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Abstract

We propose a framework for adaptive data collec-

tion aimed at robust learning in multi-distribution

scenarios under a fixed data collection budget. In

each round, the algorithm selects a distribution

source to sample from for data collection and

updates the model parameters accordingly. The

objective is to find the model parameters that min-

imize the expected loss across all the data sources.

Our approach integrates upper-confidence-bound

(UCB) sampling with online gradient descent

(OGD) to dynamically collect and annotate data

from multiple sources. By bridging online opti-

mization and multi-armed bandits, we provide the-

oretical guarantees for our UCB-OGD approach,

demonstrating that it achieves a minimax regret

of O(T
1
2 (K lnT )

1
2 ) over K data sources after T

rounds. We further provide a lower bound show-

ing that the result is optimal up to a lnT factor.

Extensive evaluations on standard datasets and a

real-world testbed for object detection in smart-

city intersections validate the consistent perfor-

mance improvements of our method compared to

baselines such as random sampling and various

active learning methods.

1. Introduction

In modern deep learning systems, sufficient and high-quality

data is essential for robust model performance (Hestness

et al., 2017). Although numerous standard datasets and pre-

trained models are publicly available, they could fail to meet

the diverse and specific requirements of applications, espe-

cially when applied to novel or previously unseen scenarios.

Consequently, many applications–such as vision-language

modeling (Laurençon et al., 2024), intelligent monitoring in
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healthcare (Moody & Mark, 1992; Zang et al., 2023), and

object detection in smart cities (Cordts et al., 2016; Turkcan

et al., 2024)–necessitate the collection and annotation of

custom datasets to address the unique characteristics of their

respective problem.

As a motivating example in smart-city applications, consider

the task of vehicle detection at an urban traffic intersection.

The objective is to develop a robust vehicle detection model

that is capable of operating effectively under varying condi-

tions, such as changes in lighting, occlusions, and weather

variations. Three strategically placed cameras, each provid-

ing a unique perspective of traffic flow, are available for data

collection. The trained model will be deployed across all

three cameras, with the goal of optimizing the worst-case de-

tection performance among them. However, annotating data

for complex tasks such as detection, tracking, and segmen-

tation is particularly expensive. This involves meticulous

labeling of bounding boxes, object identities across frames,

and pixel-level masks to generate accurate ground truths.

Given a limited annotation budget (e.g. 2,500 images), it is

crucial to strategically allocate the annotation budget across

the three cameras to maximize the worst-case detection

performance at the intersection.

In this paper, we present a framework for adaptive data

collection and model training in multi-distribution scenar-

ios under a fixed data annotation budget. The proposed

framework operates iteratively, alternating between data col-

lection (annotation) and model optimization in each round.

Our objective is to devise a budget allocation strategy across

the distribution sources such that the trained model achieves

performance guarantee across all the distributions.

1.1. Related Work

Active Learning. The challenge of data annotation has

driven significant advancements in the field of active learn-

ing (AL). The key idea of AL is to let the learning algorithm

interactively query an annotator to label a subset of data

points from a set of unlabeled data (Settles, 2009). In par-

ticular, pool-based methods assume that a pre-existing pool

of unlabeled data is available and aim to select the most

relevant samples from the pool to query for their labels.

The relevance of a sample is often determined by criteria

such as uncertainty measure (Lewis & Catlett, 1994) or
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committee votes (Seung et al., 1992). On the other hand,

stream-based methods observe a consecutive stream of sam-

ples and decide for every sample whether to query for its

label or discard it. A similar branch of work is active class

selection, where the learner is allowed to query a known

class label for new samples (Lomasky et al., 2007; McClurg

et al., 2023). AL methods are widely applied to Deep Neural

Networks (DNNs) (Ren et al., 2022) in tasks such as clas-

sification (Ranganathan et al., 2017; Yoo & Kweon, 2019;

Sinha et al., 2019) and object detection (Aghdam et al.,

2019; Feng et al., 2019; Choi et al., 2021).

Despite their empirical effectiveness, AL methods are re-

stricted by the quality of the generated queries. In a scenario

with a trivial initial sample pool or a biased initial model,

AL algorithms can exhibit unstable behavior by overfitting

to a specific region of the data space or exacerbating the

initial bias (Baldridge & Palmer, 2009; Karamcheti et al.,

2021). Moreover, the existing theoretical analysis of AL is

mainly restricted to linear hypothesis classes or basic prob-

lem setups like binary classification (Dasgupta, 2005; Wang

et al., 2021; Gentile et al., 2022). Whereas some studies

have derived coarse sample complexity bounds (Dasgupta,

2005) or analyzed convolutional neural networks using core-

set techniques (Sener & Savarese, 2018), general theoretical

guarantees remain elusive when it comes to more complex

problem setups, such as those involving DNNs.

Estimating the Dataset Size. The relationship between

DNN performance and the amount of available training data

can be empirically characterized by the neural scaling law

(Bisla et al., 2021; Hestness et al., 2017; Mahmood et al.,

2022a). As a result, recent work models DNN training as

a Markov Decision Process (Mahmood et al., 2022b) or a

Gaussian Process (Tejero et al., 2023) with respect to (w.r.t.)

the dataset size. The amount of data required given a specific

performance metric can therefore be empirically predicted,

although the composition of multiple data sources is often

not explicitly accounted for.

The theoretical guarantees on dataset size can also be estab-

lished by leveraging predefined data quality metrics, such

as information functions (Xu & Zheng, 2017), submodular

functions (Akcin et al., 2023a; Mirzasoleiman et al., 2016),

or a target data distribution (Akcin et al., 2023b). Many

centralized AL algorithms (e.g. uncertainty- or entropy-

based sampling) share similar intuitions by selecting the

most relevant data to annotate using such metrics. However,

the robustness of real-world applications are often measured

in terms of the worst-case model performances rather than

the quality of the data itself. Therefore, it is more common

in robust learning to directly minimize the worst-case loss,

which we mainly discuss in this paper.

Robust Learning and Multi-Armed Bandits. Robust

learning focuses on model generalization under distribution

shifts during training and testing (Ahuja et al., 2020). Specif-

ically, distributionally robust optimization (DRO) formalizes

this by minimizing the worst-case loss over a pre-defined

uncertainty set of distributions, often characterized via met-

rics like Wasserstein distance or f -divergence (Duchi &

Namkoong, 2021; Agarwal & Zhang, 2022). In such spirit,

group-DRO explicitly incorporates group annotations to en-

sure uniform performance across subgroups, and utilizes

bandit algorithms to address robustness and fairness (Hagh-

talab et al., 2022; Zhang et al., 2023).

Particularly, Multi-Armed Bandit (MAB) studies a sequen-

tial decision problem that seeks to maximize cumulative

reward over time, where the action at each time step is se-

lected from multiple fixed choices with unknown reward

distributions (Robbins, 1952; Gittins, 1979). Popular algo-

rithms, such as ϵ-Greedy and UCB, have been extensively

studied and analyzed for stochastic bandits (Auer et al.,

2002). While adversarial bandits (Bubeck & Nicolò, 2012)

are typically utilized in group-DRO literature, such algo-

rithms often disregard the notion of a dataset by considering

an oracle-based setup, where the algorithm samples directly

from the data distribution to obtain an unbiased loss (and

gradient) estimator. Despite its theoretical convenience, di-

rectly sampling from the data distribution every time is not

always feasible due to practical limitations. In contrast,

this work seeks to utilize the information contained in the

collected dataset by leveraging algorithms from stochastic

bandits and perspectives from contextual bandits (Langford

& Zhang, 2007; Slivkins, 2011).

1.2. Contributions

Our main contributions can be summarized as follows.

