mean-field scaling only requires n pe d®*") samples.

4 Overview of Proof Ideas

4.1 Potential-Based Analysis to Prove Theorem 1

We introduce a potential function of A; which dominates W1 (p}", pj*). Building upon the observations
from Section 3.1, we design this potential function to have the following three properties:

P1 When many neurons are near the teacher neurons, the dynamics due to the interaction hessian H;-
should cause the potential to decrease.

?If o is not even, the loss may not go to zero, since 1/2 of the neurons may be stuck on the side of the equator with w'w* < 0.
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P2 When a neuron wj is in a locally convex region (D (i) = 0), the dynamics due to the local Hessian
at w; should decrease the potential.

P3 The change in potential due to a perturbation of A should be bounded proportionally to the average
change over the A;.

A natural choice of potential function would be E;||A;(4)]|?

when pMF = p*, D, (i) are negative definite so

(which upper bounds Ws (5}, pi”*)) because

d . . A g
aEiHAt(z)HQ ~ —A] HEAp — 2B;A(0) T Dy(3) Ag(i) < 0.

However, such a function does not satisfy P3 whenever there is a lot of variance among the || A(i)]|.

To achieve P3, intuitively, the potential should behave more like W1 (p}", py*) than Wa (57", py*), making
E;||A¢(4)|| another natural choice. Unfortunately, this alone does not work as potential function, because
even when all neurons have converged to the support of p*, it may increase under the dynamics from
the interaction Hessian®. As an example, consider the case where p* = d,+, and thus near convergence,
Hi ~ 117 ® P, where 1 € {S%~! — R} sends all inputs to 1; then if A, is very “imbalanced” (in the
sense that Hi-A; = E;A.(7) is large), we may have %EiHAt(i) || > 0. For instance suppose A;(i) = u for a
p fraction of the neurons, and Ay (i) = 0 for the remaining neurons. Then £E;[|A, ()| = —p+ (1 —p) >0
for p < 0.5. To counteract the increase in E;||A.(7)||, we need to include in the potential function a
term which decreases whenever A, is very imbalanced, yet it retains a flavor of an ¢; norm. In order
to tame the interactions, such a term should naturally take into account the eigendecomposition of H;-.
To construct such a potential function, we will instead consider the eigendecomposition of the map H
(defined explicitly in Defintion 7), which closely approximates H;- on neurons in B, and avoids tracking
the temporal evolution of the eigendecomposition. This ultimately lets us leverage the PSD structure of H;-.

Definition 7. Define

Hig (w,w") = Pse () Voo (wr) Voo (u) K (€ (w), € (w')) Pese

w')?
where £>°(w) 1= argmin,« cgupp(o*) [1§7(w) — w*|| and we break ties in the argmin arbitrarily.

Let Z := L%(S% 1, po; RY) be the Hilbert space with the dot product (f, g) z := Euwmpo f(w) T g(w). De-
fine the action of H : (S971)®2 — R%*4 on Z as v+ Hv(w) := Eyrp H(w, w')v(w'). In Section D.2.2,
we verify that HL is well defined, self-adjoint, and due to the atomic nature of p*, the span of HL is has

some finite dimension .J. Therefore, HL admits a spectral decomposition in Z in terms of an orthonormal
basis {¢; }j<:

@:Z)\j@j@@j,)\jER,(p]’EZ, 4.1)
i<J
such that |[HL ||, == 30 ;|Ajl < oc. Note that one can have multiplicities in this spectral decomposition.

For that purpose, denote by A = {\;;j < J} the support of the spectrum. For each A € A, we denote by
V) the subspace spanned by {¢;; A\; = A}, and let Py be the orthogonal projector onto that space.

Definition 8 (Balanced Spectral Decomposition of HLX (BSD)). We say that the spectral decomposition
(4.1) is Cp-balanced if, for all A € A, there exists an orthonormal basis By of V), and some 1y > 0 such
that for all w € S*1, > veBy v(w)v(w)" 2 nily,and >, pn3 < Cp. Wedenote by Q := {(Bx, 1) }ren
the resulting set of eigenfunctions and constants.

3Using W1 (p7, pi) alone (instead of ;|| A (4)]]) fails for the same reason.
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Now, for any v € Z and A € (R)®™, we define ¢,(A) := [E;v(w;) " A()], and
1/2
Uo(A) = > (Loen, 0u(A?)
AEA
Finally, our potential function is
Do(A) :=Q(A) + Vo(A),

with Q(A) = E;||A(7)||. When the context is clear, we will write ®o(t) = Po(A,).
When the context is clear, we will write ®o(t) = Po(Ay).

Lemma 9 (Balanced Spectral Decomposition). Suppose Assumption Symmetry holds. Then there exists an
spectral distribution Q which is Cy = min(|supp(p*)], dim(supp(p*))degree(“))—balanced.

The next three lemmas show that the potential function ® g has the desired properties P1-P3.

Lemma 10 (Descent with Respect to Interaction Term). Let ®o(t) be as defined above, where Q is a Cj,-
balanced spectral decomposition of H olo Then for any T > 0 for which the concentration event of Lemma 21
holds for S = B, we have

(V@q(t), —Hi M) < (1+ Cp)Eil|Ej Hy (i, ) A (5) 1 1(&(wi) & Br) + o,

where 19 = C1o(E; || Ay (3) | 1(&(w;) € By) + (1 + Cpe2h)U(t)) for some Crg = OCe0.C, (1)

Lemma 11 (Descent with Respect to Local Term). Suppose Assumption LSC holds with (Cysc, 7). Let Q
be a Cy-balanced spectral distribution. Then with C11 = Og,, c, (1), we have

(Voo(t), Df © Ay) < *<%(ptm) - 0117)‘1’9(15) + OB | A (D) 11(&(wi) ¢ Br) + ColEal| A ()],

Lemma 12 (L1 Perturbation Lemma). Let Q be a Cy-balanced spectral distribution. Let G : [m] — R%
Then | (Vo (1), G)] < (1 + Cp)E:|G(i)]l

Combining the three key properties of the potential function, along with Assumption Stability allows us
to bound the dynamics of the potential function in the following way (formalized in Theorem 3):

d _CLSC L(pi"™)

—®o(t) < e

t
dt CI)Q(t) + CJan/ @Q(s)ds + CJmax(€m + 6n)7 4.2)
s=0

where C' = Oc,. ,Creg (1). Theorem 1 follows by analyzing this differential equation. We leverage Assump-
tion Stability to prove (4.2), by bounding the term E; || A¢(7)||1(&:(w;) ¢ B;) which arises from Lemmas 10
and 11.

4.2 Self-Concordance Argument to Bound J,.x

To avoid exponential growth in Jt%s, we make the following observation.

Observation 13. When the velocity v(w, p'F) of a particle w is small, so is || Di-|).
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To make this observation more concrete, consider the simplified case of learning a single-index function
f*(xz) = o(z"w*) with Gaussian data, where o(2) = Hey(z). We expect a similar property may hold
in other low-dimensional feature-learning problems, where the local non-convexity arises only in a low-
dimensional subspace. For a neuron wy, when o, := th w* is small (and assume for simplicity that o is
positive), we have that

k—1

d d _
v(ay) := P o1 | thus %y(at) ~(k—1af? =~ o v(ay) .

By showing that || D;"|| is dominated by %V(at), we get the desired “self-concordance” property:

k—1
||Dt | = vatV wt,pt )H é ( o )V(O(t).

Recalling the differential equation of J7 , we have just shown that dtHJtSH < (k 1) v(ay)||Ji5 . Note
that trivially, oy satisfies the differential equatlon 5 4oy =L V(at)at Comparing the two differential equa-

tions above, we see that ||.J;5 || < <%> . We have almost shown that [|.J;; || is polynomially bounded in

. . k—
d and t. Indeed, for a typical neuron, || is on the order of id, and || < 1,50 || JL]| < oWd 1). To
make the argument work for neurons with small o, observe that since %|at\ < O([(a)*=1)), if & > 3%,

we must have that if t — s < O(( 3= 2) then a; < 2a,. Thus, either a; < 2, or (a)% <O(t—s). It
k7
LI <o),

4.3 Averaging Argument to Bound J,,,

Recall that in order to use our approach to achieve a propagation of chaos for polynomially sized networks,
for any w’,v € S%~! and 7, we must have

b B ) w16 0) ¢ B,) < O (1)
5,t<T,w' ,veSd—1

where T is the desired training time. We briefly give some intuition for why this holds in the single-index

model f*(z) = Hey(z " w*), which requires T = ©(d*~2)/2). To tightly bound Juye(7), we leverage the

fact that neurons far from +w* are dispersed. By averaging over the “level set” of neurons with as(w) = «

(where oy (w) := |w* T & (w)]) we have

k—1
P oo ol (.00 < max (12, 0)"

w’ wesSd—1

|

k-1
Plugging this in for ¢ < T, along with the bound || J75 || < <—|> from above, yields

Fong(7) 5 B ( \gggz;’)k_l (V" “SW))k?ll(\at(w)! <1-7)

S Ewlog(w)|* M1 (Jar(w)| < 1 - 7),

Bounding this final term results from the observation the particles escape the saddle at roughly uniform time
in the interval [0, 7’| (see Figure 2(right) and Proposition 51).

#||Ji || can also be uniformly bounded when k = 2; this requires showing that | % | < Lyr < 1+max(0,ti@(log(d)))
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5 Full Statement of Assumptions and Discussion

In this section, we explore whether propagation of chaos may hold more generally than beyond our setting
and conditions. We provide several remarks on the necessity of our assumptions, both in the context of our
proof approach, and based on empirical simulations, which are given in full in Section 6.

5.1 Omitted Assumptions

We begin by stating the full versions of the assumptions which were omitted in Section 3. We then briefly
discuss the definition of propagation of chaos and several related phenomena in Section 5.2. Finally, in
Sections 5.3-5.7, we provide remarks on the assumptions.

Let V = span(supp(p*)) and let U be the space orthogonal to V' in R%. Let

Cp = min(\supp(p*)|, dim(V)? degree(0)+1> )

Assumption LSC (Local Strong Convexity (Full Version of Assumption LSC (abbv))). The problem is
(Cisc, 7) locally strongly convex up to time T if for any t < T and any w with & (w) € B, we have

Dif(w) = —CLscpé(w)\\fpyF =1l

Further, the strong convexity is structured, if there exist values c},c? > Cyisc such that for any w with

& (w) € By, we have

C’ _ *
HC%VVTPEEO(HJ)VVT + C%UUT — .DtJ_('Z,U)H S < LSC!fP%g f H + Creg )
p*

Assumption Symmetry (Symmetries of p*). The automorphism group G of a problem (p*, po, D) is the
group of rotations g on S*~' where for any A C S%1:

Pp[A] = Ppe[g(A)]  PplA] =Pp,[g9(A)]  Ppy[A] =Ppy[g(A)]
We assume:

I1 supp(p*) is transitive under G, that is, for any w*,w* € supp(p*), there exists g € G such that
g(w*) = w*'. Further, Py p, [{||w — w*| = |w — w*'||Jw*, w*’ € supp(p*)}] = 0.

I2 Let V = span(supp(p*)) and let U be the space orthogonal to V in RY. Then the distribution D, on
covariates x factorizes over U and V, that is D, = Dy ® Dy, where Dy is a distribution on V' and
Dy is a distribution on U. Further, B, ~p,x = 0, and E,,~p, zx! =UU".
5.2 Measuring Propagation of Chaos

A standard definition® of propagation of chaos (PoC) (see [Szn91, Prop. 2.2]) is that for all ¢, we have the
convergence in law of the random distribution 5" to the constant distribution pM¥:

lim pft — pMF, (5.1)
m—r0o0
Equivalently, for any two continuous test functions 1, )2, we have that

lim By w1 (0002 (w02) = (Eqpe ety (1)) (B pretia () - (5.2)

m—o0

>Stronger notions of uniform convergence over ¢ are also available; see [CD22, Section 3.4].
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Of primary interest in our paper is a weaker PoC phenomenon, which we will henceforth refer to as PoC in
function error: almost surely with respect to the draw of pj’,

. o 2
i (| — Fpe]® 0.

It is easy to check that PoC in function error is implied by (5.2) by using test functions of the form ¢, (w) :=
o(w'z). PoC in function error implies convergence of the risk of P to the risk of pMF, and thus is the
most practically relevant (see e.g. [SNW22]). On the other hand, our proof considers a much stronger PoC

phenomenon. Our potential-function based proof yields almost surely over the initialization
lim Q(A;) = E;[|A¢(d)|]2 = 0.
m—0o0

Here the m is implicit in A;. This is a much stronger notion than (5.1) (it implies lim,,, o W1 (p1", pMF) =

0), and we will refer to it as PoC via fixed parameter-coupling.

Remarkably in our neural network setting (though not necessarily for general interacting particle sys-
tems), up to the parameter Jy.x and a time horizon ¢, PoC in function error for all s < ¢ implies PoC via
fixed parameter-coupling. Indeed, by (2.2), we have that

1246 < /0 725 )1 (N H= G, ) A ()] + llesill) ds

t
:O(Jmax/ (y/AIHSLAerE- As(H)]1? + || As(i Z—I—em—l—en)ds)
; llAsG)IIT + 1A (@)
t
=O<Jmax/0 (Il fa —fpgAFH+EjHAs(j)ll2+IIAs(i)Il2+em+en)ds>. (5.3)

Here the last equation follows from the following lemma proved using a Taylor expansion of f;m.
Lemma 14. Suppose Assumption Regularity holds. For any t, we have

By O, (EillAI)

AT HE B < 2 e = o+ 22

Solving Eq. (5.3) yields that for m such that || fzm — fove || + € 4 € < m forall s <t,

E||A(2)]] = O<Jmaxt H;g;{(”f,;gn — four|l + €m + en)> (5.4)

Indeed, one can show this by inductively bounding the second order terms from time 0 to ¢.

All of the above PoC phenomena can be quantified non-asymptotically, and the main question of this
poly(t,d)

poly(m)’
uniformly over all d > 0 and all ¢ € [0,7(d)]. Here T'(d) is a desired stopping time, e.g., when some fixed

population loss € is achieved.

paper is whether for certain problems the above quantities (or their differences) decay at a rate

5.3 Spherical Constraint and Second Layer Weights

When the weights of the neural network are not constrained to the sphere, propagation of chaos may fail even
in simple well-specified settings: to see this, consider the case of learning a SIM with information exponent
k > 2 using a neural network with homogeneous activation function. With polynomial width, we expect
the standard 7' ~ d*=2)/2 convergence time. Whereas at the infinite-width limit, we may learn the target
function by amplifying neurons that already attain large alignment at initialization due to homogeneity.
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In particular, we can achieve T' = dk—2)/k convergence time by leveraging neurons with initial alignment

greater than d— /¥ — to see this, observe there is roughly exp(—d(k_Q)/ *) fraction of neurons in the network
with such initial overlap, and thus we need to grow these neurons to a scale of exp(d(k_z)/ k), which takes
d*=2)/k time. A similar phenomenon occurs if we train the second-layer weights in the network and allow
them to be unbounded. Note, however, that there is nothing precluding our results from holding if the (fixed)
second layer is initialized differently.

5.4 Local Strong Convexity (Assumption LSC)

We focus here on the main part captured in Assumption LSC (abbv). See also the previous Remark 2. The
additional structured condition in Assumption LSC is discussed with the symmetry conditions.

Local strong convexity plays a key part in how we bound the potential ® o (t) via the differential equation
in (4.2). Indeed, plugging in the bound Jay, < 1/7 yields:

d L( pMF t
o) <~V ag )+ & [ o(sids + Cnas(en +60).
s=0

If C'Lsc goes to 0, then the best bound on this differential equation becomes

B (t) £ Clmas (Em + €n) exp (tﬁ) ,

which would require that m be super-polynomially large in 7" in order to bound ®o(7").

