arXiv:2504.05426v2 [stat. ML] 14 Jun 2025

Submitted to Statistical Science

Survey on algorithms for multi-index models

Joan Bruna and Daniel Hsu

Abstract. We review the literature on algorithms for estimating the index
space in a multi-index model. The primary focus is on computationally effi-
cient (polynomial-time) algorithms in Gaussian space, the assumptions under
which consistency is guaranteed by these methods, and their sample com-
plexity. In many cases, a gap is observed between the sample complexity
of the best known computationally efficient methods and the information-
theoretical minimum. We also review algorithms based on estimating the
span of gradients using nonparametric methods, and algorithms based on fit-
ting neural networks using gradient descent.
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1. INTRODUCTION

In a multi-index model for data (x,y) from R? x R, the
regression function f(x) := E[y | x = ] is assumed to
depend only on a (possibly low-rank) linear transforma-
tion of the input:

(D) f(x)=Ely [x=1] = g(Lz)

for some rank-r matrix L € R"*¢ whose row space
ran(L") is called the index space, and some function
g: R" — R called the link function. When the number
of variables d is large, it is common to assume that r < d,
so that the linear map = +— Lz is viewed as a form of di-
mension reduction that captures the information sufficient
to optimally predict the response y from x under a mean
squared error criterion.! (We postpone issues of identifia-
bility for now.) The special case where r = 1 is known as
the single-index model.

The multi-index model is a popular model with benign
high-dimensional behavior, with a rich and long history
in the statistics literature, eg [BC64, BD81, CR84, Li91]
and references therein. More recently, it has also gained
interest as a model for studying the ability of machine
learning methods to perform “feature learning”, ie to au-
tomatically discover meaningful low-dimensional struc-
ture within high-dimensional data. The model in (1) is a
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A potentially broader aim is to identify a linear map L such that
y AL x| Lx. Goals such as this (as well as estimation goals concerning
the model in (1)) are the subject of the subfield of statistics known as
Sufficient Dimension Reduction [Li91], from which many of the meth-
ods and ideas discussed in this article are derived.

special case of the more general model for (x,y) where

2 f(z) =g(®(x))

and ®: R? — R” is a (possibly non-linear, but morally
simpler than the original f) feature map. Feature learning,
then, refers to the estimation of the feature map ® from
data. The feature map may serve an explanatory role in
understanding a predictor of y from x, in which case fea-
ture learning is an end in itself. Additionally, separating
the tasks of learning ® and learning g may be method-
ologically preferable; in such a scenario, feature learning
is the first part of a two (or more) stage learning process.

Many recent works, under the guise of “multi-task
learning” or “meta-learning”, instantiate the model in (2)
separately for each of multiple data sources, but constrain
the feature map ® to be shared across all models. For in-
stance, in a computer vision context, the data sources may
correspond to different object detection tasks in images;
the shared feature map may give a semantic representa-
tion of images that is broadly useful for vision. The data
for a single task may be too specialized and/or insufficient
to identify/estimate such a feature map, but the pooling of
data sources across a diverse collection of tasks may pin
down the desired image representation ®. It has been hy-
pothesized that large neural networks trained on diverse
data sets may be encode such feature maps in the inter-
mediate layers of the network, and hence feature learning
has been considered as a possible explanation for the suc-
cess of neural networks in practice. See, e.g., [DHK21]
for more discussion of this compelling motivation.

The goal of this article is to survey algorithms for
estimating the index space ran(L") in the multi-index
model (1). We do not attempt to be exhaustive, nor do we
attempt to present the strongest or most general possible
methods or results. Rather, we aim to highlight some key
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ideas and methods from the literature, and to draw con-
nections to the recent literature on gradient-based train-
ing of neural networks and statistical-computational gaps
in high-dimensional inference.
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2. PRELIMINARIES
2.1 Identifiability

We first observe that the model (1) needs an additional
‘minimality’ condition to be well-defined; hereafter, we
will view (1) as the representation of f with smallest rank
r, which will be denoted the intrinsic dimension of f. We
can assume without loss of generality that L is orthogo-
nal, i.e., LT € Stiefel(d, r), the (compact) Stiefel manifold
of d x r matrices with orthonormal columns.

It will be also convenient to formally define a multi-
index model in terms of its generative process: the
joint distribution 7 of (x,y) can be factorised into ‘un-
informative’ and ‘informative’ components 7(x,y) =
mo(L1x)G(Lx,y), where G € P(R" x R) is a squared-
integrable (r + 1)-dimensional probability measure sat-
isfying G # G, ® Gy, and where G, and G, denote
respectively the marginal of G along the first r vari-
ables and the last variable. The link function g is thus
the conditional expectation g(z) = Eg[y|z = z]. For in-
stance, a deterministic multi-index model is defined as
G(z,y) = Gz(2)d(y — 9(2)).

We say a linear subspace W C R? is a mean dimension-
reduction subspace for (x,y) if y 1L f(x) | Pywx where
Pyw is a linear projector for W. (Recall that f(x) := E[y |
x = z] is the regression function.) Let W be the inter-
section of all mean dimension-reduction subspaces for
(x,y). If Wy itself is a mean dimension-reduction sub-
space, then we say that W is the central mean subspace
(CMS) for (x,y). The existence of the CMS for y | x is
guaranteed under rather mild conditions on the support
of x [CLO2]. For example, the CMS exists if the support
of x is open and convex. It is therefore natural to consider
the multi-index model (1) under conditions that ensure the
existence of the CMS, and then to let L be a matrix whose
rows form an orthonormal basis for the CMS. This setup
ensures the identifiability of W :=ran(L"). We adopt this
setup throughout the survey (possibly with additional as-
sumptions that also imply the existence of the CMS).

We will be interested in this question from two differ-
ent perspectives: first, by viewing the multi-index model
as a goal on itself, we will study dedicated algorithms,
culminating in ‘optimal’ methods, in a sense that will be
precised later. Next, by viewing multi-index models as a

template for ‘feature learning’, we will describe the be-
havior of a ‘canonical’ high-dimensional learning algo-
rithm, notably gradient-descent methods on simple neu-
ral networks, when fed data generated by a multi-index
model.