• We introduce an adaptive data collection framework for

robust learning across multiple distributions under a

limited data collection and annotation budget, without

relying on an initially collected set of annotated or

unannotated samples.

• We propose the UCB-OGD algorithm that combines

UCB sampling and online gradient descent which

achieves O(T
1
2 (K lnT )

1
2 ) minimax regret, matching

the theoretical lower bound up to a lnT factor.

• We conduct experiments on both standard datasets and

a real-world testbed for complex tasks and demonstrate

that the proposed UCB-OGD algorithm achieves com-

parable or higher minimax performance on multiple

tasks compared to well-known AL algorithms.

2. Problem Statement

Notations. We consider a data space X with K data sources

and a parametrized model we wish to train for some task.

This can be classification, multi-class object detection and
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segmentation, or even single-class tasks where the data can

be obtained from different sources (e.g. see our motivat-

ing smart-city example in Section 1). Each data source

k ∈ {1, 2, . . . ,K} is associated with an unknown data dis-

tribution Dk over X. Let θ be the parameter of the train-

able model in some parameter space Θ. Let ℓ(θ,X) be

the loss function for data point X ∈ X
1. Let µk(θ) :=

EX∼Dk
[ℓ(θ,X)] denote the expected loss associated with

data source k, and ∇µk(θ) := EX∼Dk
[∇θℓ(θ,X)] be the

gradient of µk(θ) w.r.t. the parameter θ.

For instance, in the motivating smart-city example in Sec-

tion 1, there are K = 3 data sources, one for each camera,

X is an image randomly obtained from a camera with cor-

responding data source index, object classes, and bounding

boxes, θ is the parameter vector of an object detection model,

and ℓ(θ,X) is the loss of the model prediction over the input

X given its annotation.

Let S be a set of samples and denote Sk := {X ∈ S :
X ∼ Dk} as the subset of S that belongs to data source k.

Then the empirical estimate of µk(θ) over the set of samples

S can be computed as µ̂k(θ;S) :=
∑

X∈Sk
ℓ(θ,X)/|Sk|,

where |·| denotes the set cardinality. Similarly, the empirical

estimate of ∇µk(θ) over the set of samples S is computed

as ∇µ̂k(θ;S) :=
∑

X∈Sk
∇θℓ(θ,X)/|Sk|.

Optimization Objective. If S is a fixed training set that ex-

ists in advance, a natural objective is to minimize the empiri-

cal loss over the training set, i.e.,
∑

X∈S ℓ(θ,X)/|S| (a.k.a.

empirical risk minimization). This objective function can be

interpreted as the weighted average of the empirical losses

of all data sources, where each data source is weighted by

the ratio of its samples in S , i.e.,
∑K

k=1(|Sk|/|S|)µ̂k(θ;S).
However, the construction of the training set itself may

worth more careful considerations, especially in real-world

applications where the annotation budget is limited. As

opposed to allocating the budget of training samples among

the data sources in a predefined way (e.g. uniformly), we

allow the samples to be actively collected and annotated dur-

ing the training process. In this scenario, the requirement

of a preexisting training set S is alleviated. Since no prior

exists for the ratio |Sk|/|S|, we consider an objective that is

independent of this ratio through minimax optimization:

min
θ

max
k=1,...,K

µk(θ). (1)

Note that the expected loss functions µk(θ), for k =
1, . . . ,K, are unknown. The objective (1) is of particu-

lar interest for the purpose of optimizing data collection. It

focuses on optimizing the worst-case expected loss which

ensures the fairness of the algorithm (Papadaki et al., 2022)

1To be precise, X = (x, y) where x is the input, and y is
the target output (annotation) from the model with input x. Then
ℓ(θ,X) measures how different the prediction ŷ of the model with
parameter θ is from the target output y.

Algorithm 1 General Framework of Online Optimization

with Adaptive Data Collection

Require: Total training rounds T , batch size M , randomly

initialized θ1
1: X0 ← ∅

2: for t = 1, 2, . . . , T do

3: kt ← SELECT(θt,Xt−1)
4: Bt ← {X1, . . . , XM ∼ Dkt

}
5: Xt ← Xt−1

⋃

Bt
6: θt+1 ← UPDATE(θt,Xt, kt)
7: end for

and is less prone to overfitting towards a particular data

source. Minimax learning is also preferred for its robustness

to distributional uncertainties (Farnia & Tse, 2016), since

we want to train a model that works well across a range of

data distributions one might encounter during real-world

deployment.

Algorithm Framework. We propose a general framework

by combining adaptive data collection and online optimiza-

tion as presented in Algorithm 1. The algorithm starts with

an empty training set X0 = ∅ and an initialized θ1. In every

round t, in the SELECT step, the algorithm selects a data

source kt ∈ {1, 2, . . . ,K} to collect and annotate a batch

of samples Bt. The decision is made based on the current

model parameter θt and the existing training set Xt−1. The

batch of new samples Bt is then added to Xt−1 to get the

updated training set Xt. For the simplicity of the analysis,

we assume the batch size is fixed, i.e., |Bt| = M ≥ 1. Then,

in UPDATE step, the algorithm updates the model parameter

θt based on the updated training set Xt and the selected data

source kt, and obtains θt+1 for the next round.

Performance Metric. After T rounds of execution, an

online algorithm A generates a sequence of data source

indices k1, . . . , kT and a sequence of model parameters

θ1, . . . , θT . A natural metric to quantify the performance

of an online algorithm that solves the optimization problem

(1) is based on the minimax regret, which is defined as

the cumulated gap between the global optimal loss and the

maximum loss achieved by the current model in each round.

Definition 2.1 (Minimax Regret). The minimax regret of

an algorithm A over T rounds is defined as

R(AT ) :=

T
∑

t=1

max
k

µk(θt)− T min
θ

max
k

µk(θ), (2)

where we use AT = {(kt, θt), t = 1, . . . , T} to denote

the sequence of data source indices and model parameters

generated by algorithm A after T rounds.

We mainly focus on the expectation of the minimax regret,

E[R(AT )], since the trajectory AT is random.
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The minimax regret metric can be connected to the conver-

gence of time-averaged model parameter under algorithm

A, defined as θ̄AT
:=
∑T

t=1 θt/T . The time-average con-

vergence is commonly adopted in the literature of online and

stochastic algorithms, as it facilitates more straightforward

theoretical guarantees (Hazan, 2016; Tejero et al., 2023).

While there is no direct equivalence between the average

parameter θ̄AT
and the final parameter θT (which is a more

common choice in actual implementations), advanced opti-

mizers such as SGD with Momentum and Adam (Polyak,

1964; Kingma & Ba, 2017) run a moving average over the

gradients ∇µ̂k to improve the robustness of the algorithm.

These two concepts are analogous in terms of promoting

smoother update steps for the model.

When the loss functions are convex, we can build an intuitive

relationship between the minimax regret and the optimality

gap as follows.

Proposition 2.2 (Optimality Gap). Let µ1, . . . , µK be con-

vex in θ. Then any algorithm A satisfies

E

[

max
k

µk(θ̄AT
)

]

−min
θ

max
k

µk(θ) ≤
E[R(AT )]

T
, (3)

where θ̄AT
=
∑T

t=1 θt/T .

The proof of Proposition 2.2 follows from the convex-

ity of maxk µk and application of Jensen’s inequality,

i.e., maxk µk(θ̄AT
) ≤∑T

t=1 maxk µk(θt)/T .

As a result of Proposition 2.2, to show that an algorithm

converges to the minimax optimum, it is sufficient to show

that its (expected) minimax regret is sublinear in T .

We adopt the following assumptions for the analysis pre-

sented in this paper.

