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Abstract

We study the approximation gap between the dynamics of a polynomial-width neural network and

its infinite-width counterpart, both trained using projected gradient descent in the mean-field scaling

regime. We demonstrate how to tightly bound this approximation gap through a differential equation

governed by the mean-field dynamics. A key factor influencing the growth of this ODE is the local

Hessian of each particle, defined as the derivative of the particle’s velocity in the mean-field dynamics

with respect to its position. We apply our results to the canonical feature learning problem of estimating

a well-specified single-index model; we permit the information exponent to be arbitrarily large, leading

to convergence times that grow polynomially in the ambient dimension d. We show that, due to a certain

“self-concordance” property in these problems — where the local Hessian of a particle is bounded by a

constant times the particle’s velocity — polynomially many neurons are sufficient to closely approximate

the mean-field dynamics throughout training.
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1 Introduction

The Mean-field Regime. We consider the training of the following one-hidden-layer neural network with

m neurons via gradient-based optimization:

f(x) =
1

m

m
∑

i=1

σ(⟨x,wi⟩), w1, w2, ..., wm ∈ S
d−1, (1.1)
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where σ : R → R is the nonlinear activation function (e.g., ReLU), and {wi}mi=1 are trainable parameters,

constrained to the sphere. Due to the nonlinearity of the activation function, the optimization landscape

is generally non-convex. In this context, two approaches have been developed to “convexify” the problem

through overparameterization (i.e., increasing the network width m) and to establish global optimization

guarantees: the neural tangent kernel (NTK) [JGH18, DZPS18, AZLS19, ZCZG20] and the mean-field anal-

ysis [NS17, CB18, MMN18, RVE18, SS20]. The NTK approach linearizes the training dynamics around

initialization under appropriate scalings, ensuring that the trainable parameters remain close to their random

initialization [COB19]. However, this condition prevents feature learning and often leads to suboptimal

statistical rates, as it fails to capture the adaptivity of neural networks [GMMM19, CB20, YH20, BES+22].

The mean-field analysis, on the other hand, lifts (1.1) into the (infinite-dimensional) space of measures

by considering the empirical distribution of neurons ρ̂m = m−1
∑m

i=1 δwi . Under certain regularity condi-

tions, one can establish weak convergence of the empirical distribution to the limiting mean-field measure as

the number of neurons tends to infinity: ρ̂m
m→∞→ ρMF, and the trajectory of the limiting parameter distribu-

tion is characterized by a partial differential equation (PDE). This (McKean-Vlasov type) PDE description

can capture the nonlinear evolution of the neural network beyond the kernel (lazy) regime.

Studying the mean-field dynamics has several advantages, particularly with regard to learning sparse

or low-dimensional target functions such as multi-index models. First, in contrast to the NTK regime, the

mean-field dynamics describes feature learning which often leads to improved statistical efficiency (see

e.g., [Bac17, CB20, AAM22, MZD+23]). Further, overparameterized neural networks are useful for fitting

functions that are not well-specified, for instance a multi-index function with an unknown link function.

In such instances, prior correlation loss analyses [AAM23, LOSW24] that ignore the interaction between

neurons cannot establish learnability1. Second, from a purely analytical perspective, the infinite-width limit

allows us to exploit certain problem symmetries that simplify the mean-field PDE into low-dimensional

descriptions as done in [AAM22, HC23, ASKL23, CG24, MU25].

Propagation of Chaos. Since training infinite-width networks is computationally infeasible, the practical

significance of the above theoretical benefits hinges on having a quantitative connection between finite-width

networks and their associated mean-field limit. This is precisely the goal we embark upon in this work. The

dynamics of polynomial-width neural networks can be viewed as a finite (interacting) particle discretization

of the limiting mean-field PDE. Therefore, one of the main challenges in transferring learning guarantees of

the infinite-width limit to the finite-width system lies in the non-asymptotic control of particle discretization

error — known as the propagation of chaos [Szn91, CD22].

In the context of neural network theory, existing propagation of chaos results typically fall short of

delivering this non-asymptotic control. On one hand, exponential-in-time Grönwall-type estimates leverage

the regularity of the dynamics to propagate the Monte-Carlo error at initialization (at scale O(1/m)) to

obtain an estimate of the form supt∈[0,T ](fρMF
t
(x) − fρ̂mt (x))

2 ≲ exp(T ) · (m−1 ∧ η) where η > 0 is

the learning rate [MMN18, MMM19, DBDFS20]. Hence, this type of discretization error analysis is only

quantitative when the time horizon is short, such as T = Od(1) for learning low “leap” functions [AAM22,

BMZ23, MU25] and T = Od(log d) for learning certain quartic polynomials [MZD+23]. On the other

hand, for the mean-field Langevin dynamics (MFLD) [HRSS19, NWS22, Chi22a], which introduces additive

Gaussian noise to the gradient updates, exponential dependency on time can be removed under a uniform

logarithmic Sobolev inequality (LSI), leading to uniform-in-time propagation of chaos [CLRW24, SWN23,

KZC+24, Nit24]. However, the LSI assumption ultimately transfers the exponential dependency to the

runtime [SWON23, WMHC24, MHWE24, TS24]. Finally, [CRBVE20, PN21, Chi22b] proved uniform-in-

time fluctuations around the mean-field limit, but in the asymptotic width limit. To our knowledge, the only

work that coupled a poly-width network with the infinite-width limit for poly(d) time is [RZG23], which

1In Section 5, we give several concrete examples of this, along with simulations.
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considered a specific bottleneck architecture for learning a symmetric target function.

Consequently, despite the feature learning advantage, the function class that can be learned by two-

layer neural networks trained via gradient descent in the mean-field regime with polynomial compute is

largely unknown, except for target functions reachable within finite (or at most log d) time horizon. It is

likely that for many interesting problems, this T = Od(log d) horizon is not sufficient for the mean-field

dynamics to converge to a low-loss solution. For instance, when the target function is low-dimensional,

prior works have shown that gradient-based feature learning often requires T ≳ dΘ(k∗) runtime, where k∗ is

the information/leap exponent (IE) of the link function, which may be arbitrarily large [BAGJ21, AAM23,

BBPV23]. The goal of this work is to identify sufficient and verifiable conditions under which the mean-field

limit is well-approximated by m = poly(d) neurons up to T = poly(d) time horizon.

1.1 Our Contributions

In this work, we study a teacher-student setting where the target function is parameterized by finitely many

“teacher” neurons. Let ρMF
t denote the distribution at time t of the infinite-width mean-field dynamics trained

with projected (spherical) gradient flow on infinite data, and ρ̂mt the m-particle mean-field discretization of

this dynamics, trained with n samples. We establish a set of conditions under which ρ̂mt is well approximated

by ρMF
t up to the time required to learn the teacher model. The crux of these conditions is twofold:

1. The mean-field dynamics satisfy a certain local strong convexity (Assumption LSC), which states that

when a neuron is close to a teacher neuron, the local landscape is strongly convex.

2. A certain average stability parameter Javg (Assumption Stability) is at most O(1/T ), where T is the

convergence time. Loosely speaking, Javg is a measure of the average sensitivity of the neurons with

respect to a small perturbation in any one neuron.

Denote fρ(x) := Eρ[σ(⟨x,w⟩)], ∥f∥ := Ex[|f(x)|2]1/2 and E(ρ, ρ̃) = ∥fρ−fρ̃∥. We show in Theorem 1

that if the above conditions hold (along with several other regularity and technical conditions), then for

t ≤ T , with high probability one has

E(ρMF
t , ρ̂mt ) ⪅

poly(d, t)

min(
√
m,

√
n)
.

This means that poly(d, T ) neurons suffice to approximate the mean-field limit up to the time of conver-

gence. This result also gives a non-asymptotic rate of convergence of ρ̂mt to an appropriate empirical mea-

sure of ρMF
t with time dependence that goes beyond the pessimistic Grönwall estimate.

In Theorem 2, we apply our result to a setting of learning a single-index model (SIM) with high infor-

mation exponent k∗ ≥ 4, for which gradient flow converges in time T = Θ(dk
∗/2). First, we prove that in

this setting, the limiting mean-field network, trained on the population loss, can learn the target function at

time T . Then we use Theorem 1 to deduce that with m,n = dΘ(k∗), at time T the distance E(ρMF
t , ρ̂mt ) is

small, and thus the finite-width model ρ̂mt also achieves small population loss.

Remark. To our knowledge, our work is the first to prove propagation of chaos (i.e., the above bound

on E(ρMF
t , ρ̂mt )) with polynomially many neurons at timescales longer than log(d). We remark that we do

not believe all the conditions we impose to be necessary – we discuss this in detail in Section 5. Existing

techniques (see [CD22] for review) primarily leverage either (a) convexity in the system, (b) Grönwall’s

method, or (c) a large diffusion term. Our techniques go beyond these approaches, and as such they could

be useful to establish quantitative propagation of chaos in interacting particle systems with little or no noise.
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Outline. In Section 2, we provide preliminaries on the setting and explain the basic objects we will an-

alyze. In Section 3, we state our main results, as outlined in the contributions. In Section 4, we give an

overview of the proofs. In Sections 5 and 6, we discuss the assumptions of our settings, comment on their

necessity, and provide simulations. We conclude in Section 7. Full proofs are given in the Appendix.

Notations. P(Ω) denotes the space of probability distributions over Ω. W1(ρ, ρ
′) denotes the 1-Wasserstein

distance between distributions ρ and ρ′. We will use lower-case letters (f, g, h) to denote functions defined

on S
d−1, Greek letters (∆, ξ, etc) to denote vector-valued functions Sd−1 → R

d, and upper-case letters to

denote matrix-valued functions Sd−1 → R
d×d or Sd−1×S

d−1 → R
d×d. When µ̂ is an empirical measure of

the form µ̂ = 1
m

∑

i δwi , we will use the shorthand f(i) = f(wi), and denote Eif(i) := 1
m

∑

i f(wi).
We write P⊥

w := (I − ww⊤). For H ∈ L2(Sd−1 × S
d−1, µ2,Rd×d), D ∈ L2(Sd−1, µ,Rd×d) and

Λ,∈ L2(Sd−1, µ,Rd), we use HΛ(w) := Ew′∼µH(w,w′)Λ(w′), and D ⊙ Λ(w) = D(w)Λ(w). For

f ∈ L2(Rd, ν), we write ∥f∥2ν := Ex|f(x)|2, and omit the subscript when the context is clear.

Throughout this paper, we use the asymptotic notation OC(X) to denote X times some constant that

depends arbitrarily on C. Whenever a term of the form C (usually with some subscript) appears, this term is

referring to a constant, meaning that its value does not depend onm,n, d (which we will take to infinity). We

write “with high probability” when the probability approaches 1 as m or n goes to infinity. This probability

is taken over the neural network initialization {wi}i∈[m] and the random sample of n data points.

2 Setting and Preliminaries

2.1 Projected Gradient Dynamics on Neural Networks

Consider a neural network to be parameterized by some distribution ρ ∈ P(Sd−1), such that

fρ(x) := Ew∼ρσ(w
⊤x),

for a link function (activation) σ. We require σ to satisfy the regularity conditions in Assumption Regularity.

A supervised regression problem is parameterized by an initial distribution for the network weights, ρ0,

and a distribution D over points (x, y) ∈ R
d ×R. Given (ρ0,D), we define f∗(x) = ED[y|x]. We will train

the neural network to minimize the squared loss

LD(ρ) := E(x,y)∼D(fρ(x)− y)2 .

We study the projected gradient flow dynamics of ρ induced by moving each particle w ∼ ρ in the

direction of the gradient of the loss LD(ρ), and then projecting the particle back on the sphere:

d
dtw = νD(w, ρ) := −(I − ww⊤)∇wfD(w) + (I − ww⊤)∇wEw′∼ρkD(w,w′) (2.1)

where

fD(w) := E(x,y)∼Dyσ(w
⊤x) and kD(w,w

′) := E(x,y)∼Dσ(w
′⊤x)σ(w⊤x).

In the case where we train on infinite data, the relevant problem parameters are (f∗, ρ0,Dx), where Dx is

the x-marginal of D. In such setting, and when Dx is clear from context, we will use ν(w, ρ) (without

any distribution subscripted) to denote the case where x ∼ Dx, y = f∗(x) deterministically. Whenever an

expectation over x appears in this paper without explicit distribution, it should be interpreted as over x ∼ Dx.

In this paper, we will primarily be interested in a teacher-student setting with a ground truth measure ρ∗,

such that f∗(x) = Ew∗∼ρ∗σ(x
⊤w∗). Thus we will sometimes describe a problem by (ρ∗, ρ0,Dx).
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2.2 Coupling between Mean Field and Finite-Neuron Dynamics

We will study the evolution of two different learning dynamics in this paper.

Infinite-width, infinite-data mean-field dynamics. We denote the mean-field distribution at time t by

ρMF
t ∈ P(Sd−1), where we initialize ρMF

0 = ρ0. Each particle w ∈ S
d−1 in the mean-field dynamics evolves

according to the infinite-data velocity ν(w, ρMF
t ) ∈ TwS

d−1. ξt(w) ∈ S
d−1 denotes the characteristic of a

particle initialized at w and evolved under the mean-field dynamics:

d
dtξt(w) = ν(ξt(w), ρ

MF
t ) ξ0(wi) = wi .

This dynamics can also be expressed though the continuity equation: d
dtρ

MF
t = ∇ · (ν(w, ρMF

t )ρMF
t ).

Finite-width, finite-data dynamics. Let ρ̂mt denote the empirical measure defined bym neurons under the

projected gradient flow induced by the empirical loss from n training samples. Let D̂ denote the empirical

distribution of the n training samples. We initialize ρ̂m0 = 1
m

∑m
i=1 δwi , where wi ∼ ρ0 i.i.d. for each i ∈

[m]. Each particle w ∈ S
d−1 in the finite dynamics evolves according to the empirical velocity νD̂(w, ρ̂

m
t ).

This defines an ODE in (Sd−1)⊗m, whose characteristics are now denoted by ξ̂t(wi), and solve

d
dt ξ̂t(wi) = νD̂(ξ̂t(wi), ρ̂

m
t ) ξ̂0(wi) = wi , i ∈ [m] .

We will study the setting where the training data are drawn i.i.d. from a sub-Gaussian distribution with

sub-Gaussian label noise (See Assumption Regularity, R2).

Coupling the dynamics. Let ρ̄mt be the distribution initialized at ρ̂m0 , but that evolves according to the

dynamics ν(·, ρMF
t ). That is, ρ̄mt = 1

m

∑m
i=1 δξt(wi). Note that ρ̄mt is equivalent in distribution to a random

sample of m particles drawn iid from ρMF
t . Define the coupling error at neuron wi as

∆t(i) := ξ̂t(wi)− ξt(wi) ∈ R
d , i ∈ [m] ,

such that ∆0(i) = 0 for all i. Now by definition, W1(ρ̂
m
t , ρ̄

m
t ) ≤ Ei∥∆t(i)∥; thus it is easy to show that

Ei∥∆t(i)∥ gives a good bound on the function-error distance between ρMF
t and ρ̂mt :

Lemma 1. Suppose Assumption Regularity holds. With high probability over the draw ρm0 , we have

∥fρMF
t

− fρ̂mt ∥
2 ≤ OCreg

(Ei∥∆t(i)∥)2 +
log(m)

m
.

2.3 Description of the Dynamics of ∆

The main result of this section is Lemma 5, which gives a first-order approximation of the dynamics of

∆t(i). The quantities {∆t(i)}i evolve via their own particle interaction system, governed by two main

terms: a self-interaction term, and an interaction term. The self-interaction term is described by what we

call the local Hessian, the derivative of a particle’s velocity with respect to that particle’s position.

Definition 2 (Local Hessian). The local Hessian D⊥
t : Sd−1 → R

d×d of neuron w at time t is

D⊥
t (w) :=

(

∇ξt(w)ν(ξt(w), ρ
MF
t )
)

(I − ξt(w)ξt(w)
⊤).

We will also use the abbreviated notation D⊥
t (i) := D⊥

t (wi).
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Remark 1. We call this the local Hessian because it equals the negative Hessian of the landscape of the map

ξt(wi) → Ut(ξt(wi)) := U(ξt(wi); ρ
MF
t ), where U = δL

δρ is the first-variation of the loss, so that V = ∇U ,

and ξt(wi) is restricted to the manifold S
d−1. Thus if the local landscape Ut(ξt(wi)) is convex on S

d−1, then

D⊥
t (i) is negative semi-definite.

The part of the dynamics driven by the other ∆t(j) is described by what we term the interaction Hessian,

the (rescaled) derivative of a particle’s velocity with respect to the other particles’ position.

Definition 3 (Interaction Hessian). Define the interaction Hessian H⊥
t : Sd−1 × S

d−1 → R
d×d by

H⊥
t (w,w′) :=

(

I − ξt(w)ξt(w)
⊤
)

∇ξt(w′)∇ξt(w)k(ξt(w), ξt(w
′))
(

I − ξt(w
′)ξt(w

′)⊤
)

,

We will also use the abbreviated notation H⊥
t (i, j) := H⊥

t (wi, wj).

Fact 4. For any w,w′, H⊥
t (w,w′) is a positive semi-definite kernel.

Proof. By definition of kD in Equation 2.1, one can check that H⊥
t (w,w′) = Exϕx(w)ϕx(w

′)⊤, where we

define the feature map ϕx(w) := (I − ξt(w)ξt(w)
⊤)σ′(ξt(w)⊤x)x

We make the following basic regularity assumptions on the activation function and the data.

Assumption Regularity (Regularity Assumptions).

R1 For a constant Creg, the activation σ satisfies that for j = 0, 1, 2, 3 and any subGaussian variable X ,

we have EX |σ(j)(X)|5 ≤ (Creg/11)
5, where σ(j) denotes the jth derivative of σ.

R2 The distribution Dx on the covariates is Creg-subGaussian, and the noise has covariance at most 1,

that is Ey∼D|x(y − f∗(x))2 ≤ 1.

We introduce the control parameters

ϵm :=
d3/2 log(mT )√

m
, ϵn :=

√
d log2(n)√

n
.

We will show in Lemma 19 that with high probability, the error ∥ν(ξt(wi), ρ
MF
t ) − ν(ξt(wi), ρ̄

m
t )∥ due to

sampling only m neurons is uniformly (over i and t) bounded by ϵm. Similarly, we will show in Lemma 23

that the error ∥νD̂(ξ̂t(wi), ρ̂
m
t )− ν(ξ̂t(wi), ρ̂

m
t )∥ due to using the empirical data distribution D is uniformly

bounded by ϵn.

Lemma 5 (Parameter-Space Error Dynamics). Suppose Assumption Regularity holds. With high probability,

for all t ≤ T and i ∈ [m],

d

dt
∆t(i) = D⊥

t (i)∆t(i)− Ej∼[m]H
⊥
t (i, j)∆t(j) + ϵt,i,

where ∥ϵt,i∥ ≤ 2ϵm + ϵn + 2Creg

(

∥∆t(i)∥2 + Ej∥∆t(j)∥2
)

.

We prove Lemma 5 by decomposing d
dt∆t(i)=ν(ξt(wi), ρ

MF
t )−ν(ξ̂t(wi), ρ̂

m
t ) into four differences (see

Figure 1), and separating the first order terms (in ∆t) from higher order terms in these differences.
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ν(ξt(wi), ρ
MF
t ) ν(ξt(wi), ρ̄

m
t ) ν(ξt(wi), ρ̂

m
t ) ν(ξ̂t(wi), ρ̂

m
t ) νD̂(ξ̂t(wi), ρ̂

m
t )

≤ ϵm ≈ 1√
m −EjH

⊥
t (i, j)∆t(j) D⊥

t (i)∆t(i) ≤ ϵn ≈ 1√
n

Figure 1: Decomposing d
dt
∆t(i) = ν(ξt(wi), ρ

MF
t ) − ν

D̂
(ξ̂t(wi), ρ̂

m
t ). The approximate differences between the

terms in the rectangles are given above the arrows.

An integral form for ∆t(i). Duhamel’s principle gives us a way to solve the ODE in Lemma 5 using the

solution to a simpler dynamics which only involves the local Hessian.

Definition 6 (Local Stability Matrix). Define J⊥
t,s(w) to be the matrix that solves

d
dtJ

⊥
t,s(w) = D⊥

t (w)J
⊥
t,s(w); J⊥

s,s(w) = (I − ξs(w)ξs(w)
⊤).

We call this the local stability matrix, because J⊥
t,s(w) = Jξt,s(ξs(w)), where ξt,s(u) denotes the position of

a neuron at time t which evolves in the mean field dynamics starting at position u at time s, and J denotes

the Jacobian. We use the shorthand Jt,s(i) := Jt,s(wi).

On the same assumptions as Lemma 5, Duhamel’s principle yields

∆t(i) =

∫ t

0
J⊥
t,s(i)

(

−EjH
⊥
s (i, j)∆s(j) + ϵs,i

)

ds. (2.2)

3 Main Result: Propagation of Chaos

3.1 Intuition and Key Challenges

To bound E(ρ̂mt , ρMF
t ), it suffices to analyze the dynamics of ∆t given by the ODE in Lemma 5:

d
dt∆t(i) = D⊥

t (i)∆t(i)− Ej∼[m]H
⊥
t (i, j)∆t(j) + ϵt,i ∥ϵt,i∥ ≤ ϵ. (3.1)

One might hope to leverage the linearity of (3.1) to solve this ODE in closed form, but unfortunately, the

time-dependent coefficient matrix, diag(D⊥
t )−H⊥

t , does not commute at different times t.

Going Beyond Grönwall. The conventional approach (see e.g., [MMN18, MMM19]), uses the maximum

Lipschitzness of ν(w, ρ) – in our spherical case, this translates to a bound on supi,j,t ∥D⊥
t ∥, ∥H⊥

t (i, j)∥ –

to bound the RHS of (3.1) as

d

dt
∥∆t(i)∥ ≤ 2Lipmax sup

j∈[m]
∥∆t(j)∥+ ϵ. (3.2)

In standard settings, this maximum Lipschitzness is a constant, so this method can achieve no better than the

bound W1(ρ
m
t , ρ̄

m
t ) ≤ exp(Θ(t))ϵ. The work of [MZD+23] goes further to bound (3.2) using a tight time-

dependent Lipschitz constant, yielding propagation of chaos for log(d) time. However, for problems with

polynomial-in-d time to converge, such as learning a SIM with a high information exponent, the approach in

(3.2) is overly pessimistic, because both the local Lipschitzness at neuron i, and the ∥∆t(j)∥ are extremely

non-uniform in i and j (See Figure 2).

Equation (2.2) gives us an alternative way to approach (3.1) which can leverage the non-uniform Lips-

chitzness. Ignoring for a moment the interaction terms in Equation (2.2), we have ∥∆t(i)∥ ≈
∫ t
0 J

⊥
t,s(i)ϵs,ids,
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3.2 Theorem Statement

We will now present an informal version of our assumptions and propagation of chaos result. Due to the

technicality of some of the assumptions, we defer some full statements to Section 5. Define

Bτ := {w ∈ S
d−1 : ∃w∗ ∈ supp(ρ∗) : ∥w∗ − w∥ ≤ τ}.

The following key assumption gives average and worst-case bounds on some of the stability parameters of

the MF dynamics.

Assumption Stability (Worst-Case and Average Stability). Suppose that we have

Jmax := sup
s≤t≤T,w∈Sd−1

(

∥J⊥
t,s(w)∥,Ew∼ρ0∥J⊥

t,s(w)∥2
)

≤ poly(d, T ).

Further suppose that for all τ > 0, and given a target horizon T > 0,

Javg(τ) := sup
s≤t≤T,w′,v∈Sd−1

Ew∼ρ0∥J⊥
t,s(w)H

⊥
s (w,w′)v∥1(ξt(w) /∈ Bτ ) ≤

poly(1/τ)

T
.

Next, we will state our local strong convexity assumption. We remark that such an assumption can only

hold when ρ∗ is atomic (see Remark 2, and additional comments in Section 5.4).