As discussed in Remark 2, local strong convexity can only hold in problems where p* is atomic. Thus
it cannot capture example when p* is distributed on a manifold, or for “misspecified” problems where the
target link function differs from the network activation, e.g., f*(z) = ¢(z " w*) for ¢ # 0. These examples
are particularly interesting because training with the correlation loss is insufficient. In our 1- or 2-index
non-atomic experiments, however, we still observed propagation of chaos for the values of m we simulated
(see e.g., the Misspecified and Circle problems depicted in Figures 4, 7).

In non-atomic examples, it is unreasonable to hope that E;||A4(7)|| will remain bounded for all ¢; thus
addressing this case would require proving either a bound on the Wasserstein-1 distance, W1 (p}", py*), or a
bound on the function error || fym — foyel|* =~ Al Hit Ay

5.5 Stability Conditions (Assumption Stability)

To achieve propagation of chaos with polynomially many neurons, we believe it is necessary in standard
settings that supy ;<7 ||Ji,s(w)]| is polynomially bounded with high probability over w. This is only a
slightly weaker condition than the current Jmax assumption. Getting around such an assumption would
require strong directional control over the €; ;, which we do not expect to be possible.

The necessity of the strong assumption on J,ye, however, is mysterious to us. The neuron-to-neuron
error-propagation described in section 3.1 seems hard to prevent without a similar assumption. Even if we
leverage the fact that the interaction term is PSD (and thus creates a repulsion between the neurons), there
could be oscillatory exponential growth of the A;(i)’s. Nevertheless, in our simulations, we were not able
to find an example where violating the J,y; assumption precluded propagation of chaos; see for example the
Staircase problem depicted in Figure 9.

Remark 3 (Order-1 Saddles /Information Exponent 2). The standard Gronwall-inequality approach can
yield propagation of chaos with poly(d) neurons for information exponent (IE) 2 problems, which require
log(d) time to converge. For this reason, our work does not focus on the IE 2 case, though we believe
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our techniques could be useful for proving propagation of chaos for longer (poly(d)) time horizons in IE 2
problems. Certain modifications are needed, however.

Indeed, the reader may notice that the assumption on Ju,, fails in simple cases with IE 2. This occurs
because the neurons all escape the saddle at roughly the same time (in contrast to the non-uniform escape
times for higher IE shown in Figure 2(c)). Thus there exists some time t (roughly this escape time) where
the expression in Assumption Stability is of order 1. We believe overcoming this obstacle should be possible
by working with a t-dependent version of Jay,, which is small on average over t. Further, for longer time
horizons, a more careful analysis is required to show that Jy,, < poly(d,t). For SIMs, we believe this can

be accomplished by showing that || Dy(w)|| decays with the square root of the loss L(pMF), which decays like
1/t2. This would yield the bound || Js(w)| < exp (f::s HDT(w)Hdr) ~ exp(O(log(t — s))) = poly(t).

5.6 Symmetry Conditions

The structured condition in Assumption LSC. The structured condition Assumption LSC is used in
proving Lemma 11, which shows that the potential decreases due to the local strong convexity near the
teacher neurons. We believe its necessity is an artifact of how we designed the potential function.

In general, the structured condition holds for all 2-index problems with Gaussian data, because at
£%°(w) € span(V), (a) the projection of Dj(w) onto the U-space will be a multiple of UU T, and (b) the
projection of Dj-(w) onto the V-space will be one-dimensional, and thus a multiple of VVTPSLOo (w)VVT.
Using a continuity argument between £*°(w) and & (w) yields the condition for all {&(w) € B;. Beyond
2-index problems, we are not aware of exactly when this condition holds, though we expect it does not hold
for many non-symmetric problems.

Symmetry Assumption (Assumption Symmetry). The transitivity condition (I1 in Assumption Symme-
try) plays an important role in our proof. Namely, Lemma 28 (see also Definition 24) uses transitivity to
guarantee that the eigenfunctions of the interaction matrix at convergence time, are also eigenfunctions of
the interaction submatrix of neurons that have converged at time ¢ (for any ¢!). This “restricted isometry”
property allows us to define our potential function independently of the time t. We expect that without
restricted isometry, one would have to design a potential function which depends on the time ¢.

The transitive condition in I1 holds for various non-trivial teacher-student problems, for example: learn-
ing k orthogonal teacher neurons for any k, learning any two non-orthogonal teacher neurons, or learning a
ring of equally spaced teacher neurons on a circle. In the latter two examples, training with the correlation
loss may fail (for instance, for two non-orthogonal neurons with a small angle between them, correlation
loss may converge to the linear combination of teacher neurons); to our knowledge, gradient training of
many of these “simple” symmetric examples is still not understood. Note also that the second part of I1
holds when pg has bounded Radon-Nikodym derivative with respect to the Lebesgue measure on the sphere,
or when pMF — p*. Both imply 0 mass on the boundary points.

In all the non-symmetric examples we simulated, the lack of symmetry does not pose an obstacle to
propagation of chaos; see for example the XORy, Staircase, Misspecified, problems in Figures 4, 5, 9.

5.7 Dependence on C|-

The value C)« is bounded whenever p* is atomic with constant number of neurons, or when p* is in a
finite-dimensional subspace, and o is polynomial. This includes all polynomial multi-index functions.

The value C)+, defined in (3.3), functions as an upper bound on the rank of the interaction-kernel
k(w,w') = Eyo'(xTw)o’(xTw') over points in w,w’ € supp(p*). Having a constant upper bound on
the rank of this kernel is useful in constructing a balanced spectral decomposition of HL, which (loosely)
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ensures that near convergence time, small L;-bounded changes in A; cannot propagate (via the force of the
interaction kernel) to large changes, measured in L;. While it may be possible, we have not been able to find
any simple ways to prevent L;-growth in A, near convergence time without this constant-rank assumption.
In Section 6, we simulate several examples in which C« grows polynomially in d. The presence of various
PoC phenomena did not seem to be correlated with the size of C,» — observe that the Misspecified example
(Figure 4), which has C,« that grows polynomially in d, demonstrated PoC for relatively small widths.

6 Experiments

We conduct simulations both to validate our theory in settings which we expect satisfy our assumptions, and
to examine what happens when these assumptions fail to hold. Table 1 in Appendix F describes all of the
settings we simulated, and documents which assumptions we believe they satisfy. We remark that we did
not preferentially chose these examples because we expected (or observed) propagation of chaos: we in fact
ran these simulations with the goal of finding a multi-index function in which propagation of chaos fails,
and have so far been unsuccessful.

6.1 Experiment Setting

Since we could not simulate an infinite-width network, we measured certain proxies for the distance between
P and pMF by comparing a neural network of width m to a neural network of width M, for M > m. The
full experimental design is described in Section F.1. In brief, we initialize the smaller width-m network
to be a subset of the neurons in the larger width-A/ network; in this way, we can track for all i € [m] the
coupling differences At(z) (a proxy for A;(i)®) throughout training. In our plots, we estimate the following
quantities from data throughout the training dynamics: (a) the prediction risk or generalization error, (b)
the function error m - || fo — fur |2, and (c) the fixed parameter-coupling error m - E;||A;(7)]|. In our full

plots in the appendix, we also include several histograms of ||A;(7)||. We plot the above values for a range
of widths m, and examine the decay rate in m.

In Figures 3,4,5 we consider (i) the well-specified Gaussian single-index setting with He, activation
function, which satisfies all our assumptions in Section 5, (i7) a misspecified single-index setting where we
do not expect p* to be atomic (see e.g., [MZD"23]), and (i7) the multi-index setting of 4-parity function
similar to that studied in [Gla23, Tel23, SWON23].

6.2 Takeaways from Simulations
We describe some of our takeaways from the experiments below. More figures can be found in Appendix F.
PoC in function error. In all examples we simulated, we observed that for m large enough, the func-

tion error || fzm — f M | decayed at least linearly with the width m — this is evident in Figures 3,4,5(b).
Surprisingly, in all examples the function error decayed nearly monotonically in time.

PoC via fixed parameter-coupling. Similarly to the function error, we observed that the parameter-
. 2

coupling error (IEZ 1A (7) H) decayed at at 1 /m rate — this is evident in Figure 3,4,5(c). However, unlike the

function error, the growth of this error appeared to be linear in ¢, which is consistent with the upper bound

on parameter-coupling error in terms function error given in (5.4). We note that our experiments show that

STriangle inequality yields that || A;(i)|| < 2||A;(4)]|, though the converse is not necessarily true.
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Figure 3: Well-specified single-index (He,) target function f*(x) = Hey(z'w*),z ~ N(0,1;), and o =
He4. We set d = 32 and learning rate 7 = 0.01.
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0.6Heg(z "w*),z ~ N(0, I), and ¢ = Hey + Heg. We set d = 32 and learning rate = 0.01.

(5.4) is not quite tight, as the parameter-coupling error seems to grow slower than (a scaling of) the integral
of the function error over time. More extensive experiments could provide more insight on this.
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Figure 5: 4-parity (XORy) target function f*(z) = [];4[#];, [z]; ~ Unif{1, —1}, and o = SoftPlus with
temperature 16. We set d = 32 and learning rate n = 0.05.

Remark 4. We note that our experiments are technically insufficient to guarantee that the PoC rate is
polynomial in d, T, because we did not conduct extensive comparisons of the decay rate across growing
values of d,T. However, in all of the experiments we plotted, we observed linear decay in function error
o — f NP |2 < m~! starting even at the smallest value of m = 2'2, which suggests that if the parameter-
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coupling PoC rate is some g(d,t)/m, then for all of experiments, g(d,t) < t for the value of d and range
of t we simulated. Thus, we conjecture that in all these problems there is PoC in function error and in fixed
parameter-coupling error at a rate at most poly(d, t)/m.

7 Conclusion

We studied propagation of chaos in the context of gradient-based training of shallow neural networks. By
leveraging several key geometric assumptions of the optimization landscape, we established non-asymptotic
guarantees of finite-width dynamics with polynomial dependency in all relevant parameters. At the heart
of our technical contributions is a tailored potential function that balances the intricate interactions that
arise between particle fluctuations around their idealized mean-field evolution. In essence, our assumptions
exploit a form of self-concordance in the instantaneous potentials, as well as symmetries in the minimizing
mean-field measure. While these assumptions rule out generic interaction particle systems, they crucially
capture several problems of interest, such as planted models including single-index target functions. An
enticing future direction is remove the local strong convexity assumptions to extend to the case when p* is a
manifold; among other settings, this captures the learning a misspecified SIM. Another interesting direction
is to go beyond the Monte Carlo scale of fluctuations, which has been established asymptotically under
certain conditions [CRBVE20, PN21].
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A Additional Related Works

Mean-field analysis of shallow neural networks. The mean-field analysis views the training of two-layer
neural network (1.1) as an interacting particle system, and studies the evolution of the distribution of particles
via the mean-field PDE [NS17, CB18, MMN18, RVE18, SS20]. While most optimization guarantees for
mean-field neural networks are qualitative in nature, quantitative convergence rate can also be established
under additional structural assumptions on the learning problem [JMM19, Chi22¢, CRBVE20, CVEB22] or
modification of the training dynamics [RIBVE19, WLLM19, NWS22, Chi22a].

Recent works have studied the statistical efficiency of mean-field neural networks in learning low-
dimensional target functions including multi-index models and k-parity. These existing analyses can be di-
vided into two approaches: (i) simplify the mean-field PDE using the symmetry and low-dimensional struc-
ture, and study the dimensional-free dynamics [HC23, ASKL23] at short timescale T' = Og(1) [AAM22,
MZD*23, JMS24]; (ii) directly characterize the converged solution using global optimality conditions
[WLLM19, Tel23, SWON23, MHWE24]. While the latter approach establishes a much larger learnable
function class (e.g., see [Bac17]), the computational complexity is exponential in the (intrinsic) dimension-
ality of the problem.

Gradient-based learning of single/multi-index models. Outside of the mean-field regime, feature learn-
ing in neural networks has also been studied in a “narrow-width” setting, where neurons evolve (almost) in-
dependently and align with the low-dimensional target function during gradient-based training. Prior analy-
ses in this regime mostly considered target functions that depends on k& = O,4(1) directions of the input, such
as single-index models [BAGJ21, BES*22, BBSS22, MHPG 23, DNGL23, DTA"24, LOSW24, ADK*24]
and multi-index models [DLS22, AAM22, AAM23, DKL 23, BBPV23, CWPPS23, Gla23, AGP24]. For
the “rank-extensive” setting k > 1, recent works have investigated the additive setting where the target
function is a sum of k& orthogonal single-index models [LMZ20, OSSW24, RL.24, SBH24].

B Proofs of Lemmas from Basic Setup

B.1 Notations

Throughout this section, we will use the following notation, which builds upon the notation in our setup
from the main body.

f(w) := Egup, f*(x)o(w' z)
f'(w) = (I —ww")Vuf(w)
and
k(w,w') == Epop,o(w' z)o(w' x)
K (w,w') == (I —ww " )Vyuk(w,w').

In additional the interaction Hessian H;* introduced in the introduction, we also define a versions without
the orthogonal projection, that is:

Hi' (w,0') = Hy(w, w')(I = &(w)&(w"))

"To emphasize the relationship with f and £, we deviate from our standard notation convention here in using the lower-case
letters /' and £’ to denote vector-valued functions.
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We also define the empirical local Hessian Dy (closely related to D;-), where the expectation is taken over
P instead of pMF:

Di(w) := Ve, (v (& (w), pi") = Ve ) f (E(w)) = Eorogm Ve, () (E(w), w').
Di(w) = Ve, (&(w), o) = Ve, /' (€6(w)) = By i Ve, (£ (€6(w), ).

B.2 Proof of Lemma 5

We being with a basic lemma which uses the regularity of o to bound the smoothness of various problem
parameters.

Lemma 15. Assume Assumption RI holds for the constant Choq. Then the following holds for any w and w'
with norm at most 1.

SI [[Vuh'(w, w')|| < Creg and ||V f'(w) || < Creg
S2 HV2 (w, w H < Creg

S3 || V2R (w,w)|| < Creg

$4 [V (w,0") | < Creg

S5 Hv%vf,(w)H < Creg

op —
S6 For any distribution p € A(S?1), we have HV2 v(w, p H < Creg

Proof. [Proof of Lemma 15] These are straightforward to check from the definitions. First note that the
operator norm of the first and second derivatives of I — ww ' is at most 2. Thus for any vector-valued
function £(w), by chain rule, we have

[Vull = wu ()| < I9ug @)l + 20gw)]
|V — we)ew)|| < 3| ViE(w)| + 8 Vus ).
So to prove the lemma, it suffices to bound (over all w, w’ € S~ 1):
V! ()], [Vt ()|, |V (w)]| < Creg/11,
and

vaﬁ(w,w')H, HVi/&(w,w')H, HVf’Ufé(w,w')H, vavw/vwfé(w,w')u, “Vivw/vwﬁ(w,w')” < Creg/11.

As an example, for S2, we have

HVQW/E'(UJ, w/)HOp < sup  Epo(w'z)o"” (W' z)v] (I —ww )z(vy x)(vq x)
v2,v2,v3€S41

< sw (BT 0P) (=" TP) " sup (BGTP)

z,2'€BY veSd—1
< Creg/11,
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where here the second inequality holds by Holder’s inequality, and the final inequality by Assumption R1.
For S3, the argument is the same as the previous one, except we use the product rule to account for the
derivatives of (I —ww ), which have operator norm at most 1.