Assumption 2.3 (Bounded Lipschitz Loss). There exists

some C ≥ 0 s.t. ℓ(θ,X) ∈ [0, C] for all X and θ. Also, the

expected loss µk(θ) is L-Lipschitz in θ for all k.

Assumption 2.4 (Finite Domain). The model parameters

generated by Algorithm 1 in all rounds, θ1, . . . , θT , lie in a

bounded subset of Θ with diameter D ≥ 0. 2

Assumption 2.5 (Finite Gradient Noise). There exists

some σ ≥ 0 s.t. the variance of the gradient is finite,

i.e., EX∼Dk
[∥∇ℓ(θ,X)−∇µk(θ)∥2] ≤ σ2 for all k, θ.

Assumption 2.6 (IID Sampling). Data collected from every

data source k is sampled i.i.d. from the associated data

distribution Dk.

3. Algorithms and Main Results

We present three specific algorithms within the framework

of Algorithm 1 and their corresponding performances. Since

2This will be defined more rigorously in Appendix A.3.

we fix the batch size M and the total number of rounds T ,

the algorithm collects a total number of MT samples from

all data sources, allowing for uniform comparisons between

different algorithms based on their minimax regret.

For the optimization step (Line 6 of Algorithm 1), we con-

sider Online Gradient Descent (OGD) (Hazan, 2016). Re-

call that kt is the data source selected for the current round

t. Denote Xt,kt
:= {X ∈ Xt : X ∼ Dkt

} as the subset of

Xt collected from data source kt. Let S be a batch of data

points uniformly sampled from Xt,kt
. Then OGD updates

the model parameter of the next round by taking a step in

the direction of the estimated gradient of the mean loss of

source kt at the current round, i.e.,

θt+1 ← θt − ηt∇µ̂kt
(θt;S), (4)

where ηt := 1/(2L
√
t) is the learning rate.

For the data source selection step (Line 3 of Algorithm 1),

we consider the following three methods.

Random Selection. The simplest baseline is to pick the data

source uniformly at random, i.e., kt ∼ U({1, . . . ,K})3.

This is equivalent to uniformly allocating the budget of MT
samples among the K data sources, yielding approximately

MT/K samples per data source. We refer to Algorithm 1

with random selection and OGD as Rand-OGD.

Intuitively, Rand-OGD is not designed for the minimax ob-

jective in Equation (1), since all data sources are queried in a

balanced way regardless of their losses (see Appendix A.4).

A more viable selection method that addresses the minimax

problem is to greedily select the data source that incurs the

highest loss, i.e., kt ← maxk µk(θt). However, the true

expectation µk(θt) is unknown and we can only measure its

empirical estimate µ̂k(θt;Xt−1) which is a random variable.

Moreover, the deviation of µ̂k from its expectation can be

particularly large with a small number of samples.

While we need to focus on optimizing the maximum loss

associated with the data source that incurs it as much as pos-

sible (i.e., exploitation), we also need to ensure that enough

samples are collected from other data sources in order to re-

duce the variance of the estimated losses (i.e., exploration).

This resembles the exploration-exploitation trade-off in

MAB (Multi-Armed Bandit) problems. We consider the

following two data source selection methods inspired by

MAB algorithms (Auer et al., 2002).

Decaying ϵ-Greedy Selection. For t > 1, define an explo-

ration probability ϵt as

ϵt :=
1

2
3
√

αK ln t/(2M(t− 1)), (5)

where α ≥ 1/2 is a constant. We specially define ϵ1 := 1.

Then, in every round t, with probability ϵt, we select kt ∼
3U(S) denotes the uniform distribution over set S.
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U({1, . . . ,K}), otherwise, we select

kt ← argmax
k

µ̂k(θt;Xt−1). (6)

We refer to Algorithm 1 with ϵt-Greedy selection and OGD

as Eps-OGD.

Upper-Confidence-Bound (UCB) Selection. UCB is an-

other popular exploration-exploitation strategy in MAB that

balances the the empirical estimate and its uncertainty. De-

fine a confidence radius for each data source k given some

set of samples S as

rk(S) := C
√

α ln t/(2|Sk|), (7)

where C is defined in Assumption 2.3, α ≥ 1/2 is a con-

stant, and |Sk| is the number of samples in S that belongs

to data source k. Then, in every round t, we pick the data

source with the maximum UCB value, i.e.,

kt ← argmax
k

µ̂k(θt|Xt−1) + rk(Xt−1). (8)

We refer to Algorithm 1 with UCB selection and OGD as

UCB-OGD.

The following theorem states our main result regarding the

minimax regret of Eps-OGD and UCB-OGD for convex

loss functions.

Theorem 3.1 (Minimax Regret). Let µ1, . . . , µK be convex

in θ. Then Eps-OGD and UCB-OGD achieve the following

minimax regrets:

E[R(Eps-OGDT )] = O(T
2
3 (K lnT )

1
3 )

E[R(UCB-OGDT )] = O(T
1
2 (K lnT )

1
2 )
. (9)

Note that, by Proposition 2.2, we can subsequently conclude

that the expected minimax optimality gap of Eps-OGD and

UCB-OGD diminishes at the rate O(T− 1
2 (K lnT )

1
2 ) and

O(T− 1
3 (K lnT )

1
3 ), respectively.

Remark 3.2. When the loss functions are non-convex, it is

generally not feasible to converge to the global optimum

of (1). In this case, we can only show convergence to

a pareto-stationary point (Sener & Savarese, 2018). For-

mally, θs is called Pareto Stationary if there exists a set

of α1, . . . , αK s.t.
∑K

k=1 αk∇µk(θs) = 0, where αk ≥ 0

for all k and
∑K

k=1 αk = 1. We can use time-smoothing

w.r.t. a non-trivial window 1≪ w ≤ T and corresponding

time-smoothed OGD algorithms from the online non-convex

optimization (Hazan et al., 2017; Hallak et al., 2021). Then

we can show that asymptotically, as T,w →∞, any time-

smoothed OGD-based algorithm A converges to a pareto-

stationary point θs where
∑K

k=1 αk∇µk(θs) = 0, and αk

is the fraction of rounds that data source k is selected in the

long run under A. We provide the formal statement of this

result and its proof in Appendix A.5 for completeness.

A natural question is whether the bounds in Theorem 3.1

can be improved. We can establish the following lower-

bound for the minimax regret of any algorithm which shows

UCB-OGD is optimal, up to a lnT factor.

Proposition 3.3 (Minimax Lower-Bound). The minimax

regret of any online algorithm A satisfies E[R(AT )] ≥
O(T

1
2 ) in the worst case.

The proof of Proposition 3.3 is based on a simple case and

is provided in Appendix A.6.

4. Proof of Main Results (Theorem 3.1)

In Algorithm 1, both the SELECT step and the UPDATE step

seek to utilize the information within the collected training

set Xt, rather than generating fresh samples from the data

distribution (Haghtalab et al., 2022; Zhang et al., 2023).

The intuition is that discarding previous samples will result

in the model being trained on every data point only once,

which is infeasible for most modern DL tasks such as object

detection. Instead, it is conventional to reuse past samples

while maintaining a training set, at the cost of potential

complexities in generalization during theoretical analysis.

Formally, consider the empirical loss µ̂k(θt;Xt) for some

k, θt and a training set Xt. When θt is trained over the

collected samples in Xt, optimization steps like OGD in

Equation (4) introduces implicit dependency between θt
and Xt, which makes the empirical loss estimator (thus the

empirical gradient estimator) biased, i.e.,

µ̃k(θt) := E[µ̂k(θt;Xt)|At] ≲ µk(θt). (10)

Indeed, µ̃k(θt) tends to underestimate µk(θt) due to poten-

tial overfitting. In practical DL training, this is mitigated

empirically by techniques such as data augmentation and

regularization, which we also adopt in the experiments in

Section 5.