Assumption LSC (abbv) (Local Strong Convexity (Abbreviated; see Assumption LSC)). We have (CLSC, τ)
locally strongly convex up to time T , meaning that for any t ≤ T , for any w with ξt(w) ∈ Bτ , we have

D⊥
t (w) ⪯ −CLSCP

⊥
ξt(w)∥fρMF

t
− f∗∥.

Both Stability and LSC (abbv) assumptions are verifiable via solving the deterministic mean-field dy-

namics ρMF
t . For technical reasons, our result requires two additional conditions. First, our theorem depends

on the rank of the interaction Hessian as ρMF
t → ρ∗ being a constant independent of the ambient dimension

d. This rank can be bounded by the following parameter, which will appear in our main theorem:

Cρ∗ := min
(

|supp(ρ∗)|, dim(supp(ρ∗))2 degree(σ)+1
)

. (3.3)

Here degree(σ) is the degree of the polynomial σ (or ∞ if σ is not a polynomial). We do not expect such

an assumption to be critical; see Section 5.7.

Second, we require a technical symmetry condition stated in Assumption Symmetry (in Section 5).

Loosely, this requires that the atomic set supp(ρ∗) is transitive with respect to the group of rotational sym-

metries that describe the problem. We remark that such an assumption still covers many non-trivial prob-

lems, for instance, learning two teacher neurons in non-orthogonal positions, many neurons in orthogonal

positions, or a ring of evenly spaced neurons in a circle. See Section 5.6 for further discussion.

We are now ready to state the main theorem.

Theorem 1 (Propagation of Chaos). Assume that Regularity, Stability, LSC and Symmetry hold up to time

T (if relevant). Let C be a constant depending on Creg, CLSC, τ, Cρ∗ , and δT := ∥fρMF
T

− f∗∥. Suppose n, m

are large enough such that J4
maxT

3(ϵn + ϵm) ≤ 1/C. Then with high probability over the draw ρm0 , for all

t ≤ T ,

∥fρMF
t

− fρ̂mt ∥
2 ≤ OCreg

(Ei∥∆t(i)∥)2 +
log(m)

m
≤ (CJmaxt(ϵm + ϵn))

2.

where ϵm = log(mT )max(d1/2Jmax,d3/2)√
m

and ϵn =
√
d log2(n)√

n
.
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Theorem 1 follows directly from Lemma 1 and Corollary 44 in Section D. In Theorem 2, we will apply

this theorem to the example of learning a single-index function with high information exponent which takes

T = poly(d) time to learn.

Remark 2 (Local Strong Convexity). Our local strong convexity is similar to assumptions appearing in

prior mean-field analyses [Chi22b, Assumption A5][CRBVE20, Lemma D.9]. In comparison to these works,

our assumption is stronger in that we require it for all t, not just as t → ∞; this is necessary for our

non-asymptotic analysis. However, our assumption is also weaker in that we allow the strong convexity

parameter to depend on the loss, similarly to the notion of one-point strong convexity (see e.g., [SYS21]).

Attaining the stronger non-loss-dependent strong convexity requires a strongly convex regularization term.

In problems where the mean-field dynamics converge to ρ∗, our local strong convexity condition enforces

that when a neuronwt is close a teacher neuronw∗ ∈ supp(ρ∗), it will be attracted tow∗ and thus any small

perturbations are dampened. Local strong convexity can only hold when ρ∗ is atomic. Similar properties

have been shown for various sparse optimization problem over measures [FDGW21, PKP23].

3.3 Application to Single-index Model with High Information Exponent

We now study the setting of learning a well-specified single-index function f∗(x) = σ(x⊤w∗), where

w∗ ∈ S
d−1, and σ(z) =

∑K
k=k∗ ckHek(z), where (a) k∗ ≥ 4, and 1

CSIM
≤ ck∗ ≤ CSIM maxk ck, (b) σ

is an even function2. We restrict to the case when k∗ > 2 because because the escape time for k∗ = 2 is

logarithmic in d, and thus can be handled via Gronwall’s inequality; see Remark 3 for further comments.

We assume the initial distribution ρ0 of the neurons is uniform on S
d−1, and the data is drawn i.i.d from the

distribution D, which has Gaussian covariates, and subGaussian label noise: that is,

x ∼ N (0, Id), y = f∗(x) + ζ(x); E[ζ(x)] = 0, E[ζ(x)2] ≤ 1.

Theorem 2 (PoC in Single-Index Model). Fix any δ > 0, and suppose d is large enough in terms of δ,

CSIM and K. Let T (δ) := argmin{t : ∥fρMF
t

− f∗∥2 ≤ δ2}. Then T (δ) = OK,CSIM
(
√
d
k∗−2

δ−(k∗−1)). If

n ≥ d11k
∗

and m ≥ d13k
∗

, then with high probability, for all t ≤ T (δ),

∥fρMF
t

− fρ̂mt ∥
2 ≤ OK,δ(d

3k∗)

min(
√
m,

√
n)

≤ 3δ2 .

Remark. The above theorem provides, to the best of our knowledge, the first polynomial-width learning

guarantee for one-hidden-layer neural network in the mean-field regime that holds for polynomial-in-d
time horizon. When degree(σ) ≫ k∗, our result demonstrates the statistical advantage of the mean-field

parameterization over the lazy/NTK alternative; specifically, under the NTK parameterization, when the

width m is sufficiently large, the sample complexity of gradient descent training on the empirical risk must

scales as n ≳ dΘ(degree(σ)) [GMMM21], whereas the mean-field scaling only requires n ≳ dΘ(k∗) samples.

4 Overview of Proof Ideas

4.1 Potential-Based Analysis to Prove Theorem 1

We introduce a potential function of ∆t which dominates W1(ρ̂
m
t , ρ̄

m
t ). Building upon the observations

from Section 3.1, we design this potential function to have the following three properties:

P1 When many neurons are near the teacher neurons, the dynamics due to the interaction hessian H⊥
t

should cause the potential to decrease.

2If σ is not even, the loss may not go to zero, since 1/2 of the neurons may be stuck on the side of the equator with w⊤w∗ < 0.
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P2 When a neuron wi is in a locally convex region (D⊥
t (i) ⪯ 0), the dynamics due to the local Hessian

at wi should decrease the potential.

P3 The change in potential due to a perturbation of ∆ should be bounded proportionally to the average

change over the ∆i.

A natural choice of potential function would be Ei∥∆t(i)∥2 (which upper bounds W2(ρ̂
m
t , ρ̄

m
t )) because

when ρMF
t ≈ ρ∗, Dt(i) are negative definite so

d

dt
Ei∥∆t(i)∥2 ≈ −∆⊤

t H
⊥
t ∆t − 2Ei∆t(i)

⊤Dt(i)∆t(i) ≤ 0.

However, such a function does not satisfy P3 whenever there is a lot of variance among the ∥∆t(i)∥.

To achieve P3, intuitively, the potential should behave more likeW1(ρ̂
m
t , ρ̄

m
t ) thanW2(ρ̂

m
t , ρ̄

m
t ), making

Ei∥∆t(i)∥ another natural choice. Unfortunately, this alone does not work as potential function, because

even when all neurons have converged to the support of ρ∗, it may increase under the dynamics from

the interaction Hessian3. As an example, consider the case where ρ∗ = δw∗ , and thus near convergence,

H⊥
t ≈ 11

⊤ ⊗ P⊥
w∗ , where 1 ∈ {Sd−1 → R} sends all inputs to 1; then if ∆t is very “imbalanced” (in the

sense thatH⊥
t ∆t = Ei∆t(i) is large), we may have d

dtEi∥∆t(i)∥ > 0. For instance suppose ∆t(i) = u for a

p fraction of the neurons, and ∆t(i) = 0 for the remaining neurons. Then d
dtEi∥∆t(i)∥ = −p+(1−p) > 0

for p < 0.5. To counteract the increase in Ei∥∆t(i)∥, we need to include in the potential function a

term which decreases whenever ∆t is very imbalanced, yet it retains a flavor of an ℓ1 norm. In order

to tame the interactions, such a term should naturally take into account the eigendecomposition of H⊥
t .

To construct such a potential function, we will instead consider the eigendecomposition of the map H⊥
∞

(defined explicitly in Defintion 7), which closely approximates H⊥
t on neurons in Bτ and avoids tracking

the temporal evolution of the eigendecomposition. This ultimately lets us leverage the PSD structure ofH⊥
t .

Definition 7. Define

H⊥
∞(w,w′) = P⊥

ξ∞(w)∇ξ∞(w′)∇ξ∞(w)K(ξ∞(w), ξ∞(w′))P⊥
ξ∞(w′),

where ξ∞(w) := argminw∗∈supp(ρ∗) ∥ξT (w)− w∗∥ and we break ties in the argmin arbitrarily.

Let Z := L2(Sd−1, ρ0;R
d) be the Hilbert space with the dot product ⟨f, g⟩Z := Ew∼ρ0f(w)

⊤g(w). De-

fine the action of H : (Sd−1)⊗2 → R
d×d on Z as v 7→ Hv(w) := Ew′∼ρ0H(w,w′)v(w′). In Section D.2.2,

we verify that H⊥∞ is well defined, self-adjoint, and due to the atomic nature of ρ∗, the span of H⊥∞ is has

some finite dimension J . Therefore, H⊥∞ admits a spectral decomposition in Z in terms of an orthonormal

basis {φj}j≤J :

H⊥∞ =
∑

j≤J

λjφj ⊗ φj , λj ∈ R , φj ∈ Z , (4.1)

such that ∥H⊥∞∥∗ :=
∑

j |λj | < ∞. Note that one can have multiplicities in this spectral decomposition.

For that purpose, denote by Λ = {λj ; j ≤ J} the support of the spectrum. For each λ ∈ Λ, we denote by

Vλ the subspace spanned by {φj ;λj = λ}, and let Pλ be the orthogonal projector onto that space.

Definition 8 (Balanced Spectral Decomposition of H⊥
∞ (BSD )). We say that the spectral decomposition

(4.1) is Cb-balanced if, for all λ ∈ Λ, there exists an orthonormal basis Bλ of Vλ, and some ηλ > 0 such

that for allw ∈ S
d−1,

∑

v∈Bλ
v(w)v(w)⊤ ⪯ η2λId , and

∑

λ∈Λ η
2
λ ≤ Cb. We denote by Q := {(Bλ, ηλ)}λ∈Λ

the resulting set of eigenfunctions and constants.

3Using W1(ρ̂
m
t , ρ̄mt ) alone (instead of Ei∥∆t(i)∥) fails for the same reason.
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Now, for any v ∈ Z and ∆ ∈ (Rd)⊗m, we define ϕv(∆) := |Eiv(wi)
⊤∆(i)|, and

ΨQ(∆) :=
∑

λ∈Λ
ηλ

(

∑

v∈Bλ
ϕv(∆)2

)1/2
,

Finally, our potential function is

ΦQ(∆) := Ω(∆) + ΨQ(∆),

with Ω(∆) = Ei∥∆(i)∥. When the context is clear, we will write ΦQ(t) = ΦQ(∆t).
When the context is clear, we will write ΦQ(t) = ΦQ(∆t).

Lemma 9 (Balanced Spectral Decomposition). Suppose Assumption Symmetry holds. Then there exists an

spectral distribution Q which is Cρ∗ = min
(

|supp(ρ∗)|, dim(supp(ρ∗))degree(σ)
)

-balanced.

The next three lemmas show that the potential function ΦQ has the desired properties P1-P3.

Lemma 10 (Descent with Respect to Interaction Term). Let ΦQ(t) be as defined above, where Q is a Cb-

balanced spectral decomposition ofH⊥
∞. Then for any τ > 0 for which the concentration event of Lemma 21

holds for S = Bτ , we have

⟨∇ΦQ(t),−H⊥
t ∆t⟩ ≤ (1 + Cb)Ei∥EjH

⊥
t (i, j)∆t(j)∥1(ξt(wi) /∈ Bτ ) + E10,

where E10 = C10(Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + (τ + Cbϵ
21
m )Ω(t)) for some C10 = OCreg,Cb

(1).

Lemma 11 (Descent with Respect to Local Term). Suppose Assumption LSC holds with (CLSC, τ). Let Q
be a Cb-balanced spectral distribution. Then with C11 = OCreg,Cb

(1), we have

⟨∇ΦQ(t), D
⊥
t ⊙∆t⟩ ≤ −

(

c
√

LD(ρMF
t )

2 − C11τ
)

ΦQ(t) + C11Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + CbEi∥∆t(i)∥2.

Lemma 12 (L1 Perturbation Lemma). Let Q be a Cb-balanced spectral distribution. Let G : [m] → R
d.

Then |⟨∇ΦQ(t), G⟩| ≤ (1 + Cb)Ei∥G(i)∥.

Combining the three key properties of the potential function, along with Assumption Stability allows us

to bound the dynamics of the potential function in the following way (formalized in Theorem 3):

d

dt
ΦQ(t) ≤ −CLSC

√

L(ρMF
t )

C
ΦQ(t) + CJavg

∫ t

s=0
ΦQ(s)ds+ CJmax(ϵm + ϵn), (4.2)

where C = OCρ∗ ,Creg(1). Theorem 1 follows by analyzing this differential equation. We leverage Assump-

tion Stability to prove (4.2), by bounding the term Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) which arises from Lemmas 10

and 11.

4.2 Self-Concordance Argument to Bound Jmax

To avoid exponential growth in J⊥
t,s, we make the following observation.

Observation 13. When the velocity ν(w, ρMF
t ) of a particle w is small, so is ∥D⊥

t ∥.
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To make this observation more concrete, consider the simplified case of learning a single-index function

f∗(x) = σ(x⊤w∗) with Gaussian data, where σ(z) = Hek(z). We expect a similar property may hold

in other low-dimensional feature-learning problems, where the local non-convexity arises only in a low-

dimensional subspace. For a neuron wt, when αt := w⊤
t w

∗ is small (and assume for simplicity that αt is

positive), we have that

ν(αt) :=
d

dt
αt ≈ αk−1

t , thus
d

dα
ν(αt) ≈ (k − 1)αk−2

t ≈ k − 1

αt
ν(αt) .

By showing that ∥D⊥
t ∥ is dominated by d

dαν(αt), we get the desired “self-concordance” property:

∥D⊥
t ∥ =

∥

∥∇wtν(wt, ρ
MF
t )
∥

∥ ⪅
(k − 1)

αt
ν(αt).

Recalling the differential equation of J⊥
t,s , we have just shown that d

dt∥J⊥
t,s∥ ≤ (k−1)

αt
ν(αt)∥J⊥

t,s∥. Note

that trivially, αt satisfies the differential equation d
dtαt =

1
αt
V (αt)αt. Comparing the two differential equa-

tions above, we see that ∥J⊥
t,s∥ ≤

(

|αt|
|αs|

)k−1
. We have almost shown that ∥J⊥

t,s∥ is polynomially bounded in

d and t. Indeed, for a typical neuron, |α0| is on the order of 1√
d

, and |αt| ≤ 1, so ∥J⊥
t,s∥ ≤ O(

√
d
k−1

). To

make the argument work for neurons with small αs, observe that since d
dt |αt| ≤ O(|(αt)

k−1|), if k ≥ 34,

we must have that if t− s ≤ O
(

1
(αs)k−2

)

, then αt ≤ 2αs. Thus, either αt ≤ 2αs, or 1
(αs)k−2 ≤ O(t− s). It

follows that for all neurons, ∥J⊥
t,s∥ ≤ O

(

(t− s)
k−1
k−2

)

.

4.3 Averaging Argument to Bound Javg

Recall that in order to use our approach to achieve a propagation of chaos for polynomially sized networks,

for any w′, v ∈ S
d−1 and τ , we must have

sup
s,t≤T,w′,v∈Sd−1

Ew∼ρ0∥J⊥
t,s(w)H

⊥
s (w,w′)v∥1(ξt(w) /∈ Bτ ) ≤ Oτ

(

1

T

)

,

where T is the desired training time. We briefly give some intuition for why this holds in the single-index

model f∗(x) = Hek(x
⊤w∗), which requires T = Θ(d(k−2)/2). To tightly bound Javg(τ), we leverage the

fact that neurons far from ±w∗ are dispersed. By averaging over the “level set” of neurons with αs(w) = α
(where αt(w) := |w∗⊤ξt(w)|) we have

sup
w′,v∈Sd−1

Ew:|αs(w)|=α∥H⊥
s (w,w′)v∥ ≤ max

(

d−1/2, α
)k−1

.

Plugging this in for t ≤ T , along with the bound ∥J⊥
t,s∥ ≤

(

|αt|
|αs|

)k−1
from above, yields

Javg(τ) ≤ Ew

( |αt(w)|
|αs(w)|

)k−1

max
(√

d
−1
, αs(w)

)k−1
1(|αt(w)| ≤ 1− τ)

⪅ Ew|αt(w)|k−1
1(|αt(w)| ≤ 1− τ),

Bounding this final term results from the observation the particles escape the saddle at roughly uniform time

in the interval [0, T ] (see Figure 2(right) and Proposition 51).

4∥J⊥
t,s∥ can also be uniformly bounded when k = 2; this requires showing that | d

dt
αt| ≤

√

LρMF
t

≤ 1
1+max(0,t−Θ(log(d)))
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5 Full Statement of Assumptions and Discussion

In this section, we explore whether propagation of chaos may hold more generally than beyond our setting

and conditions. We provide several remarks on the necessity of our assumptions, both in the context of our

proof approach, and based on empirical simulations, which are given in full in Section 6.

5.1 Omitted Assumptions

We begin by stating the full versions of the assumptions which were omitted in Section 3. We then briefly

discuss the definition of propagation of chaos and several related phenomena in Section 5.2. Finally, in

Sections 5.3-5.7, we provide remarks on the assumptions.

Let V = span(supp(ρ∗)) and let U be the space orthogonal to V in R
d. Let

Cρ∗ := min
(

|supp(ρ∗)|, dim(V )2 degree(σ)+1
)

.

Assumption LSC (Local Strong Convexity (Full Version of Assumption LSC (abbv))). The problem is

(CLSC, τ) locally strongly convex up to time T if for any t ≤ T and any w with ξt(w) ∈ Bτ , we have

D⊥
t (w) ⪯ −CLSCP

⊥
ξt(w)∥fρMF

t
− f∗∥ .

Further, the strong convexity is structured, if there exist values c1t , c
2
t ≥ CLSC such that for any w with

ξt(w) ∈ Bτ , we have

∥c1tV V ⊤P⊥
ξ∞(w)V V

⊤ + c2tUU
⊤ −D⊥

t (w)∥ ≤
(

CLSC∥fρMF
t

− f∗∥
2
√

Cρ∗
+ Cregτ

)

.

Assumption Symmetry (Symmetries of ρ∗). The automorphism group G of a problem (ρ∗, ρ0,Dx) is the

group of rotations g on S
d−1 where for any A ⊂ S

d−1:

Pρ∗ [A] = Pρ∗ [g(A)] PD[A] = PDx [g(A)] Pρ0 [A] = Pρ0 [g(A)]

We assume:

I1 supp(ρ∗) is transitive under G, that is, for any w∗, w∗′ ∈ supp(ρ∗), there exists g ∈ G such that

g(w∗) = w∗′. Further, Pw∼ρ0 [{∥w − w∗∥ = ∥w − w∗′∥∃w∗, w∗′ ∈ supp(ρ∗)}] = 0.

I2 Let V = span(supp(ρ∗)) and let U be the space orthogonal to V in R
d. Then the distribution Dx on

covariates x factorizes over U and V , that is Dx = DU ⊗ DV , where DU is a distribution on V and

DU is a distribution on U . Further, ExU∼DU
x = 0, and ExU∼DU

xx⊤ = UU⊤.

5.2 Measuring Propagation of Chaos

A standard definition5 of propagation of chaos (PoC) (see [Szn91, Prop. 2.2]) is that for all t, we have the

convergence in law of the random distribution ρ̂mt to the constant distribution ρMF
t :

lim
m→∞

ρ̂mt → ρMF
t . (5.1)

Equivalently, for any two continuous test functions ψ1, ψ2, we have that

lim
m→∞

Ew1,w2∼ρ̂mt
ψ1(w1)ψ2(w2) =

(

Ew∼ρMF
t
ψ1(w)

)(

Ew∼ρMF
t
ψ2(w)

)

. (5.2)

5Stronger notions of uniform convergence over t are also available; see [CD22, Section 3.4].

15



Of primary interest in our paper is a weaker PoC phenomenon, which we will henceforth refer to as PoC in

function error: almost surely with respect to the draw of ρ̂m0 ,

lim
m→∞

∥fρ̂mt − fρMF
t
∥2 → 0.

It is easy to check that PoC in function error is implied by (5.2) by using test functions of the form ψx(w) :=
σ(w⊤x). PoC in function error implies convergence of the risk of ρ̂mt to the risk of ρMF

t , and thus is the

most practically relevant (see e.g. [SNW22]). On the other hand, our proof considers a much stronger PoC

phenomenon. Our potential-function based proof yields almost surely over the initialization

lim
m→∞

Ω(∆t) := Ei∥∆t(i)∥2 = 0.

Here the m is implicit in ∆t. This is a much stronger notion than (5.1) (it implies limm→∞W1(ρ̂
m
t , ρ

MF
t ) =

0), and we will refer to it as PoC via fixed parameter-coupling.

Remarkably in our neural network setting (though not necessarily for general interacting particle sys-

tems), up to the parameter Jmax and a time horizon t, PoC in function error for all s ≤ t implies PoC via

fixed parameter-coupling. Indeed, by (2.2), we have that

∥∆t(i)∥ ≤
∫ t

0
∥J⊥

t,s(i)∥
(

∥EjH
⊥
s (i, j)∆s(j)∥+ ∥ϵs,i∥

)

ds

= O

(

Jmax

∫ t

0

(

√

∆⊤
s H

⊥
s ∆s + Ej∥∆s(j)∥2 + ∥∆s(i)∥2 + ϵm + ϵn

)

ds

)

= O

(

Jmax

∫ t

0

(

∥fρ̂ms − fρMF
s
∥+ Ej∥∆s(j)∥2 + ∥∆s(i)∥2 + ϵm + ϵn

)

ds

)

. (5.3)

Here the last equation follows from the following lemma proved using a Taylor expansion of fρ̂mt .

Lemma 14. Suppose Assumption Regularity holds. For any t, we have

∆⊤
t H

⊥
t ∆t ≤ 2∥fρMF

t
− fρ̂mt ∥

2 +
log(m)

m
+OCreg

(

Ei∥∆t(i)∥2
)2
.

Solving Eq. (5.3) yields that for m such that ∥fρ̂ms − fρMF
s
∥+ ϵm + ϵn ≪ 1

(tJmax)2
for all s ≤ t,

Ei∥∆t(i)∥ = O

(

Jmaxtmax
s≤t

(

∥fρ̂ms − fρMF
s
∥+ ϵm + ϵn

)

)

. (5.4)

Indeed, one can show this by inductively bounding the second order terms from time 0 to t.
All of the above PoC phenomena can be quantified non-asymptotically, and the main question of this

paper is whether for certain problems the above quantities (or their differences) decay at a rate
poly(t,d)
poly(m) ,

uniformly over all d > 0 and all t ∈ [0, T (d)]. Here T (d) is a desired stopping time, e.g., when some fixed

population loss ϵ is achieved.

5.3 Spherical Constraint and Second Layer Weights

When the weights of the neural network are not constrained to the sphere, propagation of chaos may fail even

in simple well-specified settings: to see this, consider the case of learning a SIM with information exponent

k > 2 using a neural network with homogeneous activation function. With polynomial width, we expect

the standard T ≈ d(k−2)/2 convergence time. Whereas at the infinite-width limit, we may learn the target

function by amplifying neurons that already attain large alignment at initialization due to homogeneity.
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In particular, we can achieve T = d(k−2)/k convergence time by leveraging neurons with initial alignment

greater than d−1/k — to see this, observe there is roughly exp(−d(k−2)/k) fraction of neurons in the network

with such initial overlap, and thus we need to grow these neurons to a scale of exp(d(k−2)/k), which takes

d(k−2)/k time. A similar phenomenon occurs if we train the second-layer weights in the network and allow

them to be unbounded. Note, however, that there is nothing precluding our results from holding if the (fixed)

second layer is initialized differently.