For the rest of the terms involving derivatives — up to third order — of K, the argument is near identical,
following from Holder’s inequality and Assumption R1. Thus each of these terms above are bounded by

Creg/11.
For the terms involving F', as an example, let’s expand the third order term. We have

[Vif) < sup  Eofo®(wz)(v) 2)(v 2)(vg ) f* ()]

v1,v2,v3E€SA—1

< sup (Ez\a(?’)(sz)\s)l/s sup <EI’(UT1‘)’5)3/5(Em(f*(.%’))5)1/5

z,2'€BY veSd—1
< Creg/11.
It follows that all the terms in the lemma are bounded by Cieg.
We also prove Lemma 1 and Lemma 14 here, which we restate for the reader’s convenience.

Lemma 16. Suppose Assumption Regularity holds. With high probability over the draw pg', we have

log( m)

e = fopI? < Oc (Bill Ae(D)])* +

Lemma 17. Suppose Assumption Regularity holds. For any t, we have
log 2
ATHF O, <2 fye— f 2+ 220 4 0, (A

Proof. [Proof of Lemma 1 and Lemma 14]
First we decompose

Eq(fopr(x) = fop ())? < 2Ea(foe(z) — fop (2))® + 2Ea(frpr (2) — fop ().

Now we can expand

By (fom (z) = for (2))?
= &, (Bio(6u(w) 7o) — o((€wi) — 24(0) )’

2
=E, (Eia/(ft(wi) )T Ay(7) / / o (& (w;) — s A (1) T )(xTAt(i))zds'd.s) .
s=0Js'=0
Letting ¢ (i, z) := f o Jo_g o (&(w;) — ' A(i) T x)ds'ds, we have

E.(f7+(@) = fyp (@))? < 2E (Eio'<et<wi>Tas>xTAt<i>)2 28, (BT A2 2)) S BD)

and likewise,

. (Bio (&) )2 A0 ) < 2B (i (2) — fypr (@) + 2B (EileT A(0)C(02)) . (B)
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Let us bound the second term. We have

E, (B2 A(60))%( x))Q
= BB (2T A0 0) T M), )
< BB (B (T 200))")  (Ealcle2)) P (BalT 24))*)

_ (Ei (Ex((xTAt<i>>2>4>1/4(&““’x))4)1/4>2
. <E (BT At(i))sf“)?(m?X(Ex@(z‘,x)f)” 4)2

2
< Oy (B (0’ (B (000,49

(e

Here the final line follows by the Creg-subgaussianity assumption on x in R2.
Now since for any s’ € [0, 1], we have that ||§;(w;) 4+ s'A¢(4)]] < 1 (as it interpolates between two points
on the sphere), we have by Assumption Regularity that

Ex(C(i,2))" < (Creg/11)".

Defining

Gl = [ ; o ((€(ws) + rA (i) T2)dr

and thus since ||{:(w;) + rA¢(7)|| < 1 (as it interpolates between two points on the sphere), we have by
Assumption Regularity that

Ew((s(iyfr)>4 < (Creg/11)47
and thus

E, (EmTAt(i))%(z‘,x))Q < Oci (Bill A (0)]2)

Returning to Equations (B.1) and (B.2), and observing that E, (Eia’(ft(wi)Ta;)a:TAt(i))Q —AJHEA; <
Creg (Ei]| At(1)]|2)? (to account for the projections orthogonal to & (w;) in Hi-; we omit the details), we
have that

Eo(fop (2) — fop (@))% < 280 HiE A + Oc, (Bil| A (0)]2)
< O, (Bill Ad(@)1)?,

and
) 2
AT HEO < 2B (f0 (1) — fop (2)) + Oci (Ball Ac(i)]12)>. (B.3)
It follows that

Eo(fop () — [ (2))? < Oci, (B Ae(9)])*.
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We will use Chebychev’s inequality to bound the first term Eq (fyr (z) — fap (z))?. We have

2
]Eﬁomwp?m (Em(fpyF (r) — fp;n (x))2> < E,agmpg@mEx(fp

)
= ExEﬁaan?m (fptMF (LL’) - fﬁln (Z‘)

1 T 4
SExﬁEWprF(U(w l’)) +

1
< OCreg <m2> ’

where in the final inequality we used Assumption R1. By Chebychev, we have

=
=}
8
~—
|
=
~3
—
8

B oo™ [Ew(fpi‘”(x) — fop(@))* 2 logiz:,n)} <o)

We thus conclude that with high probability,

Ea(fyr(2) = fop (2))? sOcreg<EiHAt<i>ll>2+bgn(lm)

)

which yields Lemma 1.
For Lemma 14, we have by (B.3) that

A HFA < 2B, (fan () — fop (2))? + Oy (Bl Ac(0)]]?)”

< 2B (e (5) — fyp (@) + B o, (BAlAGIP)

Finally, we prove Lemma 5, which we restate here.

Lemma 18 (Parameter-Space Error Dynamics). Suppose Assumption Regularity holds. With high probabil-
ity, forall t < T and i € [m),

© A1) = DG ~ By B )A) + e

where [|€¢ ;] < 2em + en + 2Cheg (101 (0)[1 + E; [ A (5)]1%).

Proof. [Proof of Lemma 5] We first decompose 4 A\,(i) into four terms:

%At() v(&(wi), o) — vp(Eelwi), o}

= (v(&(wi), ") — v(&(wi), p")) + (W(Ee(wi), o) — v(&(wi), "))
+ (v@t(wi),ﬁ?) = v(éwi), 7)) + (v(Ealws), 5") — v Ealws), 57
By Lemma 19 and Lemma 23, we can bound the first and fourth terms respectively with high probability:

[ (&(wi), pi'") — v(&(wi), i) 2 < €m. (B.4)
(& (wi), B") — vp (e (wi), )| < €n.
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For the second term, we have
v(&e(wi), pi") — v(&(wi), pi") = —f (§(wi)) + Burppe A (&e(wi), w')
+ 11 (€e(wi)) — B A (& (wi), w')
= —E; (A" (&(wi), &(wy)) — A" (€e(wi), &(w;) + Ae(j)))
= Ej ) (He (3, 7) At(F) + v5),
where ||V < Creg||At(j)]|. Indeed we can plug Lemma 15 S2 into the Lagrange error bound

”ﬁ/(w7w/) - ﬁ/(w’ w' + A) - Vw//i’(w,w’)AH < HAHZ Sup vau’ﬁ/(w7wl)H‘

w':f|w’|| <1

Now note that for any j, since both & (w;) and ng ) are on S9!, we have that

) 1 )
[(€e(wy)A(5))| = §HAt(J)H2= (B.5)
and so by S1,
Hy(i, ) A7) = Hi (6, 5) A4 (4) + V)
where [|v/ |2 < 2 Creg||A¢(4)||* Summarizing, we have that
i o o3
60, ) = (&), 1) = By ( H DA + 5 ). ®.6)

Finally for the third term, we have

~

v(&(wi), i) — v(&e(wi), p") = =V (w, pi*)w=g,(w) Ae(i) + v,
where by S6,

VI < AP VEv(w, 57|, < CreellAe(@)]?
Recall that we have defined

Di(w) := Ve, (¥ (&(w), o) = Ve, (&e(w)) — By Ve, () A (§(w), w').

Now
Ve (wn? (€(Wi), A7) = Ve, f (& (wi)) — By Ve, (i A (e (w3), & (w;))
= Ve, wnf (§e(wi)) = Ej Ve, (w,) (B (& (wi), & (w;)) + M)
= Dy(i) — E;M;.
where by S4,

IMllop < (126 sup | Ve Vs ' (w, w') |, < Chreg | Ae(5)]]
w,W
Thus, additionally using the fact that we have conditioned on the fact that || D;(i) — Dy(i)|| < €, — and

thus || D" (i) — Di+ (i) || < €m — and again using (B.5) and S1 to swap D;(i)A(7) for Dj-(i)A¢(7) with an
error term of magnitude 0.5Cieq||A¢(4) [|%, we have that

v(&(wi), pi) — v(&(wi), p) = D) Ay(3) + vs, (B.7)
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where [[v3| < Creg (15[ A(0)[1* + [ Ac()E; 1A (D) + emll Ae(2)])-
Putting together Equations (B.4), (B.6), and (B.7), we have

d . . ) . .
%At(z) = D#(Z)At(l) - EjN[ij;éthL(Z?])At(]) + €,

where

lell < €n + em(L+ 1 Ae(@)[1) + Creg (15| Ac(@)” + 1A (0) ;| Ae ()| + 1.5E;[|A]]%)
< en + em(L+ [ A(@)]) + 2Ckee (12 (0) 1> + Ej | Aj]1%).

C Proof of Concentration Lemmas

Lemma 19 (Uniformly Bounded Sampling Error). With probability 1 — o(1) over the initialization, for all
t <T andi € [m)], the following holds with €,, = ‘13/2107\/%@771).
(& (wi), o) = v(&e(wi), P < €m.

1D:(6) = Di(a)]| < e

Proof. [Proof of Lemma 19] Fix t < T"and w € S%~! By Equation (2.1), we have that

v(w, ) — v(w, o) == (I —ww") (E wr Vo I (w0, w') — By i Voo K (w, w’))

w' ~py
Now

E Ew/prFva(w, w') = Ewlwp?/lFEw/Npg/vawK(w, w'),

wo~p)

and by Assumption R1, for any w’,w € S4L, ||V, K(w,w')||oc < Creg- So by Hoeffding’s inequality,

taking a union bound over all d coordinates in the random vector, we have

MF ~m Em Qmer,)
Pl (w, pi™) = v(w, pi*)|| = ?] < 2deXP<—4dCQ

reg

Now we need to take a union bound over all w € S 1, and ¢ < T. Create an net over S*~! of maximum

d
distance 460”;6" between any point and the net: this has size O ( (%) > . Similarly make a net over [0, 7]
of spacing ﬁ; this has size 4(?&? By a union bound, with probability at least

Q(me? )) <<4Cmg > d) AC1eeT
1-2dexp| ———~m |0 ,
( 4dCr2eg €m €m

for any w in the net and any ¢ in the net, we have

€m

MF -m
v(w, —v(w, < .
oo ) = v, ) < 5
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For any w, u € S%!, for any p, by Lemma 15, we have
v(w,p) = v(u, p) < Cregllw — ul.
Similarly, by Lemma 15, for any s,¢ < 7', and any wg, we have

[16:(wo) — &s(wo)|| < Creg|t — -

Thus, for any w € S and t < T, there exist u and s in the respective nets of distance at most 36677:;' By

a standard triangle inequality argument, we attain that with the probability in Equation C, for all w € S¢!
and t < T, we have

v (w, o) = v(w, p")]| < €
%ﬁm, this probability is 1 — o(1).
The argument for proving concentration for D;(w) uniformly over w and ¢ is identical. The only change

is that since D;(w) is a d x d matrix, we need to take a union bound over d? indices in this matrix, so we
3/2
d?/*log(mT) . O
m

One can check that since €, >

require that €, >

Lemma 20 (Concentration of J; ). With high probability over the random choice of p(j*, forall s <t < T,
all vectors v € S?1, and all j € [m)], we have

Eil| Je,s (1) Hy (1, )0][1(€e(ws) € S) = Euvmp | Je.s (w) Hi' (w, w0(5))0]|1(& (w) € S)| < €m,

\/aJmax 10g(WLT)
for €m — T

Proof. [Proof of Lemma 20] Fix w’,v € S* ! and s <t < T. Let
X(w) := | Jes(w)Hy (w, w')v]|1(E(w) € ).
To prove the desired bound for j we must bound ‘Ewwﬁng (W) = Eypnpe X (w)} with high probability for

w' = ().
By Lemma 15, we have | X (w)| < Cieg Jmax. By Hoeffding’s inequality, we have

€m Q(me?n)
| [Buip X () = B X ()| 2 T ] < 2030 <402J2>

reg* max

Now we need to build an e-net of scale GEC”:&g over s5,t € [0,T], w € S¥~!, and v € S%~!. The product of

the size of these nets is
6T Chreg \ o (6Cks 2d
€m €m

Checking Lipschitzness of the various quantities as per the proof of Lemma 19, and then using a union

bound gives the desired result with high probability whenever €, > w. O
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Lemma 21. Fixa set S C ST, any function v : S*=' — BY. With probability 1 — o(1/d) over the random
__ dlog(md)
m

choice of py', for any w € S, with €2} we have

By Hoo (w, w0 () 1(& (w") € S) = By Hoo (w, w')o(w')1(&(w') € S)|| < [[v]locer
|Puepo €t (W) € S] = Py [&i(w') € S| < e

Proof. The second statement is immediate by a Chernoff bound. For the first statement, the proof is similar
to the other concentration lemmas. Fix w. Let

X(w') :== H: (w, w)v(w)1(& (W) € S)

Since || Hx (w, w')|| < CregI for all w, w', we have the following bound:
By Hoeffding’s inequality (unioning over all coordinates of X (w')), we have

€m Q(me2?)
P [Euniy X(0) = Bur X0 2 5| < 2exp(md |

reg

€21

We need to build an e-net of scale iy, Overw € S?1 since by Lemma 15, X (w) is Clreg-Lipschitz in

d
w. This net has size <<O(ECWTD)> ) Thus with €2} = (“L\/WLT), we have that with high probability, for all

w € S, the desired quantity is uniformly bounded. O
Lemma 22 (Averaging Lemma). Suppose Q is Cy-balanced, and the high probability event in Lemma 20
holds for S = B.. If Assumption Stability holds, then for any s < t,
Eil|Ju,s (1) (1) |16 (wi) & Br) < (1+ Cp) (e, + Jang(7)) Po(s).
In particular,
Eil[me(i)[11(&(ws) ¢ Br) < (14 Cp)(er + Jang (7)) @o(t)-

Proof. Recall that

ma(i) = Ethl(i,j)At(j).
Thus

1,5 (8)ms (D) < Byl Jes (6) H (3, 5) As ()]

Now for any vector v € R%, by Lemma 20 and Assumption Stability, we have that

Eil| Je.s (1) Hy (i, )0l < € [0]] + Jave (7)[10]],

and so
EillJe,s ())mes (9|1 (& (wi) ¢ Br) < (Egr(z) + Jan(T))EiHAS(i)H < (6727? + Jan(T>)(I)Q(3)-
The second line of the lemma holds by plugging in s = ¢. This concludes the lemma. O
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Lemma 23. Suppose the empirical data distribution D= Sy O(z;,y,) Satisfies Assumption R2. Then with
high probability over the draw ofﬁ, we have uniformly over all w € S, and all p € A(S?™1), we have

lvp(w, p) = v(w, p)|| < €n,

for e, = 7\@1\0/%2(").

Proof. The velocity is linear in p, so it suffices to prove that (additionally) uniformly over w’, we have
v (w, dyr) — v(w, )| < €.
We expand
va(w, 6y) = (I — wa)Emwﬁ(y —o(w' " x))o' (w' x)x;
it suffices to prove that with high probability, uniformly over w’ € S4~!, and v € S?~!, we have

T T

Exwﬁa(w'Tx)a/(wTa;)xTv — Eppo(w' z)o’ (w x)a:Tv’ < e€p

T T T

)z v —Epopyo’ (w

E_ _pyo'(w x)xTv‘ < ey

For a fixed w, w’, v, since by Assumption R1, all the terms in side the expectations are Creg-subgaussian,
this holds with probability exp(—ne2 /2C2,). We now take three epsilon-nets over S~ (for w, w’ and v

eg
respectively) at the scale GEC’;g. Note that Lemma 15 implies these quantities are Creg-Lipschitz with regard

/ : . . Cre d : Vdlog® (n)
to w, w’ or v. Since the epsilon nets have size (O (6—'%)) , with €, = v we see that

exp(—ne, /2C%,) (0 <(’;g> ) " =o(1).

n

D Proof of Results Relating to Potential Function Analysis

D.1 Notations

For g,h : X — R% and aset S C S¢! we will denote the dot product and conditional dot products
(9: 1) = Eumpog(w) " h(w).
(9:h)s = Eumppg(w) "h(w)1(w € S).
For akernel H : (S1)2 — R4 and two sets S, T C S~ 1, for g, h : ST~1 — R?, we use the notation
(g, h>§I’T = Ew’wwpog(w)TH(w,w’)h(w’)l(w cS,w' eTl).