2.2 Information-Theoretic Estimation Limits

Under general conditions, and assuming that the previ-
ous identifiability condition, one expects that the required
number of samples to estimate W = ran(L") up to er-
ror € will be of order n = O(dr/€?), by standard cover-
ing arguments [DH24, DPVLB?24]. Indeed, this estimator
is constructed by building an appropriate e-net over the
manifold of r-dimensional subspaces W7,..., Wy in R,
of dimension ~ dr, and choosing the subspace of high-
est likelihood based on the observed data. This estimator
is however generally intractable, since it amounts to op-
timizing a non-convex objective. The natural question is
therefore how to design efficient algorithms to estimate
the subspace, and what is their required sample complex-
ity. This will be the focus of the next sections.

2.3 Notations

We use bold face symbols (e.g., x, z) to denote ran-
dom variables. Let v denote the standard Gaussian dis-
tribution on the real line, and ~4 denote the standard
Gaussian distribution in R?. We consider the Lebesgue
space L?(R?,~,) and write inner products as (f,g)-, =
Ezr,f(z)g(z)]. Let Hy: RY — (RH)®F denote the
order-k (normalized probabilist’s) Hermite tensor [McC18],
given by

k ok
(-1)"V ’Yd(“), wER?
VED va(u)
When d = 1, Hy, becomes the degree-k (normalized prob-
abilist’s) Hermite polynomial; the normalization is in
L*(R,7), ensuring E,[hi(z)hi(z)] = 1{k = [}. We
use Stiefel(d,r) to denote the Stiefel Manifold of d x r
orthogonal matrices, and Grassman(d,r) for the Grass-
mann Manifold of r-dimensional subspaces of R.

Hy(u) =

3. THE GAUSSIAN SETTING

We will first describe a general framework to estimate
the support that makes strong assumptions on the input
data distribution 7, but in exchange enables very general
choices for the link function. In particular, the Gaussian
setting where x ~ 4 will take centerpiece, even if some
of the methods described below extend to more general
settings.” As discussed in Section 2.1, this guarantees the
identifiability of W := ran(L"). For simplicity, we also

2The remarkable work of [CKK+24a] uses a smoothed analysis
framework to analyze algorithms for learning multi-index models un-
der worst-case distributions on x. In their framework, the goal of es-
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assume g is smooth (though it will be clear that only weak
derivatives are needed). These assumptions enable fairly
simple moment-based estimators of IV that are computa-
tionally tractable.

3.1 Linear estimator

We initiate our survey with arguably the simplest es-
timator for the support in the single-index case (where
r = dim(W) = 1). The following linear estimator was
studied by [Bri82]: the estimate of W from an i.i.d. sam-
ple (x1,¥1),- .., (Xn,yn) is the line spanned by

1 n
3) V= Z}yixz-.

(This estimator is related to the “Average Derivative Esti-
mator” of [HS89], as the analysis below will make clear.)
In this case, we may write L = u" for a unit vector u €
Sd=1 .= {y € R%: ||v||a = 1} that spans . By Stein’s
lemma [Ste81] and the chain rule,

E[V] = E[yx] = E[f(x)x]
= E[V/f(x)] = E[g' (u"x)]u
=E[g'(2)]u

where z ~ v is a standard normal random variable. The
mean of v is therefore always in W. Moreover, if the ex-
pected derivative of ¢ is non-zero—i.e., E[¢'(z)] # 0—
then the law of large numbers implies the consistency
of the linear estimator for estimating . Indeed, using
the rotational symmetry of the Gaussian measure, we can
assume w.l.o.g. that y = g(x1), and thus E[||yx|]?] =
O(1) + (d — 1) ~ d, leading to
B[ — E[¥]J
IE[]II?
indicating that n > d samples are sufficient to obtain an
accurate estimate in this setting of E[¢'(z)] # 0. For a

more precise statement we refer the reader to [DPVLB24,
Lemma F.11].

Y

Né
n

3.2 Noisy one-bit compressed sensing

[PV12] studied the linear estimator in the context of
noisy one-bit compressed sensing, where the aim is to re-
cover a signal vector u using linear measurements u'x
that are quantized, say, to values in {—1,1}. A natu-
ral “noise-free” variant of this problem assumes y =
sign(u"x). More generally, the measurements may be cor-
rupted by noise in a way such that Ely | x] = g(u"x)
for some unknown function g: R — [—1,1], so there is

timation is to compete against smoothed target functions. Also, the
works of [KSV24, CKK+24b] consider learning in the presence of
distribution-shift, where the distribution of x may differ from Gaus-
sian at “test time”.

some chance that y # sign(u'x). For example, if the
sign is flipped independently with a constant probabil-
ity n € [0, 1], then g(z) = (1 — 2n) sign(z). (This special
case was studied by [Ser99] under the guise of PAC learn-
ing homogeneous half-spaces with random classification
noise under spherically symmetric distributions.) The re-
quirement that E[¢’(z)] # 0 can be regarded as a mini-
mum signal strength condition for the linear estimator to
work. For example, this is satisfied by strictly monotone
link functions like ¢g(z) = tanh(z). (Note that it is differ-
ent from assuming Pr[y # sign(u'x)] # 1/2.)

In compressed sensing, it is often assumed that the sig-
nal u comes from a structured set, say, K C B?, where B¢
is the d-dimensional Euclidean unit ball. For example, K
may be the set of sparse vectors, or vectors with low £!-
norm. [PV12] reinterpret the linear estimator as being the
line spanned by

A RS
“4) a:= argmax<u,n2yixi>,

ueK i—1

with K = B?; they propose using the structured set K in
(4) when one has the prior knowledge u € K. Under the
assumption E[¢'(z)] # 0, they show that the sample size
m needed by this modified linear estimator to accurately
estimate u scales only with (the square of) the Gaussian
mean width w(K) of K, which can be much smaller than
the dimension d. For example, if K = {v € R%: ||v||s <
1, |lv]j1 < /s}, then w(K) = O(y/slog(2d/s)). Further-
more, if K is convex, then optimization problem in (4) is
a convex optimization problem, which can be solved effi-
ciently under fairly mild conditions on K.

In summary, the assumption E[¢’(z)] # O enables ef-
ficient estimation methods with a rate matching the
information-theoretic bound, and are thus ‘optimal’ in
this sense of sample complexity. The natural question is
then to understand how to proceed when this property
does not hold.