5.4 Local Strong Convexity (Assumption LSC)

We focus here on the main part captured in Assumption LSC (abbv). See also the previous Remark 2. The

additional structured condition in Assumption LSC is discussed with the symmetry conditions.

Local strong convexity plays a key part in how we bound the potential ΦQ(t) via the differential equation

in (4.2). Indeed, plugging in the bound Javg ≤ 1/T yields:

d

dt
ΦQ(t) ≤ −CLSC

√

L(ρMF
t )

C
ΦQ(t) +

C

T

∫ t

s=0
ΦQ(s)ds+ CJmax(ϵm + ϵn).

If CLSC goes to 0, then the best bound on this differential equation becomes

ΦQ(t) ⪅ CJmax(ϵm + ϵn) exp

(

t
√

C
T

)

,

which would require that m be super-polynomially large in T in order to bound ΦQ(T ).
As discussed in Remark 2, local strong convexity can only hold in problems where ρ∗ is atomic. Thus

it cannot capture example when ρ∗ is distributed on a manifold, or for “misspecified” problems where the

target link function differs from the network activation, e.g., f∗(x) = ϕ(x⊤w∗) for ϕ ̸= σ. These examples

are particularly interesting because training with the correlation loss is insufficient. In our 1- or 2-index

non-atomic experiments, however, we still observed propagation of chaos for the values of m we simulated

(see e.g., the Misspecified and Circle problems depicted in Figures 4, 7).

In non-atomic examples, it is unreasonable to hope that Ei∥∆t(i)∥ will remain bounded for all t; thus

addressing this case would require proving either a bound on the Wasserstein-1 distance, W1(ρ̂
m
t , ρ̄

m
t ), or a

bound on the function error ∥fρ̂mt − fρMF
t
∥2 ≈ ∆⊤

t H
⊥
t ∆t.

5.5 Stability Conditions (Assumption Stability)

To achieve propagation of chaos with polynomially many neurons, we believe it is necessary in standard

settings that sups,t≤T ∥Jt,s(w)∥ is polynomially bounded with high probability over w. This is only a

slightly weaker condition than the current Jmax assumption. Getting around such an assumption would

require strong directional control over the ϵt,i, which we do not expect to be possible.

The necessity of the strong assumption on Javg, however, is mysterious to us. The neuron-to-neuron

error-propagation described in section 3.1 seems hard to prevent without a similar assumption. Even if we

leverage the fact that the interaction term is PSD (and thus creates a repulsion between the neurons), there

could be oscillatory exponential growth of the ∆t(i)’s. Nevertheless, in our simulations, we were not able

to find an example where violating the Javg assumption precluded propagation of chaos; see for example the

Staircase problem depicted in Figure 9.

Remark 3 (Order-1 Saddles /Information Exponent 2). The standard Gronwall-inequality approach can

yield propagation of chaos with poly(d) neurons for information exponent (IE) 2 problems, which require

log(d) time to converge. For this reason, our work does not focus on the IE 2 case, though we believe
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our techniques could be useful for proving propagation of chaos for longer (poly(d)) time horizons in IE 2

problems. Certain modifications are needed, however.

Indeed, the reader may notice that the assumption on Javg fails in simple cases with IE 2. This occurs

because the neurons all escape the saddle at roughly the same time (in contrast to the non-uniform escape

times for higher IE shown in Figure 2(c)). Thus there exists some time t (roughly this escape time) where

the expression in Assumption Stability is of order 1. We believe overcoming this obstacle should be possible

by working with a t-dependent version of Javg, which is small on average over t. Further, for longer time

horizons, a more careful analysis is required to show that Jmax ≤ poly(d, t). For SIMs, we believe this can

be accomplished by showing that ∥Dt(w)∥ decays with the square root of the loss L(ρMF
t ), which decays like

1/t2. This would yield the bound ∥Js,t(w)∥ ≤ exp
(

∫ t
r=s ∥Dr(w)∥dr

)

≈ exp(Θ(log(t− s))) = poly(t).

5.6 Symmetry Conditions

The structured condition in Assumption LSC. The structured condition Assumption LSC is used in

proving Lemma 11, which shows that the potential decreases due to the local strong convexity near the

teacher neurons. We believe its necessity is an artifact of how we designed the potential function.

In general, the structured condition holds for all 2-index problems with Gaussian data, because at

ξ∞(w) ∈ span(V ), (a) the projection of D⊥
t (w) onto the U -space will be a multiple of UU⊤, and (b) the

projection of D⊥
t (w) onto the V -space will be one-dimensional, and thus a multiple of V V ⊤P⊥

ξ∞(w)V V
⊤.

Using a continuity argument between ξ∞(w) and ξt(w) yields the condition for all ξt(w) ∈ Bτ . Beyond

2-index problems, we are not aware of exactly when this condition holds, though we expect it does not hold

for many non-symmetric problems.

Symmetry Assumption (Assumption Symmetry). The transitivity condition (I1 in Assumption Symme-

try) plays an important role in our proof. Namely, Lemma 28 (see also Definition 24) uses transitivity to

guarantee that the eigenfunctions of the interaction matrix at convergence time, are also eigenfunctions of

the interaction submatrix of neurons that have converged at time t (for any t!). This “restricted isometry”

property allows us to define our potential function independently of the time t. We expect that without

restricted isometry, one would have to design a potential function which depends on the time t.
The transitive condition in I1 holds for various non-trivial teacher-student problems, for example: learn-

ing k orthogonal teacher neurons for any k, learning any two non-orthogonal teacher neurons, or learning a

ring of equally spaced teacher neurons on a circle. In the latter two examples, training with the correlation

loss may fail (for instance, for two non-orthogonal neurons with a small angle between them, correlation

loss may converge to the linear combination of teacher neurons); to our knowledge, gradient training of

many of these “simple” symmetric examples is still not understood. Note also that the second part of I1

holds when ρ0 has bounded Radon-Nikodym derivative with respect to the Lebesgue measure on the sphere,

or when ρMF
t → ρ∗. Both imply 0 mass on the boundary points.

In all the non-symmetric examples we simulated, the lack of symmetry does not pose an obstacle to

propagation of chaos; see for example the XOR4, Staircase, Misspecified, problems in Figures 4, 5, 9.

5.7 Dependence on Cρ∗

The value Cρ∗ is bounded whenever ρ∗ is atomic with constant number of neurons, or when ρ∗ is in a

finite-dimensional subspace, and σ is polynomial. This includes all polynomial multi-index functions.

The value Cρ∗ , defined in (3.3), functions as an upper bound on the rank of the interaction-kernel

k(w,w′) = Exσ
′(x⊤w)σ′(x⊤w′) over points in w,w′ ∈ supp(ρ∗). Having a constant upper bound on

the rank of this kernel is useful in constructing a balanced spectral decomposition of H⊥
∞, which (loosely)
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ensures that near convergence time, small L1-bounded changes in ∆t cannot propagate (via the force of the

interaction kernel) to large changes, measured in L1. While it may be possible, we have not been able to find

any simple ways to prevent L1-growth in ∆t near convergence time without this constant-rank assumption.

In Section 6, we simulate several examples in which Cρ∗ grows polynomially in d. The presence of various

PoC phenomena did not seem to be correlated with the size of Cρ∗ — observe that the Misspecified example

(Figure 4), which has Cρ∗ that grows polynomially in d, demonstrated PoC for relatively small widths.

6 Experiments

We conduct simulations both to validate our theory in settings which we expect satisfy our assumptions, and

to examine what happens when these assumptions fail to hold. Table 1 in Appendix F describes all of the

settings we simulated, and documents which assumptions we believe they satisfy. We remark that we did

not preferentially chose these examples because we expected (or observed) propagation of chaos: we in fact

ran these simulations with the goal of finding a multi-index function in which propagation of chaos fails,

and have so far been unsuccessful.

6.1 Experiment Setting

Since we could not simulate an infinite-width network, we measured certain proxies for the distance between

ρ̂mt and ρMF
t by comparing a neural network of width m to a neural network of width M , for M ≫ m. The

full experimental design is described in Section F.1. In brief, we initialize the smaller width-m network

to be a subset of the neurons in the larger width-M network; in this way, we can track for all i ∈ [m] the

coupling differences ∆̂t(i) (a proxy for ∆t(i)
6) throughout training. In our plots, we estimate the following

quantities from data throughout the training dynamics: (a) the prediction risk or generalization error, (b)
the function error m · ∥fρ̂mt − fρMF

t
∥2, and (c) the fixed parameter-coupling error m · Ei∥∆̂t(i)∥. In our full

plots in the appendix, we also include several histograms of ∥∆̂t(i)∥. We plot the above values for a range

of widths m, and examine the decay rate in m.

In Figures 3,4,5 we consider (i) the well-specified Gaussian single-index setting with He4 activation

function, which satisfies all our assumptions in Section 5, (ii) a misspecified single-index setting where we

do not expect ρ∗ to be atomic (see e.g., [MZD+23]), and (iii) the multi-index setting of 4-parity function

similar to that studied in [Gla23, Tel23, SWON23].

6.2 Takeaways from Simulations

We describe some of our takeaways from the experiments below. More figures can be found in Appendix F.

PoC in function error. In all examples we simulated, we observed that for m large enough, the func-

tion error ∥fρ̂mt − fρMF
t
∥2 decayed at least linearly with the width m – this is evident in Figures 3,4,5(b).

Surprisingly, in all examples the function error decayed nearly monotonically in time.

PoC via fixed parameter-coupling. Similarly to the function error, we observed that the parameter-

coupling error
(

Ei∥∆̂t(i)∥
)2

decayed at at 1/m rate – this is evident in Figure 3,4,5(c). However, unlike the

function error, the growth of this error appeared to be linear in t, which is consistent with the upper bound

on parameter-coupling error in terms function error given in (5.4). We note that our experiments show that

6Triangle inequality yields that ∥∆̂t(i)∥ ≤ 2∥∆t(i)∥, though the converse is not necessarily true.
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coupling PoC rate is some g(d, t)/m, then for all of experiments, g(d, t) ≤ t for the value of d and range

of t we simulated. Thus, we conjecture that in all these problems there is PoC in function error and in fixed

parameter-coupling error at a rate at most poly(d, t)/m.

7 Conclusion

We studied propagation of chaos in the context of gradient-based training of shallow neural networks. By

leveraging several key geometric assumptions of the optimization landscape, we established non-asymptotic

guarantees of finite-width dynamics with polynomial dependency in all relevant parameters. At the heart

of our technical contributions is a tailored potential function that balances the intricate interactions that

arise between particle fluctuations around their idealized mean-field evolution. In essence, our assumptions

exploit a form of self-concordance in the instantaneous potentials, as well as symmetries in the minimizing

mean-field measure. While these assumptions rule out generic interaction particle systems, they crucially

capture several problems of interest, such as planted models including single-index target functions. An

enticing future direction is remove the local strong convexity assumptions to extend to the case when ρ∗ is a

manifold; among other settings, this captures the learning a misspecified SIM. Another interesting direction

is to go beyond the Monte Carlo scale of fluctuations, which has been established asymptotically under

certain conditions [CRBVE20, PN21].
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A Additional Related Works

Mean-field analysis of shallow neural networks. The mean-field analysis views the training of two-layer

neural network (1.1) as an interacting particle system, and studies the evolution of the distribution of particles

via the mean-field PDE [NS17, CB18, MMN18, RVE18, SS20]. While most optimization guarantees for

mean-field neural networks are qualitative in nature, quantitative convergence rate can also be established

under additional structural assumptions on the learning problem [JMM19, Chi22c, CRBVE20, CVEB22] or

modification of the training dynamics [RJBVE19, WLLM19, NWS22, Chi22a].

Recent works have studied the statistical efficiency of mean-field neural networks in learning low-

dimensional target functions including multi-index models and k-parity. These existing analyses can be di-

vided into two approaches: (i) simplify the mean-field PDE using the symmetry and low-dimensional struc-

ture, and study the dimensional-free dynamics [HC23, ASKL23] at short timescale T = Õd(1) [AAM22,

MZD+23, JMS24]; (ii) directly characterize the converged solution using global optimality conditions

[WLLM19, Tel23, SWON23, MHWE24]. While the latter approach establishes a much larger learnable

function class (e.g., see [Bac17]), the computational complexity is exponential in the (intrinsic) dimension-

ality of the problem.

Gradient-based learning of single/multi-index models. Outside of the mean-field regime, feature learn-

ing in neural networks has also been studied in a “narrow-width” setting, where neurons evolve (almost) in-

dependently and align with the low-dimensional target function during gradient-based training. Prior analy-

ses in this regime mostly considered target functions that depends on k = Od(1) directions of the input, such

as single-index models [BAGJ21, BES+22, BBSS22, MHPG+23, DNGL23, DTA+24, LOSW24, ADK+24]

and multi-index models [DLS22, AAM22, AAM23, DKL+23, BBPV23, CWPPS23, Gla23, AGP24]. For

the “rank-extensive” setting k ≫ 1, recent works have investigated the additive setting where the target

function is a sum of k orthogonal single-index models [LMZ20, OSSW24, RL24, SBH24].

B Proofs of Lemmas from Basic Setup

B.1 Notations

Throughout this section, we will use the following notation, which builds upon the notation in our setup

from the main body. 7

f(w) := Ex∼Dxf
∗(x)σ(w⊤x)

f′(w) := (I − ww⊤)∇wf(w)

and

k(w,w′) := Ex∼Dxσ(w
′⊤x)σ(w⊤x)

k′(w,w′) := (I − ww⊤)∇wk(w,w
′).

In additional the interaction Hessian H⊥
t introduced in the introduction, we also define a versions without

the orthogonal projection, that is:

Ht(w,w
′) := k′(ξt(w), ξt(w

′))

H⊥
t (w,w′) = Ht(w,w

′)(I − ξt(w
′)ξt(w

′))

7To emphasize the relationship with f and k, we deviate from our standard notation convention here in using the lower-case

letters f′ and k′ to denote vector-valued functions.
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We also define the empirical local Hessian D̄t (closely related to D⊥
t ), where the expectation is taken over

ρ̄mt instead of ρMF
t :

D̄t(w) := ∇ξt(w)ν(ξt(w), ρ̄
m
t ) = ∇ξt(w)f

′(ξt(w))− Ew′∼ρ̄mt
∇ξt(w)k

′(ξt(w), w
′).

D⊥
t (w) = ∇ξt(w)ν(ξt(w), ρ

MF
t ) = ∇ξt(w)f

′(ξt(w))− Ew′∼ρMF
t
∇ξt(w)k

′(ξt(w), w
′).

B.2 Proof of Lemma 5

We being with a basic lemma which uses the regularity of σ to bound the smoothness of various problem

parameters.

Lemma 15. Assume Assumption R1 holds for the constant Creg. Then the following holds for any w and w′

with norm at most 1.

S1 ∥∇wk
′(w,w′)∥ ≤ Creg and ∥∇wf

′(w)∥ ≤ Creg

S2
∥

∥∇2
w′k

′(w,w′)
∥

∥ ≤ Creg

S3
∥

∥∇2
wk

′(w,w′)
∥

∥ ≤ Creg

S4 ∥∇w′∇wk
′(w,w′)∥ ≤ Creg

S5
∥

∥∇2
wf

′(w)
∥

∥

op
≤ Creg

S6 For any distribution ρ ∈ ∆(Sd−1), we have
∥

∥∇2
wν(w, ρ)

∥

∥

op
≤ Creg

Proof. [Proof of Lemma 15] These are straightforward to check from the definitions. First note that the

operator norm of the first and second derivatives of I − ww⊤ is at most 2. Thus for any vector-valued

function ξ(w), by chain rule, we have

∥

∥

∥
∇w(I − ww⊤)ξ(w)

∥

∥

∥
≤ ∥∇wξ(w)∥+ 2∥ξ(w)∥ ,

∥

∥

∥∇2
w(I − ww⊤)ξ(w)

∥

∥

∥ ≤ 3
∥

∥∇2
wξ(w)

∥

∥+ 8∥∇wξ(w)∥.

So to prove the lemma, it suffices to bound (over all w,w′ ∈ S
d−1):

∥∇wf(w)∥,
∥

∥∇2
wf(w)

∥

∥,
∥

∥∇3
wf(w)

∥

∥ ≤ Creg/11,

and

∥

∥∇wk(w,w
′)
∥

∥,
∥

∥∇2
wk(w,w

′)
∥

∥,
∥

∥∇3
wk(w,w

′)
∥

∥,
∥

∥∇w∇w′∇wk(w,w
′)
∥

∥,
∥

∥∇2
w∇w′∇wk(w,w

′)
∥

∥ ≤ Creg/11 .

As an example, for S2, we have

∥

∥∇2
w′k

′(w,w′)
∥

∥

op
≤ sup

v2,v2,v3∈Sd−1

Exσ(w
⊤x)σ′′′(w′⊤x)v⊤1 (I − ww⊤)x(v⊤2 x)(v

⊤
3 x)

≤ sup
z,z′∈Bd

2

(

Ex|σ(z⊤x)|5
)1/5(

Ex|σ′′′(z′⊤x)|5
)1/5

sup
v∈Sd−1

(

Ex|(v⊤x)|5
)3/5

≤ Creg/11,
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where here the second inequality holds by Holder’s inequality, and the final inequality by Assumption R1.

For S3, the argument is the same as the previous one, except we use the product rule to account for the

derivatives of (I − ww⊤), which have operator norm at most 1.

For the rest of the terms involving derivatives — up to third order — ofK, the argument is near identical,

following from Holder’s inequality and Assumption R1. Thus each of these terms above are bounded by

Creg/11.

For the terms involving F , as an example, let’s expand the third order term. We have

∥

∥∇3
wf(w)

∥

∥ ≤ sup
v1,v2,v3∈Sd−1

Ex|σ(3)(w⊤x)(v⊤1 x)(v
⊤
2 x)(v

⊤
3 x)f

∗(x)|

≤ sup
z,z′∈Bd

2

(

Ex|σ(3)(z⊤x)|5
)1/5

sup
v∈Sd−1

(

Ex|(v⊤x)|5
)3/5

(

Ex(f
∗(x))5

)1/5

≤ Creg/11.

It follows that all the terms in the lemma are bounded by Creg.

We also prove Lemma 1 and Lemma 14 here, which we restate for the reader’s convenience.

Lemma 16. Suppose Assumption Regularity holds. With high probability over the draw ρm0 , we have

∥fρMF
t

− fρ̂mt ∥
2 ≤ OCreg

(Ei∥∆t(i)∥)2 +
log(m)

m
.

Lemma 17. Suppose Assumption Regularity holds. For any t, we have

∆⊤
t H

⊥
t ∆t ≤ 2∥fρMF

t
− fρ̂mt ∥

2 +
log(m)

m
+OCreg

(

Ei∥∆t(i)∥2
)2
.

Proof. [Proof of Lemma 1 and Lemma 14]

First we decompose

Ex(fρMF
t
(x)− fρ̂mt (x))

2 ≤ 2Ex(fρMF
t
(x)− fρ̄mt (x))

2 + 2Ex(fρ̄mt (x)− fρ̂mt (x))
2.

Now we can expand

Ex(fρ̄mt (x)− fρ̂mt (x))
2

= Ex

(

Eiσ(ξt(wi)
⊤x)− σ((ξt(wi)−∆t(i))

⊤x)
)2

= Ex

(

Eiσ
′(ξt(wi)

⊤x)x⊤∆t(i) +

∫ 1

s=0

∫ s

s′=0
(σ′′((ξt(wi)− s′∆t(i)

⊤x)(x⊤∆t(i))
2ds′ds

)2

.

Letting ζ(i, x) :=
∫ 1
s=0

∫ s
s′=0 σ

′′(ξt(wi)− s′∆t(i)
⊤x)ds′ds, we have

Ex(fρ̄mt (x)− fρ̂mt (x))
2 ≤ 2Ex

(

Eiσ
′(ξt(wi)

⊤x)x⊤∆t(i)
)2

+ 2Ex

(

Ei(x
⊤∆t(i))

2ζ(i, x)
)2
, (B.1)

and likewise,

Ex

(

Eiσ
′(ξt(wi)

⊤x)x⊤∆t(i)
)2

≤ 2Ex(fρ̄mt (x)− fρ̂mt (x))
2 + 2Ex

(

Ei(x
⊤∆t(i))

2ζ(i, x)
)2
. (B.2)
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Let us bound the second term. We have

Ex

(

Ei(x
⊤∆t(i))

2ζ(i, x)
)2

= EiEjEx(x
⊤∆t(i))

2ζ(i, x)(x⊤∆t(j))
2ζ(j, x)

≤ EiEj

(

Ex((x
⊤∆t(i))

2)4
)1/4

(

Ex(ζ(i, x))
4
)1/4

(

Ex((x
⊤∆t(j))

2)4
)1/4

(

Ex(ζ(j, x))
4
)1/4

=

(

Ei

(

Ex((x
⊤∆t(i))

2)4
)1/4

(

Ex(ζ(i, x))
4
)1/4

)2

≤
(

Ei

(

Ex((x
⊤∆t(i))

8
)1/4

)2(

max
i

(

Ex(ζ(i, x))
4
)1/4

)2

≤ OCreg

(

Ei∥∆t(i)∥2
)2
(

max
i

(

Ex(ζ(i, x))
4
)1/4

)2

Here the final line follows by the Creg-subgaussianity assumption on x in R2.

Now since for any s′ ∈ [0, 1], we have that ∥ξt(wi)+s
′∆t(i)∥ ≤ 1 (as it interpolates between two points

on the sphere), we have by Assumption Regularity that

Ex(ζ(i, x))
4 ≤ (Creg/11)

4.

Defining

ζs(i, x) =

∫ s

r=0
σ′′((ξt(wi) + r∆t(i)

⊤x)dr,

and thus since ∥ξt(wi) + r∆t(i)∥ ≤ 1 (as it interpolates between two points on the sphere), we have by

Assumption Regularity that

Ex(ζs(i, x))
4 ≤ (Creg/11)

4,

and thus

Ex

(

Ei(x
⊤∆t(i))

2ζ(i, x)
)2

≤ OCreg

(

Ei∥∆t(i)∥2
)2
.

Returning to Equations (B.1) and (B.2), and observing that Ex

(

Eiσ
′(ξt(wi)

⊤x)x⊤∆t(i)
)2 −∆⊤

t H
⊥
t ∆t ≤

Creg

(

Ei∥∆t(i)∥2
)2

(to account for the projections orthogonal to ξt(wi) in H⊥
t ; we omit the details), we

have that

Ex(fρ̄mt (x)− fρ̂mt (x))
2 ≤ 2∆⊤

t H
⊥
t ∆t +OCreg

(

Ei∥∆t(i)∥2
)2

≤ OCreg(Ei∥∆t(i)∥)2,

and

∆⊤
t H

⊥
t ∆t ≤ 2Ex(fρ̄mt (x)− fρ̂mt (x))

2 +OCreg

(

Ei∥∆t(i)∥2
)2
. (B.3)

It follows that

Ex(fρ̄mt (x)− fρ̂mt (x))
2 ≤ OCreg(Ei∥∆t(i)∥)2.
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We will use Chebychev’s inequality to bound the first term Ex(fρMF
t
(x)− fρ̂mt (x))

2. We have

Eρ̂m0 ∼ρ⊗m
0

(

Ex(fρMF
t
(x)− fρ̄mt (x))

2
)2

≤ Eρ̂m0 ∼ρ⊗m
0

Ex(fρMF
t
(x)− fρ̄mt (x))

4

= ExEρ̂m0 ∼ρ⊗m
0

(fρMF
t
(x)− fρ̄mt (x))

4

≤ Ex
1

m3
Ew∼ρMF

t
(σ(w⊤x))4 +

O(m2)

m4

(

Ew∼ρMF
t
(σ(w⊤x))2

)2

≤ OCreg

(

1

m2

)

,

where in the final inequality we used Assumption R1. By Chebychev, we have

Pρ̂m0 ∼ρ⊗m
0

[

Ex(fρMF
t
(x)− fρ̄mt (x))

2 ≥ log(m)

2m

]

≤ o(1).