To characterize the minimax regret (Definition 2.1) of the

algorithms, we present several standard regret definitions

from the literature.

Optimization Regret. Recall that Algorithm 1 picks one

data source kt in every round t and generates a θt+1 for the

next round (t+ 1) based on the updated data set Xt. After

T rounds of execution, we define an optimization regret

for algorithm A based on the cumulated gap between the

expected empirical loss µ̃kt
(θt) achieved by the algorithm

in round t and the best fixed model parameter θ chosen in

hindsight given the sequence of data sources k1, k2, . . . , kT
(Hazan, 2016), i.e.,

Ro(AT ) :=

T
∑

t=1

µ̃kt
(θt)−min

θ

T
∑

t=1

µ̃kt
(θ). (11)
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Bandit Regret. Consider a K-armed contextual bandit,

where the reward of each arm k is ℓ(θ,X), X ∼ U(Xt,k)
with expectation µ̃k(θ) under context θ. In our problem, the

arms are the data sources and the context θ is the model

parameter. Further, the reward distribution of every arm-

context pair is stationary4. After T rounds, we define the

bandit regret of an algorithm A based on the cumulated

gap between the expected empirical loss when the arms are

chosen optimally in a context-aware manner and the actual

expected empirical loss achieved by the algorithm in each

round (Slivkins, 2011), i.e.,

Rb(AT ) :=

T
∑

t=1

(

max
k

µ̃k(θt)− µ̃kt
(θt)

)

. (12)

Generalization Regret. We further define the generaliza-

tion regret as the cumulated gap between the expected worst-

case empirical loss and the worst-case true loss, i.e.,

Rg(AT ) :=
T
∑

t=1

(

max
k

µk(θt)−max
k

µ̃k(θt)

)

. (13)

Using the definitions above, the minimax regret (Defini-

tion 2.1) can be decomposed as follows.

Proposition 4.1 (Regret Decomposition). Let Equation (10)

hold. Then the minimax regret of any algorithm A over T
rounds satisfies R(AT ) ≤ Ro(AT )+Rb(AT )+Rg(AT ).

Proof. By definition, we can write

Ro(AT ) +Rb(AT ) +Rg(AT )

=

T
∑

t=1

max
k

µk(θt)−min
θ

T
∑

t=1

µ̃kt
(θ)

≥
T
∑

t=1

max
k

µk(θt)−min
θ

T
∑

t=1

µkt
(θ)

≥
T
∑

t=1

max
k

µk(θt)− T min
θ

max
k

µkt
(θ)

= R(AT )

. (14)

The first inequality in Equation (14) follows from Equa-

tion (10), and the second inequality from the fact that

µkt
(θ) ≤ maxk µk(θ) for any kt, θ.

For the optimization regret Ro, we can establish the follow-

ing result for both Eps-OGD and UCB-OGD.

4This means, at any two time steps t1, t2 ∈ {1, . . . , T}, if
kt1 = kt2 = k and θt1 = θt2 , then ℓ(θt1 , X1), and ℓ(θt2 , X2)
for X1, X2 ∼ U(Xt,k) are i.i.d.

Proposition 4.2 (Optimization Regret). Let µ1, . . . , µK be

convex in θ. With step sizes ηt = 1/(2L
√
t), the optimiza-

tion regret of any OGD-based algorithm A over T rounds

satisfies

E[Ro(AT )] ≤ L(D2 + 1)
√
T + L−1σ2

√
T , (15)

where L, D, and σ are defined in Assumption 2.3, Assump-

tion 2.4, and Assumption 2.5, respectively.

Proof of Proposition 4.2 follows from the analysis of stan-

dard OGD (Hazan, 2016) with modifications to account

for Lipschitz loss function (Assumption 2.3) and the gra-

dient noise (Assumption 2.5) in our stochastic setting. We

also alleviate the dependence of the learning rate ηt on the

diameter D (Assumption 2.4) to be more in line with the

conventions in stochastic optimization literature (Garrigos

& Gower, 2024). The complete proof of Proposition 4.2 is

provided in Appendix A.1.

For the bandit regret Rb, our problem adopts the structure of

a contextual bandit in a rigorous manner. However, we are

not necessarily playing the bandit game here. When a new

context θt arrives in round t, the player in a rigorous bandit

game can only learn about the context from the specific

problem structure (e.g. similarity information in the context

space), or by pulling the arms for new samples. In contrast,

both Eps-OGD and UCB-OGD in our case are allowed to

learn about the new context θt directly by evaluating the loss

over the collected samples, i.e., computing the empirical

loss µ̂k(θt|·). This provides us with information about the

new context θt even if no new samples are collected in the

current round. We can take this advantage to bypass the

challenge of navigating through arm-context pairs based on

similarity and directly utilize the empirical loss as a more

informative source of knowledge about θt.

We sketch the outline of the bandit regret analysis below and

provide the detailed proofs in Appendices A.2 and A.3. The

core steps involve establishing the concentration inequality

and characterizing the bandit gap.

Lemma 4.3 (Loss Concentration). Let S ∼ U(Xt) be a

batch of training data sampled uniformly at random from

the training set Xt. Then it holds for any constants k ∈
{1, . . . ,K} and r > 0 that

Pr[|µ̂k(θt;S)− µ̃k(θt)| > r]

≤ 2 exp

(

−2|Sk|
C2

· r2
)

, (16)

where |Sk| denotes the number of samples in S that belongs

to data source k, and C is defined in Assumption 2.3.

The proof of Lemma 4.3 follows from constructing a mar-

tingale over the sequence of ℓ(θt, Xi) for each Xi ∈ Sk and

applying the Azuma’s inequality, detailed in Appendix A.2.
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Using the tail bound provided in Lemma 4.3, now we show

the concentration of the empirical loss on expectation, ex-

pressed in terms of a confidence radius. While the UCB

algorithm directly defines its confidence radius in Equa-

tion (7), we similarly define the confidence radius of the

ϵ-Greedy algorithm given some set of samples S as

rk(S) := C
√

αK ln t/(2|S|ϵt). (17)

Further denote µ̃⋆(θt) := maxk µ̃k(θt) the maximum ex-

pected empirical loss, and r⋆(S) the corresponding confi-

dence radius defined in Equations (7) and (17). Let µ̂⋆(θt;S)
be the empirical estimate of µ̃⋆(θt) given S . The following

is a direct consequence of Lemma 4.3.

Lemma 4.4 (Bandit Gap). Let ∆k(θt) := µ̃⋆(θt)− µ̃k(θt)
and ∆̂k(θt;S) := µ̂⋆(θt;S) − µ̂k(θt;S). Then for any

constant α ≥ 1/2 and confidence radius rk defined in Equa-

tions (7) and (17), it holds that

E[∆k(θt)|At,S] ≤ rk(S) + r⋆(S)
+ ∆̂k(θt;S) +O(t−α)

. (18)

This indicates that, by following the decision rules of the

bandit algorithms that carefully controls ∆̂kt
(θt; ·) with

appropriately chosen confidence radius, the estimation of

the worst-case loss is accurate with high probability. Since

the bandit regret in Equation (12) is an accumulation of the

bandit gaps ∆kt
(θt) in each round, Lemma 4.4 effectively

provides a provable probability bound on the concentration

of the empirical estimation of the bandit gaps, which also

guarantees the quality of the OGD updates.

The following results on the bandit regret match the standard

regret bounds of stationary stochastic bandits (Auer et al.,

2002) despite the non-stationary setting of our problem. The

detailed proof is given in Appendix A.3.