3.3 Principal Hessian Directions

For the general multi-index case (where r > 1 is al-
lowed), [Li92] proposed the “Principal Hessian Direc-
tions” (PHD) estimator, which in the present setting with
normal x, is defined by the span of the eigenvectors cor-
responding to the 7 largest (in magnitude) eigenvalues of

—~ 1<
5 M:.=— 7 1;—] .
(5) n;ly(xx d)

Using (the second-order version of) Stein’s lemma and the
chain rule again,

—

E[M] = Efy(xx" — I3)] = E[f (x) (xx" — 14)]
=E[V2f(x)] = L'E[V?¢(L"x)]L
= L'E[V?%¢(z)|L
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where z ~ -, is now an r-dimensional standard normal
random vector. The range of the mean of M is therefore
a subspace of W. If, additionally, the expected Hessian
E[V2g(z)] is non-singular, then the range of E[ﬁ] is, in
fact, equal to W'; we say that the estimator is exhaustive
in this case. When PHD is exhaustive, the law of large
numbers implies that it is a consistent estimator of W.
Again, one can verify [MM18, LL20] that under this non-
singular assumption (playing the analog of the moment
assumption E[¢'(z)] # 0 in the linear case), and in the
single-index setting, the required sample complexity to
recover an accurate estimate is n = ©(d), with a constant
that depends on the link function.

3.4 Application: Learning Convex Concepts

A dimension-reduction technique of [Vem10] for PAC
learning low-dimensional convex concepts turns out to
be a special case of PHD. Suppose f(z) =1{z € K}
for some convex set ' C R¢ whose supporting hyper-
planes’ normal vectors span W. In other words, determin-
ing membership of z in K is equivalent to checking mem-
bership of Pyyx in W. The goal is to learn a hypothesis
h: R% — {0,1} with low error rate Pr[h(x) # f(x)]. If
K is a full-dimensional convex set, then W = R%, and the
problem appears to be computationally intractable in gen-
eral (see, e.g., [KOSO08]). However, if dim(W) is small,
then dimension reduction can be used to reduce the com-
putational difficulty.

Assume for simplicity that X N W is a symmetric con-
vex body in W with positive probability mass. First, since

o~

y is {0, 1}-valued, we can write E[M] as
E[M] = Ely (xx” — 1)) = Ely]Epex” — I y =1].

Furthermore, we have Ely| = Pr[f(x) = 1] # 0 by as-
sumption. If v € W+ N S9!, then

oTE[M]o = E[y](E[(v'x)* |y = 1] — 1)
= E[y](E[(v"x)?’] = 1) =0
since v"x L y. Moreover, for v € W N S41,
oTE[M]v = E[y)(E[(v"x)? [y = 1] ~ 1)
=Ely](var(v'x |y=1)—1)<0

since the variance of a truncated standard normal distri-
bution is strictly less than one; see [KSV24, Appendix B
and Appendix C] for quantitative bounds. This shows that
the range of E[y(xx" — ;)] is precisely W. Projecting
the data to the PHD subspace reduces the computational
difficulty of learning convex concepts (say, using the gen-
eral polynomial regression technique of [KOSOS8]), be-
cause one now only has to work in r-dimensional space
as opposed to the original d-dimensional space.

3.5 The Information Exponent for Single-Index
Models

An important limitation of the linear and PHD estima-
tors is that they may be non-exhaustive depending on the
link function. For example, g(z) = 22 (as considered in
the “phase retrieval” problem) has E[¢'(z)] = E[2z] = 0,
so the linear estimator is non-exhaustive in this case.
And g(z) = 2% — 3z has E[¢(z)] = E[32? — 3] = 0 and
E[V2g(z)] = E[62] = 0, so both the linear and PHD esti-
mators are non-exhaustive in this case.

At this point, it is apparent that there should be a gen-
eral principle at play that relates a generic estimation pro-
cedure with a structural property of the link function,
the number of vanishing moments of the form E[yp(x)]
where p is a certain polynomial family.

Let us now illustrate this relationship by considering a
natural generic strategy, namely performing Maximum-
Likelihood Estimation via gradient-ascent. For that pur-
pose, let x ~ 74, and y = g(0ix) + &, where 0, € S4_1 is
the planted direction and ¢ is a Gaussian noise indepen-
dent of x. Given iid samples {(x;,y;)}; from this model,
the MLE estimator in the parametric class 0 — y|x =
N(g(67x), 1) is proportional to

A 1
(6) L(o) =~ Z(y,- —g(0xy))%.
7
It is instructive to consider the population limit of this em-
pirical landscape, given by

(7 L(0) :=E[lg(01x) — g(6"x)*] + E[€°] .

Denoting gg(x) = g(0™x) and using the rotation symme-
try of the Gaussian measure, this landscape is, up to a
constant, equivalent to the correlation (gg, gs. )~,- Clearly,
this Gaussian inner product is only a function of two (cor-
related) scalar Gaussian variables, in the span of 0, 6,.. By
parametrizing them as z ~ 1 and Z = mz + v 1 — m2w,
with z, w ~ 7, independent and m = 076,., we obtain that

(8) <99ag(9*>’yd = <g7Amg>’Yl ’
where, for m € [—1,1], A, is the Ornstein-Uhlenbeck
(OU) semigroup given by

©) Amg(z) = Ey[g(mz + V1 —m2w)] .

This commutative semigroup jointly diagonalises in L?(RR, ),

with eigenfunctions given by Hermite polynomials {hy, }
satisfying A,, hi, = m”hy,. This orthogonal structure turns
out to be sufficient to provide an explicit description of
the geometry of the MLE landscape above. Indeed, by
decomposing the link function g € L?(R,~) using this
Hermite basis, g = ), axhy, we obtain

(10) (99,90.) = Zazmk .
k
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This representation of the loss reveals two important
properties: on the one hand, thanks to the rotational in-
variance of the gaussian measure, this high-dimensional
landscape is in fact only a function of a single scalar, the
overlap m = 0"0,. Additionally, not only is this landscape
secretly one-dimensional, it also has a particularly simple
topology: thanks to the fact that £(m) := Y, a2m” sat-
isfies ¢/(m) > 0 for m > 0, there is a single saddle point
at the equator {0; m = 0} within the upper hemisphere
{6;m > 0}; in particular, the loss has a single maximiser
(which is global) . From (10), one can also deduce that the
order of the equatorial saddle is given by the index [* of
the first non-zero coefficient oy, — precisely the number
of vanishing moments of g, and referred as the informa-
tion exponent of g in [AGJ21] (or order of degeneracy in
[DH18]).