IfS=TorS =T = S%"!, we will abbreviate and use the notation (g, h)?%, or (g, h) y respectively. If
the functions g, h are only defined on [m] (or respectively on supp(4y*)), then in all the inner products /
quadratic forms above, the default distribution should be taken to be Uniform([m]) (resp. i) instead of po.

We will use V®g(t) (resp. VEU(t), Voy(t), VU(t).) to denote the map on [m] (resp. supp(pg'))
which takes 7 (or w;) to mVa t(z‘)‘D(t)- We have rescaled these derivative so that this term is on order 1, so
we can take inner products in our notation more easily.

For a set B C S, we will use the shorthand B! := ¢ '(B) to denote the set of all w € S~ with
¢(w) € B, and B to denote the complement of B in S~
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D.2 Proof of Lemmas on the Properties of the Potential
D.2.1 Restricted Isometry and Related Group Theoretic Definitions and Lemmas

Definition 24. We say a problem (H, uu) has consistent restricted isometry (CRI) with a set S if for any
eigenfunction v of (H, 1), (that is, where (u,v) g = Ay (u,v) for all u : S*™™1 — R%), we have that for all
w € S we have

By H (w, w)o(w)1(w' € S) = Ao(w)Pyrp, [0 € S].
In other words, for any u : Sé-1 5 R4
(u,0)F = Ao {u, v) Py [S],

Definition 25. The automorphism group G of a problem (p*, po, D) is the set group of rotations g on S¥~!
where for any A C S41:

Ppo[A] = Ppolg(A)]

We say that a problem (p*, Dy, po) is transitive if for any w*, w*' € supp(p*), there exists some g in the
automorphism group G such that g(w*) = w*’.

Lemma 26. Suppose I1 holds. For any time t, for all g € G in the automorphism group of (p*, po, Dy), we
have

AL If&(w) € A, then &(g(w)) € g(A)

A2 Almost surely over w ~ po, §°(w) = argmin,« cqupp () [[w —w*||. So a.s., forall A C St geg,
if £(w) € A, then £ (g(w)) € g(A). Further, £ po = p*.

A3 ¢(B,) = B;.

Proof. We will prove the first item by induction. It suffices to prove the following claim, because if the
velocity is symmetric, then pMF will be symmetric.

Claim 27. Conditional on A1 holding up to time t, we have

%&(w) =v(w,py") = g~ (v(g(w), pi'"))
Proof.

v(w, pM¥) = —(I — ww ")V Fp(w) + (I — wa)VwEw/Np
= —(I —ww Epup, f*(x)o’'(w z)z + (I —ww E

Itv[FK’D(U}, w')

w/Np%/IFExN’DIO'('LU/TI')O'/(U]TZ').T
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Now

sz;EwNpMpE%D o(w x) (wa)x
= PyEprBop,a(g(w)  g(2))o’ (g(w) g(x))a
= PyE e Eenp,a(g(w') '2)o’ (g(w) T2)g~ ()
= PyEy prEop,o(w' 2)o'(g (w)TI)gfl(ﬂﬁ)
= (97" (@) —ww g7 (2)E, yrEonn, 0( T2)o’ (g(w) ")

(
= (97 (2) —wg(w) ' 2)Eyy prEyp,o(w' )0’ (9(w) )
=g 'z — g(w)g(w) 2)B, i Eonp,o(w 2)o’ (g(w

=g! (P;(w)vg(w)Ew/prFKD(g(w)7 w')>~

Here (1) is because zTy =z'U'U y for any rotation U and any y, z € R? (2) is because D, is invariant
with respect to G, (3) is because p,lfvlF is invariant with respect to G (by induction), (5) again because of the
same reason as (1), and (4), (6) and (7) are simple algebraic operations. Similarly, we can show that

Pj;EINDIf* (x)a’(wa)a: =Epp, fH(2)0’ (w
g(w) " g(2))g™ (P 9(x))

= Epp, [*(2)0” (9(w) " 2)g ™ Py )
= g7} (P Folow))).
Putting these two computations together yields the desired conclusion,
v(w, p'") = g~ (w(g(w), o).

O
Next consider A2. Observe that if w is closest to some w*, then it either is the case that & (w*) is always
closest to w*, or at some point there is a tie in the distances & (w*) and & (w*'). By A1, such a tie would

imply however that ||w — w*|| = ||w — w*'||, which we have assumed in I1 is a measure 0 event. The rest
follows immediately from the transitivity of supp(p™*).
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Finally for A3,

g(BT) = {g(w) W e BT}

={g9(w): min fw-w"| <7}
w*Esupp(w*)

={g(w) : preiin lg(w) — g(w®)| < 7}

={g9(w):  min )Ilg(w) —w'| <7}

w* Esupp(w*
={w: min |w-—w*||<7}
w* Esupp(w*)
= B,.

Lemma 28. Suppose (p*, Dy, po) is transitive. Then (HZ, po) has consistent restricted isometry with BL. =
ft_l(BT)foranyt <T, t>0.

Proof. We will use a series of small claims.

Claim 29. Fix any t and 7. Let p be the distribution of £>°(w) with w ~ pg conditional on & (w) € B;.
Then

p~ foo#,oo-

Proof. We will show that both p and > 4po are uniform on the support of p*. Fix w*, w*' € supp(p*),
and let g € G be the element in the automorphism group of (p*, pg, D,) which takes w* to w*'. Now

:9\1
g
=
|
~

g
14
3
7%
R
g
I

w* A& (w) € By
) = g(w*) AN&i(g(w)) € g(Br)]
) =w*' N&(g(w)) € B

Here (1) is by definition, (2) is by A1, and A2, (3) is by choice of g and A3, and (4) is by the symmetry of
po with respect to G. It follows that p is uniform on the support of p*. Now lets check that £, pp is also
uniform on supp(p*). We have by similar use of A1 and A2 that

§% ppo(w) = Puympy [€ (w) = w™ A€ (w), w™[| < [[€7°(w), @*[[Va™ € supp(p”)]
= Punpo[€7(9(w)) = g(w™) A (g(w)), g(w™)[| < 1€ (9(w)), g(@™)[[V@™ € supp(p”)]

= Purpg [§7 (g(w)) = w™" A€ (g(w)), w™|| < [ (g(w)), &*|[V" € supp(p”)]
= Punpg [§7° (w) = ™ A |6 (w), w™|| < (|67 (w), w"||Vi" € supp(p”)]
= fOO#PO(W*/)-
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Claim 30. Let v be an eigenfunction of (H%, po), that is {(u, V)L = Ao(u,v) forall u : S — R% Then
v(w) = v (£°(w)) for some function v’ : supp(pMF) — S4—1.

Proof. For all w, we have
A0 (w) = By pg Hig (w0, 0" )o(w') = By py K (67 (w), €% (w'))0' (€ (w')).
This value only depends on w through £ (w). O]
We will now use the previous two claims to show consistency. Fix ¢ and 7, and let v be some eigenfunction
of (HL, po). Let v’ : supp(pMF) — S9! be the function guaranteed by the previous claim with v(w) =
v'(£°°(w)). Then for all w,
E/npo Hog (w, w')o(w')1(w” € &7 (By))
= Ew’NpoHoLo(w w )U(w )l(gt ’UJ,) €B )
= Eurropo K (€% (w), 7 (w))0' (6 (w))1(&(w') € Br)
= Ppo & (Br)|Bur o K (€% (w), £ (w) )0 (6% (w'))
=Py, [gt_l( T)}EwNpoHé_o(wv w')o(w')
=Py, [ft_l(BT)])‘v”(w):

as desired. Here the third equality follows from Claim 29. O

D.2.2 Construction of the Potential

Remark 5. We can verify that the action HL (from Section 4.1) is well-defined in Z since ||[HLv||z <
SUDy, o || Has (w, w')||[[v]|2). We verify that HL is self-adjoint in Z, ie (v, HLv')z = (HLv,v')z. We
also verify that the span of HioiO is finite-dimensional, thanks to the atomic nature of p*. Indeed, for each
w* € supp(p*) and | € {1,d}, let xp+; € Z be the indicator x.,~(w) = €1(§>(w) = w*), where ¢ is
the l-th canonical basis vector. We verify that if v L W := span(xu~; w* € supp(p*),l € {1,d}), then
Hiv=0.

The following lemma implies Lemma 9. Recall that C\» = min (|supp(p*)|, dim(p*)2desree(s) +1),

Lemma 31. Suppose Assumption 12 holds. Then for any p, there exists an balanced spectral distribution Q
of (H, OLO, ) which is — 20 balanced. If 11 additionally holds, then there exists an balanced

w E%upp(p )
spectral distribution Q of (HX, po) which is 2C y+-balanced.

Peoo *
X n [w}

Proof. [Proof of Lemma 31 ] We will show that the linear operator induced by (HZ, 1) has an BSD Q
which is balanced for some constant depending on p*.

Claim 32. We can write
Hyo(w,w') = My(€°(w), €°(w))UUT + My(§®(w), £ ('),
where for w*, w*' € supp(p*),

M (w*,w*) := Byupy o’ (x T w*)o' (z T w*)

My(w*,w*) := Eynp, o' (" w*)o' (z " w” ) Pliax" PL,.

Further, both My and Mo have rank at most Cpx = min(\supp(p*)|,dim(p*)Qdegree(U)“).
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Proof. Let V be the orthonormal basis spanning supp(p*), and let U be any orthonormal basis of R \
span (V). Recall that Assumption I2 guarantees that the distribution of x, D,, can be factorized as Dy @ Dy,
where span(Dy) € span(U), span(Dy) € span(V), Exop,zz’ = UUT, and Epop, = = 0.

Recall that HL (w,w') = Epup, o’ (z76°(w))o’ (2 7€ (w'))xa . Observe that for u,v € Span(U),
we have

w' Hy (w,w')v = Epup, o’ (x €2 (w))o’ (z7 €2 (w)) (u z) (v z)
= Egnpy 0 (x1 €% (w))o’' (xT€®(w')E x~DUU Tzalo
:ExNDVO'/(foOO(U}))OJ § (w"))

If u € Span(U), v € Span(V), then it is easy to check by the fact that E,.p,, = = 0 that

)
)E zNDUU, v.

u! Hyg (w,w')v = Egynpo’ (2 € (w))o' (2 () (0" v ) Egyapy (u' 2) = 0.
For w*, w*" € supp(p*), let
My (w*, w*') := Epupy o (z T w*)o' (z T w*)
My (w*,w*) := Eyup, o’ (" w*)o' (x " w*)Plhixa " PL,
such that by the above computations,
Hig (w,w') = My (6%(w), & (w)UU T + Ma(€% (w), £ (w')).

The statement about the rank follows from the observations that (1) both AM; and My are defined on a
space of size at most |supp(p*)|, and (2) Alternatively, we can replace the expectation of x ~ Dy with
the expectation over some x ~ Dj,, where Dy, is supported on at most dim(V)Qdegree(U) *1 points, and all
the moments of Dy, up to the degree(o)th degree match those of Dy (as this requires matching at most

Z?iggree(a) dim(V)j < dim(V)2 degree(o) +1 terms.) ]

We will construct Q using the eigenfunctions of each of these two parts. Let F C L2(supp(p*), (£€%°) xu, R?)
be an orthonormal basis of eigenfunctions of the linear operator (Ms, (§°°)4 ), that is, we have

DA ) fw™)! = My(w*, w®)

fer
Eoperm(e50) o Ma(w*, w*') f(w*') = Ap f (w*),

Let Y C L*(supp(p*), (€>°)xu) be an orthonormal basis of eigenfunctions of the linear operator
(M7, (£€°%°)4 ), that is, we have

D Ayl y(w™) = My(w*, w*)

yey
Eoermfeoo) onMi(w*, w* )y (w*) = Ayy(w®)
Let A = Ay U Ay, where

Aoy :={Xs: feF} M ={\:ye)}

The following claim is immediate to check from the decomposition of H= in Claim 32.
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Claim 33. Let P, be the projector onto the eigenspace of HL: with eigenvalue \. Then Py = P, where

= > FER)FE @)1y =X +TUUT Y y(€(w))y(€>(w)1(Ay = A)

feF yey
=) v,
vEB)
where
= {0/ s Ap = Abper U L% 0 Ay = Ayey,
and

v (w) = f(E7(w));
v (w) = y (€ (w))U;

It remains to check how balanced this spectral decomposition is. Let p := min,«csupp(p*) P&;ﬁ plw],

and observe that max,, rer yey (|| f(w)], |y(w)]) < %, since the eigenfunctions are orthonormal. Fix
A € A. We have
dim(U)
> v(wyv(w) " = v (w) (@ (w) "1 )Y Y v w) e (w)1(Ay = A)
vEBN feF yey i=1
=D FEE)(FE®) 1O =) + Y w(€ ()y(6X(w))UT 1A, = A)
feF yeY
I
< - 1A =X+ 1(\, =
=3 PR ICYESIEDY
feF yey
Thus letting

77?\:—; Zl()\f:)\)+21)\ =

feF yey

by Claim 32, we have that

Z 9 _ \.7:\ + |V rank(Ml) + rank(M>) < 2C

AEA p p
Thus Q = {(Bx, 7)) }aea is 2o balanced. This proves the first statement in the lemma.
If (p*, po, D) is transitive (as per Definition 25), then we can get rid of the denominator and show that
almost surely over w ~ py,

S vw)" T 10 =0+ 1 =

vEB) feF yey

This suffices to prove the lemma.
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To do this, let G be the set of automorphisms of (p*, pg, D) as per Definition 25. For h € L?(S1, pg, RY),
define g(h) by

g(h)(w) =g~ (f(g(w))).
For convenience, for y € ), we will abuse notation and define
9(y)(w) == y(g(w)).

Claim 34 (G-invariance of Eigenspaces.). If f € F is an eigenfunction of Mo, then g(f) is an eigenfunction
of My with the same eigenvalue. Simlary, if y € Y is an eigenfunction of M, then g(y) is an eigenfunction
of My with the same eigenvalue.

Proof. We have
Ma(g(£) (") = Eyrrneoe) ypoBanpy o' (2" w)o" (z ') Prwa " Ppg™ (fg(w™)))
= Eyrrn(e2) ypo Dy o' (zTw*)o' (zTw*)g ! (Pgl(w*)g(x)> z'g! (P;(w*/)f(g(w*')))

= Eypern () oo Bty 0 (9(2) T g(w0*)) (9(2) Tg(w* g™ (Piruy9(@) ) 9(2) T Py flglw™))

= Eyernee)ypoEenny o' (2 g(w))o’ (@ w)g™ (Pfyeyz )2 P f (0"
=g (Ew*/““@w)#PoExNDv‘7/(xTQ(U)*))Ul(wTw*/)PgL(w*)xa:TPi*/f(w*,))
g (Maf(g(w*)))
9 A rfg(w*)))
= Afg(f)(w*)

Here in the second line with used the fact that for any w and z, we have
(I —wwT)z =z —ww'z = z = wg(w) g(z) = g7 ((I = g(w)g(w) ")g(2))

If the third line, we just used that for z, 2’ € R, we have 2" 2’ = g(2) " g(2'). In the fourth line, we used the
symmetry of D, and (£°°)4po with respect to G (see A2). The proof for that M;g(y)(w*) = A\yg(y)(w*)
is similar (but simpler); we omit the computation. O

Let p1g the uniform measure over the group generated by the set of all g, ,« € G for w*, w* €
supp(p*), where g, .« (w*) = w*'. Observe that s a left-invariant measure on G, that is, for any w* €
supp(p*), we have that the distribution of g(w™*) is uniform on p* when g ~ pg (that is, it equals p*, since
p* is atomic). Also note that for g € supp(ug) and v € span(V'), we have that g(v) € span(V'). Thus
for u € span(U), we have g(u) € span(U), and thus in particular, since g preserves dot products, and thus
orthonormality,

g ')y HU)T =UU". (D.1)

Claim 35. Let g € supp(pg), and define g(By) := {g(v) }ven,. Then g(By) is an orthonormal basis for
Ph.