Proposition 4.5 (Bandit Regret). The bandit regret (Equa-

tion (12)) is O(T
2
3 (K lnT )

1
3 ) for Eps-OGD, i.e.,

E[Rb(Eps-OGDT )] ≤
3(2
√
2 + 1)C

2

3

√

αKT 2 lnT

2M
,

(19)

and O(N
1
2 (K lnT )

1
2 ) for UCB-OGD, i.e.,

E[Rb(UCB-OGDT )] ≤ 2C

√

2αKT lnT

M
. (20)

Remark 4.6. In the rigorous contextual bandit setting where

one can only learn about the new context from the problem

structure, it is common to assume that the reward function

is Lipschitz w.r.t. to the context. The uniform partition al-

gorithm (Hazan & Megiddo, 2007) proposes to partition

the context space and run a stationary bandit algorithm on

every partition and incurs the regret O(T 1− 1
2+K+H ), where

H is the covering dimension of the context space Θ. Since

usually H ≫ 1 for modern DNNs (Mao et al., 2024), the

uniform partition algorithm and other similar contextual

bandit algorithms (Slivkins, 2011) may struggle to obtain a

meaningful regret in our setting.

The final step is to bound the generalization regret Rg , which

has been studied extensively in robust learning literature

(Dziugaite & Roy, 2017; Arora et al., 2018; Cao & Gu,

2019). While this is out-of-scope for the purpose of this

paper, the takeaway is that the generalization bound takes

the form of

Rg(AT )

T
≤
√

C(θ)
|XT |

= O(T− 1
2 ), (21)

where C(θ) is a constant determined by the complexity of the

model. Intuitively, the generalization is better when the size

of the dataset is sufficiently large, and when the model is not

too over-parametrized. This is indeed true for a wide range

of complex DL tasks, including our motivating example of

urban vehicle detection described in Section 1.

Proof of Theorem 3.1. The proof is a direct consequence

of Proposition 4.1 and the fact that the optimization regret

in Proposition 4.2, the bandit regrets in Proposition 4.5, and

the generalization regret in Equation (21) are all sublinear.

5. Experimental Results

In this section, we present the experimental results of the

three algorithms described in Section 3, compared to other

state-of-the-art AL (active learning) algorithms. We con-

sider the following tasks with different notions of data

source, demonstrating the flexibility of our framework in

practical settings.

Classification. We perform image classification on the

CIFAR10 dataset (Krizhevsky et al., 2009) with a budget

of 10,000 images, where every class is a data source. We

also report the results on the MNIST dataset (Lecun et al.,

1998) to test different optimizer configurations and get more

insight into the distribution of collected samples from dif-

ferent classes under different algorithms. The metric are the

mean and minimum class-wise accuracies among all classes.

We use a simple three-layer convolutional neural network

(CNN) architecture with ReLU activations for this task.

Multi-class Object Detection. We perform object detection

on the PASCAL VOC2012 dataset (Everingham et al.) with

a budget of 3,000 images. Since each image may contain a

mixture of objects from different classes, we define the data

source as a set of different classes whose objects are likely

to appear in the same image, i.e., indoor, wildlife, transport,

and human. Then we partition the dataset into four subsets,
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each containing a collection of images from one of the four

data sources. Details of data source assignment is given

in Appendix B. We use mean Average Precision with an

intersection-over-union (IOU) threshold of 0.5 (mAP@50)

to measure the performance of the algorithms within each

subset. The metrics are the mean and minimum mAP@50

among all subsets of images. We use the SSD300 (Liu et al.,

2016) architecture with input image size of 300 for this

task. The backbone network is VGG16 (Liu & Deng, 2015)

pretrained on ImageNet (Deng et al., 2009).

Vision-Language Modeling. We perform a simple Vi-

sual Question Answering (VQA) task under a budget of

1,000 question-answer pairs from the VQAv2 dataset (Antol

et al., 2015) using the proposed algorithms. We partition

the dataset into three data sources based on the type of the

questions, i.e., yes/no questions, numerical questions, and

descriptive questions. The metrics are the mean and mini-

mum per-token accuracies of each data source. We adopt a

pretrained SmolVLM-256M-Base model (Marafioti et al.,

2025) for this task.

Single-class Object Detection. We further implement the

proposed algorithms on the COSMOS testbed (Raychaud-

huri et al., 2020) for detecting vehicles in an urban intersec-

tion (our motivating example in Section 1) with a budget

of 2,500 images. The COSMOS testbed includes a traffic

intersection in New York City, with three cameras overlook-

ing the traffic flows from different angles. Further details

of the testbed setup is given in Appendix B. We collect and

annotate the captured images from the three cameras in the

testbed and consider each camera as a data source. The

metrics are the mean and minimum Average Precision with

IOU threshold of 0.5 (AP@50) among all cameras. We use

the same model architecture as the one used for the above

multi-class task but with an input image size of 320.

To understand how the three algorithms differ from each

other and what training configurations to use, we run the

classification task on the MNIST dataset under various se-

tups. Each algorithm executes 1,000 rounds and collects

a batch of 8 samples every 4 rounds under a total budget

of 2,000 training images. The results are depicted in Fig-

ure 1. It can be observed that Eps-OGD and UCB-OGD con-

sistently outperform Rand-OGD (Figure 1(a)), with UCB-

OGD exhibiting comparatively better accuracy. The colored

band associated with each line represents the range of mini-

mum and maximum class-wise accuracy of each algorithm.

We also observe from Figure 1(b) that the Adam optimizer

with cosine-annealing learning rate scheduler (LRS) and

L2 regularization (Reg) provides the smoothest trajectory,

which we adopt for the following experiments. Figure 1(c)

shows the distribution of the samples collected from each

digit. It can be seen that UCB-OGD tends to explore the

data sources with fewer samples more aggressively com-

Table 1. Performance of the proposed algorithms, UCB-OGD and

Eps-OGD, compared to Rand-OGD and active learning algorithms

on standard datasets and complex real-world tasks.

DATASET

(BUDGET)
MODEL ALG

MIN

ACC

MEAN

ACC

CIFAR10
(10K)

CNN

UC 49.3 68.7
EN 53.0 68.1

BALD 45.0 66.5
DBAL 52.7 68.6

BADGE 40.0 61.0
RAND-OGD 36.3 63.3
EPS-OGD 48.9 64.5
UCB-OGD 52.3 66.5

VOC2012
(3K)

SSD300
MDN 42.2 47.2

RAND-OGD 40.6 51.3
UCB-OGD 44.7 53.0

VQAV2
(1K)

SMOLVLM
RAND-OGD 20.9 20.9
UCB-OGD 22.6 22.9

TESTBED

(2K5)
SSD300

RAND-OGD 57.0 66.7
UCB-OGD 61.7 69.2

pared to Eps-OGD. Other details of the implementation are

given in Appendix B.

We also draw comparisons with several state-of-the-art

AL algorithms. For the classification task, we consider

several well-known AL algorithms in the literature (Mun-

jal et al., 2022), i.e., Uncertainty-based Sampling (UC),

Entropy-based Sampling (EN), Bayesian Active Learning

by Disagreement (BALD), Deep Bayesian Active Learning

(DBAL), and Deep Batch Active Learning (BADGE) (Ash

et al., 2020). All AL algorithms are given an initial labeled

pool of 1,000 samples (10% of budget), and proceeds to

collect 3,000 samples in each episode from the remaining

dataset for three episodes. For the multi-class object detec-

tion task, we consider the Mixture Density Network (MDN)

that takes a probabilistic approach for uncertainty measure-

ment (Choi et al., 2021). The MDN algorithm is given an

initial labeled pool of 600 samples (20% of budget), and pro-

ceeds to collect 800 samples per episode for three episodes.