As a result, one should expect that from a random ini-
tialisation 0y ~ Unif(Sg_1) satisfying mo > 0 (which
holds with probability 1/2), a local method such as
(projected) gradient ascent should converge towards the
‘North pole’ 6, in the population limit. Beyond this qual-
itative behavior, the effect of the high-dimension is felt
once one tries to quantify this convergence in presence
of only a finite number of samples. Indeed, a typical ini-
tialisation 6y has correlation mg ~ 1/+/d, indicating that
the gradient dynamics will be initialized at a neighbor-
hood of the saddle point — the so-called mediocrity zone.
Now, we can view the empirical landscape (7) as a ‘noisy’
perturbation of L, in which |[VL(0) — VL(6)| ~ \/g
uniformly over # under mild smoothness assumptions
[MBM17]. The empirical landscape will thus be success-
fully optimized whenever the signal gradient ‘strength’,
of order ~ m} ' ~ d~("=1/2_ dominates the empirical
fluctuations, of order y/d/n. In other words, whenever
n > d'", gradient methods will successfully optimise the
MLE objective.

This analysis was put forward in the seminal works of
Ben Arous, Gheissari and Jagannath [AGJ21], as well as
Dudeja and Hsu [DH18], using slightly better algorithms.
Specifically, [AGJ21] considered online SGD, which re-
places the uniform gradient concentration with a sharper
martingale analysis along the trajectory, leading to a slight
improvement in the rate, to O(d'" ~') 3. On the other hand,
[DH18] show that only two steps of a “gradient iteration”
suffices:

~ G -~ G -~
60 — 01 — 92 R
where
1

b= GO = 15E @),

VF..(0),

3The cases I* = 1 and [* = 2 yield rates of O(d) and O(dlog d)
respectively. This rate follows by studying the growth of a polynomial
ODE of the form = (1 — m2)ml ~1, which behaves differently for
*>2.

and F is the orthogonal projection of the correlation onto
the {-th harmonic, ie F;(0) := 1 3" | y;hy(07x;). We re-
mark that the previous estimation procedure can be ex-
tended even in the setting where the information exponent
* is unknown, via a correlation-based goodness-of-fit cri-
terion [DH18].

Finally, these improvements culminated in Damian et
al. [DNGL23], who used a landscape smoothing proce-
dure first introduced in the physics literature [BCRT20],
akin to the partial trace estimation from tensor methods
[Hop18]. While the PHD estimator (5) consists in extract-
ing the principal eigenvectors of the matrix ﬁ, Damian et
al consider instead the empirical tensor

~ 1
11 T:.=— iH* i)
(1D n;y 1 (i)

where Hp(z) is the k-th order Hermite tensor. In the
single-index setting, one easily verifies that E[T] oc 8"
is a rank-one tensor, and thus one can view the estimation
of 6 as a non-iid version of Tensor ECA, where from the
observed data one builds a tensor T with planted rank-
one structure — but where entries are correlated, as op-
posed to Tensor PCA. Nonetheless, [DNGL23] leverage
the partial-trace estimator, an efficient spectral method
that boosts the signal-to-noise ratio by averaging the ten-
sor in directions where the signal is constant, to esti-
mate the planted direction with a sample complexity of
O(d" /?), which turns out to be optimal amongst the class
of correlation-based statistical query algorithms [DLS22,
ABAM?23].

Finally, let us mention that the geometric picture
brought by the information exponent is robust to small
perturbations of the Gaussian data distribution. Indeed,
[BPVZ23] demonstrates that spherical symmetry is suf-
ficient, and that distributions whose sliced Wasserstein
distance is of order O(1/v/d) from the Gaussian refer-
ence also result in an efficient MLE gradient estimation
whenever the information exponent is at most 2.

3.6 Leap Exponents for Multi-Index Models

The previous section outlined a framework for single-
index models that exploits the Hilbertian structure of the
correlation loss to obtain an explicit ‘decoupling’ of the
two ingredients of single-index models, namely the hid-
den direction 6, and the link function g. In essence, this
is achieved thanks to the joint diagonalization of the OU
semigroup via Hermite polynomials.

A natural question is then how to extend this frame-
work to the general multi-index setting. Denoting again
gw(z) = g(WTz) for W € Stiefel(d, r), the first step is
to generalise the representation (8); it now writes

(12) (gw s 9w, )va = (9, AMG), 5
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where now Ay is the matrix semigroup given by
(13)  Amg(2) = Bunr, [9(Mz + VI = MTMw)]

defined for correlation matrices M = W™W, € R"™™" such
that || M| < 1. An important point to realize is that now
{Ans} s is no longer commutative, and thus one cannot
hope to recreate the satisfying Hermite orthonormal de-
composition from the single-index setting straight away.
Instead, the correlation (g, Gy,)~, between two multi-
index functions is now expressed as

(14 {gw .,y = 3 (g, Hs(U))Ng, Hs(V)) [T AT .
8 i=1

where M = W™W = UAVT is the Singular-Value De-
composition (SVD) of M, g = (f1,...,5,) € N" are
multi-indices, and Hg(U) is the tensorised Hermite poly-
nomial Hg(U)(x) = [[;_; hg,(Ujx) associated with the
orthonormal basis U of R".

While the squared-loss still admits a representation in
terms of low-dimensional summary statistics M € R"*",
the monotonicity of the gradients is now lost: the effect
of subspace internal misalignments (captured by the fact
that U # V') can create spurious maxima in the MLE
landscape. Such difficulty can be overcome by consider-
ing instead a two-timescale bilevel algorithm [BBPV23],
that learns the link function ¢ in a non-parametric class
of r-dimensional functions in the inner loop. This effec-
tively replaces the correlation matrix M by its Grammian
G = M"™M,leading to a ‘symmetrised” optimisation land-
scape

15)  LW)=2|g|2—23 (g, Hs(V))2 J[ A%
5 j=1

that recovers the benign geometrical properties of its
single-index counterpart.

In particular, [ABAM23, BBPV23] show that local gra-
dient methods on this landscape evolve along saddle-to-
saddle dynamics, as opposed to the single ‘escape from
mediocrity saddle’ of the single-index setting. The dy-
namics are still initialized at a neighborhood of a sad-
dle point, satisfying || Mp|| ~ 1/+/d. Next, instead of di-
rectly escaping towards the global minimiser W = W,,
the gradient dynamics will visit a (finite) sequence of
saddle points before reaching the global optimum. Re-
markably, one can characterise these intermediate saddle
points in terms of a hierarchical decomposition of the link
function based on multivariate Hermite expansions. Infor-
mally speaking, the span of the lowest ‘frequencies’ of g
is learnt first; subsequently, the gradient flow dynamics
reveal the directions in the orthogonal complement car-
rying the lowest remaining frequencies, and so on. Each
step in this sequential decomposition is characterized by a

leap dimension and leap exponent, corresponding respec-
tively to the index and the order of the associated saddle
point.