Proof. First we will check that almost surely over w, w’,

D Arg0h)()g(w) (@) T+ Ayg(v?) (w)g (v (w') T = Hog(w, w'). (D.2)
feF yey
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Using the definition of g(f) and A2, almost surely over w, w’, we have for z, 2’ € Sa-1

T3 Mg w)g) W)= = =T 3 Mg (FEF (g(w)))g T (€ (9)T) ' D3)

feF feF
=273 Mg (o @)™ (Flge= )T )
feF
= 3" A9 T FlaE @) F g€ (W) (=)
feF

= g(2) " Ma(9(€*(w)), (¢ ( ) 9(=")
= 2" Ma(6®(w), €% (') "2

where here in the last line, we used the fact that
2" My(w*, w*') T2 = g(2) T Ma(g(w*), g(w*)) Tg(2)

for any g € G, w*,w*’. This can verified from the definition of M5 and the fact that D,, is invariant with
respect to G.
We can perform a similar (much easier) calculation to show that

> A1) (€ (w)g(y) (€% (w')) = Mi(E%(w), €2 (w));

yeY

this arises from the fact that M; (w*, w*') = M;(g(w*), g(w*')) since D, is invariant with respect to G. We
omit the details. Thus by (D.1),

D A9 (w)g (v (W) T = My (€ (w), € (w'))g ™ (U)g ™ (U)T (D4)

yey
= My (£%(w),£(w))UU .

Employing (D.4) and (D.3) yields (D.2) almost surely as desired.

Now, to prove the claim, we use (1) the fact from Claim 34 guarantees that g(v) is an eigenfunction
with the same values as v, and (2) the fact that the set {g(v)}vegA is orthonormal (since dot products are
preserved under rotations). These two facts guarantee that g(15)) is a basis for P,. O

The following claim now suffices to prove the lemma.

Claim 36. Forany w € S we have

Zv(w)v(w)TjI Z Af=2A —1—2

vEB) feF yey

Proof. Fix any w € S9!, and let w* = £>(w). For z € R?, let m, € L?(S?1, po, R?) be defined by
m(w') = 21(£€*°(w’) = w*). Then since for v € By, we have v(w) = v(w') if £°(w) = £>°(w'), it
follows that

2T Py(w,w)z = Z zlo(w)v(w) 'z = (Pomrs, ms)

vEB) z= (Pt [€° L (w*)])2 — Isupp(p®) > (Pams, ).
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To see the last equality, observe that p* = £3°po by A2.
Now recall that by Claim 35, for any A € A and g € supp(ug), we have that {g(v) },¢eB, is a basis for
Py = P, and thus

2" Py(w, w)z = |supp(p*)|* (P2, 7.) (D.5)
= ’SUPP(P*)PZTEQNMQ Z Ew’,w”NpoU(w)”(w/)T1(500(’“/)vfoo(w”) =w")z
vEG(By)
=2 By | >, 9 (F@)g (flaw)) 2+ D |ylgw)Pg  ({W)g )T |2
FEF A=A YEF Ay=X
Now for any f € F,
Egnpugd (F(gw))) g™ (flg(w)N)) " = Egupg 1 (9(w))|I (D.6)
= Eyerpe | f (w1
=1

Here the second to last inequality holds because we have defined pig to be a left-invariant measure on G that
induces a uniform measure on supp(p*). The last equation holds by the fact that p* = €5 po (see A2) and
since f is part of an orthonormal basis, we must have Eu+ ez p, |f (w*)||
(D.1),

= 1. Likewise, for y € ), using

Egug (9) (w*)[Pg™ (U)g ™ (U) " = Egupgly(g(w™))PUUT (D.7)
= Eyermpe [y(w™) PUU T
=UU".

Combining Equations (D.6) and (D.7) with (D.5) yields that

Pa(w,w) 2T Y 10 =2+ > 10 =X |,

feF yey

as desired. OJ

D.2.3 Properties of Potential
To prove our key lemmas 10, 11, 12, we will need several preliminary lemmas.

Lemma 37. Suppose the high probability event in Lemma 21 holds for S = B, and v € L*(S?1, pg, R%)
which is an eigenfunction of HL. Suppose (HL, po) has the CRI with respect to B := &' (B,). Then
with ||v]|eo 1= supw € S4L|lv(w)|, we have

t
(Vou(): Ae) gy = Pour[Brlhodu (1) + € J0]locs
where

€ < emBEill Ac(i) || + Eil Ae () [11(€x(ws) ¢ Br)-
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Proof. First observe that
Vo, = vsign((v, Ay)),
and thus
Bt . Bt
(Vou(t), A)E: = sign((v, A) (v, A,
Now by the conclusion of the concentration Lemma 21, we have
t
(v, A»ﬁ;@ = B X (1) A1) 1(&(wi) € Br) & [[0]locein Eill Ae()]|-

where X (i) = EypyHos (w;, w')v(w')1(&(w') € B;) Now since v is an eigenfunction of Hx, by the
definition of consistent isometry, we have that

X (i) = Ao (w;)P e[ Br].

Thus
t
(0, A0, = Mo{0, D) B e [B] & €2 ol oo i A ()]
Now
sign((v, A) (v, Ag) 7 = sign((v, A) (v, Ar) + Bil| Ay(0) |1 (6 (wi) ¢ Br)
= do(t) £ Eil[ A () [ 1(&(wi) ¢ Br).
Plugging this back in yields the lemma. O

Now we prove Lemma 10, which we restate here.

Lemma 38 (Descent with Respect to Interaction Term). Let ®o(t) be as defined above, where Q is a Cj,-
balanced spectral decomposition of H,. Then for any T > 0 for which the concentration event of Lemma 21
holds for S = B, we have

(VOo(t), —H; Ar) < (14 Cyp)E|| By Hi (4, 5) Ar(5) | 1(€x(wi) & Br) + o,
where 19 = C1o(Eil| A¢(i) | 1(&(w) ¢ Br) + (T + Coepy )QUt)) for some Crg = O, ., (1).

Proof. Let BL := ¢ '(B,), and let B! be the complement in S*~! of BL. We decompose

t t t Bt Rt gd—1
(V1) Ay = (VE(E), Ar) ™ + (VB(D), M), + (Vo). Ayy™ . (D)

Lets start with the first term (V® (1), At)ia’B - (VOo(t), AQE&. Bounding this term is the key part of
t t

the lemma.

Claim 39.

(VOo(1), A > —(Crg + DE A& (wr) ¢ Br) — Cri0(t) + [(V(0), G,

where ;|G (1)]| < ChregTQU(2).
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Proof. We have
(VOo(t), Ar)gs = (Voo (1) Ad)i, + (VOa(t), G, (D9)

where ||G(7)|| < CreeTE;||A¢(7) (€°(w), &> (w")) — K'(&(w), &(w'))]] < Cregr. This relies
on the fact that from the proof of A2, almost surely || (w) — £°(w)|| < 7, because || (w) — £ (w)]| <
min (w) — w*|| < 7. Now we will break up ® into the ¥ and € parts. Starting with the

w Esupp
W o part, we have

> ven, Go(0)(Vou(t), AEn

(VUo(t), At =Yy = (D.10)
ol A =3 e, (0u()?
> veny Pv(t) (Ady ()P ur[Br] + Ev
=> m o ( )
AEA > veB, (Pu(t))?

bu(t)Ev
=P w[B:]S m | A bu(t) 2veb,
it T T+ S

> P (B S |3 (0u0)2 - €.
AEA vEB)

where we used Cauchy-Schwartz in the last inequality, the fact that >, 7y = 1, and ||&|| < &, the error
term appearing in Lemma 37.

Next consider the (VQ(t), At)ga part. Recall from the definition of BSD that H; (w, w') = Y, o Apv(w)o(w') T

Let u; := V;Q(t) = IIQIE g” We can expand

(v, g

,JZAU v(wi)o(w;) T Ay(5)1(w; € BL)
vEQ

= |E; Z)\vu v(w;)1(i € Bt)(Ej'U(wj)TAt(j)>'
veEQ

< Z )\vﬁbv(t)Ei‘uz—'rv(wi)‘l(i € Bi)
veQ

(D.11)

Now fix i. For any vector u € S?~1, since @ = {(Bx, 7x) }xex is Cp-balanced, we have

D Aedu()uv(wi) = DA D du()u v(w)]

veEQ AEA  wveEB)
<Y A (@)D JuTo(w)?
AEA vEB) vEB)
= Z A Z (Pu(t))2 |ul (Z v(wi)v(wi)—r) u
AEA vEB) vEB)

< omA D (du(1)%
AEA vEB)
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Here the final inequality follows from the definition of a BSD, which states that for any w € S% !,
> weny V(w)v(w )T < m3I. Thus plugging this back into to Equation (D.11), we have

(V) A ™ S BB Y ma |3 (0u()
AEA vEB)

Now letting H; = HZ (w;, w;)E;A(5)1(w; ¢ BL), we have

|(VO(), AT — (900, A ™| < (VD) ) < CaBill A 1€ wi) ¢ By),

\<VQ<) AN | SPIBIS mA |37 (60()2 + CregBall A (0) [ 1(60(wy) & Br).  (D.12)
AEA vEB)

Now recall that ®o(t) := Q(t) + ¥ o(t). Thus combining Equations (D.12) and (D.10), and Equation (D.9),
and plugging in the bound on £ from Lemma 37, we have

and thus

(VB (), A1y > ~(Crog + DE A& (i) & By) — Cocit) + (VB (1), G,

where E;||G;|| < Creg7§2(t). Here we have also used the fact that for all v in the BSD Q, we have that
lv]|oo < v/Ch < Cp (this is evident from the definition of BSD ). This proves the claim. O

Next consider the second term (V® (1), At> ~ 5% in Equation (D.8). We have

(Voo (1), Ar)yi | = (VOo(t), H), (D.13)
where [|H (i)|| < Cregli[|A¢(9)[|1(&:(wi) & Br)-
Rt Qd—1
Finally, for the third term (V®(t), AQZQ’S in Equation (D.8), we have just write
t
(Vo (t), Aryz™ " = (Vao(t),mi) ™", (D.14)

where we recall that my (i) = E; H;- (i, j) A (5).
Combining Equations (D.13), (D.14) and Claim 39 into Equation (D.8), we obtain that
(VOo(t), Ar) g1 = —(Creg + DE| A 0)[1(&(w:) ¢ By) — Gl Q(t) + (Vo). G + H +my)],

where E;[|G(i) + H(0)|| < Creg(rQ(t) + Eil| A(0)|1(&(wi) ¢ Br).

Now we use Lemma 12 to bound

[(V@o(t), G+ H +my)| <Ei||G(i) + H(i) + ma(2) [ (1 + Co)
< (Creg(rQ(t) + B A (0)[[1(&(ws) ¢ Br)) + Eillmu (i)} (1 + Cb).

Plugging this back in to the equation above yields

(VOo(t), Ar)pr = —(1+ Co)Ei[[mu(2)]| — &0,
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where
€10 = (Creg(2 + Cb) + DE[|A¢() [ 1(&1(wi) ¢ Br) + (Coery + (1 + Cb)CregT) Q)
= O 0y (Bil| At()[1(&4(wi) & Br) + (1 + Coeny )QL)).

This proves the lemma. O

Now we prove Lemma 11, which we restate here.
Lemma 40 (Descent with Respect to Local Term). Suppose Assumption LSC holds with (Cysc,T). Let Q
be a Cy-balanced spectral distribution. Then with C11 = Og,, c, (1), we have

(Vo(t), Df © Ay < —(“EBUE) — 04 7)o (1) + CLEI A 1€ (wi) ¢ Br) + ChEi|l ()]

Proof. Letd := /Lp(pMF). We will show that
(VQ(t), Df © Ap) < —(Cusc6)Qt) + 2Ckeg B || Ay (i) ||1(€4(wi) & B-),

and that

§+2
(VUo(t), Di ® A) < —(Crsed)Wo(t) + Crscd + 2CbCngTQ(t) (D.15)

2Ct Creg i || A¢ (1) [|1(&e(ws) & Br) + ColEi| Ay (4) ||

The first statement is straightforward. Since V,;Q(t) = %, we have
Av(i) " D (1) A (3)
VQ(t), D © Ay) < E; :
WD D B A1
Au(i) " D (1) A (3) Au(i) " D (1) A (3)
=E; . 1(&(wi) € Br) +E; : 1(&(wi) ¢ Br)
IOl Gl

—CrscOE; || Ay

< D)I1(&(ws) € Br) +Eil| D () A(0)|[1(6e(wi) ¢ Br)
< —CrscOEi[|Ag

(
(D) + 2CregEi [ A (0)[[1(&¢ (wi) & Br),

as desired.
For the second statement, write
Dy (i) = D§*(i) + Dy (i),
where
DEP(i) = —e1 Pse 4y (VV 1) Pese ) — c2(UUT).

By the structured condition in Assumption LSC, we can write such a decomposition where c1, co > Clscd,

and for any 4 such that & (w;) € B, we have | DY4(7)|| < % + Cree7. Note that this decomposition still

holds for i where & (w;) ¢ By, but || Df*(i)|| can be as large as 2Cieq.
Claim 41.

(Vo (t), D5 & Ay) < —Crscddo(t) + (Vo(t), G),
where ||G(i)|| < 7] A ()| + 0.5 Ay (@) [|* + | A (i) 11(&(wi) & Br).;
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Proof.

Now recall that in the construction for Q given in Lemma 31, for any v € supp(Q), it holds that either
v(w) € span(U) for all w € S41, or v(w) € span(V) for all w € S¥~1. We consider the two cases
separately. First suppose v(w) € span(U) for all w € S¥~!. Fix w; with & (w;) € B,. For any w, we have

v(w) TDE (0 D) = —cau(w) T A(0),

and thus the desired conclusion holds. Now suppose v(w) € span(V'). Note that V commutes with Pjoo (w)"
Thus any w, we have

v(w) T DEUE) A (i) = —erv(w) Pebe () At (i),

Now for ¢ with {(w) € B;, we have ||{(w) — £ (w)|| < 7 (see the proof of A2), and thus, since
additionally |Ay(7)&(w)] < M (see (B.5) in the proof of Lemma 5), we have that

(
v(w) " DEYE) A (i) = —erv(w) P,y Ar(i)

= —c10(w) A (i) + O(r[[o(w)]| + | A(i)|1?).
Thus in conclusion, we have that

(Véu(t), DI @ Ay) < —e28¢0(t) + (Vopu(t), G),

where |G (i) | < 7||A(@)]| 4+ 0.5 A¢(i)||* + || A(7) ¥ (& (w;) ¢ B;). This proves the claim. O
Thus with G as in the claim,

Sven, Go(t)(Vou(t), DE™ © Ay)
Z X
Aen Sven, (Go(t))?
ZveBA _CLsc5(¢v (t))2
<
2 > es (e ()

= —Ciscd D | D (du(1))?