We note that the sizes of the initial labeled pool for both

tasks are typically smaller than the common setup in AL

literature in order to emulate data-scarce scenarios. The

results are summarized in Table 1.

For CIFAR10, it can be seen that while all algorithms outper-

form the Rand-OGD baseline, DBAL and UCB-OGD give

similar minimum accuracies of 52.7 and 52.3, surpassing

other algorithms by a noticeable margin. Meanwhile, two

AL methods, UC and DBAL, give a higher mean accuracy

of 68.7 and 68.6 over all classes.

For VOC2012, UCB-OGD outperforms both Rand-OGD

and MDN in both minimum and mean mAP@50. Further-

more, we inspect the effect of the initial pool size on MDN.
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Impact Statement

This paper presents work whose goal is to advance the field

of Machine Learning. There are many potential societal

consequences of our work, none which we feel must be

specifically highlighted here.

References

Agarwal, A. and Zhang, T. Minimax Regret Optimization

for Robust Machine Learning under Distribution Shift.

In Loh, P.-L. and Raginsky, M. (eds.), Proceedings of

Thirty Fifth Conference on Learning Theory, volume 178

of Proceedings of Machine Learning Research, pp. 2704–

2729. PMLR, July 2022.

Aghdam, H. H., Gonzalez-Garcia, A., Weijer, J. v. d., and

Lopez, A. M. Active Learning for Deep Detection Neural

Networks. In Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), October 2019.

Ahuja, K., Shanmugam, K., Varshney, K., and Dhurandhar,

A. Invariant Risk Minimization Games. In III, H. D. and

Singh, A. (eds.), Proceedings of the 37th International

Conference on Machine Learning, volume 119 of Pro-

ceedings of Machine Learning Research, pp. 145–155.

PMLR, July 2020.

Akcin, O., Li, P.-h., Agarwal, S., and Chinchali, S. P. De-

centralized Data Collection for Robotic Fleet Learning:

A Game-Theoretic Approach. In Liu, K., Kulic, D., and

Ichnowski, J. (eds.), Proceedings of The 6th Conference

on Robot Learning, volume 205 of Proceedings of Ma-

chine Learning Research, pp. 978–988. PMLR, Decem-

ber 2023a.

Akcin, O., Unuvar, O., Ure, O., and Chinchali, S. P. Fleet

Active Learning: A Submodular Maximization Approach.

In Tan, J., Toussaint, M., and Darvish, K. (eds.), Proceed-

ings of The 7th Conference on Robot Learning, volume

229 of Proceedings of Machine Learning Research, pp.

1378–1399. PMLR, November 2023b.

Antol, S., Agrawal, A., Lu, J., Mitchell, M., Batra, D.,

Zitnick, C. L., and Parikh, D. VQA: Visual Question

Answering. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), December 2015.

Arora, S., Ge, R., Neyshabur, B., and Zhang, Y. Stronger

Generalization Bounds for Deep Nets via a Compression

Approach. In Dy, J. and Krause, A. (eds.), Proceedings of

the 35th International Conference on Machine Learning,

volume 80 of Proceedings of Machine Learning Research,

pp. 254–263. PMLR, July 2018.

Ash, J. T., Zhang, C., Krishnamurthy, A., Langford, J., and

Agarwal, A. Deep Batch Active Learning by Diverse,

Uncertain Gradient Lower Bounds. In 8th International

Conference on Learning Representations, ICLR 2020, Ad-

dis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net,

2020.

Auer, P., Cesa-Bianchi, N., and Fischer, P. Finite-time

Analysis of the Multiarmed Bandit Problem. Machine

Learning, 47(2/3):235–256, 2002. ISSN 08856125. doi:

10.1023/A:1013689704352.

Baldridge, J. and Palmer, A. How well does active learning

actually work? Time-based evaluation of cost-reduction

strategies for language documentation. In Koehn, P. and

Mihalcea, R. (eds.), Proceedings of the 2009 Conference

on Empirical Methods in Natural Language Processing,

pp. 296–305, Singapore, August 2009. Association for

Computational Linguistics.

Bisla, D., Saridena, A. N., and Choromanska, A. A

Theoretical-Empirical Approach to Estimating Sample

Complexity of DNNs. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR) Workshops, pp. 3270–3280, June 2021.
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Laurençon, H., Tronchon, L., Cord, M., and Sanh, V. What

matters when building vision-language models?, 2024.

eprint: 2405.02246.

Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-

based learning applied to document recognition. Pro-

ceedings of the IEEE, 86(11):2278–2324, 1998. doi:

10.1109/5.726791.

11



Adaptive Data Collection for Robust Learning Across Multiple Distributions

Lewis, D. D. and Catlett, J. Heterogeneous Uncertainty

Sampling for Supervised Learning. In Machine Learning

Proceedings 1994, pp. 148–156. Elsevier, 1994. ISBN

978-1-55860-335-6. doi: 10.1016/B978-1-55860-335-6.

50026-X.

Liu, S. and Deng, W. Very deep convolutional neural net-

work based image classification using small training sam-

ple size. In 2015 3rd IAPR Asian Conference on Pat-

tern Recognition (ACPR), pp. 730–734, Kuala Lumpur,

Malaysia, November 2015. IEEE. ISBN 978-1-4799-

6100-9. doi: 10.1109/ACPR.2015.7486599.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu,

C.-Y., and Berg, A. C. Ssd: Single shot multibox detector.

In Computer Vision–ECCV 2016: 14th European Con-

ference, Amsterdam, The Netherlands, October 11–14,

2016, Proceedings, Part I 14, pp. 21–37. Springer, 2016.

Lomasky, R., Brodley, C. E., Aernecke, M., Walt, D., and

Friedl, M. Active Class Selection. In Kok, J. N., Ko-

ronacki, J., Mantaras, R. L. D., Matwin, S., Mladenič,
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A. Proofs

A.1. Proof of Proposition 4.2

We first restate Assumption 2.4 on the domain of θ.

Assumption A.1 (Finite Domain). The model parameters generated by Algorithm 1 in all rounds, i.e., θ1, . . . , θT , satisfies

E[∥θt − θ̃⋆∥] ≤ D for some D ≥ 0, where θ̃⋆ := argminθ
∑T

t=1 µkt
(θ).

We further state the following lemma (Garrigos & Gower, 2024).

Lemma A.2 (Gradient Norm). Let Assumption 2.3 and Assumption A.1 hold. Then for some set of inputs S , we have

E[∥∇µ̂k(θ;S)−∇µk(θ)∥2] ≤
2(L2 + σ2)

|Sk|
.

Now we prove Theorem 3.1.

Proof. By the property of convex functions,

µkt
(θt)− µkt

(θ̃⋆) ≤ ⟨∇µkt
(θt), θt − θ̃⋆⟩,

where θ̃⋆ is defined in Assumption A.1 and ⟨x, y⟩ is the inner product between vectors x, y in Θ. Since θt+1 = θt −
ηt∇µ̂kt

(θt; ·), we have

∥θt+1 − θ⋆∥2 = ∥θt − θ⋆∥2 + η2t ∥∇µ̂kt
(θt; ·)∥2 − 2ηt⟨∇µ̂kt

(θt; ·), θt − θ̃⋆⟩.

