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Abstract—Vision Language models (VLMs) have transformed
Generative Al by enabling systems to interpret and respond
to multi-modal data in real-time. While advancements in edge
computing have made it possible to deploy smaller Large Lan-
guage Models (LLMs) on smartphones and laptops, deploying
competent VLMs on edge devices remains challenging due to
their high computational demands. Furthermore, cloud-only
deployments fail to utilize the evolving processing capabilities
at the edge and limit responsiveness. This paper introduces a
distributed architecture for VLMs that addresses these limita-
tions by partitioning model components between edge devices
and central servers. In this setup, vision components run on edge
devices for immediate processing, while language generation of
the VLM is handled by a centralized server, resulting in up
to 33% improvement in throughput over traditional cloud-only
solutions. Moreover, our approach enhances the computational
efficiency of off-the-shelf VLM models without the need for model
compression techniques. This work demonstrates the scalability
and efficiency of a hybrid architecture for VLM deployment and
contributes to the discussion on how distributed approaches can
improve VLM performance.

Index Terms—yvision-language models (VLMs), edge comput-
ing, distributed computing, inference optimization, edge-cloud
collaboration.

I. INTRODUCTION

Vision Language models (VLMs) [1]-[4] have experienced
a rapid surge in development [5], leading to a multitude
of practical applications across diverse domains. From au-
tonomous vehicles [6] and robotic navigation to augmented
reality and assistive technologies [7], VLMs are enabling
machines to understand and generate language from visual
data with remarkable accuracy and versatility. However, de-
spite the growing capabilities of VLMs, their deployment in
practical real-time systems faces significant challenges. The
high computational and memory demands of VLMs often
render them unsuitable for resource-constrained environments.
For example, LLaVA-13B [1], a popular state-of-the-art model,
requires at least 26GB of memory at FP16 precision, which
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exceeds the capacity of most edge devices. As a result, model
compression [8] and distributed computing have emerged
as crucial areas of research, which aim to reduce the size
and computational demands of the model without sacrificing
performance. Various strategies such as knowledge distillation
[9], quantization [10] [11], pruning, model partitioning and
distributed inference [12] are being explored to enhance VLM
deployment at the edge.

While many of these methods have been effectively applied
to LLMs, [13]-[16] VLMs pose unique challenges due to
their distinct architecture and processing requirements. A key
strength of VLM architecture lies in its modular design, which
separates the components for visual processing and language
understanding, thus providing a pathway for optimizing their
deployment. In this paper, we propose a novel hybrid comput-
ing approach that distributes the components of VLMs across
edge devices and a central server. Figure 1 shows the layout
of our architecture, where edge devices handle visual process-
ing, while more computationally intensive language tasks are
delegated to the centralized server. This approach introduces
parallelization into the VLM architecture, enhancing overall
throughput and enabling effective operation across multiple
devices.

Our framework allows heterogeneous devices to function
flexibly as either servers or edge nodes based on their com-
putational capabilities, creating a distributed setup. Unlike
methods that rely on pruning or quantization, our approach
accelerates inference without compression, ensuring that the
model’s performance remains intact. Moreover, our distributed
implementation enhances deployment accessibility: users only
need to provide a model with pre-trained weights, which our
framework adapts for distributed operation through a parti-
tioning process. This architecture not only improves inference
speed but also optimizes resource utilization and reduces
latency, broadening the scope of VLM applications in practical
settings. Through extensive experimentation, we demonstrate



that our approach enhances performance, paving the way for
scalable solutions across various domains while accelerating
inference for VLMs in distributed environments.

II. RELATED WORK
A. Vision Language Models

Recent VLMs have demonstrated strong multi-modal rea-
soning abilities across tasks like visual question answering,
image captioning, and content generation. Several efforts have
focused on adapting VLMs for deployment on edge devices.
For instance, Gemini [17], has introduced lightweight VLMs
called Gemini Nano, featuring 1.8B and 3.25B parameters,
specifically optimized for smartphones. VILA [4], introduced
by NVIDIA, uses CLIP [18] vision encoder combined with
the LLaMA [19] language model, excelling in multi-image
analysis and zero-shot tasks. MobileVLM [20] is an early
open-source model, with 1B and 3B parameter versions,
tailored for resource-constrained environments.