A€EA vEB)
- _CLSC(S@Q([J;)

(VUo(t), DE* o A, — G) <

It follows that from the proof of Lemma 12 (see Equation (D.16)) we have
[(VWo(t), DfOOd OA—G)| < C’b(TQ(t) + 0.5]Ei”At(i)||2 +Ei||A¢ ()] 1(&(wy) ¢ BT))
Similarly, we have that

(VTo(t), D™ & Ag) = (VUo(t), D™ © Ag) g + (VUo(t), D™ © Ar) e

< Go( 520 + Coat B0 + o2 B A 16 ws) ¢ B,

and so
CLSC6 + 2Cbcreg7'
2

(VEo(t), D © Ay) < —Crsedolt) + ( sz(t)) T 3ChCregall A (0) 1164 () & B).

This yields (D.15), which proves the lemma.

We now prove Lemma 12, which we restate here.
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Lemma 42 (L1 Perturbation Lemma). Let Q be a Cy-balanced spectral distribution. Let G : [m] — RY.
Then |(V@g(t), G)| < (1 + Cp)E4l|G(0)]]-

(t) = = () which

Proof. [Proof of Lemma 12] First observe that (V®o(t), G) < E;||G(7)]|, IEGIE

has norm 1. Now for any v € supp(Q), we have

[(Vou(t), G| < Eil G(i) v (wi),

and so

¢ (1) [(Vo(t), G)
| < UEBA
Aze/:\ 2 ves, (0u(1))?

[ Sues, 6B To(ws)]
AGZA"A o (601))?

v veby G
. Zm@%m P/ ves, 1G0) To(w)
ot S, (60(1))?

—E | Y GO (S wlwio(w)T |Gl

AEA vEB)

<E; Y IGO0 = GEIG )]
AEA

[(V¥o(t) (D.16)

Here in the third inequality, we used Cauchy-Schwartz. It follows that
[(V@o(t),G)| < (VQ), G) +[(V¥a(t), G)| < (1 + Cb)Ei[|G(i)]],

as desired.

D.3 Dynamics of the Potential

Before proving our main theorem on the dynamics of the potential, we need the following lemma, which
gathers all the required concentration events.

Lemma 43. Fix some 6. With high probability as d, m,n — oo, the events in all concentration lemmas
(Lemma 19,Lemma 23, Lemma 20 and Lemma 21) hold, where we apply Lemma 20 and Lemma 21 for

S = B, forall
e { CLSC . rd(e) } 7
8(0]0 + Cl]) 66[(5,1]

where rd(z) is a rounding of z to its first non-zero decimal, in binary (so rd(z) € [z/2, z]). We also apply
Lemma 21 for all eigenfunctions v in the BSD Q.
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Proof. The set {S(C%J%H)}ee[é,l] has size at most O¢,,.c,, (logy(1/4)), so we can take a union bound

over the result in Lemma 20 for all B,. Similarly, since there are O(dC,+) eigenfunctions in Q (see the
proof of Lemma 31), we take a union bound of Lemma 21 over all these eigenfunctions. (Note that the
“with high probability” is explicitly o(1/d) there). The rest follows immediately from the three concentra-
tion lemmas. 0

For the remainder of the text, we assume the following assumptions hold up to time 7" (if relevant):
Assumptions Regularity,Stability, LSC,Symmetry. Let (Cpsc, 7) denote the parameters of the local strong
convexity (we will use the parameter 7 differently later). We also assume that Q is a Cy-balanced BSD
where by Lemma 9, we have that Cy, = C)+.

Theorem 3 (Main Potential Dynamics Theorem). Let § := 4/ Lp( p%{F) and condition on the event that the
high probability event in Lemma 43 holds for 0. Let €y, := €, + el + €20 1 €2 from the concentration

lemmas. Suppose n and m are large enough such that J,%mxtzemm < 6—14. Suppose that

t
J)?lax </ (I)Q(S)2d5> < €n,m- (D.17)
s=0

Then for some C = Og,,, c,(1) and 7 = Q¢,,, ¢, (0), for all t <T, we have

t

Po(t) + CJang(T) / Do(s)ds + Cmaxtenm.-
s=0

—Po(t) < —
o o(t) <

d Ciscod
C

Corollary 44 (Solution to Potential Dynamics). Suppose that for some T = ¢, .c, (0),

4T C?T? exp(20 T (T) T/ (Crscd) ) nm < 1.

max

Condition on the event that the hypothesis of Theorem 3 holds. Then for any t < T, we have
Eil|Ac() || < Po(t) < exp(Ctdag(T)/(Crscd))C Imaxten,m-

Proof. [Proof of Corollary 44] We will use real induction (see eg. [Clal2, Theorem 2]). Our inductive
hypothesis will be that for some ¢,

t
J;ax< / q>g(s)2ds> < %en,m. (D.18)
s=0

Note that is implies the assumption in Equation (D.17). Clearly this holds for ¢ = 0. Since ®o(s) is
continuous, if Equation (D.18) holds for all s < ¢, it also holds for ¢. This is the continuity assumption.
Finally, for the inductive step, we will show that if Equation (D.18) holds for some s, then for some ¢ small
enough, it holds at s + ¢. To show this, first we use Lemma 46 (which bounds the solution of the ODE given
in Theorem 3), to show that for all s’ < s,

Po(s') < exp(Cs'Javg(T)/(CLscé))Cstaxen,m + énm < (exp(CsJavg(T)/(CLscd))CstaX)en,m.

Note that ® (%) is continuous. Thus for ¢ small enough, we have ®o(t) < ®g(s)+€p m forallt € [s, s+1].
It follows that for ¢ small enough, for ¢ € [s, s + ¢],

exp(2Cs.Tusg(7)/(Crscd))ds’ + / (®o(s) + enm)2ds

S

s'=s

/S t (®o(s")%ds’ < (C'sJmaxenm) /

=0 s'=0
< Q(Cstaxemm)Qs exp(2C Jayg (7)s/(Crsco)).
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Now using the assumption in the corollary that

4J;113XCQT3 exp(2C Javg (7)T/(Crscb) ) enm < 1,

it follows that fs‘io@g(s))st < oo

This proves the inductive step. Thus by real induction, the hypothesis in Eq (D.18) holds up to time 7T'.
The result of the lemma then holds by applying Lemma 46 to the result of Theorem 3 at any time ¢t < T'. [
Proof. [Proof of Theorem 3] Recall from Lemma 5 that

d . NA .y ,
(1) = Dy (A1) = B Hi (6, 1) Au(5) + v

where
€l < 2€nm + 2Creg (|1 A:(0)1* + B[ A (5)[I)-

Now we have

d d

—Po(t) < (VOg(t), —A
Laolt) < (VEa(r), T A

where £ (i) = € ;. We will consider the terms in order. Let

P CLSC * rd(d)
’ 8(010 + CH)7

where rd(z) is a rounding of z to its first non-zero decimal, in binary (so rd(z) € [z/2, 2z]).
Now by Lemma 10, we have

—(VPo(t), Hi- ) = —(V@o(t), Ar) . < (1+ Co)Eillma (i) [ 1(&x(wi) ¢ Br) + Eno,
where my (i) = E;Hi- (i, j) A+ (j), and
€10 = Cro(Bi|| Ac(0)[[1(&e(wi) ¢ Br) + (7 + Coepy)2At))-
Next by Lemma 11, we have

CYLSCé-

(Vao(t). Df © Ay) < —< - 7011><I>Q(t) T ONEAG) 16 (ws) & Br) + CoEil| A1)

Here we have used the fact that since the loss is decreasing, the loss in Lemma 11 is less than the loss 62 at
time 7.
Putting these together, and employing Lemma 12, yields

Taqm) < (— : )%(t) (D.19)

+ (Cro + C11)Eq[| A¢ (2)[[1 (& (wi) ¢ Br)
+ (1 + Co)E;|[me(4)[|1(&e(ws) & Br)
+ (14 2Ch)Es|esql,
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where here we used that 7 was chosen such that (C11+C10) (T+Cpe?l) < C%C‘s, and trivially, Q(t) < ®o(t).
We also bounded E;||A;(7)||? by E;|ez]|-
Now let us consider the term E;||m;(7)||1(£:(w;) ¢ B;). Using Lemma 22, we have

B [|me(8) | 1(&:(wi) & Br) < (L4 Cb)(enm + Jave(7)) 2o(2).
Now let use consider the term E;||A.(7)[|1(&(w;) ¢ B:). Recall from Equation (2.2) that

t ¢
Ay(i) = — /—0 Ji.s(1)mg(i)ds + /_0 Jis(i)€s ids.

Thus by Lemma 22, we have
t
lmmmmu&m»¢&»su+aw%m+xwh»/ Bo(s)ds
s=0

t
4 [ Bl tw) ¢ Bds
s=0

Plugging this back into Equation (D.19) yields

d Clsco
L) < 259
3 2elt) = ——

t
o(t) + (Cro + 4 CpCreg) (1 + Cv) (€nym + Jave (7)) / Po(s)ds
s=0
t
+O+QMMM+O+%W%+%@ﬂ@/ Eil[ Jes (i) €l ds
s=0

CLSC(S ¢
< S R00(t) + Cag(r) [ Dols)is
s=0

t
+ (1 + Cy)E; ||| + C/ Eill Jt,s(1)€s,ilds,
s=0

where C' = Oc,,,c,(1). Let us simplify the error terms. Appealing to Lemma 45, we have for all 1,
1A:(0)]? < denm and By = [ |15 (i)€s ]| ds < STmaxten,m.
Thus

Ei”et,iH < 2€n,m + 4CregEiHAt(i)H2 < 180reg€n,ma

and
t
/ Eall s ()€o illds = EsBrs < 8.mactenm.
s=0

Thus plugging this back into the bound on the dynamics, we have

d Crscd
Loo(t) < —25%
g 2et) = ——

where C' = Oc,, ¢, (1). O

t
o(t) + Clavg / Po(s)ds + CJmaxten,mds,
s=0

Lemma 45 (Inductive Squared Error Bound.). Suppose Assumption Stability hold with value Jyqy. Suppose

forall t' < t, we have
t/
J2 / Do(s)?ds | < enm-
s=0
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and J,?mxt%mm < 6L4' Then for all i and t' < t, we have
1A (D)7 < 4€nm
t
Et,z’ = / ||Jt,s(i)es,i||d5 < 8Jmaxt€n,ma
5=0

where € ; is defined in Lemma 5.

Proof. It suffices to prove the statement just for the final time ¢, because we could always apply the lemma
with a smaller value of ¢. Recall that

€s,i < 2€nm + 2Creg (1A (D) [1* + E; [ A (7))
Since
EiHGt,iH < 2epm + 4CregEi||At(i)H27

by Equation (2.2), we have
t
MMM</ Jrs()(ma() + €5,)ds
s=0
t t
s/ MAWMMﬂ+/IMMMﬂﬂ
s=0 s=0

t
=/ s (i)ms(8)ds]) + Er
=0

t t
<‘/H%www¢/1mmww+&i
s=0 s=0
t
< [ [ i) + B
s=0

t
< Jmax / (I)Q(S)st + EtJ'
s=0

<y €nm + Et,i’

Here in the second last inequality, we used the fact that ||ms(i)|| < ®o(s) for any 4, and in the last line, we
used assumption of the lemma. Note that this same calculation holds for all s < ¢, so we have

1A < Venm + Ei-

Now lets bound E} ;:

t t
Buiim [ eaienllds < [ 1)) (26 + ACmsmax |8, )
s=0 s=0

t
< Jmax/ (26n7m + mjax(Qen,m + 2E§j)> ds,
s=0

where in the second line, we plugged in the bound on A (7).
Thus letting E; := max; E; j, we have

Ey < 2Jmaxt (260,m + E7)
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Now assuming the discriminant 1 — 32.J2,,t%¢,,.,m, > 0, this equation has two sets of disjoint solutions, one
small (including 0) and one large:

1—/1—3202t%nm
’ 4 Jmaxt

14 /13272, tenm
4 Jmaxt ’

EtE —00

Note that since at time ¢ = 0, we have E; = 0, and F is continuous, it must be that if the discriminant
is positive up to time ¢, the solution is always in the first set. Indeed, since an assumption of the lemma is

that J2 t2€nm < 6—14. Thus we have

1—/1—32J2,t%nm
4 Jmaxt

Ey

IN

< 8Jmaxt€n,m .

Plugging this back above into our bound on A;(3) yields that for all ,

||At(Z)H2 < 46n,m-

Lemma 46 (ODE Analysis). Suppose we have a differential equation of the form

d t
—X; < —aXt—l—b/ Xods + €.
dt s=0

with initial condition Xy = 0 and a,b > 0. Then

€
X <exp(bt/a)——.

t > p( / )\/m
Proof. Let Y; solve the ODE

d t
Yt——aYt—i—b/ Ysds + 2,
dt =0

with initial condition Yy = 0, and let Z; = X; — Y;. We will show that Z; never goes above 0.
Observe that Z; solves the differential equation

d t
—7; < —a,Zt—i—b/ Zsds — e,
dt s=0

with initial condition Z; = 0. One can check by the real induction that Z; < 0. Indeed, if Z; < 0 for all
s < t, then we have Z; < 0. Further, since Z; is continuous, if the hypothesis Z; < 0 holds up to time s,
we can show that it holds at time s + ¢ for some ¢ > 0. Indeed, for ¢ small enough (in terms of b and ¢), for
all 7 € [s, s + ], we have Z. < . Thus for 7 € [s, s + ¢, we have d%Zr < —aZy +bu(5) — € < —aZ, for
t < 1. Then Gronwall’s inequality gives that Z,,, < Z; < 0, which is the inductive step. This yields the
claim that Z; < 0 forall ¢ > 0.

Now we just need to solve the differential equation for Y;. Taking a second derivative, we have

}/t// — _a/}/;/ + b}/t
A standard second order ODE analysis yields that

Y, = C1 exp(rit) + Cyexp(rat),
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where r; and 79 are the roots of 22 + az — b = 0, that is,

—a+vVa?+ 4b

(7”1,7“2) = 9

Checking the initial condtitions of Yj and Y yields

Y, = <m> (exp(rit) — exp(rat)),

where 7 is the larger root. Since r; < g, we obtain the lemma. L]

E Applications to Learning a Single-index Model

E.1 Setting

We will study the setting of learning a well-specified even single index function f*(z) = o(z " w*), where
w* € S, and 0(2) = Y i, cxHep(2), where:

1
1. k* > 4, and o < ¢+ < Cspy maxy, ¢
2. All k with ¢, # 0 are even. (That is, ¢ is an even function).

We assume the initial distribution pg of the neurons is uniform on S¢~!, and the data is drawn i.i.d from the
distribution D, which has Gaussian covariates, and subGaussian label noise: that is,

T NN(O,Id) ~ DI
y = J"(x) +((2),

where ((x) has mean 0 and is 1-subGaussian.
We will prove the following theorem, which we restate from Theorem 2 in the main body.

Theorem 2 (PoC in Single-Index Model). Fix any § > 0, and suppose d is large enough in terms of 6,
Csin and K. Let T(0) := argmin{t : || fur — 12 < 62} Then T(5) = OKycS,M(\/gk 725*(’“**1)). If
n > d" and m > d'3*", then with high probability, for all t < T(6),
O 5(d3"
[ f e = fom|? < — == (@7) < 36%.

min(y/m, /)

We will prove Theorem 2 by (1) analyzing the MF dynamics to show the convergence of pMF, and then
(2) checking the assumptions of Theorem 1 hold, and applying it to show the convergence of p}".