By rearranging and taking the expectation, we have

2E[⟨∇µ̃kt
(θt), θt − θ̃⋆⟩] = E[E[2⟨∇µ̂kt

(θt; ·), θt − θ̃⋆⟩|AT ]]

= η−1
t E[∥θt − θ∗∥2]− η−1

i E[∥θt+1 − θ̃⋆∥2] + ηtE[∥∇µ̂kt
(θt; ·)∥2]

,

Further let η−1
0 := 0. Then the optimization regret in Equation (11) writes

2E[Ro(AT )] = 2

T
∑

t=1

E[µ̃kt
(θt)− µ̃kt

(θ̃⋆)]

≤ 2
T
∑

t=1

E[⟨µ̃kt
(θt), θi − θ̃⋆⟩]

≤
T
∑

t=1

(

η−1
t E[∥θt − θ̃⋆∥2]− η−1

t E[∥θt+1 − θ̃∗∥2] + ηtE[∥∇µ̂kt
(θt; ·)∥2]

)

≤ D2
T
∑

t=1

(η−1
t − η−1

t−1) + 2(L2 + σ2)

T
∑

t=1

ηt

,

where the inequality is a result of Assumption A.1 and Lemma A.2 with |Sk| ≥ 1. Setting ηt = 1/(2L
√
t) for t ≥ 1 and

recalling that
∑T

t=1 1/
√
t ≤ 2

√
T , we have

2E[Ro(AT )] ≤ 2L(D2 + 1)
√
T + 2L−1σ2

√
T .

This concludes the proof.

A.2. Proof of Lemma 4.3 and Lemma 4.4

For Lemma 4.3, we construct the martingale as follows.
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Proof. For each Xi ∈ S ⊆ Xk and some k, let

Zi := ℓ(θt, Xi)− µ̃k(θt), i = 1, . . . , |Sk|.

It is easy to verify that the sequence {Zi, i = 1, . . . , |Sk|} is a martingale difference sequence, i.e.,

E[Zi|At] = E[ℓ(θt, Xi)|At]− µ̃k(θt) = 0.

Applying the Azuma’s inequality on {Zi, i = 1, . . . , |Sk|} gives the statement of the lemma.

To prove Lemma 4.4, simply note that any confidence radius rk(·) in round t is adapted to the algorithm decisions At and

apply Lemma 4.3.

Proof. We start by writing

∆k(θt) = µ̃⋆(θt)− µ̃k(θt)

=
(

µ̂k(θt;S)− µ̃k(θt)
)

−
(

µ̂⋆(θt;S)− µ̃⋆(θt)
)

+ ∆̂k(θt;S)
.

For the term µ̂k(θt;S)− µ̃k(θt), denote

δt := Pr
[

µ̂k(θt;S)− µ̃k(θt) ≥ rk(S)
∣

∣At

]

.

Taking its expectation conditioned on At and S , we have

µ̂k(θt;S)− E[µ̃k(θt)|At,S] ≤ (1− δt)rk(S) + Cδt ≤ rk(S) + Cδt.

And similarly for µ̂⋆(θt;S)− µ̃⋆(θt),

µ̂⋆(θt;S)− E[µ̃⋆(θt)|At,S] ≥ −(1− δt)r
⋆(S)− Cδt ≥ −r⋆(S)− Cδt.

Plugging back into the first equation in the proof gives the result of the lemma, where the value of δt can be obtained by

applying the definition of the confidence radius in Equations (7) and (17) to Lemma 4.3, which are of order O(t−α).

A.3. Proof of Proposition 4.5

First we prove the bandit regret for Eps-OGD, which is adapted from the proof of the ϵ-Greedy algorithm for stochastic

bandits (Auer et al., 2002).

Proof. Since a greedy step picks kt to be argmaxk µ̂k(θt|Xt−1), we have µ̂kt
(θt|Xt−1) ≥ µ̂⋆(θt|Xt−1). This implies that

we observe ∆̂kt
(θt|Xt−1) = 0 with probability 1 − ϵt. Otherwise, an ϵ-exploration step picks kt ∼ U({1, . . . ,K}) and

∆kt
(θt|Xt−1) ≤ C (Assumption 2.3). More formally, when t = 1, we set ϵt = 1 and the data source is selected randomly

with E[∆kt
(θt)] ≤ C. For t > 1, we can write

E[∆̂kt
(θt;Xt−1)] ≤ Cϵt.

According to Lemma 4.4, we have

E
[

∆kt
(θt)

∣

∣At,Xt−1

]

≤ rk(Xt−1) + r⋆(Xt−1) + ∆̂kt
(θ;Xt−1) + 2Cδt.

Combining the two equations gives

E[∆kt
(θt)|At] ≤ rk(Xt−1) + r⋆(Xt−1) + 2Cδt + Cϵt.

For the Eps-OGD algorithm, the confidence radius defined in Equation (17) writes

rk(Xt−1) := C

√

αK ln t

2|Xt−1|ϵt
= C

√

αK ln t

2M(t− 1)ϵt
, t > 1.
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Then the concentration probability given by Lemma 4.3 is δt = t−α
K|Xt−1,k|

M(t−1)ϵt . Assume that ϵt decreases monotonically with

t. Then E[|Xt−1,k|] ≥M(t− 1)ϵt/K for all k, yielding E[δt] ≤ t−α. Thus,

E[∆kt
(θt)] ≤ 2C

√

αK ln t

2M(t− 1)ϵt
+ 2Ct−α +Bϵt.

This is minimized by taking ϵt =
3
√

αK ln t/(2M(t− 1))/2 as in Equation (5), which gives

E[∆kt
(θt)] ≤ (2

√
2 + 1)C 3

√

αK ln t

2M(t− 1)
+ 2Ct−α.

To compute the total expected regret, we first bound the following summation

T
∑

t=2

3

√

ln t

t− 1
≤ 3
√
lnT ·

T
∑

t=2

1
3
√
t− 1

≤ 3
√
lnT

∫ T

0

x− 1
3 dx

=
3

2

3
√
T 2 lnT

.

For any α ≥ 1/2, we have
∑T

t=1 δt ≤ 2
√
T . Thus, we can write

E[Rb(AT )] = C +

T
∑

t=2

E[∆kt
(θt)] ≤ C +

3(2
√
2 + 1)C

2

3

√

αKT 2 lnT

2M
+ 4C

√
T .

This concludes the proof.

Now we prove the bandit regret of UCB-OGD.

Proof. Since UCB selection picks kt to be argmaxk µ̂k(θt|Xt−1) + rk(Xt−1), we have

µ̂⋆(θt|Xt−1) + r⋆(Xt−1) ≤ µ̂kt
(θt|Xt−1) + rkt

(Xt−1),

or, equivalently,

∆̂kt
(θt|Xt−1) ≤ rkt

(Xt−1)− r⋆(Xt−1).

Combining with Lemma 4.4, we have

E[∆kt
(θt)|At,Xt−1] ≤ 2rkt

(Xt−1) + 2Cδt.

Recall the definition of confidence radius rk(Xt−1) in Equation (7), with δt ≤ t−α given by Lemma 4.3. Further let nk(t)
denote the number of times a data source k is selected up to time t. We can write |Xt,k| = Mnk(t) for any k, t. Then the

equation above can be written as

E[∆kt
(θt)] ≤ 2C

√

α ln t

2M
E

[√

1

nk(t− 1)

]

+ 2Cδt.

Let AT,k := {(kt, θt) ∈ AT : kt = k}. We assume that the algorithm iterates over every data source during the first K
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rounds for initial warm-up. Then, the regret incurred by some arm k can be written as

E[Rb(AT,k)] =

T
∑

t=1

E [1 {kt = k}∆kt
(θt)]

≤ C +

T
∑

t=K+1

E [1 {kt = k}∆kt
(θt)]

≤ C +

T
∑

t=K+1

(

2C

√

α ln t

2M
E

[

1 {kt = k}
√

nk(t− 1)

]

+ 2Cδt

)

≤ C + C

√

2α lnT

M
E

[

T
∑

t=K+1

1 {kt = k}
√

nk(t− 1)

]

+ 2CE

[

T
∑

t=K+1

δt1 {kt = k}
]

.