B. Distributed Inference

Distributed inference enables efficient processing by lever-
aging the computational power of multiple devices, often
involving cloud-edge collaboration and compute offloading
strategies. Considerable work has been done in this domain for
large language models (LLMs). For example, EdgeShard [13]
partitions LLMs into shards which can be distributed across
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Fig. 1: The edge device identifies the input (image X, and
prompt X,). The prompt X, is sent to the server, initiating
the prompt processing pipeline. Simultaneously, the vision
encoder extracts visual features Z,, which are then transformed
into tensor H, via a projection layer. Once ready, H, is sent
to the server where X, is vectorized into H,. The server then
merges the visual and text embeddings into a unified input for
the LLM which generates the output X,.

various devices, optimizing for both latency and throughput.
LLM-PQ [15] enhances efficiency with adaptive quantization
and phase-aware partitioning on heterogeneous GPU clusters.
PerLLM [16] introduces a personalized inference schedul-
ing framework designed for diverse LLM services through
edge-cloud collaboration. However, similar efforts specifically
targeting vision language models (VLMs) have yet to be
undertaken. The unique characteristics and requirements of
VLMs necessitate further exploration of distributed inference
techniques tailored to their architectures and specific use cases.

III. METHODOLOGY

The proposed distributed architecture for Vision Language
Models (VLMs) is designed to efficiently offload computa-
tional tasks between edge devices and a central server, optimiz-
ing resource utilization and performance. The system archi-
tecture is built around three main components: edge devices,
a central server, and a communication system that facilitates
interaction between them. The system relies on parallel pro-
cessing and dynamic flow control to handle real-time vision-
language tasks without compromising performance. The flow
of data and thread management is illustrated in Figure 2, which
provides a detailed overview of the interaction between the
edge devices and the central server.

Algorithm 1 Edge-Side Processing Workflow

1: Thread 1: Local Data Processing

2: if NEWIMAGEDETECTED() then

3: > # Retrieve image data and generate unique
identifier

4 Xy, X, < GetData()

5: my < GenerateUniquelD()

6: > # Send query text and unique ID to the server

7 Send(X,,m,) — Server

8 > # Process visual data

9: Z, < VisionEncoder(X,)

10: H, < ProjectionLayer(Z,)

11: > # Send encoded visual features and unique ID to
the server

12: Send(H,,m,) — Server

13: end if

14: Thread 2: Server Status Monitoring

15: if RECEIVESTATUS() = PAUSE then

16: Pause Thread-1, await RESUME signal
17: else

18: Resume Thread-1 processing

19: end if

A. Edge-Side Processing

The edge device is responsible for encoding images and
transmitting the intermediate results to the server. (refer
Algorithm-1) Each image has a pre-associated text prompt,
which is tracked using a unique input ID. By offloading the
entire vision tower to the edge device, we significantly reduce
the model size on the server and enhance throughput.
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Fig. 2: Distributed VLM Inference: A flowchart depicting the interaction between edge devices and the central server, where
each edge device handles image encoding and feature extraction, while the server processes text prompts, matches them with
image feature maps, and batch processes the matched inputs. Parallel processing across multiple threads ensures efficient queue
management and optimized task handling for high-throughput performance.

a) Image Processing on Edge: The edge device operates
with a main thread that continuously processes incoming data.
Upon receiving a new image, it transmits the associated text
prompt to the server to initiate text processing. The image
is processed by the vision tower to extract visual features.
These features are then passed through a projection layer
that converts them into a tensor format compatible with the
language model. Once encoded, the image features, along with
their corresponding input IDs, are sent to the server, ensuring
accurate matching with the text prompts on the server side.

b) Server Monitoring and Process Control: On a back-
ground thread, the edge device uses a binary flow control
mechanism to monitor the server’s status. Image processing
completely halts upon receiving a “PAUSE" signal and re-
sumes only when clearance is given from the server.

B. Server-Side Processing

The central server is responsible for managing text prompts,
encoded image feature maps, and language model processing
(refer Algorithm-2). Each component operates concurrently on
different processes to maximize throughput, and the system
is designed to support multiple edge devices in parallel,
providing scalability for large deployments. The key functions
of the server are as follows:

a) Text and Feature Maps Processing: Upon receiving
a text prompt, with an associated input ID, the server passes
the text through an embedding layer to generate dense text
embeddings, which are added to the “Processed Prompts"
queue. Concurrently, image feature maps are received from

the edge device and placed into the “Image Feature Maps"
queue. The server implements an efficient matching mecha-
nism using two hash maps to track text embeddings and image
features respectively. This hash map-based matching allows
O(n) lookup time to identify all corresponding text-image
pair sharing the same ID, enabling immediate combination
of matched pairs for subsequent LLM processing. Matched
pairs are concatenated and enqueued to the “Matched Input”
queue, with a threshold-based back-pressure system where
the server monitors the “Matched Input" queue occupancy.
Upon reaching a configurable threshold, it triggers a PAUSE
signal upstream to edge devices, temporarily suspending image
submissions until the queue length returns below the threshold,
ensuring system stability and preventing memory overflow.

b) Batch Processing: Padding is applied to the batch
prior to passing it through the VLM’s language model for
inference. The batch processing thread is designed to op-
erate asynchronously, continuously performing inference on
incoming batched inputs while new data is being received and
managed in parallel threads. This non-blocking architecture
ensures that the batch processing pipeline is not stalled by
incoming data or queue management tasks, maximizing GPU
utilization. Additionally, by assigning dedicated threads to
queue management, matching, and preprocessing, the pipeline
minimizes idle times for the LLM and ensures that the
language model processes inputs efficiently without delay.