We thus conclude that with high probability,

Ex(fρMF
t
(x)− fρ̂mt (x))

2 ≤ OCreg(Ei∥∆t(i)∥)2 +
log(m)

m
,

which yields Lemma 1.

For Lemma 14, we have by (B.3) that

∆⊤
t H

⊥
t ∆t ≤ 2Ex(fρ̄mt (x)− fρ̂mt (x))

2 +OCreg

(

Ei∥∆t(i)∥2
)2

≤ 2Ex(fρMF
t
(x)− fρ̂mt (x))

2 +
log(m)

m
+OCreg

(

Ei∥∆t(i)∥2
)2
.

Finally, we prove Lemma 5, which we restate here.

Lemma 18 (Parameter-Space Error Dynamics). Suppose Assumption Regularity holds. With high probabil-

ity, for all t ≤ T and i ∈ [m],

d

dt
∆t(i) = D⊥

t (i)∆t(i)− Ej∼[m]H
⊥
t (i, j)∆t(j) + ϵt,i,

where ∥ϵt,i∥ ≤ 2ϵm + ϵn + 2Creg

(

∥∆t(i)∥2 + Ej∥∆t(j)∥2
)

.

Proof. [Proof of Lemma 5] We first decompose d
dt∆t(i) into four terms:

d

dt
∆t(i) = ν(ξt(wi), ρ

MF
t )− νD̂(ξ̂t(wi), ρ̂

m
t )

=
(

ν(ξt(wi), ρ
MF
t )− ν(ξt(wi), ρ̄

m
t )
)

+ (ν(ξt(wi), ρ̄
m
t )− ν(ξt(wi), ρ̂

m
t ))

+
(

ν(ξt(wi), ρ̂
m
t )− ν(ξ̂t(wi), ρ̂

m
t )
)

+
(

ν(ξ̂t(wi), ρ̂
m
t )− νD̂(ξ̂t(wi), ρ̂

m
t )
)

.

By Lemma 19 and Lemma 23, we can bound the first and fourth terms respectively with high probability:

∥ν(ξt(wi), ρ
MF
t )− ν(ξt(wi), ρ̄

m
t )∥2 ≤ ϵm. (B.4)

∥ν(ξ̂t(wi), ρ̂
m
t )− νD̂(ξ̂t(wi), ρ̂

m
t )∥ ≤ ϵn.
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For the second term, we have

ν(ξt(wi), ρ̄
m
t )− ν(ξt(wi), ρ̂

m
t ) = −f′(ξt(wi)) + Ew′∼ρ̄mt

k′(ξt(wi), w
′)

+ f′(ξt(wi))− Ew′∼ρ̂mt
k′(ξt(wi), w

′)

= −Ej

(

k′(ξt(wi), ξt(wj))− k′(ξt(wi), ξt(wj) + ∆t(j))
)

= Ej∼[m](Ht(i, j)∆t(j) + vj),

where ∥vj∥ ≤ Creg∥∆t(j)∥2. Indeed we can plug Lemma 15 S2 into the Lagrange error bound

∥k′(w,w′)− k′(w,w′ +∆)−∇w′k′(w,w′)∆∥ ≤ ∥∆∥2 sup
w′:∥w′∥≤1

∥

∥∇2
w′k

′(w,w′)
∥

∥.

Now note that for any j, since both ξt(wj) and w
(j)
t are on S

d−1, we have that

|⟨ξt(wj)∆t(j)⟩| =
1

2
∥∆t(j)∥2, (B.5)

and so by S1,

Ht(i, j)∆t(j) = H⊥
t (i, j)∆t(j) + v

′
j

where ∥v′
j∥2 ≤ 1

2Creg∥∆t(j)∥2 Summarizing, we have that

ν(ξt(wi), ρ̄
m
t )− ν(ξt(wi), ρ̂

m
t ) = Ej∼[m]

(

H⊥
t (i, j)∆t(j) +

3

2
vj

)

. (B.6)

Finally for the third term, we have

ν(ξt(wi), ρ̂
m
t )− ν(ξ̂t(wi), ρ̂

m
t ) = −∇wν(w, ρ̂

m
t )|w=ξt(wi)∆t(i) + v,

where by S6,

∥v∥ ≤ ∥∆t(i)∥2
∥

∥∇2
wν(w, ρ̂

m
t )
∥

∥

op
≤ Creg∥∆t(i)∥2

Recall that we have defined

D̄t(w) := ∇ξt(w)ν(ξt(w), ρ̄
m
t ) = ∇ξt(w)f

′(ξt(w))− Ew′∼ρ̄mt
∇ξt(w)k

′(ξt(w), w
′).

Now

∇ξt(wi)ν(ξt(wi), ρ̂
m
t ) = ∇ξt(wi)f

′(ξt(wi))− Ej∇ξt(wi)k
′(ξt(wi), ξ̂t(wj))

= ∇ξt(wi)f
′(ξt(wi))− Ej∇ξt(wi)(k

′(ξt(wi), ξt(wj)) +Mj)

= D̄t(i)− EjMj .

where by S4,

∥Mj∥op ≤ ∥∆t(j)∥ sup
w,w′

∥

∥∇w∇w′k′(w,w′)
∥

∥

op
≤ Creg∥∆t(j)∥.

Thus, additionally using the fact that we have conditioned on the fact that ∥Dt(i) − D̄t(i)∥ ≤ ϵm — and

thus ∥D⊥
t (i)− D̄⊥

t (i)∥ ≤ ϵm — and again using (B.5) and S1 to swap Dt(i)∆t(i) for D⊥
t (i)∆t(i) with an

error term of magnitude 0.5Creg∥∆t(i)∥2, we have that

ν(ξt(wi), ρ̂
m
t )− ν(ξ̂t(wi), ρ̂

m
t ) = D⊥

t (i)∆t(i) + v3, (B.7)
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where ∥v3∥ ≤ Creg(1.5∥∆t(i)∥2 + ∥∆t(i)∥Ej∥∆t(j)∥) + ϵm∥∆t(i)∥.
Putting together Equations (B.4), (B.6), and (B.7), we have

d

dt
∆t(i) = D⊥

t (i)∆t(i)− Ej∼[m],j ̸=iH
⊥
t (i, j)∆t(j) + ϵ,

where

∥ϵ∥ ≤ ϵn + ϵm(1 + ∥∆t(i)∥) + Creg

(

1.5∥∆t(i)∥2 + ∥∆t(i)∥Ej∥∆t(j)∥+ 1.5Ej∥∆j∥2
)

≤ ϵn + ϵm(1 + ∥∆t(i)∥) + 2Creg

(

∥∆t(i)∥2 + Ej∥∆j∥2
)

.

C Proof of Concentration Lemmas

Lemma 19 (Uniformly Bounded Sampling Error). With probability 1− o(1) over the initialization, for all

t ≤ T and i ∈ [m], the following holds with ϵm = d3/2 log(Tm)√
m

.

∥ν(ξt(wi), ρ
MF
t )− ν(ξt(wi), ρ̄

m
t )∥ ≤ ϵm.

∥Dt(i)− D̄t(i)∥ ≤ ϵm.

Proof. [Proof of Lemma 19] Fix t ≤ T and w ∈ S
d−1 By Equation (2.1), we have that

ν(w, ρMF
t )− ν(w, ρ̄mt ) := (I − ww⊤)

(

Ew′∼ρMF
t
∇wK(w,w′)− Ew′∼ρ̄mt

∇wK(w,w′)
)

Now

Ew0∼ρ0t
Ew′∼ρMF

t
∇wK(w,w′) = Ew′∼ρMF

t
Ew′∼ρMF

t
∇wK(w,w′),

and by Assumption R1, for any w′, w ∈ S
d−1, ∥∇wK(w,w′)∥∞ ≤ Creg. So by Hoeffding’s inequality,

taking a union bound over all d coordinates in the random vector, we have

P

[

∥ν(w, ρMF
t )− ν(w, ρ̄mt )∥ ≥ ϵm

2

]

≤ 2d exp

(

−Ω(mϵ2m)

4dC2
reg

)

Now we need to take a union bound over all w ∈ S
d−1, and t ≤ T . Create an net over Sd−1 of maximum

distance ϵm
4Creg

between any point and the net: this has size O

(

(

4Creg

ϵm

)d
)

. Similarly make a net over [0, T ]

of spacing ϵm
4Creg

; this has size
4CregT
ϵm

. By a union bound, with probability at least

1− 2d exp

(

−Ω(mϵ2m)

4dC2
reg

)

O

(

(

4Creg

ϵm

)d
)

4CregT

ϵm
,

for any w in the net and any t in the net, we have

∥ν(w, ρMF
t )− ν(w, ρ̄mt )∥ ≤ ϵm

3Creg

.
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For any w, u ∈ S
d−1, for any ρ, by Lemma 15, we have

ν(w, ρ)− ν(u, ρ) ≤ Creg∥w − u∥.

Similarly, by Lemma 15, for any s, t ≤ T , and any w0, we have

∥ξt(w0)− ξs(w0)∥ ≤ Creg|t− s|.

Thus, for any w ∈ S
d−1 and t ≤ T , there exist u and s in the respective nets of distance at most ϵm

3Creg
. By

a standard triangle inequality argument, we attain that with the probability in Equation C, for all w ∈ S
d−1

and t ≤ T , we have

∥ν(w, ρMF
t )− ν(w, ρ̄mt )∥ ≤ ϵm.

One can check that since ϵm ≥ d log(mT )√
m

, this probability is 1− o(1).

The argument for proving concentration for D̄t(w) uniformly over w and t is identical. The only change

is that since D̄t(w) is a d × d matrix, we need to take a union bound over d2 indices in this matrix, so we

require that ϵm ≥ d3/2 log(mT )√
m

.

Lemma 20 (Concentration of Jt,s). With high probability over the random choice of ρ̄m0 , for all s ≤ t ≤ T ,

all vectors v ∈ S
d−1, and all j ∈ [m], we have

∣

∣

∣Ei∥Jt,s(i)H⊥
s (i, j)v∥1(ξt(wi) ∈ S)− Ew∼ρ0∥Jt,s(w)H⊥

s (w, w̄0(j))v∥1(ξt(w) ∈ S)
∣

∣

∣ ≤ ϵm,

for ϵm =
√
dJmax log(mT )√

m
.

Proof. [Proof of Lemma 20] Fix w′, v ∈ S
d−1 and s ≤ t ≤ T . Let

X(w) := ∥Jt,s(w)H⊥
s (w,w′)v∥1(ξt(w) ∈ S).

To prove the desired bound for j we must bound
∣

∣Ew∼ρ̂m0
X(w)− Ew∼ρ0X(w)

∣

∣ with high probability for

w′ = w̄0(j).
By Lemma 15, we have |X(w)| ≤ CregJmax. By Hoeffding’s inequality, we have

P

[

∣

∣Ew∼ρ̂m0
X(w)− Ew∼ρ0X(w)

∣

∣ ≥ ϵm
2

]

≤ 2 exp

(

Ω(mϵ2m)

4C2
regJ

2
max

)

.

Now we need to build an ϵ-net of scale ϵm
6Creg

over s, t ∈ [0, T ], w′ ∈ S
d−1, and v ∈ S

d−1. The product of

the size of these nets is

(

6TCreg

ϵm

)2

O

(

(

6Creg

ϵm

)2d
)

Checking Lipschitzness of the various quantities as per the proof of Lemma 19, and then using a union

bound gives the desired result with high probability whenever ϵm ≥
√
dJmax log(mT )√

m
.
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Lemma 21. Fix a set S ⊆ S
d−1, any function v : Sd−1 → Bd

2 . With probability 1−o(1/d) over the random

choice of ρ̂m0 , for any w ∈ S
d−1, with ϵ21m = d log(md)√

m
we have

∥Ew′∼ρ0H
⊥
∞(w,w′)v(w′)1(ξt(w

′) ∈ S)− Ew′∼ρ̂m0
H⊥

∞(w,w′)v(w′)1(ξt(w
′) ∈ S)∥ ≤ ∥v∥∞ϵ21m

∣

∣Pw′∼ρ0 [ξt(w
′) ∈ S]− Pw′∼ρ̂m0

[ξt(w
′) ∈ S]

∣

∣ ≤ ϵ21m .

Proof. The second statement is immediate by a Chernoff bound. For the first statement, the proof is similar

to the other concentration lemmas. Fix w. Let

X(w′) := H⊥
∞(w,w′)v(w′)1(ξt(w

′) ∈ S)

Since ∥H⊥
∞(w,w′)∥ ⪯ CregI for all w,w′, we have the following bound:

By Hoeffding’s inequality (unioning over all coordinates of X(w′)), we have

P

[

∥

∥Ew∼ρ̂m0
X(w′)− Ew∼ρ0X(w′)

∥

∥ ≥ ϵ21m
2

]

≤ 2 exp

(

Ω(mϵ21m
2
)

4C2
regd

)

.

We need to build an ϵ-net of scale
ϵ21m
4Creg

over w ∈ S
d−1 since by Lemma 15, X(w) is Creg-Lipschitz in

w. This net has size

(

(

O(Creg)
ϵm

)d
)

. Thus with ϵ21m = d log(m)√
m

, we have that with high probability, for all

w ∈ S
d−1, the desired quantity is uniformly bounded.

Lemma 22 (Averaging Lemma). Suppose Q is Cb-balanced, and the high probability event in Lemma 20

holds for S = Bτ . If Assumption Stability holds, then for any s ≤ t,

Ei∥Jt,s(i)ms(i)∥1(ξt(wi) /∈ Bτ ) ≤ (1 + Cb)
(

ϵ20m + Javg(τ)
)

ΦQ(s).

In particular,

Ei∥mt(i)∥1(ξt(wi) /∈ Bτ ) ≤ (1 + Cb)
(

ϵ20m + Javg(τ)
)

ΦQ(t).

Proof. Recall that

mt(i) = EjH
⊥
t (i, j)∆t(j).

Thus

∥Jt,s(i)ms(i)∥ ≤ Ej∥Jt,s(i)H⊥
s (i, j)∆s(j)∥.

Now for any vector v ∈ R
d, by Lemma 20 and Assumption Stability, we have that

Ei∥Jt,s(i)H⊥
s (i, j)v∥ ≤ ϵ20m∥v∥+ Javg(τ)∥v∥,

and so

Ei∥Jt,s(i)ms(i)∥1(ξt(wi) /∈ Bτ ) ≤
(

ϵ20m + Javg(τ)
)

Ei∥∆s(i)∥ ≤
(

ϵ20m + Javg(τ)
)

ΦQ(s).

The second line of the lemma holds by plugging in s = t. This concludes the lemma.
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Lemma 23. Suppose the empirical data distribution D̂ =
∑n

i=1 δ(xi,yi) satisfies Assumption R2. Then with

high probability over the draw of D̂, we have uniformly over all w ∈ S
d−1, and all ρ ∈ ∆(Sd−1), we have

∥νD̂(w, ρ)− ν(w, ρ)∥ ≤ ϵn,

for ϵn =
√
d log2(n)√

n
.

Proof. The velocity is linear in ρ, so it suffices to prove that (additionally) uniformly over w′, we have

∥νD̂(w, δw′)− ν(w, δw′)∥ ≤ ϵn.

We expand

νD̂(w, δw′) = (I − ww⊤)Ex∼D̂(y − σ(w′⊤x))σ′(w⊤x)x;

it suffices to prove that with high probability, uniformly over w′ ∈ S
d−1, and v ∈ S

d−1, we have
∣

∣

∣Ex∼D̂σ(w
′⊤x)σ′(w⊤x)x⊤v − Ex∼Dσ(w

′⊤x)σ′(w⊤x)x⊤v
∣

∣

∣ ≤ ϵn
∣

∣

∣
Ex∼D̂yσ

′(w⊤x)x⊤v − Ex∼Dyσ
′(w⊤x)x⊤v

∣

∣

∣
≤ ϵn

For a fixed w,w′, v, since by Assumption R1, all the terms in side the expectations are Creg-subgaussian,

this holds with probability exp(−nϵ2n/2C2
reg). We now take three epsilon-nets over Sd−1 (for w, w′ and v

respectively) at the scale ϵn
6Creg

. Note that Lemma 15 implies these quantities are Creg-Lipschitz with regard

to w, w′ or v. Since the epsilon nets have size
(

O
(

Creg

ϵn

))d
, with ϵn =

√
d log2(n)√

n
, we see that

exp(−nϵ2n/2C2
reg)

(

O

(

Creg

ϵn

))3d

= o(1).

D Proof of Results Relating to Potential Function Analysis

D.1 Notations

For g, h : X → R
d, and a set S ⊆ S

d−1 we will denote the dot product and conditional dot products

⟨g, h⟩ = Ew∼ρ0g(w)
⊤h(w).

⟨g, h⟩S = Ew∼ρ0g(w)
⊤h(w)1(w ∈ S).

For a kernelH : (Sd−1)2 → R
d×d, and two sets S, T ⊆ S

d−1, for g, h : Sd−1 → R
d, we use the notation

⟨g, h⟩S,TH := Ew,w′∼ρ0g(w)
⊤H(w,w′)h(w′)1(w ∈ S,w′ ∈ T ).

If S = T or S = T = S
d−1, we will abbreviate and use the notation ⟨g, h⟩SH or ⟨g, h⟩H respectively. If

the functions g, h are only defined on [m] (or respectively on supp(ρ̂m0 )), then in all the inner products /

quadratic forms above, the default distribution should be taken to be Uniform([m]) (resp. ρ̂m0 ) instead of ρ0.

We will use ∇ΦQ(t) (resp. ∇Ω(t), ∇ϕv(t), ∇ΨQ(t).) to denote the map on [m] (resp. supp(ρ̂m0 ))
which takes i (or wi) to m∇∆t(i)Φ(t). We have rescaled these derivative so that this term is on order 1, so

we can take inner products in our notation more easily.

For a set B ⊆ S
d−1, we will use the shorthand Bt := ξ−1

t (B) to denote the set of all w ∈ S
d−1 with

ξt(w) ∈ B, and B̄ to denote the complement of B in S
d−1.
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D.2 Proof of Lemmas on the Properties of the Potential

D.2.1 Restricted Isometry and Related Group Theoretic Definitions and Lemmas

Definition 24. We say a problem (H,µ) has consistent restricted isometry (CRI ) with a set S if for any

eigenfunction v of (H,µ), (that is, where ⟨u, v⟩H = λv⟨u, v⟩ for all u : Sd−1 → R
d), we have that for all

w ∈ S
d−1, we have

Ew′∼µH(w,w′)v(w′)1(w′ ∈ S) = λvv(w)Pw′∼ρ0 [w
′ ∈ S].

In other words, for any u : Sd−1 → R
d,

⟨u, v⟩SH = λv⟨u, v⟩SPρ0 [S],

Definition 25. The automorphism group G of a problem (ρ∗, ρ0,Dx) is the set group of rotations g on S
d−1

where for any A ⊂ S
d−1:

Pρ∗ [A] = Pρ∗ [g(A)]

PD[A] = PDx [g(A)]

Pρ0 [A] = Pρ0 [g(A)]

We say that a problem (ρ∗,Dx, ρ0) is transitive if for any w∗, w∗′ ∈ supp(ρ∗), there exists some g in the

automorphism group G such that g(w∗) = w∗′.

Lemma 26. Suppose I1 holds. For any time t, for all g ∈ G in the automorphism group of (ρ∗, ρ0,Dx), we

have

A1 If ξt(w) ∈ A, then ξt(g(w)) ∈ g(A)

A2 Almost surely over w ∼ ρ0, ξ∞(w) = argminw∗∈supp(ρ∗) ∥w−w∗∥. So a.s., for allA ⊂ S
d−1, g ∈ G,

if ξ∞(w) ∈ A, then ξ∞(g(w)) ∈ g(A). Further, ξ∞# ρ0 = ρ∗.

A3 g(Bτ ) = Bτ .

Proof. We will prove the first item by induction. It suffices to prove the following claim, because if the

velocity is symmetric, then ρMF
t will be symmetric.

Claim 27. Conditional on A1 holding up to time t, we have

d

dt
ξt(w) = ν(w, ρMF

t ) = g−1(ν(g(w), ρMF
t ))

Proof.

ν(w, ρMF
t ) = −(I − ww⊤)∇wFD(w) + (I − ww⊤)∇wEw′∼ρMF

t
KD(w,w

′)

= −(I − ww⊤)Ex∼Dxf
∗(x)σ′(w⊤x)x+ (I − ww⊤)Ew′∼ρMF

t
Ex∼Dxσ(w

′⊤x)σ′(w⊤x)x
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Now

P⊥
w Ew′∼ρMF

t
Ex∼Dxσ(w

′⊤x)σ′(w⊤x)x

= P⊥
w Ew′∼ρMF

t
Ex∼Dxσ(g(w

′)⊤g(x))σ′(g(w)⊤g(x))x

= P⊥
w Ew′∼ρMF

t
Ex∼Dxσ(g(w

′)⊤x)σ′(g(w)⊤x)g−1(x)

= P⊥
w Ew′∼ρMF

t
Ex∼Dxσ(w

′⊤x)σ′(g(w)⊤x)g−1(x)

= (g−1(x)− ww⊤g−1(x))Ew′∼ρMF
t
Ex∼Dxσ(w

′⊤x)σ′(g(w)⊤x)

= (g−1(x)− wg(w)⊤x)Ew′∼ρMF
t
Ex∼Dxσ(w

′⊤x)σ′(g(w)⊤x)

= g−1(x− g(w)g(w)⊤x)Ew′∼ρMF
t
Ex∼Dxσ(w

′⊤x)σ′(g(w)⊤x)

= g−1
(

P⊥
g(w)∇g(w)Ew′∼ρMF

t
KD(g(w), w

′)
)

.

Here (1) is because z⊤y = z⊤U⊤Uy for any rotation U and any y, z ∈ R
d (2) is because Dx is invariant

with respect to G, (3) is because ρMF
t is invariant with respect to G (by induction), (5) again because of the

same reason as (1), and (4), (6) and (7) are simple algebraic operations. Similarly, we can show that

P⊥
w Ex∼Dxf

∗(x)σ′(w⊤x)x = Ex∼Dxf
∗(x)σ′(w⊤x)P⊥

w x

= Ex∼Dxf
∗(x)σ′(w⊤x)g−1(P⊥

g(w))g(x)

= Ex∼Dxf
∗(x)σ′(g(w)⊤g(x))g−1(P⊥

g(w)g(x))

= Ex∼DxEw∗∼ρ∗σ(w
∗⊤x)σ′(g(w)⊤g(x))g−1(P⊥

g(w)g(x))

= Ex∼DxEw∗∼ρ∗σ(w
∗⊤g−1(x))σ′(g(w)⊤x)g−1(P⊥

g(w)x)

= Ex∼DxEw∗∼ρ∗σ(g(w
∗)⊤x)σ′(g(w)⊤x)g−1(P⊥

g(w)x)

= Ex∼Dxf
∗(x)σ′(g(w)⊤x)g−1(P⊥

g(w)x)

= g−1
(

P⊥
g(w)FD(g(w))

)

.

Putting these two computations together yields the desired conclusion,

ν(w, ρMF
t ) = g−1(ν(g(w), ρMF

t )).

Next consider A2. Observe that if w is closest to some w∗, then it either is the case that ξt(w
∗) is always

closest to w∗, or at some point there is a tie in the distances ξt(w
∗) and ξt(w

∗′). By A1, such a tie would

imply however that ∥w − w∗∥ = ∥w − w∗′∥, which we have assumed in I1 is a measure 0 event. The rest

follows immediately from the transitivity of supp(ρ∗).
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Finally for A3,

g(Bτ ) = {g(w) : w ∈ Bτ}
= {g(w) : min

w∗∈supp(w∗)
∥w − w∗∥ ≤ τ}

= {g(w) : min
w∗∈supp(w∗)

∥g(w)− g(w∗)∥ ≤ τ}

= {g(w) : min
w∗∈supp(w∗)

∥g(w)− w∗∥ ≤ τ}

= {w : min
w∗∈supp(w∗)

∥w − w∗∥ ≤ τ}

= Bτ .