An important special setting where this sequential
decomposition is particularly accessible is given by
staircase functions, first introduced by Abbe et al. in
[ABABT21] in the context of Boolean functions (see
also the earlier work of [KST09] in a related context).
In short, a function has the staircase property if the sup-
port of their high-frequency coefficients can be ‘reached’
from the support of low-frequencies by adding a sin-
gle coordinate, e.g., g(z) = 21 + 2122 + 2129224, for z €
{+1}¢. The staircase property was further developed in
[ABAM22, ABAM?23], where a sample complexity of or-
der d" ! is established for a certain class of generalised
staircase functions, where [* is the largest leap exponent
(by slightly abusing notation), using local gradient meth-
ods on a suitable NN architecture. [BBPV23] shows that
[* indeed controls the complexity in the general setting,
focusing on population dynamics.

Finally, another important instance of multi-index mod-
els with explicit algorithmic performance is given by com-
mittee machines, corresponding to a link function of the
form g(z) = sign (25:1 sign(zj)> [AMB™19]. In this
setting, and in the language of the leap exponents, one can
verify that there is energy in the linear harmonic, and thus
there is no saddle-point structure, leading to a guarantee
of the form n = ©(d). Such guarantees were recently ex-
tended to a broader class of multi-index functions having
non-zero linear terms in [DKLT23].

In conclusion, algorithms based on local gradient as-
cent on the correlation are shown to be a powerful tool to
estimate the index space, with sample complexity driven
by the number of vanishing Hermite moments. One can
now wonder to what extent these correlation methods are
‘optimal’, at least in terms of said sample complexity.

3.7 Beyond Information and Leap Exponents via
Inverse Regression

As it turns out, correlation-based algorithms are not
optimal in the previous sense. One of the clearest in-
stances of this lack of optimality is the seminal work of
Chen and Meka [CM20]: they showed that when g is a
r-dimensional, degree-s polynomial, there exists an effi-
cient algorithm that only needs

n=0,.(dlog*(1/¢)(log d)°)

samples to recover the subspace up to error € in a noise-
free setting.

The sample complexity is thus linear in the dimension,
matching the optimal information-theoretic rate. Taking
for instance g = hs above shows an inherent advantage
of this method over the previous correlation-based meth-
ods, which require G)(ds/ 2) samples. In essence, Chen and
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Meka exploit the inverse regression idea, first put forward
in Li’s seminal work [Li91]: rather than focusing solely
in the regression task of modeling y|x, one can gain in-
formation by looking instead at the inverse (or ‘genera-
tive’) model x|y. The key observation is that, under Gaus-
sian assumptions on x, the moments E[x®*|y = y], seen
as tensor-valued functions of y, are only non-constant
within the index space.* This idea has led to several al-
gorithmic solutions that exploit this moment structure
[Co000, LWO07, KLV20].

Another seemingly separate line of work, notably
[MM18, BKM ™19, MLKZ20], aimed to characterize the
class of single-index models such that one can efficiently
recover the hidden direction 6 in the so-called propor-
tional regime, where the number of samples satisfies
n = ad with fixed a > 0, and d goes to infinity. Specifi-
cally, these authors showed that whenever the joint distri-
bution (x,y) satisfies

(16) max {E[E[(01x)* - 1|y]*], E[E[0Ix|y]*]} >0,

then there are efficient algorithms that estimate 6 provided
n 2 d. We identify the flavor of inverse regression in (16),
through the conditioning on the label y. Let us add that
these works go beyond this guarantee, and even identify
fundamental thresholds a; < ac capturing the required
sample complexity for brute-force and efficient estima-
tors, respectively °. In particular, [LL20, MMI18] consid-
ered a variant of the PHD estimator, where 6 is the prin-
cipal eigenvector of

— 1
a7 M= > Ty (xixi = L)

and where 7 : R — R is a suitable label transforma-
tion. On the other hand, [BKM™19] developed an ap-
proach based on Approximate-Message-Passing (AMP)
under the same assumption (16), in which there is also an
underlying label transformation — as is also the case in
the aforementioned [CM20]. Finally, in [MKLZ22] it was
shown that the spectral estimator associated with (17) is
the linearisation of the AMP through the so-called Bethe
Hessian.

4Similar results hold under slightly milder conditions on x; see
[KLV20].

SThese results are an instance of the so-called Computational-
Statistical Gaps, which study the interplay between statistical and
computational aspects in high-dimensional inference. In particular,
some inference tasks are known to exhibit a phase diagram with three
distinct regimes: for n < ny, no estimator can recover the signal of
interest, for n > n, one can exhibit efficient estimation procedures
that succeed, but for n < n < n, it is conjectured that no efficient
procedure can exist. Such conjecture is often formalized by restrict-
ing the class of estimation procedures to belong to a certain computa-
tional class, e.g., Statistical Queries [Kea98], or Low-degree polyno-
mials [HSSS16]

In retrospect, it should not be surprising that a label
transformation is able to overcome the information expo-
nent barriers from the previous section; indeed, recalling
that I*(G) = min{/; E[yh;(x)] # 0}, one can easily verify
that this definition is not invariant to compositions, ie it
can happen that the change of variables G := (Id® T) 4G,

where (x,y) is mapped to (x,7 (y)), satisfies I*(G) <
*(G)!

Such lack of composition invariance suggests that one
should revisit the information exponent definition to en-
sure it cannot be decreased by label transformation, and
thus that it captures the intrinsic difficulty of estimation
beyond correlation-based methods. This can be achieved
by considering
(18) E*(G):= _inf

TR—R
measureable

I*(G) .

This defines a new generative exponent of the single-
index model [DPVLB24]. By simple consequence of
(18), we have that £*(G) < [*(G).

This exponent can also be viewed as the leading term
of an expansion. While the information exponent ap-
pears as the leading order term of the expansion of
the L? energy E[E[y[x]’] = [|g]]> = 3, E[ylu(x)]* =
> 5 Elyhi(x))? (and thus associated with correlation),
the generative exponent is associated with an expansion
of another metric, given by the y? information: assuming
that G < Gg, with Gg = G, ® G, ie that G is absolutely
continuous with respect to the product of its marginals,
the x? information is defined as I(G) = D,2(G||Gy) =

2
H f—& HG — 1. Defining for each £ the conditional moment
Ck(y) —E [hi(z)|y = y], one can verify [DPVLB24] that

19 16 =) lIGlE, =D IGlE, -
k

k>k+

We now recognize that (16) corresponds to the assump-
tion k* < 2. The conditional moments in (, fully realize
the vision of Li’s Inverse Regression: indeed, we now ex-
tract all the moments of the conditional distribution x|y
rather than focusing only on the first few moments.