Notation Define o(w) := |w ' w*|. Let v(c,t) denote the velocity of a particle w with a(w) = « in the
w* sign(w T w*) direction. Formally, we have

v(a,t) = (w*, v(w, p}tv[F)> sign(wTw*),

for any w with a(w) = . We will often use the notation o ~ p or @’ ~ p to denote the distribution of «(w)
with w ~ p. We use oy (w) := (& (w)). We use & ¢(w) denote the location of the particle at time ¢ which
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is initialized at w at time s. In this language, we have that & (w) = & o(w). We similarly define oy 4(3) to
be (& s(w)) for any w with a(w) = 5.

We will use ¢, to denote the polynomial with kth coefficient k!c7, where Y c;Hey(2) is the Hermite
decomposition of ¢. Similarly, we denote ¢,/(z) = f:_kl*fl Gryq (B +1)(k+ 1)!2*. From the Hermite

polynomial identity that E,Hey (w " z)He;(v'z) = k6, (wv)*, we have

Eyo(w'z)o(v'z) = ¢ (w'v).

E.o'(w'z)o' (v z) = g (w ' v).

E.2 Bounds on the Velocity and its Derivative

1.00 1

0.75

0.50

0.25

0.00

—0.25 A
—— Velocity V(at)
—0.50 1 Alignment a; /
—— Top Eigenvalue of Local Hessian
—0.75 T T T T T T T T T
0 25 50 75 100 125 150 175 200

Time

Figure 6: Self-Concordance Property: the top eigenvalue of the Local Hessian is Bounded by ka—’tlu(at)

The key ingredients in both the MF convergence analysis, the perturbation analysis (bounding Jmax
and Juve), and in showing local strong convexity, is obtaining a lower bound on the particle velocity, and
bounds on the local Hessian, Dj-(w). It turns out, it is much easier to bound these quantities under a certain
inductive assumption (which in our MF analysis we will prove holds). We define the inductive property with
parameter ¢ to hold at time ¢ if

P, yrla(w) € [1,1 =] <. (%)

we Py

Eventually, we will choose ¢ to be some small constant dependent on the desired final loss J.

Lemma 47 (Lower Bound of Velocity). Let § := \/ E.(f pyp(a:) — f*(x))?%. Suppose (x) holds at time t for
L < min(@K(l), 56K2). Then

v(a,t) > g (@) (1 —a?)(1 — 1) — O ((1 — a*)Ra),

where R, = OK(L(a\/E_maX(Zk*_Q) + ama’((l’k*_?))\/a_Q) + Oé\/E_k*), and ry = E
Qx (0). In particular, if o > %, for d large enough (in terms of 6, K ), we have that

CM/NpItVIF (O[/)k* =

v(a,t) > qor(a)(1 — a®)(1 —r) (1 — V).
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Proof. Let us expand the velocity by expressing v(c, t) as a polynomial in terms of a.. Fix w with a(w) = «
and without loss of generality assume w'w* > 0. For w’ € S%!, we denote w' = o’w* + y, where
y € V1 — 28?2, which we will use to denote the sphere perpendicular to w* of radius v/1 — a/2. We
expand

v(w, M) Tw* = B (f*(z) — Sowre (x))o'(w'z)z " Prw* (E.1)
= Eyo(w* " 2)o' (w z)z" Prw* — Ew,NPQAFExJ(w'T:L‘)a'(wTac)xTij*
= o (w w*)w* " Pruw* — Bt ot Qo (w'w)(w) " Prw*
=gy (a)(1 —a?) — B o7 o (ww')(w) T Prw*
= gor ()1 = 0*) = By pyolB | ramgiador (a0’ +y' " w) (0/(1 —a?) — ay’Tw)-

Here in the fifth equality, we used the rotational symmetry of pMF about the w* axis.
Lets break down this expression. Let

Tk = EaprFak.

Fix a (necessarily odd) coefficient k* — 1 < k < K — 1 of the polynomial ¢,/(z) := 3 qx2*, and
consider all terms in the above equation arising from that order term:

k
k ) )
graf(1—a?) — g, > (j) (00 VE,,_ s (y Tw0)F I (o (1 - 0?) — ay Tw)
7=0

= qkak‘(l — 062)(1 — ’I“t7k-+1) + Ea’Np%AFga,O/,ka

where

O (1= a?)(@?(1 = a?)(avd "+ ab2VT ) 4 a(t —a?)vd ) k>3

ga,oa’,k =
0 k=1
Note here that we have used the fact that k is even and E,/ (v w)? = O;(((1 — o/?)(1 — a2)d*1)]/2),
and is O for odd j. The final error terms arises from the fact that we have only counted the terms in
the binomial expansion which could be most significant — depending on the relative size of aa’ and
V(1 —a?)(1 — a/?)/v/d. Now plugging in the hypothesis (x), we have that E (@)?(1 - a?) < 2,
so for all &,

st = Oe((1 =@V 40tV o -tV ) < (1 at)R,

O/Np%/lF

Summing over all odd £* — 1 < k < K — 1 yields that
K-1

v(at) = Y qef(l—a®)(1—repp) + (1 - )R, (E2)
k=k*—1

> (@)1 —a®)(1 = 1) — (1 — a®)Ra,
where here in the inequality, we used the fact that r; = E/_wr(c/ > K, oy (@ )k = 1 for all

% 53K
k > k*. Now for o > T

v(ent) = gor(@)(1 = a®)(1 =)
_ OK (/,(1 _ a?)(ak*71573K(k*72) 4 ak*flé—GK) + (1 _ a2)ak*’15*3K(’“**2)/d>’

we have
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Since by Lemma 50, we have (1 — r;) = €(9), it follows that

(e, t) > gor(a)(1 = a®)(1 = re)(1 = V4).
O
In the following lemma, we analyze %v(a, t). As will be shown in Section E.4, bounding %v(a, t) is

useful in bounding D;-(w). The second part of this lemma will also be instrumental in proving local strong
convexity (Definition LSC).

Lemma 48. Let § := \/E$<fp1t\4F(x) — f*(x))%. Suppose (x) holds at time t for 1 < min(@K(l), 56K2).
Then

*

k*—1
== t)+ & <1;
(o, t) aav(a, )+ Ea “e 1
< —17%5v(a,t) = Qg (6) a>1-— =%,

where Eq 1= O (Oék* + L(\/g—(k*—Q) + a"“*—4\/&_2) + \/g—(k*—2)>.

Proof. First we compute %v(a,t). Fix a coefficient £* — 1 < k < K — 1 of the polynomial ¢, and
consider all terms in the the derivative of Equation (E.1) arising from that order term:

2
qekal! <1 — k—]:oz2>

k ) .

k | | ) ,

B Qo (s 528) 50
]:0 .7 1 12 ] ]

—a

_ k+2
= kqrpat! (1 — ka2> (1 =7 ps1) + Eark;

where a1 = O (u(vVd 7 a3 %) + VAT and vy = By ()P,
Here we have used the same computations as in the proof of Lemma 47. Summing over all odd £* —1 <
k < K — 1yields

K
d _ k+2
%U(O[, t) = k_kg*_l qkkjak 1 <1 — ka2> (]_ — Tt,k—l—l) + ga,k‘ (E3)

= (K = Dagpr—1(1 = )" 72 + Ok (O‘k* o Va T LT \/g_(k*_m)

Combining Lemma 47 with the previous equation, we obtain

*_ 1 . (et . B o

da
This yields the first case in the conclusion of the lemma.
For the case that a > 1 — % > k+k0'5 for all k£ < K, we have
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We will compare the terms with coefficient g, in the first line of Equation (E.3) and the first line of Equa-
tion (E.2). Let

vk(a,t) = qua (1 — o®)(1 = ryppa),

such that Equation (E.2) gives

K-1

v(a,t) = D v(ast) + (1 - o®)Ra,
k=k*—1

where R, is as in Lemma 47. Thus the first line of Equation (E.3) gives

%v(a,t) _ zk:(vk(a,t))a(lioﬂ)k@ - %f) 4 Eu

—1.5c
< Z(vk(a, t))m + Eark
k
—1.5«

= m(v(a,t) —(1- az)Ra) + Zga,k
k

a

< —mv(a,t) — Qg (6).

Here in the first inequality, we used the fact that all the g5 (and hence all the vi(cv, t)) are non-negative.
Indeed, recall that g, are the coefficients of the polynomial g,/ (2) == Y5 L | ¢ (B + 1) (k + 1)12%,
where ), c;Hey(2) is the Hermite decomposition of ¢. In the last inequality, we have used the bounds on
Ro and &, i, along with the fact from Lemma 47 that v(a, t) = Qx((1 — @?)d). This yields the desired
conclusion.

O

A key part of both our MF convergence analysis, and the perturbation analysis is understanding the
stability of the o (w) with respect to small changes in as(w). The following lemma controls this derivative.
Define

ot =g

Lemma 49. Suppose that for all s < t, we have \/Em(fpgm(x) — [*(x))2 > 6. Suppose . < min(@K(l), 56K2),

k*—2
andt < \/gf. Finally suppose (x) holds for all s < t. Then for and T < 1/2 and any w for which
ar(w) <1 — 7, we have

i 0] () oo (1)

Proof. Observe that /; ;(w) satisfies the differential equation

d d
%Zt,s (w) = (dat(w)y(atW)’ t)) by s(w);

ls (w) = 1.
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From Lemma 48, we have that

) = ((k* - pHladl) 5a>et,s(w);
d ~ v(ag(w),t)
ﬁat(w) = Wat(w),

where we recall that
* 7]?* — k*f * __ —
ga:OK<OZk +Vd +L<\/& ( 2)—|—oz§k YVd 2))

Equivalently, taking logs, we have

d log(lss(w))  v(a(w),t) '
dt k=1 a(w) T &ai
o)1)

d
i log(au(w)) = W

Let us split up the time interval into (at most 3) intervals: [s, t1], [t1, 2], [t2, t], where ¢; is first moment

at which ay, > ﬁ, and oy, is the first moment at which oy, = 0.5. In the first interval, we have £, <

OK(L\/Zi(k*_Q)). In the second interval, by Lemma 47, we have £, < O (ﬁ%ﬂﬁ + v(a, t)a/é).

k*—2
For the first interval, since ¢ < */EL , we have

“ —(k*—2)
Eadr < Og(Wd )(t1 — s) < Ok (1).

r=s

For the second interval, using u-substitution, we have

to t2 2
6. dr < OV / 20 1) g [ Ogelwlanryon/o)dr
r=t1 d r=t1 (Ofr) r=t1
O L) [ 1 iz
- Kc(l\/) / @da + / Ok (a?/d)da + Ok (as,)
a=Qtq Q=0
Ok(Ve) (1 1

d (204,521 2a§2> < Ox(1/9)

For the third interval, observe from Lemma 47 that during the duration of this interval, 1 — «,.(w) decays
exponentially with rate O (§). Thus, the length of this interval is at most O <1°g(12/ 7) ) , SO

6
! log(1
/ £adr < Ox <Og(/7)>
r=to 6
Thus integrating, we obtain

log(4t,s(w)) —log(£s,s(w)) _ /t v(ar(w),t)

k* —1 o (w)

dr + Ok (log(1/7)/9).

Plugging in the integration of the differential equation for log(ay(w)) yields

ogliu) _ (20
log(le(w)) _ . ( alw)

— 2 + O llou(1/7)/5).
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Multiplying both sides by £* — 1 and exponentiating yields

o= (283) oo (54

as desired.

Lemma 50. For d large enough in terms of § = \/Ex(fpytvm (x) — f*(x))2 we have

1—-E /NpI;AF(Oé,)k* Z QK,Creg (6)

6%

Proof. Observe that

Eo(f*(2))? = Ego(w* " 2)o(w* ' 2) = ¢-(1).

By foure () f*(2) = Ex]Ew/NpMFO'(w/TIE)O'(w*TZL‘) = Ealwpytm:qg(a’).

t

Further

Ex(fp%u: (x))% = EzEw,w/prFU(wa)a(w’Tx) =E (w'w').

wyw/r\zp%/“: qO'

Now for even k, we have

E wTw’)k = Ema/,vptMFEg(aa’ + \/(1 —a?)(1- o/)2§)k,

w,w’fvp%’”:(

where ( is %—subGaussian. Thus by Minowski’s inequality, we have

1/k 1\"
Emw/Npgle(’u}TU}/)k < <<Ea,a’~p2’":(aa/)k) + OK( )>

<E k, Ox(1)

ayalwpyp(aa')

— (E MFOék>2 + OK(l).

arpy

It follows that with ¢, (2) = _, qrz*, we have

Eo(fyr (2) — £*(2))% = Bal(f(2))° + Eal(fr(2))® — 2E* (@) f e (2)

K
2 Ok (1)

— k E\" _ k K
= k_zk* qk <1 + (EaNpI;/[FOé ) 2EaNp2/IFOé > + \/a

K

2 Ok(1)
= Z gk (1 — EaNPMFOZk) + —
k:k* t \/a
Now for all k£ > k*, with1 — s :=r := EaprF(a)k*, using (*), we have
. /
ree < Ea/NpMF(OZ) ,
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SO

(1 - anpymk)z < (1 - rk/k*)Q - (1 (- s)’“/’“*)2
< (1— (1 sk/k")) = O(s?).

So
* * * O 1
Eo(f e () = £(2))2 = Ealf*(2))* = Oy (1 — B e (0)'") + f;%)
and thus for d large enough in terms of § = \/Ex(fpw(x) — f*(z))?, we have 1 — E g piir (@) -

OFK G, (0) as desired.
O

E.3 MF Convergence Analysis

Proposition 51 (Convergence of f M to f*). Fix any 6 small enough, and let 1 = 5% * Ford large enough,
we have

T(0) := argmin{¢ : Ex(fp%,,F@) ~ @) < 0% = OK(\/gk*_25*(k**1))_

We also have the following implication (which we will use for the analysis of Jinax and Jayg) for any t < T'(6)
and for any T > 0:

By rl((w)F " L(a(w) < 1—1)] < ﬁ““*”oK,g(l).

w~p) 0r(D)

Proof. First we need to prove by induction on ¢ that for all ¢ < T'(¢), the hypothesis (x) holds. First observe
that it holds at time 0, because

P, s [a(w) > 0] < exp(O(d/i2)) <o

for d large enough. Suppose the hypothesis holds up to some time s. We need to show that it holds at time
s+ ¢ for some e. First note that for e small enough, by the continuity of v(«, t) and %U(O&, t), the conclusion
of Lemma 47 and Lemma 48 still hold up to time ¢. To prove the hypothesis holds at time ¢, our approach
will be to non-constructively bound the interval of I C [0, 1] for which a(w) ¢ I implies a(w) ¢ [, 1—1].
We will use the following claim.

Claim 52. Suppose (x) holds up to time t. For any 7 < 1/2 and y < 1_TT we have

Puppelaw) € ot —7l) < 2V e (04 (L))

Proof. We will show that

P prlalu) € b 27)) < g V@ e (02 (220

The claim will then follow by summing this bound over log,((1 — 7)/7) intervals.
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Suppose we have some w and w’ with a;(w), ax(w') € [y,27]. Since the conditions of Lemma 49
hold up to time ¢ for any particle @ with a(w) initialized between ap(w) and ag(w’), by the mean value
theorem, we have that

a(w) — ay(w') > |ag(w) — ag(w')] B T ( () > o exp (OK <log(7/(§* —1) >)

(W)

> |ag(w) — ag(w')| <a02w,))k*1 exp <OK <10g5(7))>,

Thus since |a:(w) — ay(w')| < v, we have that

lao(w) — ag(u)] < 7kl_2 (ao(w’))k*—l exp <OK (log(S(T)>>'

We need to upper bound the probability over py of the set in which ag(w’) and ap(w) can lie. By the
above calculation, the set which a(w’) and a(w) lies in is contained in

noe (vt (Ga) (o))

for some A. Recall that the distribution of ag(w) under w ~ pg is ﬁ—subGaussian. Thus

AL (k2 log(1/7
Py [a0(w) € I] < m\/& *=2) xp (()K <g(52/)>> (exp(—A2)
¢ T g o (222 )
y )
This proves the claim. 0

Plugging v = ¢ and 7 = ¢ into this claim yields that

Pumgrlat) € 1= < 52 v e (04 () ) <

where the second inequality holds for d large enough in terms of §. This proves the inductive step.