Notice that between any consecutive rounds t− 1 and t, nk(t) is increased by 1 if and only if kt = k (i.e., the data source is

selected and new samples are added), or the numerator is zero otherwise, hence,

T
∑

t=K+1

1 {kt = k}
√

nk(t− 1)
=

1

1
+

0

1
+ · · ·+ 0

1
+

1√
2
+

0√
2
+ · · ·

+ · · ·+ 0
√

nk(T − 2)
+

1
√

nk(T − 1)

=

nk(T−1)
∑

n=1

1√
n

≤ 2
√

nk(T − 1)

.

Then expected regret can be written as

E[Rb(AT )] =

K
∑

k=1

E[Rb(AT,k)]

≤ KC + 2C

√

2α lnT

M
E

[

K
∑

k=1

√

nk(T − 1)

]

+ 2CE

[

K
∑

k=1

N
∑

i=1

δt1 {kt = k}
]

≤ KC + 2C

√

2α lnT

M
E





√

√

√

√K
K
∑

k=1

nk(T − 1)



+ 2CE

[

T
∑

t=1

δt

]

,

where the last line follows from the inequality between arithmetic mean and quadratic mean, and the fact that
∑K

k=1 1 {kt = k} = 1 for all t. Further recall that
∑K

k=1 nk(t) = t. Then, for any α ≥ 1/2, we have

E[Rb(AT )] ≤ KC + 2C

√

2αKT lnT

M
+ 4C

√
T .

This concludes the proof.

A.4. Mean Convergence

For the Rand-OGD algorithm, since it enforces that the data sources are queried in a balanced way, the algorithm reduces to

a standard stochastic gradient descent for minimizing the average loss over the data sources, i.e.,
∑K

k=1 µk(θ)/K. We have

the following result.

Theorem A.3. Let µ1, . . . , µK be convex in θ. The Rand-OGD algorithm satisfies

E

[

1

K

K
∑

k=1

µk(θ̄AT
)−min

θ

1

K

K
∑

k=1

µk(θ)

]

≤ O(T− 1
2 ). (22)
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Proof. Denote µ̄(θ) :=
∑K

k=1 µk(θ)/K. Since kt ∼ U({1, . . . ,K}), it holds for any fixed θ that E[µkt
(θ)] = µ̄(θ). By

the definition of the optimization regret (Equation (11)) and the generalization regret (Equation (13), defined on a single

source µ̄),

E

[

T
∑

t=1

µ̄(θt)− T min
θ

µ̄(θ)

]

= E

[

T
∑

t=1

E[µkt
(θt)|θt]− T min

θ
µ̄(θ)

]

=

T
∑

t=1

E[µkt
(θt)]−min

θ

T
∑

t=1

E[µkt
(θ)]

≤
T
∑

t=1

E[µkt
(θt)− µ̃kt

(θt)] +

T
∑

t=1

E[µ̃kt
(θt)]−min

θ

T
∑

t=1

E[µ̃kt
(θ)]

= E[Rg(AT ) +Ro(AT )]

,

where the inequality follows from Equation (10). By the convexity of µk and Jensen’s inequality, we have µ̄(θ̄AT
) ≤

∑T

t=1 µ̄(θt)/T . Recalling the upper bound of optimization regret in Proposition 4.2 and the generalization regret in

Equation (21) concludes the proof.

A.5. Proof of Pareto-Stationarity

Theorem A.4 (Pareto Staionarity). Let A be a time-smoothed OGD-based algorithm. Then for some t ∼ U({1, . . . , T}), θt
is (asymptotically) Pareto-stationary for µ1, . . . , µK as T,w →∞.

Proof. In this proof, we adopt the time-smoothed OGD framework (Hazan et al., 2017). The time-smoothed gradient at

round t w.r.t. some window w ∈ [1, T ] is defined as

∇µ̄w
k (θ) :=

1

w

w−1
∑

i=1

∇µkt−i
(θt).

All µkt
where t ≤ 0 are set to 0 for uniformity. The w-local regret is defined as

Rw
l (AT ) :=

T
∑

t=1

∥

∥∇µ̄w
kt
(θt)

∥

∥

2
.

A proper time-smoothed OGD algorithm AT incurs a w-local regret of order O(T/w2) (Hazan et al., 2017; Hallak et al.,

2021). Further, the relationship between individual ∇µ̄w
kt
(θt) and the local regret can be given by

Et∼U({1,...,T})

[

∥

∥∇µ̄w
kt
(θt)

∥

∥

2
]

≤ E[Rw
l (AT )]

T
= O(1/w2).

Let nw
k (t) :=

∑w−1
i=1 1 {kt−i = k} be the number of times an arm k is selected from round t− w + 1 to round t. Then we

can rewrite

∇µ̄w
kt
(θt) =

K
∑

k=1

nw
k (t)

w
∇µk(θt).

It follows that

Et∼U({1,...,T})





∥

∥

∥

∥

∥

K
∑

k=1

nw
k (t)

w
∇µkt

(θt)

∥

∥

∥

∥

∥

2


 ≤ O(1/w2).

Note that θs is called Pareto-stationary (Sener & Koltun, 2018) if there exists α1, . . . , αK ∈ R s.t.

K
∑

k=1

αk∇µk(θ) = 0, where

K
∑

k=1

αk = 1, αk ≥ 0.

Indeed, this is the case for our problem by setting αk = nw
k (t)/w and taking the limit for both T and w.
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A.6. Proof of Proposition 3.3

Proof. Consider a problem with K = 1 data source. Thus the problem reduces to a standard single-objective stochastic

optimization problem. Denote the objective function as µ(θ). Then for any gradient-based algorithm A after T rounds, we

have

R(AT ) =

T
∑

t=1

µ(θt)− T min
θ

µ(θ)

≥ T

(

µ(θ̄AT
)−min

θ
µ(θ)

)

,

(23)

where we recall Jensen’s inequality. Note that µ(θ̄AT
) − minθ µ(θ) is the optimality gap of algorithm A. Let µ(θ) be

L-Lipschitz (Assumption 2.3) but non-smooth (e.g. a DNN with ReLU activations). The optimality gap of gradient methods

in general is lower bounded by O(T− 1
2 ) (Shamir & Zhang, 2013). Thus the minimax regret is at least of order O(T

1
2 ).
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• Wildlife: bird, horse, cow, and sheep.

• Human: person only.

An image is partitioned to the human data source only if no other classes appear. If objects of multiple sources appear in the

same image, then the upper one in the list above takes priority (e.g. if an image contains both a sofa and a bird, then it is

partitioned to the indoor data source).

Further, for every data source, a class is removed from mAP calculation if has less than 20 objects in all the images from

that source in the validation set.

C. Generalization Results

We inspect the generalization ability of the proposed data collection framework by training other models using classical

training loops on the data collected by uniform allocation strategy and the UCB-OGD strategy. The chosen model is SSD300

for the PASCAL VOC2012 dataset and YOLOv8 for the testbed dataset.

Table 2. Comparisons of the performance of new models trained on the data collected by different strategies.

DATA SOURCE

(BUDGET)
MODEL ALLOCATION

MIN

ACC

MEAN

ACC

VOC2012
(3K)

SSD300
UNIFORM 35.0 51.7

UCB 36.2 52.2

TESTBED

(2K5)
YOLOV8

UNIFORM 62.2 72.5
UCB 63.7 72.9
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