The representation (19) leads to a natural generalisation
of the Lo decomposition (10) in terms of the likelihood
ratios ‘i—iz. Equation (19) thus reveals that the likelihood
ratio is in the span of polynomials of degree at least k* in
X. As a consequence, one can deduce [DPVLB24] a lower
bound for the required sample complexity of n > d¥"/2,
both under the SQ (Statistical-Query) and the Low-degree
polynomial frameworks. These computational classes en-
compass a wide range of algorithms, including spectral
and general moment methods, and (stochastic) gradient
descent.

Moreover, the function (;(y) defines the optimal label
transformation 7 that reduces the generative to the in-
formation exponent. Therefore, the natural confluence of
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(11) and (17) is to consider the following tensor:
~ 1
(20) Ti= -3 G (yi) Hi (xi)
(2

Indeed, we verify that, again, this tensor has a planted
spike precisely given by 6, ie E[’f‘] o O2F" . As a result,
one can establish [DPVLB24] that a partial trace estima-
tor will successfully estimate 6, whenever n > d**/2 thus
tightly matching the computational lower bounds. As with
previous algorithms, one can also extend this method to
misspecified link distributions G.

Equation (16) has been recently extended to the multi-
index setting in [TDD"24], where AMP-based methods
are shown to (weakly)® recover the range of the following
matrix in the proportional regime n = O(d):

(2D
WLE[G(y)Ci(y)" + Ca(y)¢2(y)T] , with

C1(y) = E[H1(z)ly = y] , C2(y) = E[H2(2z)|y =] .

Similarly, [KZM25] recently extended the analysis of
[MM18] to the multi-index setting, establishing weak re-
covery of at least one direction inside the above index
space using a spectral method.

Finally, let us mention that lower bounds for multi-
index models against several computational classes, in-
cluding SQ and differentiable queries have been recently
established in [JMS24] for product measures admitting a
predefined basis aligned with the unknown subspace, and
in [DLB25] for Gaussian data for the low-degree poly-
nomial framework. Notably, these SQ/Low-degree lower
bounds identify an appropriate extension of the genera-
tive exponent to the multi-index setting — the leap gen-
erative exponent. By adapting the partial trace estimator
to this setting, [DLB25] provide an algorithm matching
again this sample complexity, therefore providing a ‘com-
plete’ statistical/computational description of the multi-
index estimation problem in the high-dimensional regime
(under Gaussian data); see also [DIKR25, DIKZ25] for
concurrent works that establish both an SQ lower bound,
and also provide an upper bound using a subspace condi-
tioning algorithm.

4. GRADIENT SPAN

One of the critical drawbacks of the moment methods
in Section 3 is the normality assumption on x. A stan-
dard approach to addressing this limitation is to employ
score functions for non-normal distributions on x [e.g.,
YBL17], but otherwise the techniques are mostly un-
changed. Some moment methods have also been shown

SWeak recovery refers to an estimate W such that
/\min(WTW*) = ©O(1), recalling that a subspace W( drawn
uniformly at random satisfies )\min(WT W) ~ 1//d.

to correctly estimate a subspace of the index space under
weaker assumptions [e.g., LD89], but these conditions are
still fairly restrictive, and exhaustiveness is also only es-
tablished under rather ad hoc assumptions.

In this section, we describe a rather different approach
based on using the span of gradients, which does not rely
on the normality assumption and ensures exhaustiveness
under fairly weak assumptions. The primary drawback of
this method is the difficulty of efficient estimation in high
dimensions.

4.1 Exhaustiveness of the gradient span

The key idea of using the gradient span comes from the
chain rule (as already exploited in Section 3): the gradient
of the regression function V f can be written as

Vf(x)=L'Vg(Lz),

so for any x € RY, we have Vf(z) € W := ran(L").
This suggests a natural strategy for estimating (at least
a subspace of) WW: estimate the gradient V f at several
points, and then fit an r-dimensional subspace to these
vectors. Or more simply: estimate the expected gradient
outer product (EGOP)’

(22)

I=E[V/x)Vf()'] = L'E[Vy(Lx)Vg(Lx)']L,

and then take the subspace spanned by the eigenvectors
corresponding to the top r eigenvalues of the estimate.

The gradient span approach guarantees exhaustive-
ness under fairly weak assumptions [Sam93]. If there is
a nonzero vector w € W orthogonal to V f(x) almost
surely, then (Lw)"Vg(Lx) = 0 almost surely. This means
that the link function g does not vary in the direction
of v := Lw, contradicting the minimality of W (recall-
ing the definition of CMS)®. Therefore, we must have
W = ran(I"). The exhaustiveness of (the range of) the
EGOP makes it a natural target of estimation: a consistent
estimate of I' yields a consistent estimate of W.

4.2 Plug-in estimation
A plug-in approach to estimating the EGOP is:

1. Estimate the evaluation of V f on an i.i.d. sample
X1,...,Xn (perhaps using separate data indepen-
dent of these n points).

2. Form the empirical average the outer products of
the estimates of V f(x;):

2 VIV

7 Also called Outer Product of Gradients (OPG) [XTLZ02].

8To make this argument precise, it suffices to assume convexity of
the support of Lx.
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To continue the plug-in stratregy, one can estimate V f
by constructing an estimate f of f, and then using V f
as an estimate for V f. For example, [Sam93] instantiates
this approach with Nadaraya-Watson kernel regression
methods [Nad64, Wat64], and [KS22] (as with [MZ06]
in passing) do so with Reproducing Kernel Hilbert Space
(RKHS) methods. In both cases, the estimator f has an
analytic form for which the gradient can be explicitly
computed.

4.3 Local estimates of gradients

[HJIPSO1] suggest local linear regression [Sto77] for es-
timating V f(x) in the present context. Specifically, the
estimate of the gradient at x € R? is

V() = bla)

where b(x) € R? is obtained from a weighted linear least
squares fit to an i.i.d. sample (X1,¥1), ..., (X5, ¥#):

n

a(z),b(x)) := argmin
(o) b)) = angmin, 3

w;(2) (a+b" (% — ) — ;)2

with weights w;(x) = K (X;, ) for some kernel function
K:R? x RY = R (e.g., a radial kernel like K (z,2') =
exp(—||z — 2'||3/h?) for a suitable bandwidth h > 0).
Related estimation strategies based on Nadaraya-Watson
kernel methods, RKHS methods and finite differences
were proposed and analyzed, respectively, by [Sam93],
[MZ06], and [TWKS14]. The main downside of these ap-
proaches is that they suffer from the usual curse of di-
mension in nonparametric regression [Sto80]: exponen-
tially many (in d) data may be needed for accurate estima-
tion. [Sam93] notes, however, that estimating the EGOP
may be easier than estimating the gradient field, and gives
conditions under which consistency at the parametric rate
may be achieved [see also YXKH?23].