Lemma 28. Suppose (ρ∗,Dx, ρ0) is transitive. Then (H⊥
∞, ρ0) has consistent restricted isometry withBt

τ =
ξ−1
t (Bτ ) for any t ≤ T , τ ≥ 0.

Proof. We will use a series of small claims.

Claim 29. Fix any t and τ . Let ρ̃ be the distribution of ξ∞(w) with w ∼ ρ0 conditional on ξt(w) ∈ Bτ .

Then

ρ̃ ∼ ξ∞#ρ0.

Proof. We will show that both ρ̃ and ξ∞#ρ0 are uniform on the support of ρ∗. Fix w∗, w∗′ ∈ supp(ρ∗),
and let g ∈ G be the element in the automorphism group of (ρ∗, ρ0,Dx) which takes w∗ to w∗′. Now

ρ̃(w∗) = Pw∼ρ0 [ξ
∞(w) = w∗ ∧ ξt(w) ∈ Bτ ]

= Pw∼ρ0 [ξ
∞(g(w)) = g(w∗) ∧ ξt(g(w)) ∈ g(Bτ )]

= Pw∼ρ0 [ξ
∞(g(w)) = w∗′ ∧ ξt(g(w)) ∈ Bτ ]

= Pw∼ρ0 [ξ
∞(w) = w∗′ ∧ ξt(w) ∈ Bτ ]

= ρ̃(w∗′).

Here (1) is by definition, (2) is by A1, and A2, (3) is by choice of g and A3, and (4) is by the symmetry of

ρ0 with respect to G. It follows that ρ̃ is uniform on the support of ρ∗. Now lets check that ξ∞#ρ0 is also

uniform on supp(ρ∗). We have by similar use of A1 and A2 that

ξ∞#ρ0(w
∗) = Pw∼ρ0 [ξ

∞(w) = w∗ ∧ ∥ξ∞(w), w∗∥ ≤ ∥ξ∞(w), w̃∗∥∀w̃∗ ∈ supp(ρ∗)]

= Pw∼ρ0 [ξ
∞(g(w)) = g(w∗) ∧ ∥ξ∞(g(w)), g(w∗)∥ ≤ ∥ξ∞(g(w)), g(w̃∗)∥∀w̃∗ ∈ supp(ρ∗)]

= Pw∼ρ0 [ξ
∞(g(w)) = w∗′ ∧ ∥ξ∞(g(w)), w∗′∥ ≤ ∥ξ∞(g(w)), w̃∗∥∀w̃∗ ∈ supp(ρ∗)]

= Pw∼ρ0 [ξ
∞(w) = w∗′ ∧ ∥ξ∞(w), w∗′∥ ≤ ∥ξ∞(w), w̃∗∥∀w̃∗ ∈ supp(ρ∗)]

= ξ∞#ρ0(w
∗′).
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Claim 30. Let v be an eigenfunction of (H⊥
∞, ρ0), that is ⟨u, v⟩H⊥

∞
= λv⟨u, v⟩ for all u : Sd−1 → R

d. Then

v(w) = v′(ξ∞(w)) for some function v′ : supp(ρMF
∞ ) → S

d−1.

Proof. For all w, we have

λvv(w) = Ew′∼ρ0H
⊥
∞(w,w′)v(w′) = Ew′∼ρ0K

′(ξ∞(w), ξ∞(w′))v′(ξ∞(w′)).

This value only depends on w through ξ∞(w).
We will now use the previous two claims to show consistency. Fix t and τ , and let v be some eigenfunction

of (H⊥
∞, ρ0). Let v′ : supp(ρMF

∞ ) → S
d−1 be the function guaranteed by the previous claim with v(w) =

v′(ξ∞(w)). Then for all w,

Ew′∼ρ0H
⊥
∞(w,w′)v(w′)1(w′ ∈ ξ−1

t (Bτ ))

= Ew′∼ρ0H
⊥
∞(w,w′)v(w′)1(ξt(w

′) ∈ Bτ )

= Ew′∼ρ0K
′(ξ∞(w), ξ∞(w′))v′(ξ∞(w′))1(ξt(w

′) ∈ Bτ )

= Pρ0 [ξ
−1
t (Bτ )]Ew′∼ρ0K

′(ξ∞(w), ξ∞(w′))v′(ξ∞(w′))

= Pρ0 [ξ
−1
t (Bτ )]Ew∼ρ0H

⊥
∞(w,w′)v(w′)

= Pρ0 [ξ
−1
t (Bτ )]λvv(w),

as desired. Here the third equality follows from Claim 29.

D.2.2 Construction of the Potential

Remark 5. We can verify that the action H⊥∞ (from Section 4.1) is well-defined in Z since ∥H⊥∞v∥Z ≤
supw,w′ ∥H⊥

∞(w,w′)∥∥v∥Z ). We verify that H⊥∞ is self-adjoint in Z , ie ⟨v,H⊥∞v
′⟩Z = ⟨H⊥∞v, v

′⟩Z . We

also verify that the span of H⊥∞ is finite-dimensional, thanks to the atomic nature of ρ∗. Indeed, for each

w∗ ∈ supp(ρ∗) and l ∈ {1, d}, let χw∗,l ∈ Z be the indicator χw∗(w) = el1(ξ
∞(w) = w∗), where el is

the l-th canonical basis vector. We verify that if v ⊥ W := span(χw∗,l; w
∗ ∈ supp(ρ∗), l ∈ {1, d}), then

H⊥∞v = 0.

The following lemma implies Lemma 9. Recall that Cρ∗ = min
(

|supp(ρ∗)|, dim(ρ∗)2 degree(σ)+1
)

.

Lemma 31. Suppose Assumption I2 holds. Then for any µ, there exists an balanced spectral distribution Q
of (H⊥

∞, µ) which is
2Cρ∗

minw∗∈supp(ρ∗) Pξ∞
#

µ[w
∗] balanced. If I1 additionally holds, then there exists an balanced

spectral distribution Q of (H⊥
∞, ρ0) which is 2Cρ∗-balanced.

Proof. [Proof of Lemma 31 ] We will show that the linear operator induced by (H⊥
∞, µ) has an BSD Q

which is balanced for some constant depending on ρ∗.

Claim 32. We can write

H⊥
∞(w,w′) =M1(ξ

∞(w), ξ∞(w′))UU⊤ +M2(ξ
∞(w), ξ∞(w′)),

where for w∗, w∗′ ∈ supp(ρ∗),

M1(w
∗, w∗′) := Ex∼DV

σ′(x⊤w∗)σ′(x⊤w∗′)

M2(w
∗, w∗′) := Ex∼DV

σ′(x⊤w∗)σ′(x⊤w∗′)P⊥
w∗xx⊤P⊥

w∗′ .

Further, both M1 and M2 have rank at most Cρ∗ = min
(

|supp(ρ∗)|, dim(ρ∗)2 degree(σ)+1
)

.
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Proof. Let V be the orthonormal basis spanning supp(ρ∗), and let U be any orthonormal basis of Rd \
span(V ). Recall that Assumption I2 guarantees that the distribution of x, Dx, can be factorized as DU⊗DV ,

where span(DU ) ∈ span(U), span(DV ) ∈ span(V ), Ex∼DU
xx⊤ = UU⊤, and Ex∼DU

x = 0.

Recall that H⊥
∞(w,w′) = Ex∼Dxσ

′(x⊤ξ∞(w))σ′(x⊤ξ∞(w′))xx⊤. Observe that for u, v ∈ Span(U),
we have

u⊤H⊥
∞(w,w′)v = Ex∼Dxσ

′(x⊤ξ∞(w))σ′(x⊤ξ∞(w′))(u⊤x)(v⊤x)

= Ex∼DV
σ′(x⊤ξ∞(w))σ′(x⊤ξ∞(w′))Ex∼DU

u⊤xx⊤v

= Ex∼DV
σ′(x⊤ξ∞(w))σ′(x⊤ξ∞(w′))Ex∼DU

u⊤v.

If u ∈ Span(U), v ∈ Span(V ), then it is easy to check by the fact that Ex∼DU
x = 0 that

u⊤H⊥
∞(w,w′)v = ExV ∼Dσ

′(x⊤V ξ
∞(w))σ′(x⊤V ξ

∞(w′))(v⊤xV )ExU∼DU
(u⊤xU ) = 0.

For w∗, w∗′ ∈ supp(ρ∗), let

M1(w
∗, w∗′) := Ex∼DV

σ′(x⊤w∗)σ′(x⊤w∗′)

M2(w
∗, w∗′) := Ex∼DV

σ′(x⊤w∗)σ′(x⊤w∗′)P⊥
w∗xx⊤P⊥

w∗′

such that by the above computations,

H⊥
∞(w,w′) =M1(ξ

∞(w), ξ∞(w′))UU⊤ +M2(ξ
∞(w), ξ∞(w′)).

The statement about the rank follows from the observations that (1) both M1 and M2 are defined on a

space of size at most |supp(ρ∗)|, and (2) Alternatively, we can replace the expectation of x ∼ DV with

the expectation over some x ∼ D′
V , where D′

V is supported on at most dim(V )2 degree(σ)+1 points, and all

the moments of D′
V up to the degree(σ)th degree match those of DV (as this requires matching at most

∑2 degree(σ)
j=0 dim(V )j ≤ dim(V )2 degree(σ)+1 terms.)

We will construct Q using the eigenfunctions of each of these two parts. Let F ⊂ L2(supp(ρ∗), (ξ∞)#µ,R
d)

be an orthonormal basis of eigenfunctions of the linear operator (M2, (ξ
∞)#µ), that is, we have

∑

f∈F
λff(w

∗)f(w∗′)⊤ =M2(w
∗, w∗′)

Ew∗′∼(ξ∞)#µM2(w
∗, w∗′)f(w∗′) = λff(w

∗),

Let Y ⊂ L2(supp(ρ∗), (ξ∞)#µ) be an orthonormal basis of eigenfunctions of the linear operator

(M1, (ξ
∞)#µ), that is, we have

∑

y∈Y
λyy(w

∗)y(w∗′) =M1(w
∗, w∗′)

Ew∗′∼(ξ∞)#µM1(w
∗, w∗′)y(w∗′) = λyy(w

∗)

Let Λ = Λ1 ∪ Λ2, where

Λ2 := {λf : f ∈ F} Λ1 = {λy : y ∈ Y}.

The following claim is immediate to check from the decomposition of H⊥
∞ in Claim 32.
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Claim 33. Let Pλ be the projector onto the eigenspace of H⊥
∞ with eigenvalue λ. Then Pλ = P λ, where

Pλ(w,w
′) :=

∑

f∈F
f(ξ∞(w))f(ξ∞(w′)⊤1(λf = λ) + UU⊤∑

y∈Y
y(ξ∞(w))y(ξ∞(w′)1(λy = λ)

=
∑

v∈Bλ

v(w)v(w′)⊤,

where

Bλ := {vf : λf = λ}f∈F ∪ {vy,i : λy = λ}y∈Y ,

and

vf (w) := f(ξ∞(w));

vy,i(w) := y(ξ∞(w))Ui.

It remains to check how balanced this spectral decomposition is. Let p := minw∗∈supp(ρ∗) Pξ∞# µ[w
∗],

and observe that maxw,f∈F ,y∈Y(∥f(w)∥, |y(w)|) ≤ 1√
p , since the eigenfunctions are orthonormal. Fix

λ ∈ Λ. We have

∑

v∈Bλ

v(w)v(w)⊤ =
∑

f∈F
vf (w)(vf (w))⊤1(λf = λ) +

∑

y∈Y

dim(U)
∑

i=1

vy,i(w)vy,i(w)1(λy = λ)

=
∑

f∈F
f(ξ∞(w))(f(ξ∞(w)))⊤1(λf = λ) +

∑

y∈Y
y(ξ∞(w))y(ξ∞(w))UU⊤

1(λy = λ)

⪯ I

p





∑

f∈F
1(λf = λ) +

∑

y∈Y
1(λy = λ)



.

Thus letting

η2λ :=
1

p





∑

f∈F
1(λf = λ) +

∑

y∈Y
1(λy = λ)



,

by Claim 32, we have that

∑

λ∈Λ
η2λ =

|F|+ |Y|
p

≤ rank(M1) + rank(M2)

p
≤ 2Cρ∗

p
.

Thus Q = {(Bλ, ηλ)}λ∈Λ is
2Cρ∗

p -balanced. This proves the first statement in the lemma.

If (ρ∗, ρ0,Dx) is transitive (as per Definition 25), then we can get rid of the denominator and show that

almost surely over w ∼ ρ0,

∑

v∈Bλ

v(w)v(w)⊤ ⪯ I





∑

f∈F
1(λf = λ) +

∑

y∈Y
1(λy = λ)





This suffices to prove the lemma.
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To do this, let G be the set of automorphisms of (ρ∗, ρ0,Dx) as per Definition 25. For h ∈ L2(Sd−1, ρ0,R
d),

define g(h) by

g(h)(w) := g−1(f(g(w))).

For convenience, for y ∈ Y , we will abuse notation and define

g(y)(w) := y(g(w)).

Claim 34 (G-invariance of Eigenspaces.). If f ∈ F is an eigenfunction ofM2, then g(f) is an eigenfunction

of M2 with the same eigenvalue. Simlary, if y ∈ Y is an eigenfunction of M1, then g(y) is an eigenfunction

of M1 with the same eigenvalue.

Proof. We have

M2(g(f))(w
∗) = Ew∗′∼(ξ∞)#ρ0Ex∼DV

σ′(x⊤w∗)σ′(x⊤w∗′)P⊥
w∗xx⊤P⊥

w∗′g−1(f(g(w∗′)))

= Ew∗′∼(ξ∞)#ρ0Ex∼DV
σ′(x⊤w∗)σ′(x⊤w∗′)g−1

(

P⊥
g(w∗)g(x)

)

x⊤g−1
(

P⊥
g(w∗′)f(g(w

∗′))
)

= Ew∗′∼(ξ∞)#ρ0Ex∼DV
σ′(g(x)⊤g(w∗))σ′(g(x)⊤g(w∗′))g−1

(

P⊥
g(w∗)g(x)

)

g(x)⊤P⊥
g(w∗′)f(g(w

∗′))

= Ew∗′∼(ξ∞)#ρ0Ex∼DV
σ′(x⊤g(w∗))σ′(x⊤w∗′)g−1

(

P⊥
g(w∗)x

)

x⊤P⊥
w∗′f(w∗′)

= g−1
(

Ew∗′∼(ξ∞)#ρ0Ex∼DV
σ′(x⊤g(w∗))σ′(x⊤w∗′)P⊥

g(w∗)xx
⊤P⊥

w∗′f(w∗′)
)

= g−1(M2f(g(w
∗)))

= g−1(λff(g(w
∗)))

= λfg(f)(w
∗)

Here in the second line with used the fact that for any w and z, we have

(I − ww⊤)z = z − ww⊤z = z − wg(w)⊤g(z) = g−1
(

(I − g(w)g(w)⊤)g(z)
)

If the third line, we just used that for z, z′ ∈ R
d, we have z⊤z′ = g(z)⊤g(z′). In the fourth line, we used the

symmetry of Dx and (ξ∞)#ρ0 with respect to G (see A2). The proof for that M1g(y)(w
∗) = λyg(y)(w

∗)
is similar (but simpler); we omit the computation.

Let µG the uniform measure over the group generated by the set of all gw∗,w∗′ ∈ G for w∗, w∗′ ∈
supp(ρ∗), where gw∗,w∗′(w∗) = w∗′. Observe that µG a left-invariant measure on G, that is, for any w∗ ∈
supp(ρ∗), we have that the distribution of g(w∗) is uniform on ρ∗ when g ∼ µG (that is, it equals ρ∗, since

ρ∗ is atomic). Also note that for g ∈ supp(µG) and v ∈ span(V ), we have that g(v) ∈ span(V ). Thus

for u ∈ span(U), we have g(u) ∈ span(U), and thus in particular, since g preserves dot products, and thus

orthonormality,

g−1(U)g−1(U)⊤ = UU⊤. (D.1)

Claim 35. Let g ∈ supp(µG), and define g(Bλ) := {g(v)}v∈Bλ
. Then g(Bλ) is an orthonormal basis for

Pλ.

Proof. First we will check that almost surely over w, w′,
∑

f∈F
λfg(v

f )(w)g(vf )(w′)⊤ +
∑

y∈Y
λyg(v

y,i)(w)g(vy,i)(w′)⊤ = H⊥
∞(w,w′). (D.2)
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Using the definition of g(f) and A2, almost surely over w,w′, we have for z, z′ ∈ S
d−1,

z⊤
∑

f∈F
λfg(v

f )(w)g(vf )(w′)⊤z′ = z⊤
∑

f∈F
λfg

−1(f(ξ∞(g(w))))g−1
(

f(ξ∞(g(w′)))⊤
)

z′ (D.3)

= z⊤
∑

f∈F
λfg

−1(f(g(ξ∞(w))))g−1
(

f(g(ξ∞(w′)))⊤
)

z′

=
∑

f∈F
λfg(z)

⊤f(g(ξ∞(w)))f(g(ξ∞(w′)))⊤g(z′)

= g(z)⊤M2(g(ξ
∞(w)), g(ξ∞(w′)))⊤g(z′)

= z⊤M2(ξ
∞(w), ξ∞(w′))⊤z′,

where here in the last line, we used the fact that

z⊤M2(w
∗, w∗′)⊤z′ = g(z)⊤M2(g(w

∗), g(w∗′))⊤g(z′)

for any g ∈ G, w∗, w∗′. This can verified from the definition of M2 and the fact that Dx is invariant with

respect to G.

We can perform a similar (much easier) calculation to show that

∑

y∈Y
λyg(y)(ξ

∞(w))g(y)(ξ∞(w′)) =M1(ξ
∞(w), ξ∞(w′));

this arises from the fact that M1(w
∗, w∗′) =M1(g(w

∗), g(w∗′)) since Dx is invariant with respect to G. We

omit the details. Thus by (D.1),

∑

y∈Y
λyg(v

y,i)(w)g(vy,i)(w′)⊤ =M1(ξ
∞(w), ξ∞(w′))g−1(U)g−1(U)⊤ (D.4)

=M1(ξ
∞(w), ξ∞(w′))UU⊤.

Employing (D.4) and (D.3) yields (D.2) almost surely as desired.

Now, to prove the claim, we use (1) the fact from Claim 34 guarantees that g(v) is an eigenfunction

with the same values as v, and (2) the fact that the set {g(v)}v∈Bλ
is orthonormal (since dot products are

preserved under rotations). These two facts guarantee that g(Bλ) is a basis for Pλ.

The following claim now suffices to prove the lemma.

Claim 36. For any w ∈ S
d−1, we have

∑

v∈Bλ

v(w)v(w)⊤ ⪯ I





∑

f∈F
1(λf = λ) +

∑

y∈Y
1(λy = λ)



.

Proof. Fix any w ∈ S
d−1, and let w∗ = ξ∞(w). For z ∈ R

d, let πz ∈ L2(Sd−1, ρ0,R
d) be defined by

πz(w
′) = z1(ξ∞(w′) = w∗). Then since for v ∈ Bλ, we have v(w) = v(w′) if ξ∞(w) = ξ∞(w′), it

follows that

z⊤Pλ(w,w)z =
∑

v∈Bλ

z⊤v(w)v(w)⊤z =
⟨P λπz, πz⟩

(Pw′∼ρ0 [ξ
∞−1(w∗)])2

= |supp(ρ∗)|2⟨P λπz, πz⟩.
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To see the last equality, observe that ρ∗ = ξ∞# ρ0 by A2.

Now recall that by Claim 35, for any λ ∈ Λ and g ∈ supp(µG), we have that {g(v)}v∈Bλ
is a basis for

Pλ = P λ, and thus

z⊤Pλ(w,w)z = |supp(ρ∗)|2⟨P λπz, πz⟩ (D.5)

= |supp(ρ∗)|2z⊤Eg∼µG

∑

v∈g(Bλ)

Ew′,w′′∼ρ0v(w)v(w
′)⊤1(ξ∞(w′), ξ∞(w′′) = w∗)z

= z⊤Eg∼µG





∑

f∈F|λf=λ

g−1(f(g(w∗)))g−1(f(g(w∗)))⊤z +
∑

y∈F|λy=λ

|y(g(w∗)|2g−1(U)g−1(U)⊤



z.

Now for any f ∈ F ,

Eg∼µG
g−1(f(g(w∗)))(g−1(f(g(w∗))))⊤ ⪯ Eg∼µG

∥f(g(w∗))∥2I (D.6)

= Ew∗′∼ρ∗∥f(w∗′)∥2I
= I.

Here the second to last inequality holds because we have defined µG to be a left-invariant measure on G that

induces a uniform measure on supp(ρ∗). The last equation holds by the fact that ρ∗ = ξ∞# ρ0 (see A2) and

since f is part of an orthonormal basis, we must have Ew∗∼ξ∞# ρ0∥f(w∗)∥2 = 1. Likewise, for y ∈ Y , using

(D.1),

Eg∼µG
|(g(y))(w∗)|2g−1(U)g−1(U)⊤ = Eg∼µG

|y(g(w∗))|2UU⊤ (D.7)

= Ew∗′∼ρ∗ |y(w∗′)|2UU⊤

= UU⊤.

Combining Equations (D.6) and (D.7) with (D.5) yields that

Pλ(w,w) ⪯ I





∑

f∈F
1(λf = λ) +

∑

y∈Y
1(λy = λ)



,

as desired.

D.2.3 Properties of Potential

To prove our key lemmas 10, 11, 12, we will need several preliminary lemmas.

Lemma 37. Suppose the high probability event in Lemma 21 holds for S = Bτ and v ∈ L2(Sd−1, ρ0,R
d)

which is an eigenfunction of H⊥
∞. Suppose (H⊥

∞, ρ0) has the CRI with respect to Bt
τ := ξ−1

t (Bτ ). Then

with ∥v∥∞ := supw ∈ S
d−1∥v(w)∥, we have

⟨∇ϕv(t),∆t⟩B
t
τ

H⊥
∞

= PρMF
t
[Bτ ]λvϕv(t) + E∥v∥∞,

where

E ≤ ϵ21mEi∥∆t(i)∥+ Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ).
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Proof. First observe that

∇ϕv = v sign(⟨v,∆t⟩),

and thus

⟨∇ϕv(t),∆t⟩B
t
τ

H⊥
∞

= sign(⟨v,∆t⟩)⟨v,∆t⟩B
t
τ

H⊥
∞

Now by the conclusion of the concentration Lemma 21, we have

⟨v,∆t⟩B
t
τ

H⊥
∞

= EiX(i)∆t(i)1(ξt(wi) ∈ Bτ )± ∥v∥∞ϵ21mEi∥∆t(i)∥.

where X(i) = Ew′∼ρ0H
⊥
∞(wi, w

′)v(w′)1(ξt(w′) ∈ Bτ ) Now since v is an eigenfunction of H⊥
∞, by the

definition of consistent isometry, we have that

X(i) = λvv(wi)PρMF
t
[Bτ ].

Thus

⟨v,∆t⟩B
t
τ

H⊥
∞

= λv⟨v,∆t⟩B
t
τPρMF

t
[Bτ ]± ϵ21m∥v∥∞Ei∥∆t(i)∥.

Now

sign(⟨v,∆t⟩)⟨v,∆t⟩B
t
τ = sign(⟨v,∆t⟩)⟨v,∆t⟩ ± Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )

= ϕv(t)± Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ).

Plugging this back in yields the lemma.

Now we prove Lemma 10, which we restate here.

Lemma 38 (Descent with Respect to Interaction Term). Let ΦQ(t) be as defined above, where Q is a Cb-

balanced spectral decomposition ofH⊥
∞. Then for any τ > 0 for which the concentration event of Lemma 21

holds for S = Bτ , we have

⟨∇ΦQ(t),−H⊥
t ∆t⟩ ≤ (1 + Cb)Ei∥EjH

⊥
t (i, j)∆t(j)∥1(ξt(wi) /∈ Bτ ) + E10,

where E10 = C10(Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + (τ + Cbϵ
21
m )Ω(t)) for some C10 = OCreg,Cb

(1).