IV. EXPERIMENTS

The experiments evaluate the performance of the proposed
Distributed VLM architecture compared to traditional central-
ized approaches, with a focus on throughput and scalability.

Algorithm 2 Server-Side Processing Workflow

: Thread 1: Prompt Processing
if NEWPROMPTRECEIVED() then
> # Generate text embedding for incoming prompt
H, < TextEncoder(X,)
> # Add embedding to the processed prompts queue
Enqueue(H,,m,) — PP,
end if

8: Thread 2: Feature Processing
9: if NEWFEATURESRECEIVED() then

A o

10: > # Add extracted feature vector to the feature queue

11: Enqueue(H,,m,) — F,

12: end if

13: if 3 m, € PP, such that m, € F, then

14: > # Combine matching feature and prompt
embeddings

15: M <« Combine(H,,H,)

16: > # Add the matched pair to the matched queue

17: Enqueue(M) — M,

18: end if

> # Send PAUSE if queue exceeds threshold
19: if |M,| > Threshold then
20: Send(PAUSE) — Edge
21: else
22: Send(RESUME) — Edge
23: end if

24: Thread 3: Batch Processing

25: > # Create a batch from the matched queue
26: B < Batch(M,, MAX_BATCH_SIZE)

27: > # Apply padding to the batch for consistent input size
28: B’ < Padding(B)

29: > # Run the batch through LLM for inference
30: X, < LLM(B')

[1]

A. System setup

For the experiments, we utilized two NVIDIA Jetson [21]
devices: 1) Edge Node: NVIDIA Jetson Orin Nano 8GB [22],
with Edge Side code deployed. 2) Central Server: NVIDIA
Jetson AGX Orin Developer Kit 64GB [23], with Server Side
code deployed. The devices are interconnected via a gigabit
network switch, ensuring low network-induced latency and
sufficient bandwidth for the system.

B. Datasets and models

To evaluate the performance of our Distributed VLM sys-
tem, we profiled three off-the-shelf VLM models with pre-
trained weights on a single dataset, comparing the results
we obtained from centralized deployment with the distributed

deployment strategy we developed. We used the visual riddles
dataset [24] to benchmark the VLMs in both centralized
and distributed architectures. Our experiments utilized the
following models:

o Moondream-2 [25]: A tiny vision language model of
1.8B parameters using a Phi-1 [26] LLM as the backend.
Hereafter referred to as Moondream?2.

« LLaVA_QWEN15-4B-chat [27]: A small 4 billion pa-
rameter model that combines the CLIP vision encoder
with a Qwenl.5 [28] LLM . Hereafter referred to as
LLaVA-Qwen-4B.

« LLaVA-Llama-13B [1]: A standard LLaVA 1.5 Model
based on a CLIP vision encoder and a fine-tuned Llama-
2 [19] LLM with 13 billion parameters. Hereafter referred
to as LLaVA-Llama-13B.

C. Finding optimal batch sizes

We conducted extensive testing on the central server device,
with each experimental run separated by 30 seconds followed
by a garbage collection cycle to ensure consistent and reliable
measurements. A benchmark of token generation throughput
across different VLMs reveals distinct patterns based on
model size and architecture, as shown in Figure 3. From
the results, we identified the optimal batch sizes for each
VLM configuration, with Moondream?2 and LLaVA-Qwen-4B
both performed best at a batch size of 20, while the larger
LLaVA-13B model achieved optimal performance at a batch
size of 10. This pattern aligns with theoretical expectations,
as smaller models like Moondream2 and LLaVA-Qwen-4B
can effectively process larger batches due to their lower
memory requirements. In contrast, the more computationally
demanding LLaVA-Llama-13B requires a smaller batch size
to maintain efficient processing without overwhelming system
resources.