[HIPSO1] (building on earlier work in the single-index
case by [HJSO1]) show how a pilot estimate of the EGOP
can be used to avoid the curse of dimension in a refined
estimate. In particular, in the refined estimate, the (ellipti-
cal) smoothing kernel K is chosen so as to over-smooth in
directions that the pilot estimate suggests are orthogonal
to . Remarkably, this is enough to overcome the curse
of dimension at least in the rate of convergence for the
refined estimate: an exponential dependence on the ambi-
ent dimension d is replaced by an exponential dependence
only on the intrinsic dimension r = dim(W). In fact, the
rate is shown to be the parametric rate when r < 3 under
some mild assumptions on the link function.

4.4 Practical implementation and other settings

The recent work of [RBPB24] combines the RKHS
approach of [KS22] and the refinement technique of
[HJPSO1] to obtain a practical algorithm. Specifically,

they employ RKHS-based regression with an isotropic
Gaussian or Laplace kernel to for an initial estimate f of
f, and then use V f to estimate the EGOP as above. Then
the estimate of the EGOP is used to change the isotropic
kernel to an anisotropic kernel in a manner very similar
to that suggested by [HIPS01] to get updated estimates of
f and also of the EGOP. They suggest repeating this pro-
cess several times to obtain a final estimate of f and/or
the EGOP.

Manual inspection of the final estimated EGOP in sev-
eral datasets shows the ability of this approach to identify
interpretable “features” that are intuitively relevant for the
prediction task at hand. For example, on a dataset for pre-
dicting whether an image depicts a smiling face or non-
smiling face, the top eigenvectors of the EGOP estimate
emphasize pixel features that roughly correspond to those
where the eyes and mouth are located in the image. The
EGOP estimate obtained this way is also compared to the
first layer weight matrices of deep neural networks trained
using gradient descent on the same data, and the similari-
ties are striking enough for the authors to posit a hypoth-
esis connecting these methods.

Another remarkable non-parametric approach is the re-
cent work [FB24]; the authors replace the gradient outer
product estimation by a more general non-parametric
method based on regularized empirical risk minimization,
that promotes the ‘sparsity’ of the estimated function gra-
dients using a multivariate Hermite expansion, under min-
imal distributional assumptions.

Finally, let us mention [HC12], in which the authors
replace the iid sampling assumption by an active learn-
ing strategy to estimate the index space, leading to a
sample complexity of order O(d?). In the active (or
query) learning setting, it is possible to adaptively sam-
ple y from its conditional distribution given x = x for
any x. This naturally gives a path towards avoiding the
curse of dimension suffered by local linear regression
and other non-parametric methods (cf. [HJSO1, HJPSO1]
and Section 4.3). Other active learning methods for learn-
ing or testing single-index and multi-index models in-
clude [DMN19, DMN21, GTX 24, DKK*24].

5. NEURAL NETWORKS

We have so far discussed dedicated algorithms that ex-
ploit the specific structure of multi-index models. An al-
ternative line of work considers instead a ‘generic’ learn-
ing algorithm, based on gradient-descent on a differen-
tiable model, e.g., a neural network: given n iid samples
{(xi,¥i) }i<n of a multi-index model P, a differentiable
function fp : x — fy(x), and a point-wise loss (-, -), the
Empirical-Risk-Minimisation (ERM) consists of

1
(23) min — Zé(fﬂxi), yi) -
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A canonical choice of loss is the mean-squared error
{(z,y) = (z — y)?, which is amenable to powerful analy-
sis techniques in L?(R?, 7). The general question in this
context is thus to what extent the minimisers 6 of (23)
carry information on W. When fy is a Neural Network
(NN) implementing a composition of the form fy(x) =
de, (0] x) for a given ©1 € R¥*?" and generic ®, a nat-
ural proxy for W is then the span of the first layer ©1. As
discussed earlier, the motivation in this case is to provide
a quantitative description of feature learning, namely the
ability of the NN to automatically discover the relevant
compositional structure for the task — which in the case
of multi-index models is directly given by the low-rank
projection onto W.

At first glance, it does not seem obvious that a generic
gradient-based analysis of (23) should lead to any quan-
titative guarantees, given the non-convexity of the asso-
ciated energy landscape, even for the simplest shallow
NNs. Faced with this difficulty, [MMNI18, CB18, RVE1S,
SS20] put forward a mean-field formulation of such shal-
low learning. By expressing the optimization problem in
terms of the empirical measure over parameters, one ob-
tains a ‘lifted” functional in the space of measures which
is convex. Such convexity can then be leveraged to estab-
lish global convergence guarantees of gradient dynamics
in the infinitely-wide limit. In the setting where the data
is generated by a multi-index model, [HC23] showed that
the associated dynamics become dimension-free, as with
the summary statistics we saw in Section 3.5. However,
while providing important qualitative insights about fea-
ture learning, an important limitation of these mean-field
formulations is their lack of quantitative guarantees as one
tries to operate with finite-width networks.

An alternative route is then to ‘face’ the non-convexity
of the optimization problem and attempt to exploit struc-
tural properties to overcome the worst-case scenarios.
Indeed, in Section 3.5 we observed that the MSE loss
L(0) = ||go — go- ||? can be efficiently optimized with gra-
dient methods from a random initialization. One can view
such model as a contrived neural network consisting of
a single neuron, = +— g(f ' x). One could thus hope that
gradient-based learning on a more general NN might be
able to estimate the index space. Let us now review the
main results in this direction.

5.1 Information Exponent and NNs

One of the early attempts that demonstrated the abil-
ity of NNs to estimate the index space is [CBL21].
Focusing on the setting where ¢ is a certain class of
degree-s polynomial, the authors show that a partially-
trained 3-layer neural network can learn the target func-
tion with sample complexity n = O(d*/2]), consis-
tent with the CSQ-optimal rate of [DNGL23]. More

generally, under the Hessian non-degeneracy assump-
tion from Section 3.3, and assuming Gaussian inputs,
[DLS22, BEST22, DKL 123, CPD'24] consider a shal-
low NN fy(z) = a"o(Wz + b) and squared-loss, and
show that a single gradient step with respect to the in-
put weights W is aligned with W*. Indeed, picking
o(u) = max(0,u) and denoting W = [wy,...,wy,], the
population gradient of each weight vector w; writes

2 o E [gw (x)x1(x - w; > 0)] .