Proof. Let Bt
τ := ξ−1

t (Bτ ), and let B̄t
τ be the complement in S

d−1 of Bt
τ . We decompose

⟨∇ΦQ(t),∆t⟩H⊥
t
= ⟨∇ΦQ(t),∆t⟩B

t
τ ,B

t
τ

H⊥
t

+ ⟨∇ΦQ(t),∆t⟩B
t
τ ,B̄

t
τ

H⊥
t

+ ⟨∇ΦQ(t),∆t⟩B̄
t
τ ,S

d−1

H⊥
t

. (D.8)

Lets start with the first term ⟨∇ΦQ(t),∆t⟩B
t
τ ,B

t
τ

H⊥
t

= ⟨∇ΦQ(t),∆t⟩B
t
τ

H⊥
t

. Bounding this term is the key part of

the lemma.

Claim 39.

⟨∇ΦQ(t),∆t⟩B
t
τ

H⊥
t
≥ −(Creg + 1)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )− Cbϵ

21
mΩ(t) + |⟨∇Φ(t), G⟩|,

where Ei∥G(i)∥ ≤ CregτΩ(t).
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Proof. We have

⟨∇ΦQ(t),∆t⟩B
t
τ

H⊥
t
= ⟨∇ΦQ(t),∆t⟩B

t
τ

H⊥
∞

+ ⟨∇ΦQ(t), G⟩, (D.9)

where ∥G(i)∥ ≤ CregτEi∥∆t(i)∥, since ∥K ′(ξ∞(w), ξ∞(w′)) −K ′(ξt(w), ξt(w′))∥ ≤ Cregτ . This relies

on the fact that from the proof of A2, almost surely ∥ξt(w) − ξ∞(w)∥ ≤ τ , because ∥ξt(w) − ξ∞(w)∥ ≤
minw∗∈supp(ρ∗) ∥ξt(w) − w∗∥ ≤ τ . Now we will break up ΦQ into the ΨQ and Ω parts. Starting with the

ΨQ part, we have

⟨∇ΨQ(t),∆t⟩B
t
τ

H⊥
∞

=
∑

λ∈Λ
ηλ

∑

v∈Bλ
ϕv(t)⟨∇ϕv(t),∆t⟩B

t
τ

H⊥
∞

√

∑

v∈Bλ
(ϕv(t))2

(D.10)

=
∑

λ∈Λ
ηλ

∑

v∈Bλ
ϕv(t)

(

λϕv(t)PρMF
t
[Bτ ] + Ev

)

√

∑

v∈Bλ
(ϕv(t))2

= PρMF
t
[Bτ ]

∑

λ∈Λ
ηλ



λ

√

∑

v∈Bλ

(ϕv(t))2 +

∑

v∈Bλ
ϕv(t)Ev

√

∑

v∈Bλ
(ϕv(t))2





≥ PρMF
t
[Bτ ]

∑

λ∈Λ
ηλλ

√

∑

v∈Bλ

(ϕv(t))2 − E ,

where we used Cauchy-Schwartz in the last inequality, the fact that
∑

λ ηλ = 1, and ∥Ev∥ ≤ E , the error

term appearing in Lemma 37.

Next consider the ⟨∇Ω(t),∆t⟩B
t
τ

H⊥
∞

part. Recall from the definition of BSD thatH⊥
∞(w,w′) =

∑

v∈Q λvv(w)v(w
′)⊤.

Let ui := ∇iΩ(t) =
∆t(i)

∥∆t(i)∥ . We can expand

∣

∣

∣⟨∇Ω(t),∆t⟩B
t
τ ,S

d−1

H⊥
∞

∣

∣

∣ =

∣

∣

∣

∣

∣

Ei,j

∑

v∈Q
λvu

⊤
i v(wi)v(wj)

⊤∆t(j)1(wi ∈ Bt
τ )

∣

∣

∣

∣

∣

(D.11)

=

∣

∣

∣

∣

∣

Ei

∑

v∈Q
λvu

⊤
i v(wi)1(i ∈ Bt

τ )
(

Ejv(wj)
⊤∆t(j)

)

∣

∣

∣

∣

∣

≤
∑

v∈Q
λvϕv(t)Ei|u⊤i v(wi)|1(i ∈ Bt

τ ).

Now fix i. For any vector u ∈ S
d−1, since Q = {(Bλ, ηλ)}λ∈λ is Cb-balanced, we have

∑

v∈Q
λvϕv(t)|u⊤v(wi)| =

∑

λ∈Λ
λ
∑

v∈Bλ

ϕv(t)|u⊤v(wi)|

≤
∑

λ∈Λ
λ

√

∑

v∈Bλ

(ϕv(t))2
√

∑

v∈Bλ

|u⊤v(wi)|2

=
∑

λ∈Λ
λ

√

∑

v∈Bλ

(ϕv(t))2

√

√

√

√

√u⊤





∑

v∈Bλ

v(wi)v(wi)⊤



u

≤
∑

λ∈Λ
ηλλ

√

∑

v∈Bλ

(ϕv(t))2.
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Here the final inequality follows from the definition of a BSD , which states that for any w ∈ S
d−1,

∑

v∈Bλ
v(w)v(w)⊤ ⪯ η2λI . Thus plugging this back into to Equation (D.11), we have

∣

∣

∣⟨∇Ω(t),∆t⟩B
t
τ ,[m]

H⊥
∞

∣

∣

∣ ≤ Pi[B
t
τ ]
∑

λ∈Λ
ηλλ

√

∑

v∈Bλ

(ϕv(t))2.

Now letting Hi = H⊥
∞(wi, wj)Ej∆t(j)1(wi /∈ Bt

τ ), we have

∣

∣

∣
⟨∇Ω(t),∆t⟩B

t
τ

H⊥
∞

− ⟨∇Ω(t),∆t⟩B
t
τ ,[m]

H⊥
∞

∣

∣

∣
≤ |⟨∇Ω(t), H⟩| ≤ CregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ),

and thus

∣

∣

∣⟨∇Ω(t),∆t⟩B
t
τ

H⊥
∞

∣

∣

∣ ≤ Pi[B
t
τ ]
∑

λ∈Λ
ηλλ

√

∑

v∈Bλ

(ϕv(t))2 + CregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ). (D.12)

Now recall that ΦQ(t) := Ω(t)+ΨQ(t). Thus combining Equations (D.12) and (D.10), and Equation (D.9),

and plugging in the bound on E from Lemma 37, we have

⟨∇ΦQ(t),∆t⟩B
t
τ

H⊥
t
≥ −(Creg + 1)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )− Cbϵ

21
mΩ(t) + |⟨∇ΦQ(t), G⟩|,

where Ei∥Gi∥ ≤ CregτΩ(t). Here we have also used the fact that for all v in the BSD Q, we have that

∥v∥∞ ≤ √
Cb ≤ Cb (this is evident from the definition of BSD ). This proves the claim.

Next consider the second term ⟨∇ΦQ(t),∆t⟩B
t
τ ,B̄

t
τ

H⊥
t

in Equation (D.8). We have

∣

∣

∣⟨∇ΦQ(t),∆t⟩B
t
τ ,B̄

t
τ

H⊥
t

∣

∣

∣ = ⟨∇ΦQ(t), H⟩, (D.13)

where ∥H(i)∥ ≤ CregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ).

Finally, for the third term ⟨∇ΦQ(t),∆t⟩B̄
t
τ ,S

d−1

H⊥
t

in Equation (D.8), we have just write

⟨∇ΦQ(t),∆t⟩B̄
t
τ ,S

d−1

H⊥
t

= ⟨∇ΦQ(t),mt⟩B̄
t
τ , (D.14)

where we recall that mt(i) = EjH
⊥
t (i, j)∆t(j).

Combining Equations (D.13), (D.14) and Claim 39 into Equation (D.8), we obtain that

⟨∇ΦQ(t),∆t⟩H⊥
t
≥ −(Creg + 1)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )− Cbϵ

21
mΩ(t) + |⟨∇ΦQ(t), G+H +mt⟩|,

where Ei∥G(i) +H(i)∥ ≤ Creg(τΩ(t) + Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )).
Now we use Lemma 12 to bound

|⟨∇ΦQ(t), G+H +mt⟩| ≤ Ei∥G(i) +H(i) +mt(i)∥(1 + Cb)

≤
(

Creg(τΩ(t) + Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )) + Ei∥mt(i)∥
)

(1 + Cb).

Plugging this back in to the equation above yields

⟨∇ΦQ(t),∆t⟩H⊥
t
≥ −(1 + Cb)Ei∥mt(i)∥ − E10,
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where

E10 = (Creg(2 + Cb) + 1)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + (Cbϵ
21
m + (1 + Cb)Cregτ)Ω(t)

= OCreg,Cb
(Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + (τ + Cbϵ

21
m )Ω(t)).

This proves the lemma.

Now we prove Lemma 11, which we restate here.

Lemma 40 (Descent with Respect to Local Term). Suppose Assumption LSC holds with (CLSC, τ). Let Q
be a Cb-balanced spectral distribution. Then with C11 = OCreg,Cb

(1), we have

⟨∇ΦQ(t), D
⊥
t ⊙∆t⟩ ≤ −

(

c
√

LD(ρMF
t )

2 − C11τ
)

ΦQ(t) + C11Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + CbEi∥∆t(i)∥2.

Proof. Let δ :=
√

LD(ρMF
t ). We will show that

⟨∇Ω(t), D⊥
t ⊙∆t⟩ ≤ −(CLSCδ)Ω(t) + 2CregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ),

and that

⟨∇ΨQ(t), D
⊥
t ⊙∆t⟩ ≤ −(CLSCδ)ΨQ(t) +

CLSCδ + 2CbCregτ

2
Ω(t) (D.15)

2CbCregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + CbEi∥∆t(i)∥2.

The first statement is straightforward. Since ∇iΩ(t) =
∆t(i)

∥∆t(i)∥ , we have

⟨∇Ω(t), D⊥
t ⊙∆t⟩ ≤ Ei

∆t(i)
⊤D⊥

t (i)∆t(i)

∥∆t(i)∥

= Ei
∆t(i)

⊤D⊥
t (i)∆t(i)

∥∆t(i)∥
1(ξt(wi) ∈ Bτ ) + Ei

∆t(i)
⊤D⊥

t (i)∆t(i)

∥∆t(i)∥
1(ξt(wi) /∈ Bτ )

≤ −CLSCδEi∥∆t(i)∥1(ξt(wi) ∈ Bτ ) + Ei∥D⊥
t (i)∆t(i)∥1(ξt(wi) /∈ Bτ )

≤ −CLSCδEi∥∆t(i)∥+ 2CregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ),

as desired.

For the second statement, write

D⊥
t (i) = D

good
t (i) +Dbad

t (i),

where

D
good
t (i) = −c1P⊥

ξ∞(wi)
(V V ⊤)P⊥

ξ∞(wi)
− c2(UU

⊤).

By the structured condition in Assumption LSC, we can write such a decomposition where c1, c2 ≥ CLSCδ,

and for any i such that ξt(wi) ∈ Bτ , we have ∥Dbad
t (i)∥ ≤ CLSCδ

2
√
Cb

+Cregτ . Note that this decomposition still

holds for i where ξt(wi) /∈ Bτ , but ∥Dbad
t (i)∥ can be as large as 2Creg.

Claim 41.

⟨∇ϕv(t), Dgood
t ⊙∆t⟩ ≤ −CLSCδϕv(t) + ⟨∇ϕv(t), G⟩,

where ∥G(i)∥ ≤ τ∥∆t(i)∥+ 0.5∥∆t(i)∥2 + ∥∆t(i)∥1(ξt(wi) /∈ Bτ ).;
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Proof.

Now recall that in the construction for Q given in Lemma 31, for any v ∈ supp(Q), it holds that either

v(w) ∈ span(U) for all w ∈ S
d−1, or v(w) ∈ span(V ) for all w ∈ S

d−1. We consider the two cases

separately. First suppose v(w) ∈ span(U) for all w ∈ S
d−1. Fix wi with ξt(wi) ∈ Bτ . For any w, we have

v(w)⊤Dgood
t (i)∆t(i) = −c2v(w)⊤∆t(i),

and thus the desired conclusion holds. Now suppose v(w) ∈ span(V ). Note that V commutes with P⊥
ξ∞(wi)

.

Thus any w, we have

v(w)⊤Dgood
t (i)∆t(i) = −c1v(w)P⊥

ξ∞(wi)
∆t(i).

Now for i with ξt(w) ∈ Bτ , we have ∥ξt(w) − ξ∞(w)∥ ≤ τ (see the proof of A2), and thus, since

additionally |∆t(i)ξt(w)| ≤ ∥∆t(i)∥2
2 (see (B.5) in the proof of Lemma 5), we have that

v(w)⊤Dgood
t (i)∆t(i) = −c1v(w)P⊥

ξ∞(wi)
∆t(i)

= −c1v(w)∆t(i) +O(τ∥v(w)∥+ ∥∆t(i)∥2).
Thus in conclusion, we have that

⟨∇ϕv(t), Dgood
t ⊙∆t⟩ ≤ −c2δϕv(t) + ⟨∇ϕv(t), G⟩,

where ∥G(i)∥ ≤ τ∥∆t(i)∥+ 0.5∥∆t(i)∥2 + ∥∆t(i)∥⊮(ξt(wi) /∈ Bτ ). This proves the claim.

Thus with G as in the claim,

⟨∇ΨQ(t), D
good
t ⊙∆t −G⟩ ≤

∑

λ∈Λ
ηλ

∑

v∈Bλ
ϕv(t)⟨∇ϕv(t), Dgood

t ⊙∆t⟩
√

∑

v∈Bλ
(ϕv(t))2

≤
∑

λ∈Λ
ηλ

∑

v∈Bλ
−CLSCδ(ϕv(t))

2

√

∑

v∈Bλ
(ϕv(t))2

= −CLSCδ
∑

λ∈Λ
ηλ

√

∑

v∈Bλ

(ϕv(t))2

= −CLSCδΦQ(t).

It follows that from the proof of Lemma 12 (see Equation (D.16)) we have

|⟨∇ΨQ(t), D
good
t ⊙∆t −G⟩| ≤ Cb

(

τΩ(t) + 0.5Ei∥∆t(i)∥2 + Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )
)

Similarly, we have that

⟨∇ΨQ(t), D
bad
t ⊙∆t⟩ = ⟨∇ΨQ(t), D

bad
t ⊙∆t⟩Bt

τ
+ ⟨∇ΨQ(t), D

bad
t ⊙∆t⟩B̄t

τ

≤ Cb

(

CLSCδ

2
√
Cb

+ Cregτ

)

Ei∥∆t(i)∥+ Cb(2Creg)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ),

and so

⟨∇ΨQ(t), D
⊥
t ⊙∆t⟩ ≤ −CLSCδΨQ(t) +

(

CLSCδ + 2CbCregτ

2
Ω(t)

)

+ 3CbCregEi∥∆t(i)∥1(ξt(wi) /∈ Bτ ).

This yields (D.15), which proves the lemma.

We now prove Lemma 12, which we restate here.
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Lemma 42 (L1 Perturbation Lemma). Let Q be a Cb-balanced spectral distribution. Let G : [m] → R
d.

Then |⟨∇ΦQ(t), G⟩| ≤ (1 + Cb)Ei∥G(i)∥.

Proof. [Proof of Lemma 12] First observe that ⟨∇ΦQ(t), G⟩ ≤ Ei∥G(i)∥, since ∇iΩ(t) =
∆t(i)

∥∆t(i)∥ , which

has norm 1. Now for any v ∈ supp(Q), we have

|⟨∇ϕv(t), G⟩| ≤ Ei|G(i)⊤v(wi)|,

and so

|⟨∇ΨQ(t), G⟩| ≤
∑

λ∈Λ
ηλ

∑

v∈Bλ
ϕv(t)|⟨∇ϕv(t), G⟩

√

∑

v∈Bλ
(ϕv(t))2

(D.16)

≤ Ei





∑

λ∈Λ
ηλ

∑

v∈Bλ
ϕv(t)|G(i)⊤v(wi)|

√

∑

v∈Bλ
(ϕv(t))2





≤ Ei







∑

λ∈Λ
ηλ

√

∑

v∈Bλ
(ϕv(t))2

√

∑

v∈Bλ
|G(i)⊤v(wi)|2

√

∑

vBλ
(ϕv(t))2







= Ei







∑

λ∈Λ
ηλ

√

√

√

√

√G(i)⊤





∑

v∈Bλ

v(wi)v(wi)⊤



G(i)







≤ Ei

∑

λ∈Λ
η2λ∥G(i)∥ = CbEi∥G(i)∥.

Here in the third inequality, we used Cauchy-Schwartz. It follows that

|⟨∇ΦQ(t), G⟩| ≤ |⟨∇Ω(t), G⟩|+ |⟨∇ΨQ(t), G⟩| ≤ (1 + Cb)Ei∥G(i)∥,

as desired.

D.3 Dynamics of the Potential

Before proving our main theorem on the dynamics of the potential, we need the following lemma, which

gathers all the required concentration events.

Lemma 43. Fix some δ. With high probability as d,m, n → ∞, the events in all concentration lemmas

(Lemma 19,Lemma 23, Lemma 20 and Lemma 21) hold, where we apply Lemma 20 and Lemma 21 for

S = Bτ for all

τ ∈
{

CLSC · rd(e)

8(C10 + C11)

}

e∈[δ,1]
,

where rd(z) is a rounding of z to its first non-zero decimal, in binary (so rd(z) ∈ [z/2, z]). We also apply

Lemma 21 for all eigenfunctions v in the BSD Q.
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Proof. The set
{

c·rd(e)
8(C10+C11)

}

e∈[δ,1]
has size at most OC10,C11(log2(1/δ)), so we can take a union bound

over the result in Lemma 20 for all Bτ . Similarly, since there are O(dCρ∗) eigenfunctions in Q (see the

proof of Lemma 31), we take a union bound of Lemma 21 over all these eigenfunctions. (Note that the

“with high probability” is explicitly o(1/d) there). The rest follows immediately from the three concentra-

tion lemmas.

For the remainder of the text, we assume the following assumptions hold up to time T (if relevant):

Assumptions Regularity,Stability,LSC,Symmetry. Let (CLSC, τ) denote the parameters of the local strong

convexity (we will use the parameter τ differently later). We also assume that Q is a Cb-balanced BSD ,

where by Lemma 9, we have that Cb = Cρ∗ .

Theorem 3 (Main Potential Dynamics Theorem). Let δ :=
√

LD(ρMF
T ), and condition on the event that the

high probability event in Lemma 43 holds for δ. Let ϵn,m := ϵn + ϵ19m + ϵ20m + ϵ21m from the concentration

lemmas. Suppose n and m are large enough such that J2
maxt

2ϵn,m ≤ 1
64 . Suppose that

J2
max

(∫ t

s=0
ΦQ(s)

2ds

)

≤ ϵn,m. (D.17)

Then for some C = OCreg,Cb
(1) and τ = ΩCreg,Cb

(δ), for all t ≤ T , we have

d

dt
ΦQ(t) ≤ −CLSCδ

C
ΦQ(t) + CJavg(τ)

∫ t

s=0
ΦQ(s)ds+ CJmaxtϵn,m.

Corollary 44 (Solution to Potential Dynamics). Suppose that for some τ = ΩCreg,Cb
(δ),

4J4
maxC

2T 3 exp(2CJavg(τ)T/(CLSCδ))ϵn,m ≤ 1.

Condition on the event that the hypothesis of Theorem 3 holds. Then for any t ≤ T , we have

Ei∥∆t(i)∥ ≤ ΦQ(t) ≤ exp(CtJavg(τ)/(CLSCδ))CJmaxtϵn,m.

Proof. [Proof of Corollary 44] We will use real induction (see eg. [Cla12, Theorem 2]). Our inductive

hypothesis will be that for some t,

J2
max

(∫ t

s=0
ΦQ(s)

2ds

)

≤ 1

2
ϵn,m. (D.18)

Note that is implies the assumption in Equation (D.17). Clearly this holds for t = 0. Since ΦQ(s) is

continuous, if Equation (D.18) holds for all s < t, it also holds for t. This is the continuity assumption.

Finally, for the inductive step, we will show that if Equation (D.18) holds for some s, then for some ι small

enough, it holds at s+ ι. To show this, first we use Lemma 46 (which bounds the solution of the ODE given

in Theorem 3), to show that for all s′ ≤ s,

ΦQ(s
′) ≤ exp(Cs′Javg(τ)/(CLSCδ))CsJmaxϵn,m + ϵn,m ≤

(

exp(CsJavg(τ)/(CLSCδ))CsJmax

)

ϵn,m.

Note that ΦQ(t) is continuous. Thus for ι small enough, we have ΦQ(t) ≤ ΦQ(s)+ϵn,m for all t ∈ [s, s+ι].
It follows that for ι small enough, for t ∈ [s, s+ ι],

∫ t

s′=0
(ΦQ(s

′))2ds′ ≤ (CsJmaxϵn,m)2
∫ s

s′=0
exp(2CsJavg(τ)/(CLSCδ))ds

′ +
∫ t

s′=s
(ΦQ(s) + ϵn,m)2ds′

≤ 2(CsJmaxϵn,m)2s exp(2CJavg(τ)s/(CLSCδ)).
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Now using the assumption in the corollary that

4J4
maxC

2T 3 exp(2CJavg(τ)T/(CLSCδ))ϵn,m ≤ 1,

it follows that
∫ s′

s=0(ΦQ(s))2ds ≤ ϵn,m

2J2
max

This proves the inductive step. Thus by real induction, the hypothesis in Eq (D.18) holds up to time T .

The result of the lemma then holds by applying Lemma 46 to the result of Theorem 3 at any time t ≤ T .

Proof. [Proof of Theorem 3] Recall from Lemma 5 that

d

dt
∆t(i) = D⊥

t (i)∆t(i)− EjH
⊥
t (i, j)∆t(j) + ϵt,i,

where

∥ϵt,i∥ ≤ 2ϵn,m + 2Creg

(

∥∆t(i)∥2 + Ej∥∆t(j)∥2
)

.

Now we have

d

dt
ΦQ(t) ≤ ⟨∇ΦQ(t),

d

dt
∆t⟩

= −⟨∇ΦQ(t), H
⊥
t ∆t⟩+ ⟨∇ΦQ(t), D

⊥
t ⊙∆t⟩+ ⟨∇ΦQ(t), E⟩,

where E(i) = ϵt,i. We will consider the terms in order. Let

τ :=
CLSC · rd(δ)

8(C10 + C11)
,

where rd(z) is a rounding of z to its first non-zero decimal, in binary (so rd(z) ∈ [z/2, 2z]).
Now by Lemma 10, we have

−⟨∇ΦQ(t), H
⊥
t ∆t⟩ = −⟨∇ΦQ(t),∆t⟩H⊥

t
≤ (1 + Cb)Ei∥mt(i)∥1(ξt(wi) /∈ Bτ ) + E10,

where mt(i) = EjH
⊥
t (i, j)∆t(j), and

E10 = C10(Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + (τ + Cbϵ
21
m )Ω(t)).

Next by Lemma 11, we have

⟨∇ΦQ(t), D
⊥
t ⊙∆t⟩ ≤ −

(

CLSCδ

2
− τC11

)

ΦQ(t) + C11Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) + CbEi∥∆t(i)∥2.

Here we have used the fact that since the loss is decreasing, the loss in Lemma 11 is less than the loss δ2 at

time T .

Putting these together, and employing Lemma 12, yields

d

dt
ΦQ(t) ≤

(

−CLSCδ

4

)

ΦQ(t) (D.19)

+ (C10 + C11)Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ )

+ (1 + Cb)Ei∥mt(i)∥1(ξt(wi) /∈ Bτ )

+ (1 + 2Cb)Ei∥ϵt,i∥,
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where here we used that τ was chosen such that (C11+C10)(τ+Cbϵ
21
m ) ≤ CLSCδ

8 , and trivially, Ω(t) ≤ ΦQ(t).
We also bounded Ei∥∆t(i)∥2 by Ei∥ϵt,i∥.