Now to prove the convergence guarantee, a standard analysis of the ODE for « (see eg. [DNGL23]) now
2

yields that, for any w with ag(w) > \5/&, we have that

1

@(1) . . . 52
fort > (a0 ()2 This arises directly from the fact that Lemma 47 guarantees that for o« > NGE

v(o,t) > Ok (6aF 711 — a?)).

After that, it is clear that 1 — oy (w) decays exponentially fast (with rate 2(9)), so for ¢t > W +
Ok (log(1/0)) = # we have 1 — ay(w) < 6/4.

()2
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Now using the initial distribution of ao( ) with w ~ pg, we have that an at least 1 — ¢ /4 fraction of
particles have initialization ap(w) > O ( f) Clearly once all these particles achieve 1 — oy (w) < 1—4§/4,
we will have loss at most 6. Thus occurs at some time at most

<5ﬁK(> L —ou(VE )

This proves the main statement of the proposition. To prove the additional clause, fix 7. We have

B, prl(@(@)* 11 (a(w) < 1 7)] = / Py pel(a(w) € [8, (1 — 7))d8.

1—7 1 1

a(w) € [y¥=1, (1 — 7)F-T]dy.

[y 0 Pl
1—71 * 1 1
</ _2 i o0k og(1/7) iy
v=0 7k* 1 )
—(k*—2) log(1
=Vd ( exp K< og(1/7) > / Ay
’\/—0 r}/k* 1

)
:\/gf(k* 2) OK<log 1/7) ))2 Fo fyk* .
)

(0
Y ( OK<log 1/7) >
(

Here the inequality follows from Claim 52 and the fact that (1 — 7) T — #—1- This proves the
additional clause.

1—-7

0

O

E.4 Proving Assumptions in Theorem 1 for Single-index Model
We need to check that the problem (f*,D,, po) introduced in Section E.1 satisfies the Assumptions of
Theorem 1. Fix a desired loss 4, and let 7'(0) be as in Proposition 51.

Local Strong Convexity.

Lemma 53 (Local Strong Convexity for SIM). If d is large enough, then for any t < T'(0), we have for any
w with |&(w) — w* sign(&(w) Tw*)| < SK’

DH(w) = i, (V26 ).

Proof. For simplicity, let w; := & (w), let & := a(w;). Assume that o # 1; if @ = 1, we can take the limit
of the calculations below.

Recall that
DtL(w) = va(wta pi\/IF)
L
It is evident that v(wy, pM¥) is in the direction @ := /1 — aw* — aw, , where w| = P and thus

[1Pwell ||’



We will consider the quadratic form y' Dj-(w)y for y € span and for y L span(&(w),w*). It

suffices to show that for both such vectors we have y " Di(w)y < —Qg ¢, (x/L(p}:VIF )) lly|2.
Lets start with the first, letting y = w. We have

MF
Dif(w)y = dyd((q“;%iz) )
v(a,t)  dw _d(1 —a?)71/? W dv(a,t)
= + v(a, t)w
VI—aZd(y w) d(yTw) (\/1 — a2> d(y "wy)
Now
w dv(a,t) W dv(a,t)  da  _dv(a,t)
(\/1 — a2> d(y"we) (\/1 — a2> do dlyTw) " da
Next,
d1—a?®)~12  d(1-a®>)"?  da
d(y Twy) - do d(y T wy)
-« 1
T 1-a?pPRVIi-a?
«
T (1-a?)
Finally,
do
d(y w)
Thus in summary, putting these three terms together we have

o« dv(a,t)
(1—a?) fe

y' D (w)y = v(o,t)
By Lemma 48, we have for y = w,

YDl w)y < —QK,c,eg( Lo >).

Now we consider y L w, w;. We have

v(a,t) B
T dv(wq, pMF) _yrwd(\ﬂ—az) N v(a,t) yT dw
d(y T wy) dyTw VI—a?” dyTw)
v(a, t) i dw
V1I—a2” dyTwy)
v(a, t) yT dw |
V1—a2” d(yTw)
= ¢ v(a, t) y'l' Yy
V1i—a2? V1-a?

= —«

av(oyt)
=Sy
S _QK7Creg ( \/ L(p%VIF)> °
Here the final inequality follows from Lemma 47. O
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Proving Assumption Stability for SIM. First we will need the following lemma. Recall that J} denotes
the Jacobian of a multivariate function h.

Lemma 54. For any w and s <t < T(0), we have

|3¢,.. (ws)|| < Ok ((jt%y—l) exp (OK (;))

Proof. It suffices to check that this holds for times where oy (w) < R K,
Dj(w) is negative definite, and so HJ g (Es(w H can only decrease.

because after that, by Lemma 48,
Claim 55. In the setting of of the lemma, for any w with oy (w) < 57, we have

doy s(2)
HJg fs H < Og (’ > + 1.
" dz z=as(w)

Proof. Let ws = &(w). Without loss of generality assume w, w* > 0 such that as(w) = &(w) Tw*. Let
P « Ws

w, = pr ol We have
Ets(ws) = o s(we)w”™ + /1 — o s (ws) 2wy

Thus

. —ays(w 1 — oy s(ws)?

th,s(ws) = Jat,s(ws)(w )T + tS( S) QJO‘t,s (ws)(wJ->T + S( 8)2 d)_*v
1 — oy s(ws) 1 — as(ws)

and so, since a,-(w) is increasing for s < r < ¢ if az(w) > % (see Lemma 47) and cy(w) < 1 — o, we
have

HJ&,S (wS)H < OK(HJat,s (WS)”) +1

O]

The conclusion now follows from combining this claim and Lemma 49. U

We are now ready to bound Jiax and Jyy,.
Lemma 56. For anyt < T(0), we have
2(k*—1
Jmax < OK,(S(\/g ( ))
Javg(T) < OK,T,(S(]-/T((s))

Proof. By Lemma 54, for all w, we have

k*—1
[T (w) || = Ok ((%) ) (E.4)

. . - k*—1
We bound this in two cases. Let . = 6% In the first case, if avg(t) > f then this is at most O s(vVd )

as desired. In the second case, if as(w) < then we can show that i (w) never exceeds 2a5( ) Indeed

\/7$
one can inductively show by Equation (E.2) that for s < r < t, we have v(a;,r) < LQ\f . Since
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T() < %\/&k*_Q, we have a¢(w) < 2a,(w). Thus in either case, we have HJtLS(w)H = OK,(g(\/&k*_l).
The desired bound on J,,,,« is immediate.

To bound .J,yg we have to be more careful, and we will use an additional averaging lemma (Lemma 57)
which allows us to show that when a set of neurons w are well-dispersed on the sphere at some time s, then
on average over w, H-(w, w') is small for any w’.

Eumepol| Jt,s (w) Hy (w, w')v || 1(&x(w) & Br)
= EcxwpI;’IFEwwpoms(w):a||Jt,S(w)H;_ (wv w,)le(ft(w) g BT)
< anpI;’IFl(at,S(a) <1l- T) sup ||Jt75(w)||Ew~po|ozs(w):a||HsL(w’w,)vH

w]as(w)=a

< Eqoprl(ags(a) <1 - T)OK76<O‘t(w))k*_l <Ozt(w)>k*_1 (as(w)k*_l N \/g—(k*—l)>

as(w) as(w)

Here the first inequality follows from the fact that the event £ (w) ¢ B- is equivalent to the even o s(as(w)) <
1 — 7. The second inequality is derived from (E.4) and Lemma 57.

Now to bound this expectation, recall the two cases from earlier in the lemma: os(w) < ﬁ, and
as(w) > ﬁ. Recall that in the first case, oy (w) < 2a5(w). Thus we have
k*—1 k*—1
a(w) ay(w) 1 —(k*—1)
B, el <1-7)0 ( d )
e lan(@) < 1= 00w 2400) T (20) (a4 Va
k*— .
< 05 (VA" ) 4 By e Osc s (a(w) ) 1(a(w) < 1),
The additional implication in Proposition 51 bounds this second term, yielding
(k*—1) —(k*—2) 1
a0 yol16w) ¢ B7) < Oies (VA ™) 4V P 0 0 )
= Ok - (1/T(9))-
This proves the lemma. O

Lemma 57. For any distribution ;i over w, for and w',v € S, with w, := £4(w), we have

o1 Eup | ()| 5. sup VB, )20 D o]
w' v ul|=1

+ sup \/EwNM(wSTu)Q(k*_z) (ws Tv)2.
[[ull=1

In particular, if the distribution of w; is rotationally symmetric in some set of dimensions, and has norm at
most « if the remaining dimensions, then

(k-1
sup oy || Hi (w, w')v|| < O (ozk_l +Vd ( )).
w’ v

Proof. [Proof of Lemma 57] By Cauchy-Schwartz,

Eupmp | (0,0 )0]) </ Bupmgit (- (10, 0)) T HE (w0, 0o
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Let us expand H;-(w, w’). With w, := & (w) and u := &;(w'), we have
K—1
HE(w,w') = 37 P (ew, ) (w,Tu) T+ ¢ (w,0) (w, ) uw, ) P
k=k*—1
where c(w, w’), ¢ (w,w") < Creg. Thus we have
Hy (w,w') Hy (w,w')

< Z ZC'reg(ws—l—u)%PuL
k

+ QCreg(wSTu)z(kfl)PuLwSUTPj;SuwSTPj‘
= QCreg(wsTU)Q(k*il)I

+ 2Creg(ws—ru)2(k*_2)wsws—ra
and thus
By (- (0, 0)) T HE (0,00 < 2l 02D o] + 2 s )2 D (0T, )2

Taking a square root yields the desired result. The second statement follows observing that E,,[(u " w;)*] =

Oy (v/d ") if w is in the span of the rotationally invariant directions, because u "

Wg %— subGaussian. [
Proof. [Proof of Theorem 2] Fix a desired loss d, and let T'(§) = OK(ﬁk*_26*(k**l)) be as in Proposi-
tion 51, such that

Ey(fyr(z) = f*(2))? < 6. (E.5)

Let us check the conditions of Theorem 1. First, the regularity conditions in Assumption Regularity
trivially hold for Creg = Ocg,, (1) by our choice of Gaussian data and o.

By Lemma 56, up to time T'(8), (f*, po, D) satisfies Assumption Stability with Jyax = O 5(d2* ~1)
and Jae(7) = Ok 5,-(1/T(6)).

Observe that by Lemma 53, (f*, po, D,) is (¢, 7) local strongly convex up to time 7'() for ¢ =
k0 (1), 7 = % Further, since the problem has rotational symmetry in all directions orthogonal to
the w* axis, the structured condition holds because by the smoothness of V., v(w, pMF)P;- in w, and the
fact that at Vgeo (4, V(£ (w;), p?’lF)Pgoo (w;) (Which approximates Dj (i) to CregT error) must be completely
in the space orthogonal to w™, and is rotationally symmetric in that space. Thus Assumption LSC holds.

Finally, the symmetry conditions in Assumption Symmetry trivially hold because the data is Guassian,
and there is a reflection symmetry between w* and —w*.

Now suppose n > d'*" > J8 (T(6))%d* and m > d'3%" > J10 (T(5))®d* such that

e - log(n)d3/? n log(mT) max(d/? Jpmax, d*/?) 1
nten =" v = AT

Thus for d large enough, the condition on €,,+¢,, in Theorem 1 holds. Thus all the assumptions of Theorem 1
hold, and the result guarantees that for ¢ < T'(J), with high probability over the draw of the data and of the
neural network initialization, we have with A = min(r, ),

Ex(fpltvIF(l’) N fﬁ{n (x))Q < tJmaX(Em + en) eXP(%)

< td2(k*_1)(€n + Em)OKﬁ(l).

69



Combining this with Equation (E.5), we have that

By (f*(x) = for (2))? < 2Bo(four(2) = fop (€))% + 2Bo (fopr(2) — f*())?
< 202 4 2td** "V (e, + €) O 5(1) < 362,

This proves the theorem.
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F Full Details of Simulations

Name Target Function Activation/Network Design | LSC? | Symmetric? | Jaye assm? | C)-
Hey Hes(z Tep) o = Hey Yes Yes Yes 1
Circle E,st Hes(z Tw) o = Hey No Yes Yes ~ 24
Misspecified | 0.8Hey(zTe1) 4 0.6Heg(z " e) o = Hey + Heg No No Yes ~d*
Randomg s | Hey link, 6 random teachers in RS o = Hey Yes No Yes? 6
Staircase 0.2521 + 0.75X0R4 (2[4) o = SoftPlus, 2nd layer +8 | Yes No No ~ 28
XORy XORy () o = SoftPlus, 2nd layer £8 | Yes No ? ~ 2%

Table 1: List of problem settings we empirically investigated.

F.1 Experimental Design

For each problem of interest, we simulated the training dynamics for several different widths m € [212,219]).
We let M be twice the largest value of m. Crucially, we initialized all the networks to be a subnetwork of
the largest width network. Further, we used the same training data and training procedure (hyperparameters,
batch size, batch selection, etc.) for all values of m and M. We used the width M network as a proxy for
the mean-field limit, and studied how the neurons in the smaller networks differed in their trajectories from
their counterparts in the largest network. All experiments are repeated for 3 times. Source code is available
at https://github.com/margalitglasgow/prop-chaos.

Training procedure. We optimized the neural network as follows.

1. We trained the models via mini-batch SGD with n = 216 total data points, and a batch size of 8196.

2. We used a step size of 0.01 (or occasionally smaller) for the problems with Gaussian data, and 0.05
for the problems with Boolean data. This was mainly because the Gaussian data had higher moments,
and hence the loss occasionally exploded under large step size.

3. For the Gaussian single-/multi-index problems we used a Hermite activation function and all-1 second-
layer weights, whereas in the Boolean experiments we used the SoftPlus activation with temperature
16 (which is a smooth approximation of ReLU), and we fixed the 2nd layer weights to +C} with
equal probability, where Cj, = 2 /v/k for the k-parity problem.

Analysis procedure. We made the following measurements along the training dynamics.

1. At each epoch, we computed the function error between the networks of width m and M, using a
randomly sampled dataset of size n.

2. For each neuron i in the width-m network, we computed ||A,(i)|| as the norm of the difference
between the neuron in the width-m network and the corresponding neuron in the width-M network.

3. We plot (a) the prediction risk curves, (b) the function error over time, and (c) E;[|A; ()| over time.
In all the plots of the function and parameter error, we scaled up the error by the width m for better
visualization.
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F.2 Additional Experimental Results

L0 — m=4096 e
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(a) prediction risk (b) scaled function error (c) scaled parameter coupling error
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Figure 7: Manifold (Circle) target function f*(x) = E,,g1Hes(z"w), 2z ~ N(0, 1), and ¢ = Hey (p* is
distributed on a circle in 2 dimensions). We set d = 64 and learning rate 7 = 0.01.
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Figure 8: Additive (Randomg g) target function f*(x) = % E?:l Hey (2 "w;),z ~ N(0, 1), and ¢ = Hey.
We set d = 64 and learning rate n = 0.01.
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Figure 9: Staircase target function f*(z) = 0.25[z} + 0.75][;,[];, [x]; ~ Unif{1,—1}, and o
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SoftPlus with temperature 16. We set d = 64 and learning rate = 0.025.
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