Expanding again this inner product in an orthonormal
Hermite basis and identifying the leading order term
yields [DLS22, Lemma 1]

2= _\/2/7a,E[V2gw-Jw; +O(v/r/d)) .

In words, the gradient at initialization reveals the Princi-
pal Hessian Directions. Under the assumption that these
directions span the whole index space — which in the
language of Section 3.6 corresponds to information expo-
nent [* < 2 and a single leap, this turns out to be sufficient
to establish a learning guarantee of order n = O(d?), via
a hybrid gradient-descent strategy whereby second-layer
features are kept frozen at initialization. By making the
stronger assumption that [* = 1, one can get sharper rates
of n = 0O(d) [BEST22, MHPG22], in accordance with
Section 3.5.

Beyond the setting of [* < 2, several works also
analyse the performance of several NN architectures
with gradient-based learning. As mentioned in Sec-
tion 3.6, Abbe, Boix-Adsera and Misiakiewicz study in
[ABAM22, ABAMZ23] the ability of shallow NNs to
learn a class of multi-index models characterized by the
staircase property. In essence, multi-index functions g
with the staircase property (or the ‘merged’ staircase,
an extension put forward in [ABAM22]) admit a spec-
tral decomposition in a certain Hermite basis Hg(V)
whereby the support of each harmonic is obtained from
the lower harmonics by adding additional coordinates. As
in [DLS22, DKL 23, BBSS22], the analysis of gradient-
descent follows a similar layer-wise strategy, with the
second-layer weights frozen at initialization, resulting in
a sample complexity guarantee of the form n = 5(dL* )
where L* is the leap complexity of the model, ie the
largest number of revealed coordinates when going from
one harmonic to the next.

Besides learning the hidden direction, another impor-
tant question is to understand how the link function is be-
ing learnt. In [BMZ24], the authors study standard shal-
low NN in the mean-field regime, and demonstrate that
the network naturally learns different harmonics of the
target link function at different timescales. Alternatively,
[BBSS22] focuses on single-index models, and consid-
ers a ‘specialized’ shallow NN fy(z) = a'o(Wz + b),
with W constrained to be a rank-one matrix of the form
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W =1w", and frozen biases drawn from a normal distri-
bution. In other words, neurons share their input weights
and only differ by a random (and frozen) bias. By adapt-
ing the analysis of [BAGJ21, DH18], the authors estab-
lish non-parametric rates for general link functions with a
sample complexity n = O(d"") to learn both the index di-
rection and the link function. Remarkably, the efficient al-
gorithm of [CKM?22] uses an ingenious enumeration tech-
nique based on lattice polynomials to learn any link func-
tion specified by a (homogeneous) deep ReLU network.

More recently, [DPC"24] leveraged random matrix
theory to study the ability of a single gradient step on a
shallow NN to identify the direction in a Single-Index
model, in the high-dimensional proportional regime. Fi-
nally, while the majority of the analyses focus on Gaus-
sian or Boolean inputs, some authors have explored the
effect of anisotropy in the data [MHWSE23, BES'24],
highlighting the importance of symmetries in establishing
learning guarantees.

5.2 Breaking the Information Exponent with NNs

So far, all methods described require a sample com-
plexity that scales with the information exponent. Based
on the arguments from Section 3.7, it is natural to ask
whether NNs can go beyond correlation-based learning
and ‘break’ the information-exponent barrier.

As it turns out, the answer, put forward in [DTA 24,
ADK ™24, LOSW24], is yes. The key idea is that reusing
data batches to estimate empirical gradients is akin to
performing a label transformation that, under appropri-
ate scaling of the training hyperparameters, realises the
lowering of the exponent from (18). Indeed, by consid-
ering the correlation loss ¢(9,y) =1 — gy in (23), and a
shallow NN of the form fy(x) = a'o(Wz), the gradient
with respect to each input weight w; evaluated at a single
datapoint (x,y) is

(24) Vo, l(fo(x),y) = —ajya’(wj “X)X .
Now, if we take a gradient step
W =W — pVwi(fs(x),y)

and evaluate the gradient, using again the same datapoint
(x,y), we obtain [ADK ™24, Eq 13]

vw_jg(fa,W(X7Y)aY)
=ajyo’ (wj -x + a,oy||XH20/(wj X)) X.

An important property of this update is that now this gra-
dient is outside the class of correlational queries, since it
is a non-linear function of y. Since the generative expo-
nent from (19) describes a ‘closed’ property, namely that
certain conditional moments k£ < k* are zero, a generic
choice of learning rate p such that p||x||? ~ pd = ©(1) en-
sures that almost surely the resulting algorithm will now

be driven by the generative exponent, rather than the in-
formation exponent of single-pass gradient methods. The
resulting algorithm is analyzed in [ADK ™24, LOSW24]
in the setting where k* < 2 °, leading to a linear sample
complexity guarantee.

In the context of multi-index models, the batch reuse
is also shown to improve the sample complexities of the
correlational queries framework. In particular, the stair-
case property characterizing efficiently learnable func-
tions using correlation-based (S)GD via the leap exponent
is now upgraded to the so-called ‘grand staircase’ prop-
erty [TDD24].

Another strategy to overcome the sample complex-
ity barriers dictated by the information and generative
exponents is to consider shallow neural networks in
the mean-field regime [MMNI18, RVE1S8, CB18, SS20],
trained with noisy gradient descent, referred as mean-
field Langevin dynamics. In this setting, [MHWE24]
demonstrates information-theoretically optimal sample
complexity to learn multi-index models, at the expense
of exponential memory and/or runtime.

Finally, let us mention that, thus far, all the works
described above consider a certain layer-wise training
scheme, whereby only first-layer weights move while the
rest are frozen [ABAM?23, BBSS22, ADK*24, DLS22,
LOSW24], or by introducing timescale separation be-
tween layers [BBPV23, BMZ24]. A notable exception to
this is the work of Glasgow [Gla23], which, focusing on
Boolean data and the 2-parity XOR function, established
thatn = 5(d) samples are sufficient to learn, using a stan-
dard shallow NN and standard mini-batch SGD training.
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