Now let us consider the term Ei∥mt(i)∥1(ξt(wi) /∈ Bτ ). Using Lemma 22, we have

Ei∥mt(i)∥1(ξt(wi) /∈ Bτ ) ≤ (1 + Cb)
(

ϵn,m + Javg(τ)
)

ΦQ(t).

Now let use consider the term Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ). Recall from Equation (2.2) that

∆t(i) = −
∫ t

s=0
Jt,s(i)ms(i)ds+

∫ t

s=0
Jt,s(i)ϵs,ids.

Thus by Lemma 22, we have

Ei∥∆t(i)∥1(ξt(wi) /∈ Bτ ) ≤ (1 + Cb)
(

ϵn,m + Javg(τ)
)

∫ t

s=0
ΦQ(s)ds

+

∫ t

s=0
Ei∥Jt,s(i)ϵs,i∥1(ξt(wi) /∈ Bτ )ds.

Plugging this back into Equation (D.19) yields

d

dt
ΦQ(t) ≤ −CLSCδ

5
ΦQ(t) + (C10 + 4

√

CbCreg)(1 + Cb)(ϵn,m + Javg(τ))

∫ t

s=0
ΦQ(s)ds

+ (1 + Cb)Ei∥ϵt,i∥+ (1 + Cb)(C10 + 4
√

CbCreg)

∫ t

s=0
Ei∥Jt,s(i)ϵs,i∥ds

≤ −CLSCδ

5
ΦQ(t) + CJavg(τ)

∫ t

s=0
ΦQ(s)ds

+ (1 + Cb)Ei∥ϵt,i∥+ C

∫ t

s=0
Ei∥Jt,s(i)ϵs,i∥ds,

where C = OCreg,Cb
(1). Let us simplify the error terms. Appealing to Lemma 45, we have for all i,

∥∆t(i)∥2 ≤ 4ϵn,m and Et,i :=
∫ t
s=0 ∥Jt,s(i)ϵs,i∥ds ≤ 8Jmaxtϵn,m.

Thus

Ei∥ϵt,i∥ ≤ 2ϵn,m + 4CregEi∥∆t(i)∥2 ≤ 18Cregϵn,m,

and
∫ t

s=0
Ei∥Jt,s(i)ϵs,i∥ds = EiEt,i ≤ 8Jmaxtϵn,m.

Thus plugging this back into the bound on the dynamics, we have

d

dt
ΦQ(t) ≤ −CLSCδ

5
ΦQ(t) + CJavg

∫ t

s=0
ΦQ(s)ds+ CJmaxtϵn,mds,

where C = OCreg,Cb
(1).

Lemma 45 (Inductive Squared Error Bound.). Suppose Assumption Stability hold with value Jmax. Suppose

for all t′ ≤ t, we have

J2
max

(

∫ t′

s=0
ΦQ(s)

2ds

)

≤ ϵn,m.
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and J2
maxt

2ϵn,m ≤ 1
64 . Then for all i and t′ ≤ t, we have

∥∆t′(i)∥2 ≤ 4ϵn,m

Et,i :=

∫ t

s=0
∥Jt,s(i)ϵs,i∥ds ≤ 8Jmaxtϵn,m,

where ϵs,i is defined in Lemma 5.

Proof. It suffices to prove the statement just for the final time t, because we could always apply the lemma

with a smaller value of t. Recall that

ϵs,i ≤ 2ϵn,m + 2Creg

(

∥∆t(i)∥2 + Ej∥∆t(j)∥2
)

.

Since

Ei∥ϵt,i∥ ≤ 2ϵn,m + 4CregEi∥∆t(i)∥2,

by Equation (2.2), we have

∥∆t(i)∥ ≤
∫ t

s=0
Jt,s(i)(ms(i) + ϵs,i)ds

≤
∫ t

s=0
∥Jt,s(i)ms(i)ds∥+

∫ t

s=0
∥Jt,s(i)ϵs,ids∥

=

∫ t

s=0
∥Jt,s(i)ms(i)ds∥+ Et,i

≤
√

∫ t

s=0
∥Jt,s(i)∥2ds

√

∫ t

s=0
∥ms(i)∥2ds+ Et,i

≤ Jmax

√

∫ t

s=0
∥ms(i)∥2ds+ Et,i

≤ Jmax

√

∫ t

s=0
ΦQ(s)2ds+ Et,i

≤ √
ϵn,m + Et,i,

Here in the second last inequality, we used the fact that ∥ms(i)∥ ≤ ΦQ(s) for any i, and in the last line, we

used assumption of the lemma. Note that this same calculation holds for all s ≤ t, so we have

∥∆s(i)∥ ≤ √
ϵn,m + Et,i.

Now lets bound Et,i:

Et,i :=

∫ t

s=0
∥Jt,s(i)ϵs,i∥ds ≤

∫ t

s=0
∥Jt,s(i)∥

(

2ϵn,m + 4Creg max
j

∥∆s(j)∥2
)

ds

≤ Jmax

∫ t

s=0

(

2ϵn,m +max
j

(

2ϵn,m + 2E2
t,j

)

)

ds,

where in the second line, we plugged in the bound on ∆s(i).
Thus letting Et := maxj Et,j , we have

Et ≤ 2Jmaxt
(

2ϵn,m + E2
t

)
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Now assuming the discriminant 1− 32J2
maxt

2ϵn,m > 0, this equation has two sets of disjoint solutions, one

small (including 0) and one large:

Et ∈
[

−∞,
1−

√

1− 32J2
maxt

2ϵn,m
4Jmaxt

]

∪
[

1 +
√

1− 32J2
maxt

2ϵn,m
4Jmaxt

,∞
]

Note that since at time t = 0, we have Et = 0, and Et is continuous, it must be that if the discriminant

is positive up to time t, the solution is always in the first set. Indeed, since an assumption of the lemma is

that J2
maxt

2ϵn,m ≤ 1
64 . Thus we have

Et ≤
1−

√

1− 32J2
maxt

2ϵn,m
4Jmaxt

≤ 8Jmaxtϵn,m.

Plugging this back above into our bound on ∆t(i) yields that for all i,

∥∆t(i)∥2 ≤ 4ϵn,m.

Lemma 46 (ODE Analysis). Suppose we have a differential equation of the form

d

dt
Xt ≤ −aXt + b

∫ t

s=0
Xsds+ ϵ.

with initial condition X0 = 0 and a, b ≥ 0. Then

Xt ≤ exp(bt/a)
ϵ√

a2 + 4b
.

Proof. Let Yt solve the ODE

d

dt
Yt = −aYt + b

∫ t

s=0
Ysds+ 2ϵ,

with initial condition Y0 = 0, and let Zt = Xt − Yt. We will show that Zt never goes above 0.

Observe that Zt solves the differential equation

d

dt
Zt ≤ −aZt + b

∫ t

s=0
Zsds− ϵ,

with initial condition Zt = 0. One can check by the real induction that Zt ≤ 0. Indeed, if Zs ≤ 0 for all

s < t, then we have Zt ≤ 0. Further, since Zt is continuous, if the hypothesis Zt ≤ 0 holds up to time s,
we can show that it holds at time s+ ι for some ι > 0. Indeed, for ι small enough (in terms of b and ϵ), for

all r ∈ [s, s+ ι], we have Zr ≤ ϵ
b . Thus for r ∈ [s, s+ ι], we have d

drZr ≤ −aZr + bι
(

ϵ
b

)

− ϵ ≤ −aZr for

ι ≤ 1. Then Gronwall’s inequality gives that Zs+ι ≤ Zs ≤ 0, which is the inductive step. This yields the

claim that Zt ≤ 0 for all t > 0.

Now we just need to solve the differential equation for Yt. Taking a second derivative, we have

Y ′′
t = −aY ′

t + bYt.

A standard second order ODE analysis yields that

Yt = C1 exp(r1t) + C2 exp(r2t),
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where r1 and r2 are the roots of x2 + ax− b = 0, that is,

(r1, r2) =
−a±

√
a2 + 4b

2

Checking the initial condtitions of Y0 and Y ′
0 yields

Yt =

(

ϵ√
a2 + 4b

)

(exp(r1t)− exp(r2t)),

where r1 is the larger root. Since r1 ≤ b
a , we obtain the lemma.

E Applications to Learning a Single-index Model

E.1 Setting

We will study the setting of learning a well-specified even single index function f∗(x) = σ(x⊤w∗), where

w∗ ∈ S
d−1, and σ(z) =

∑K
k=k∗ ckHek(z), where:

1. k∗ ≥ 4, and 1
CSIM

≤ ck∗ ≤ CSIM maxk ck.

2. All k with ck ̸= 0 are even. (That is, σ is an even function).

We assume the initial distribution ρ0 of the neurons is uniform on S
d−1, and the data is drawn i.i.d from the

distribution D, which has Gaussian covariates, and subGaussian label noise: that is,

x ∼ N (0, Id) ∼ Dx

y = f∗(x) + ζ(x),

where ζ(x) has mean 0 and is 1-subGaussian.

We will prove the following theorem, which we restate from Theorem 2 in the main body.

Theorem 2 (PoC in Single-Index Model). Fix any δ > 0, and suppose d is large enough in terms of δ,

CSIM and K. Let T (δ) := argmin{t : ∥fρMF
t

− f∗∥2 ≤ δ2}. Then T (δ) = OK,CSIM
(
√
d
k∗−2

δ−(k∗−1)). If

n ≥ d11k
∗

and m ≥ d13k
∗

, then with high probability, for all t ≤ T (δ),

∥fρMF
t

− fρ̂mt ∥
2 ≤ OK,δ(d

3k∗)

min(
√
m,

√
n)

≤ 3δ2 .

We will prove Theorem 2 by (1) analyzing the MF dynamics to show the convergence of ρMF
t , and then

(2) checking the assumptions of Theorem 1 hold, and applying it to show the convergence of ρ̂mt .

Notation Define α(w) := |w⊤w∗|. Let v(α, t) denote the velocity of a particle w with α(w) = α in the

w∗ sign(w⊤w∗) direction. Formally, we have

v(α, t) := ⟨w∗, ν(w, ρMF
t )⟩ sign(w⊤w∗),

for any w with α(w) = α. We will often use the notation α ∼ ρ or α′ ∼ ρ to denote the distribution of α(w)
with w ∼ ρ. We use αt(w) := α(ξt(w)). We use ξt,s(w) denote the location of the particle at time t which
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Proof. Let us expand the velocity by expressing v(α, t) as a polynomial in terms of α. Fixw with α(w) = α
and without loss of generality assume w⊤w∗ > 0. For w′ ∈ S

d−1, we denote w′ = α′w∗ + y, where

y′ ∈
√
1− α′2Sd−2, which we will use to denote the sphere perpendicular to w∗ of radius

√
1− α′2. We

expand

ν(w, ρMF
t )⊤w∗ = Ex(f

∗(x)− fρMF
t
(x))σ′(w⊤x)x⊤P⊥

w w
∗ (E.1)

= Exσ(w
∗⊤x)σ′(w⊤x)x⊤P⊥

w w
∗ − Ew′∼ρMF

t
Exσ(w

′⊤x)σ′(w⊤x)x⊤P⊥
w w

∗

= qσ′(w⊤w∗)w∗⊤P⊥
w w

∗ − Ew′∼ρMF
t
qσ′(w⊤w′)(w′)⊤P⊥

w w
∗

= qσ′(α)(1− α2)− Ew′∼ρMF
t
qσ′(w⊤w′)(w′)⊤P⊥

w w
∗

= qσ′(α)(1− α2)− Eα′∼ρMF
t
Ey′∼

√
1−α′2Sd−2qσ′(αα′ + y′⊤w)

(

α′(1− α2)− αy′⊤w
)

.

Here in the fifth equality, we used the rotational symmetry of ρMF
t about the w∗ axis.

Lets break down this expression. Let

rt,k := Eα∼ρMF
t
αk.

Fix a (necessarily odd) coefficient k∗ − 1 ≤ k ≤ K − 1 of the polynomial qσ′(z) :=
∑

qkz
k, and

consider all terms in the above equation arising from that order term:

qkα
k(1− α2)− qk

k
∑

j=0

(

k

j

)

(αα′)jEy′∼
√
1−α′2Sd−2(y

′⊤w)k−j(α′(1− α2)− αy′⊤w)

= qkα
k(1− α2)(1− rt,k+1) + Eα′∼ρMF

t
Eα,α′,k,

where

Eα,α′,k =







Ok

(

(1− α2)(α′)2(1− α′2)(α
√
d
−(k−1)

+ αk−2
√
d
−2

) + α(1− α2)
√
d
−(k+1)

)

k ≥ 3

0 k = 1
.

Note here that we have used the fact that k is even and Ey′(y
′⊤w)j = Oj(

(

(1− α′2)(1− α2)d−1
)j/2

),
and is 0 for odd j. The final error terms arises from the fact that we have only counted the terms in

the binomial expansion which could be most significant — depending on the relative size of αα′ and
√

(1− α2)(1− α′2)/
√
d. Now plugging in the hypothesis (⋆), we have that Eα′∼ρMF

t
(α′)2(1 − α′2) ≤ 2ι,

so for all k,

Eα,α′,k = Ok

(

(1− α2)ι(α
√
d
−(k−1)

+ αk−2
√
d
−2

) + α(1− α2)
√
d
−(k+1)

)

≤ (1− α2)Rα

Summing over all odd k∗ − 1 ≤ k ≤ K − 1 yields that

v(α, t) =

K−1
∑

k=k∗−1

qkα
k(1− α2)(1− rt,k+1) + (1− α2)Rα (E.2)

≥ qσ′(α)(1− α2)(1− rt)− (1− α2)Rα,

where here in the inequality, we used the fact that rt = Eα′∼ρMF
t
(α′)k

∗ ≥ Eα′∼ρMF
t
(α′)k = rt,k for all

k ≥ k∗. Now for α ≥ δ3K√
d

, we have

v(α, t) ≥ qσ′(α)(1− α2)(1− rt)

−OK

(

ι(1− α2)(αk∗−1δ−3K(k∗−2) + αk∗−1δ−6K) + (1− α2)αk∗−1δ−3K(k∗−2)/d
)

,
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Since by Lemma 50, we have (1− rt) = Ω(δ), it follows that

v(α, t) ≥ qσ′(α)(1− α2)(1− rt)(1−
√
ι).

In the following lemma, we analyze d
dαv(α, t). As will be shown in Section E.4, bounding d

dαv(α, t) is

useful in bounding D⊥
t (w). The second part of this lemma will also be instrumental in proving local strong

convexity (Definition LSC).

Lemma 48. Let δ :=
√

Ex(fρMF
t
(x)− f∗(x))2. Suppose (⋆) holds at time t for ι ≤ min

(

ΘK(1), δ6K
2
)

.

Then

d

dα
v(α, t)

{

= k∗−1
α v(α, t) + Eα α ≤ 1;

≤ − α
1−α2 v(α, t)− ΩK(δ) α ≥ 1− 1

5K ,

where Eα := ΘK

(

αk∗ + ι(
√
d
−(k∗−2)

+ αk∗−4
√
d
−2

) +
√
d
−(k∗−2)

)

.

Proof. First we compute d
dαv(α, t). Fix a coefficient k∗ − 1 ≤ k ≤ K − 1 of the polynomial qσ′ , and

consider all terms in the the derivative of Equation (E.1) arising from that order term:

qkkα
k−1

(

1− k + 2

k
α2

)

− qk

k
∑

j=0

(

k

j

)

j(αα′)j−1
Ey′∼S

d−2√
1−α′2

(y′⊤w)k−j

(

α′
(

1− j + 2

j
α2

)

+
j + 1

j
αy′⊤w

)

= kqkα
k−1

(

1− k + 2

k
α2

)

(1− rt,k+1) + Eα,k,

where Eα,k = Θk(ι(
√
d
−(k−1)

+ αk−3
√
d
−2

) +
√
d
−(k+1)

), and rt,k = Eα′∼ρMF
t
(α′)k.

Here we have used the same computations as in the proof of Lemma 47. Summing over all odd k∗−1 ≤
k ≤ K − 1 yields

d

dα
v(α, t) =

K
∑

k=k∗−1

qkkα
k−1

(

1− k + 2

k
α2

)

(1− rt,k+1) + Eα,k (E.3)

= (k∗ − 1)qk∗−1(1− rt)α
k∗−2 +ΘK

(

αk∗ + ι(
√
d
−(k∗−2)

+ αk∗−4
√
d
−2

) +
√
d
−(k∗−2)

)

Combining Lemma 47 with the previous equation, we obtain

d

dα
v(α, t) =

k∗ − 1

α
v(α, t) + ΘK

(

αk∗ + ι(
√
d
−(k∗−2)

+ αk∗−4
√
d
−2

) +
√
d
−(k∗−2)

)

.

This yields the first case in the conclusion of the lemma.

For the case that α ≥ 1− 1
5K ≥

√

k
k+0.5 for all k ≤ K, we have

k

(

1− k + 2

k
α2

)

≤ −1.5α2
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We will compare the terms with coefficient qk in the first line of Equation (E.3) and the first line of Equa-

tion (E.2). Let

vk(α, t) := qkα
k(1− α2)(1− rt,k+1),

such that Equation (E.2) gives

v(α, t) =

K−1
∑

k=k∗−1

vk(α, t) + (1− α2)Rα,

where Rα is as in Lemma 47. Thus the first line of Equation (E.3) gives

d

dα
v(α, t) =

∑

k

(vk(α, t))
1

α(1− α2)
k

(

1− k + 2

kα2

)

+ Eα,k

≤
∑

k

(vk(α, t))
−1.5α

(1− α2)
+ Eα,k

=
−1.5α

(1− α2)

(

v(α, t)− (1− α2)Rα

)

+
∑

k

Eα,k

≤ − α

1− α2
v(α, t)− ΩK(δ).

Here in the first inequality, we used the fact that all the qk (and hence all the vk(α, t)) are non-negative.

Indeed, recall that qk are the coefficients of the polynomial qσ′(z) :=
∑K−1

k=k∗−1 c
2
k+1(k + 1)(k + 1)!zk,

where
∑

k ckHek(z) is the Hermite decomposition of σ. In the last inequality, we have used the bounds on

Rα and Eα,k, along with the fact from Lemma 47 that v(α, t) = ΩK((1 − α2)δ). This yields the desired

conclusion.

A key part of both our MF convergence analysis, and the perturbation analysis is understanding the

stability of the αt(w) with respect to small changes in αs(w). The following lemma controls this derivative.

Define

ℓt,s(w) :=
dαt,s(β)

dβ

∣

∣

∣

∣

β=αs(w)

Lemma 49. Suppose that for all s ≤ t, we have
√

Ex(fρMF
s
(x)− f∗(x))2 ≥ δ. Suppose ι ≤ min

(

ΘK(1), δ6K
2
)

,

and t ≤
√
d
k∗−2

ι . Finally suppose (⋆) holds for all s ≤ t. Then for and τ ≤ 1/2 and any w for which

αt(w) ≤ 1− τ , we have

ℓt,s(w) :=
dαt,s(β)

dβ

∣

∣

∣

∣

β=αs(w)

=

(

αt(w)

αs(w)

)k∗−1

exp

(

OK

(

log(1/τ)

δ

))

.

Proof. Observe that ℓt,s(w) satisfies the differential equation

d

dt
ℓt,s(w) =

(

d

dαt(w)
v(αt(w), t)

)

ℓt,s(w);

ℓs,s(w) = 1.
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From Lemma 48, we have that

d

dt
ℓt,s(w) =

(

(k∗ − 1)
v(αt(w), t)

αt(w)
+ Eα

)

ℓt,s(w);

d

dt
αt(w) =

v(αt(w), t)

αt(w)
αt(w),

where we recall that

Eα = OK

(

αk∗ +
√
d
−k∗

+ ι
(√

d
−(k∗−2)

+ α
(k∗−4)
t

√
d
−2
))

Equivalently, taking logs, we have

d

dt

log(ℓt,s(w))

k∗ − 1
=
v(αt(w), t)

αt(w)
+ Eα;

d

dt
log(αt(w)) =

v(αt(w), t)

αt(w)
.

Let us split up the time interval into (at most 3) intervals: [s, t1], [t1, t2], [t2, t], where t1 is first moment

at which αt1 ≥ 1√
d

, and αt2 is the first moment at which αt2 = 0.5. In the first interval, we have Eα ≤
OK(ι

√
d
(k∗−2)

). In the second interval, by Lemma 47, we have Eα ≤ OK

(√
ιv(α,t)

α3
t

√
d
−2

+ v(α, t)α/δ
)

.

For the first interval, since t ≤
√
d
k∗−2

ι , we have

∫ t1

r=s
Eαrdr ≤ OK(ι

√
d
−(k∗−2)

)(t1 − s) ≤ OK(1).

For the second interval, using u-substitution, we have

∫ t2

r=t1

Eαrdr ≤
OK(

√
ι)

d

∫ t2

r=t1

v(αr, r)

(αr)3
dr +

∫ t2

r=t1

OK(v(αr, r)αr/δ)dr

=
OK(

√
ι)

d

∫ αt2

α=αt1

1

α3
dα+

∫ αt2

α=αt1

OK(α2/δ)dα+OK(α2
t2)

=
OK(

√
ι)

d

(

1

2α2
t1

− 1

2α2
t2

)

≤ OK(1/δ).

For the third interval, observe from Lemma 47 that during the duration of this interval, 1 − αr(w) decays

exponentially with rate OK(δ). Thus, the length of this interval is at most OK

(

log(1/τ)
δ2

)

, so

∫ t

r=t2

Eαrdr ≤ OK

(

log(1/τ)

δ

)

.

Thus integrating, we obtain

log(ℓt,s(w))− log(ℓs,s(w))

k∗ − 1
=

∫ t

r=s

v(αr(w), t)

αr(w)
dr +OK(log(1/τ)/δ).

Plugging in the integration of the differential equation for log(αt(w)) yields

log(ℓt,s(w))

k∗ − 1
= log

(

αt(w)

αs(w)

)

+OK(log(1/τ)/δ).
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Multiplying both sides by k∗ − 1 and exponentiating yields

ℓt,s(w) =

(

αt(w)

αs(w)

)k∗−1

exp

(

OK

(

log(1/τ)

δ

))

as desired.

Lemma 50. For d large enough in terms of δ =
√

Ex(fρMF
t
(x)− f∗(x))2, we have

1− Eα′∼ρMF
t
(α′)k

∗ ≥ ΩK,Creg
(δ).

Proof. Observe that

Ex(f
∗(x))2 = Exσ(w

∗⊤x)σ(w∗⊤x) = qσ(1).

ExfρMF
t
(x)f∗(x) = ExEw′∼ρMF

t
σ(w′⊤x)σ(w∗⊤x) = Eα′∼ρMF

t
qσ(α

′).

Further

Ex(fρMF
t
(x))2 = ExEw,w′∼ρMF

t
σ(w⊤x)σ(w′⊤x) = Ew,w′∼ρMF

t
qσ(w

⊤w′).

Now for even k, we have

Ew,w′∼ρMF
t
(w⊤w′)k = Eα,α′∼ρMF

t
Eζ(αα

′ +
√

(1− α2)(1− α′)2ζ)k,

where ζ is 1√
d

-subGaussian. Thus by Minowski’s inequality, we have

Ew,w′∼ρMF
t
(w⊤w′)k ≤

(

(

Eα,α′∼ρMF
t
(αα′)k

)1/k
+
OK(1)√

d

)k

≤ Eα,α′∼ρMF
t
(αα′)k +

OK(1)√
d

=
(

Eα∼ρMF
t
αk
)2

+
OK(1)√

d
.

It follows that with qσ(z) =
∑

k qkz
k, we have

Ex(fρMF
t
(x)− f∗(x))2 = Ex(f

∗(x))2 + Ex(fρMF
t
(x))2 − 2Ef∗(x)fρMF

t
(x)

=
K
∑

k=k∗

qk

(

1k +
(

Eα∼ρMF
t
αk
)2

− 2Eα∼ρMF
t
αk

)

+
OK(1)√

d

=

K
∑

k=k∗

qk

(

1− Eα∼ρMF
t
αk
)2

+
OK(1)√

d

Now for all k > k∗, with 1− s := r := Eα∼ρMF
t
(α)k

∗

, using (⋆), we have

r
k
k∗ ≤ Eα′∼ρMF

t
(α′)k,
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so

(

1− Eα∼ρMF
t
αk
)2

≤
(

1− rk/k
∗
)2

=
(

1− (1− s)k/k
∗
)2

≤ (1− (1− sk/k∗)) = OK(s2).

So

Ex(fρMF
t
(x)− f∗(x))2 = Ex(f

∗(x))2 = OK,Creg(1− Eα∼ρMF
t
(α)k

∗

) +
OK(1)√

d
,

and thus for d large enough in terms of δ =
√

Ex(fρMF
t
(x)− f∗(x))2, we have 1 − Eα∼ρMF

t
(α)k

∗

=

OK,Creg(δ) as desired.

E.3 MF Convergence Analysis

Proposition 51 (Convergence of fρMF
t

to f∗). Fix any δ small enough, and let ι = δ6K
2
. For d large enough,

we have

T (δ) := argmin{t : Ex(fρMF
t
(x)− f∗(x))2 ≤ δ2} = OK(

√
d
k∗−2

δ−(k∗−1)).

We also have the following implication (which we will use for the analysis of Jmax and Javg) for any t ≤ T (δ)
and for any τ > 0:

Ew∼ρMF
t
[(α(w))k

∗−1
1(α(w) ≤ 1− τ)] ≤

√
d
−(k∗−2)

OK,δ

(

1

τOK(1)

)

.

Proof. First we need to prove by induction on t that for all t ≤ T (δ), the hypothesis (⋆) holds. First observe

that it holds at time 0, because

Pw∼Sd−1 [α(w) ≥ ι] ≤ exp(Θ(d/ι2)) ≤ ι

for d large enough. Suppose the hypothesis holds up to some time s. We need to show that it holds at time

s+ϵ for some ϵ. First note that for ϵ small enough, by the continuity of v(α, t) and d
dαv(α, t), the conclusion

of Lemma 47 and Lemma 48 still hold up to time t. To prove the hypothesis holds at time t, our approach

will be to non-constructively bound the interval of I ⊂ [0, 1] for which α0(w) /∈ I implies αt(w) /∈ [ι, 1−ι].
We will use the following claim.

Claim 52. Suppose (⋆) holds up to time t. For any τ ≤ 1/2 and γ ≤ 1−τ
2 , we have

Pw∼ρMF
t
[α(w) ∈ [γ, 1− τ ]] ≤ 2

γk∗−2

√
d
−(k∗−2)

exp

(

OK

(

log(1/τ)

δ

))

Proof. We will show that

Pw∼ρMF
t
[α(w) ∈ [γ, 2γ]] ≤ 1

γk∗−2

√
d
−(k∗−2)

exp

(

OK

(

log(1/τ)

δ

))

The claim will then follow by summing this bound over log2((1− τ)/γ) intervals.

63



Suppose we have some w and w′ with αt(w), αt(w
′) ∈ [γ, 2γ]. Since the conditions of Lemma 49

hold up to time t for any particle w̃ with α0(w̃) initialized between α0(w) and α0(w
′), by the mean value

theorem, we have that

αt(w)− αt(w
′) ≥

∣

∣α0(w)− α0(w
′)
∣

∣ min
w̃:α0(w̃)∈[α0(w′),α0(w′)]

(

αt(w̃)

α0(w̃)

)k∗−1

exp

(

OK

(

log(τ/(k∗ − 1))

δ

))

≥
∣

∣α0(w)− α0(w
′)
∣

∣

(

γ

α0(w′)

)k∗−1

exp

(

OK

(

log(τ)

δ

))

,

Thus since |αt(w)− αt(w
′)| ≤ γ, we have that

∣

∣α0(w)− α0(w
′)
∣

∣ ≤ 1

γk∗−2

(

α0(w
′)
)k∗−1

exp

(

OK

(

log(τ)

δ

))

.

We need to upper bound the probability over ρ0 of the set in which α0(w
′) and α0(w) can lie. By the

above calculation, the set which α0(w
′) and α0(w) lies in is contained in

Iλ :=

[

λ√
d
,
λ√
d
+

1

γk∗−2

(

λ√
d

)k∗−1

exp

(

OK

(

log(τ)

δ

))

]

for some λ. Recall that the distribution of α0(w) under w ∼ ρ0 is 1√
d

-subGaussian. Thus

Pw∼ρ0 [α0(w) ∈ Iλ] ≤
λk

∗−1

γk∗−2

√
d
−(k∗−2)

exp

(

OK

(

log(1/τ)

δ2

))

(

exp(−λ2)
)

≤ 1

γk∗−2

√
d
−(k∗−2)

exp

(

OK

(

log(1/τ)

δ

))

.

This proves the claim.

Plugging γ = ι and τ = ι into this claim yields that

Pw∼ρMF
t
[α(w) ∈ [ι, 1− ι]] ≤ 2

ιk∗−2

√
d
−(k∗−2)

exp

(

OK

(

log(1/τ)

δ

))

≤ ι,

where the second inequality holds for d large enough in terms of δ. This proves the inductive step.

Now to prove the convergence guarantee, a standard analysis of the ODE for α (see eg. [DNGL23]) now

yields that, for any w with α0(w) ≥ δ2√
d

, we have that

αt(w) ≥ 1− 1

2K

for t ≥ Θ(1)

δ2(α0(w))k∗−2 . This arises directly from the fact that Lemma 47 guarantees that for α ≥ δ2√
d

,

v(α, t) ≥ ΘK(δαk∗−1(1− α2)).

After that, it is clear that 1 − αt(w) decays exponentially fast (with rate Ω(δ)), so for t ≥ Θ(1)

δ(α0(w))k
∗−2 +

OK(log(1/δ)) = Θ(1)

δ(α0(w))k
∗−2 , we have 1− αt(w) ≤ δ/4.
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Now using the initial distribution of α0(w) with w ∼ ρ0, we have that an at least 1 − δ/4 fraction of

particles have initialization α0(w) ≥ OK( δ√
d
). Clearly once all these particles achieve 1−αt(w) ≤ 1−δ/4,

we will have loss at most δ. Thus occurs at some time at most

ΘK(1)

δ(δ
√
d
−1

)(k∗−2)
= OK(

√
d
k∗−2

δ−(k∗−1)).

This proves the main statement of the proposition. To prove the additional clause, fix τ . We have

Ew∼ρMF
t
[(α(w))k

∗−1
1(α(w) ≤ 1− τ)] =

∫ 1−τ

β=0
Pw∼ρMF

t
[(α(w))k

∗−1 ∈ [β, (1− τ)]dβ.

=

∫ 1−τ

γ=0
Pw∼ρMF

t
[α(w) ∈ [γ

1
k∗−1 , (1− τ)

1
k∗−1 ]dγ.

≤
∫ 1−τ

γ=0

2

γ
k∗−2
k∗−1

√
d
−(k∗−2)

exp

(

OK

(

log(1/τ)

δ

))

dγ

=
√
d
−(k∗−2)

exp

(

OK

(

log(1/τ)

δ

))∫ 1−τ

γ=0

2

γ
k∗−2
k∗−1

dγ

=
√
d
−(k∗−2)

exp

(

OK

(

log(1/τ)

δ

))

2(k∗ − 1)γ
1

k∗−1

∣

∣

∣

1−τ

0

=
√
d
−(k∗−2)

exp

(

OK

(

log(1/τ)

δ

))

.

Here the inequality follows from Claim 52 and the fact that (1 − τ)
1

k∗−1 ≥ 1 − τ
k∗−1 . This proves the

additional clause.

E.4 Proving Assumptions in Theorem 1 for Single-index Model

We need to check that the problem (f∗,Dx, ρ0) introduced in Section E.1 satisfies the Assumptions of

Theorem 1. Fix a desired loss δ, and let T (δ) be as in Proposition 51.

Local Strong Convexity.

Lemma 53 (Local Strong Convexity for SIM). If d is large enough, then for any t ≤ T (δ), we have for any

w with |ξt(w)− w∗ sign(ξt(w)⊤w∗)| ≤ 1
5K ,

D⊥
t (w) ⪯ −ΩK,Creg

(

√

L(ρMF
t )

)

.

Proof. For simplicity, let wt := ξt(w), let α := α(wt). Assume that α ̸= 1; if α = 1, we can take the limit

of the calculations below.

Recall that

D⊥
t (w) = ∇wν(wt, ρ

MF
t )

It is evident that ν(wt, ρ
MF
t ) is in the direction w̃ :=

√
1− αw∗ − αw⊥, where w⊥ =

P⊥
w∗wt

∥P⊥
w∗wt∥ , and thus

ν(wt, ρ
MF
t ) = v(α, t)

w̃√
1− α2

.
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We will consider the quadratic form y⊤D⊥
t (w)y for y ∈ span w̃ and for y ⊥ span(ξt(w), w

∗). It

suffices to show that for both such vectors we have y⊤D⊥
t (w)y ≤ −ΩK,Creg

(

√

L(ρMF
t )
)

∥y∥2.

Lets start with the first, letting y = w̃. We have

D⊥
t (w)y =

dν(w, ρMF
t )

d(y⊤w)

=
v(α, t)√
1− α2

dw̃

d(y⊤wt)
+ v(α, t)w̃

d(1− α2)−1/2

d(y⊤wt)
+

(

w̃√
1− α2

)

dv(α, t)

d(y⊤wt)

Now
(

w̃√
1− α2

)

dv(α, t)

d(y⊤wt)
=

(

w̃√
1− α2

)

dv(α, t)

dα

dα

d(y⊤wt)
= w̃

dv(α, t)

dα
.

Next,

d(1− α2)−1/2

d(y⊤wt)
=
d(1− α2)−1/2

dα

dα

d(y⊤wt)

=
−α

(1− α2)3/2
1√

1− α2

=
α

(1− α2)
.

Finally,

dw̃

d(y⊤wt)
= 0

Thus in summary, putting these three terms together we have

y⊤D⊥
t (w)y = v(α, t)

α

(1− α2)
+
dv(α, t)

dα
.

By Lemma 48, we have for y = w̃,

y⊤D⊥
t (w)y ≤ −ΩK,Creg

(

√

L(ρMF
t )

)

.

Now we consider y ⊥ w̃, wt. We have

y⊤
dν(wt, ρ

MF
t )

d(y⊤wt)
= y⊤w̃

d
(

v(α,t)√
1−α2

)

dy⊤w
+

v(α, t)√
1− α2

y⊤
dw̃

d(y⊤wt)

= 0 +
v(α, t)√
1− α2

y⊤
dw̃

d(y⊤wt)

= −α v(α, t)√
1− α2

y⊤
dw⊥

d(y⊤wt)

= −α v(α, t)√
1− α2

y⊤
y√

1− α2

= −αv(α, t)
1− α2

∥y∥

≤ −ΩK,Creg

(

√

L(ρMF
t )

)

.

Here the final inequality follows from Lemma 47.
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Proving Assumption Stability for SIM. First we will need the following lemma. Recall that Jh denotes

the Jacobian of a multivariate function h.

Lemma 54. For any w and s ≤ t ≤ T (δ), we have

∥

∥Jξt,s(ws)
∥

∥ ≤ OK

(

(

αt(w)

αs(w)

)k∗−1
)

exp

(

OK

(

1

δ

))

.

Proof. It suffices to check that this holds for times where αt(w) ≤ 1
5K , because after that, by Lemma 48,

D⊥
t (w) is negative definite, and so

∥

∥Jξt,s(ξs(w))
∥

∥ can only decrease.

Claim 55. In the setting of of the lemma, for any w with αt(w) ≤ 1
5K , we have

∥

∥Jξt,s(ξs(w))
∥

∥ ≤ OK

(

dαt,s(z)

dz

∣

∣

∣

∣

z=αs(w)

)

+ 1.

Proof. Let ws = ξs(w). Without loss of generality assume w⊤
s w

∗ > 0 such that αs(w) = ξs(w)
⊤w∗. Let

w⊥ :=
P⊥
w∗ws

∥P⊥
w∗ws∥ . We have

ξt,s(ws) = αt,s(ws)w
∗ +

√

1− αt,s(ws)2w⊥.

Thus

Jξt,s(ws) = Jαt,s(ws)(w
∗)⊤ +

−αt,s(ws)
√

1− αt,s(ws)2
Jαt,s(ws)(w⊥)

⊤ +

√

1− αt,s(ws)2
√

1− αs(ws)2
P⊥
w∗ ,

and so, since αr(w) is increasing for s ≤ r ≤ t if αs(w) ≥ 1√
d

(see Lemma 47) and αt(w) ≤ 1 − 1
5K , we

have

∥

∥Jξt,s(ws)
∥

∥ ≤ OK

(

∥Jαt,s(ws)∥
)

+ 1.

The conclusion now follows from combining this claim and Lemma 49.

We are now ready to bound Jmax and Javg.

Lemma 56. For any t ≤ T (δ), we have

Jmax ≤ OK,δ(
√
d
2(k∗−1)

)

Javg(τ) ≤ OK,τ,δ(1/T (δ)).

Proof. By Lemma 54, for all w, we have

∥J⊥
t,s(w)∥ = OK,δ

(

(

αt(w)

αs(w)

)k∗−1
)

(E.4)

We bound this in two cases. Let ι = δ6K
2
. In the first case, if αs(t) ≥ ι√

d
, then this is at mostOK,δ(

√
d
k∗−1

)

as desired. In the second case, if αs(w) ≤ ι√
d

, then we can show that αt(w) never exceeds 2αs(w). Indeed,

one can inductively show by Equation (E.2) that for s ≤ r ≤ t, we have v(αr, r) ≤ ι2
√
d
−(k∗−1)

. Since
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T (δ) ≤ 1
ι

√
d
k∗−2

, we have αt(w) ≤ 2αs(w). Thus in either case, we have ∥J⊥
t,s(w)∥ = OK,δ(

√
d
k∗−1

).
The desired bound on Jmax is immediate.

To bound Javg we have to be more careful, and we will use an additional averaging lemma (Lemma 57)

which allows us to show that when a set of neurons w are well-dispersed on the sphere at some time s, then

on average over w, H⊥(w,w′) is small for any w′.

Ew∼ρ0∥Jt,s(w)H⊥
s (w,w′)v∥1(ξt(w) /∈ Bτ )

= Eα∼ρMF
s
Ew∼ρ0|αs(w)=α∥Jt,s(w)H⊥

s (w,w′)v∥1(ξt(w) /∈ Bτ )

≤ Eα∼ρMF
s
1(αt,s(α) ≤ 1− τ) sup

w|αs(w)=α
∥Jt,s(w)∥Ew∼ρ0|αs(w)=α∥H⊥

s (w,w′)v∥

≤ Eα∼ρMF
s
1(αt,s(α) ≤ 1− τ)OK,δ

(

αt(w)

αs(w)

)k∗−1(αt(w)

αs(w)

)k∗−1
(

αs(w)
k∗−1 +

√
d
−(k∗−1)

)

Here the first inequality follows from the fact that the event ξt(w) /∈ Bτ is equivalent to the evenαt,s(αs(w)) ≤
1− τ . The second inequality is derived from (E.4) and Lemma 57.

Now to bound this expectation, recall the two cases from earlier in the lemma: αs(w) ≤ ι√
d

, and

αs(w) ≥ ι√
d

. Recall that in the first case, αt(w) ≤ 2αs(w). Thus we have

Eα∼ρMF
s
1(αt,s(α) ≤ 1− τ)OK,δ

(

αt(w)

αs(w)

)k∗−1(αt(w)

αs(w)

)k∗−1
(

αs(w)
k∗−1 +

√
d
−(k∗−1)

)

≤ OK,δ

(√
d
(k∗−1)

)

+ Ew∼ρMF
t
OK,δ

(

α(w)k
∗−1
)

1(α(w) ≤ 1− τ).

The additional implication in Proposition 51 bounds this second term, yielding

Ew∼ρ0∥Jt,s(w)H⊥
s (w,w′)v∥1(ξt(w) /∈ Bτ ) ≤ OK,δ

(√
d
(k∗−1)

)

+
√
d
−(k∗−2)

OK,δ

(

1

τOK(1)

)

= OK,δ,τ (1/T (δ)).

This proves the lemma.

Lemma 57. For any distribution µ over w, for and w′, v ∈ S
d−1, with ws := ξs(w), we have

sup
w′,v

Ew∼µ∥H⊥
s (w,w′)v∥ ⪅ sup

∥u∥=1

√

Ew∼µ(ws
⊤u)2(k∗−1)∥v∥

+ sup
∥u∥=1

√

Ew∼µ(ws
⊤u)2(k∗−2)(ws

⊤v)2.

In particular, if the distribution of ws is rotationally symmetric in some set of dimensions, and has norm at

most α if the remaining dimensions, then

sup
w′,v

Ew∼µ∥H⊥
s (w,w′)v∥ ≤ OK

(

αk−1 +
√
d
−(k∗−1)

)

.

Proof. [Proof of Lemma 57] By Cauchy-Schwartz,

Ew∼µ∥H⊥
s (w,w′)v∥ ≤

√

Ew∼µv(H⊥
s (w,w′))⊤H⊥

s (w,w′)v.
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Let us expand H⊥
s (w,w′). With ws := ξs(w) and u := ξs(w

′), we have

H⊥
s (w,w′) =

K−1
∑

k=k∗−1

P⊥
ws

(

c(w,w′)(ws
⊤u)kI + c′(w,w′)(ws

⊤u)k−1uws
⊤
)

P⊥
u ,

where c(w,w′), c′(w,w′) ≤ Creg. Thus we have

H⊥
s (w,w′)⊤H⊥

s (w,w′)

⪯
∑

k

2Creg(ws
⊤u)2kP⊥

u

+ 2Creg(ws
⊤u)2(k−1)P⊥

u wsu
⊤P⊥

ws
uws

⊤P⊥
u

⪯ 2Creg(ws
⊤u)2(k

∗−1)I

+ 2Creg(ws
⊤u)2(k

∗−2)wsws
⊤,

and thus

Ew∼µv(H
⊥
s (w,w′))⊤H⊥

s (w,w′)v ≤ 2Creg(ws
⊤u)2(k

∗−1)∥v∥2 + 2Creg(ws
⊤u)2(k

∗−1)(v⊤ws)
2.

Taking a square root yields the desired result. The second statement follows observing that Ew[(u
⊤ws)

k] =

Ok(
√
d
−k

) if u is in the span of the rotationally invariant directions, because u⊤ws
1√
d

- subGaussian.

Proof. [Proof of Theorem 2] Fix a desired loss δ, and let T (δ) = OK(
√
d
k∗−2

δ−(k∗−1)) be as in Proposi-

tion 51, such that

Ex(fρMF
t
(x)− f∗(x))2 ≤ δ2. (E.5)

Let us check the conditions of Theorem 1. First, the regularity conditions in Assumption Regularity

trivially hold for Creg = OCSIM
(1) by our choice of Gaussian data and σ.

By Lemma 56, up to time T (δ), (f∗, ρ0,Dx) satisfies Assumption Stability with Jmax = OK,δ(d
2(k∗−1))

and Javg(τ) = OK,δ,τ (1/T (δ)).
Observe that by Lemma 53, (f∗, ρ0,Dx) is (c, τ) local strongly convex up to time T (δ) for c =

ΩK,Creg(1), τ = 1
5K . Further, since the problem has rotational symmetry in all directions orthogonal to

the w∗ axis, the structured condition holds because by the smoothness of ∇wν(w, ρ
MF
t )P⊥

w in w, and the

fact that at ∇ξ∞(wi)ν(ξ
∞(wi), ρ

MF
t )P⊥

ξ∞(wi)
(which approximatesD⊥

t (i) toCregτ error) must be completely

in the space orthogonal to w∗, and is rotationally symmetric in that space. Thus Assumption LSC holds.

Finally, the symmetry conditions in Assumption Symmetry trivially hold because the data is Guassian,

and there is a reflection symmetry between w∗ and −w∗.

Now suppose n ≥ d11k
∗ ≥ J8

max(T (δ))
6d4 and m ≥ d13k

∗ ≥ J10
max(T (δ))

6d4 such that

ϵn + ϵm =
log(n)d3/2√

n
+

log(mT )max(d1/2Jmax, d
3/2)√

m
≤ 1

dJ4
maxT

3
.

Thus for d large enough, the condition on ϵn+ϵm in Theorem 1 holds. Thus all the assumptions of Theorem 1

hold, and the result guarantees that for t ≤ T (δ), with high probability over the draw of the data and of the

neural network initialization, we have with λ = min(τ, δ),

Ex(fρMF
t
(x)− fρ̂mt (x))

2 ≤ tJmax(ϵm + ϵn) exp

(

O(tJavg(λ))

cλ− Ω(Javg/λ)

)

≤ td2(k
∗−1)(ϵn + ϵm)OK,δ(1).
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Combining this with Equation (E.5), we have that

Ex(f
∗(x)− fρ̂mt (x))

2 ≤ 2Ex(fρMF
t
(x)− fρ̂mt (x))

2 + 2Ex(fρMF
t
(x)− f∗(x))2

≤ 2δ2 + 2td2(k
∗−1)(ϵn + ϵm)OK,δ(1) ≤ 3δ2.

This proves the theorem.
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F Full Details of Simulations

Name Target Function Activation/Network Design LSC? Symmetric? Javg assm? Cρ∗

He4 He4(x
⊤e1) σ = He4 Yes Yes Yes 1

Circle Ew∼S1He4(x
⊤w) σ = He4 No Yes Yes ≈ 24

Misspecified 0.8He4(x
⊤e1) + 0.6He6(x

⊤e1) σ = He4 + He6 No No Yes ≈ d4

Random6,6 He4 link, 6 random teachers in R
6 σ = He4 Yes No Yes? 6

Staircase 0.25x1 + 0.75XOR4(x[4]) σ = SoftPlus, 2nd layer ±8 Yes No No ≈ 28

XOR4 XOR4(x[4]) σ = SoftPlus, 2nd layer ±8 Yes No ? ≈ 24

Table 1: List of problem settings we empirically investigated.

F.1 Experimental Design

For each problem of interest, we simulated the training dynamics for several different widthsm ∈ [212, 215]).
We let M be twice the largest value of m. Crucially, we initialized all the networks to be a subnetwork of

the largest width network. Further, we used the same training data and training procedure (hyperparameters,

batch size, batch selection, etc.) for all values of m and M . We used the width M network as a proxy for

the mean-field limit, and studied how the neurons in the smaller networks differed in their trajectories from

their counterparts in the largest network. All experiments are repeated for 3 times. Source code is available

at https://github.com/margalitglasgow/prop-chaos.

Training procedure. We optimized the neural network as follows.

1. We trained the models via mini-batch SGD with n = 216 total data points, and a batch size of 8196.

2. We used a step size of 0.01 (or occasionally smaller) for the problems with Gaussian data, and 0.05
for the problems with Boolean data. This was mainly because the Gaussian data had higher moments,

and hence the loss occasionally exploded under large step size.

3. For the Gaussian single-/multi-index problems we used a Hermite activation function and all-1 second-

layer weights, whereas in the Boolean experiments we used the SoftPlus activation with temperature

16 (which is a smooth approximation of ReLU), and we fixed the 2nd layer weights to ±Ck with

equal probability, where Ck = 2k/
√
k for the k-parity problem.

Analysis procedure. We made the following measurements along the training dynamics.

1. At each epoch, we computed the function error between the networks of width m and M , using a

randomly sampled dataset of size n.

2. For each neuron i in the width-m network, we computed ∥∆̂t(i)∥ as the norm of the difference

between the neuron in the width-m network and the corresponding neuron in the width-M network.

3. We plot (a) the prediction risk curves, (b) the function error over time, and (c) Ei∥∆̂t(i)∥ over time.

In all the plots of the function and parameter error, we scaled up the error by the width m for better

visualization.
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