D. Throughput comparison on distributed vs centralized VLM

Using the optimal batch sizes identified in the previous anal-
ysis, we conducted a comprehensive throughput comparison
between distributed and centralized architectures. To ensure
accurate measurements, model throughput was evaluated after
an initial warm-up period, ensuring that the LLM on the server
always had readily available input for immediate processing.
For each model and configuration, we measured the throughput
by recording the time required to produce new tokens up to
various new token limits and then computed the new tokens
generation speed accordingly. These throughput measurements
were conducted across three distinct system configurations,
with the results shown in Figure 4:

o Centralized approach with a single server device

« Distributed approach with 1 edge and 1 server device

« Distributed approach with 2 edge and 1 server devices

a) Throughput gain on Moondream2 VLM: Figure 4 (a)
compares token generation throughput between centralized
and distributed approaches for the Moondream2 model with
a batch size of 20. The distributed architecture demonstrates
a clear performance advantage across all token generation
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Fig. 3: Token generation throughput of different VLMs at various batch sizes, measured on the server.

limits. The performance gain is most significant at lower token
limits, peaking at a 33.54% improvement for the new token
generation limit set to 5. As the token count increases, the
gain gradually decreases, with the system still operating 29%
faster than the centralized version at a limit of 15 tokens.
Notably, the distributed system with two edge devices did not
provide additional throughput gains compared to the single
edge device configuration, a trend we observed across other
models, as evidenced by the overlapping lines in the graph.

b) Throughput gain on LLaVA-QWEN-4B VLM: Figure
4(b) presents a comparison of token generation throughput be-
tween centralized and distributed approaches for the LLaVA-
QWEN-4B model with a batch size of 20. The throughput gain
is most pronounced at lower token generation limits, showing
approximately a 15% improvement, and gradually diminishes
as the token count increases. Similar to other models, the
distributed system with two edge devices performs in a near
identical fashion to the single edge device configuration.

¢) Throughput gain on LLaVA-Llama-13B VLM: Figure
4(c) presents the throughput comparison between centralized
and distributed approaches for the LLaVA-Llama-13B model
with a batch size of 10. The distributed architecture shows
modest but consistent performance improvements across dif-
ferent new token generation limits. At the lowest token limit
of 4, the system achieves a 5.45% throughput gain over
the centralized version. This improvement remains relatively
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stable, gradually decreasing to 3.17% at 15 new tokens. Again,
the distributed system with two edge devices performs nearly
identically to the single edge device configuration. Although
these improvements are less dramatic than those seen in
previous models, they still demonstrate that the distributed
architecture can provide meaningful performance benefits even
for larger language models.

V. DISCUSSION

Our research on Distributed VLM demonstrates a novel
approach to improving the performance of vision language
models through a cloud-edge hybrid computing architecture.
By strategically distributing model components between edge
devices and a central server, we have achieved significant
improvements in throughput without compromising model size
or relying on compression techniques.

A. Throughput improvements on different models

The effectiveness of our distributed approach is closely
related to the proportion of time spent on vision encoding rela-
tive to LLM inference. By profiling generation time for differ-
ent parts of each vision language model, Table I can be derived
to illustrate this point. Upon inspection, the vision encoding
time percentage closely mirrors the throughput improvements
we achieved across different models. The distributed architec-
ture optimizes system latency by transforming the sequential
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Fig. 4: Throughput comparison of Distributed and Centralized VLM at optimal batch sizes, based on token generation rate



TABLE I: Distribution of processing time as a proportion
of total processing time for different VLMs under optimal
configurations (ideal batch size and new token generation rate).

VLM Vision LLM Additional

Model Encoding | Inference Overhead®*
Moondream?2 29.1% 69.4% 1.5%
LLaVA-Qwen-4B 15.6% 84.1% 0.3%
LLaVA-Llama-13B 5.7% 94.2% 0.1%

4The additional overhead accounts for system overheads such as data
loader and profilers

execution (Vision encoder + LLM inference) into two parallel
processing streams. This is achieved by offloading vision
encoding to edge devices, enabling concurrent execution with
the LLM inference of the previous batch. Through this par-
allel execution scheme, vision encoding latency is effectively
masked by the LLM inference stage of the preceding task,
enabling continuous LLM operation without encoder-induced
delays. On the other hand, the system’s theoretical speedup is
thus bounded by the ratio between vision encoding and LLM
inference time. Consequently, models with higher LLM over-
head like LLaVA-Llama-13B demonstrate limited throughput
improvements, while architectures with proportionally heavier
vision encoders such as LLaVA-QWEN-4B and Moondream?2
achieve more significant efficiency gains.

B. Throughput improvements for multiple edge devices

The consistent throughput across different numbers of edge
devices can be attributed to the complete overlap between
vision encoding and LLM inference times. As the vision en-
coding on edge devices is decoupled from the LLM inference
on the server, the two processes occurs in a virtually parallel
fashion. Adding more edge devices provides no additional
benefit once the server’s input queue is saturated. This parallel
processing effectively masks the vision encoding duration
behind the LLM inference time, which remains the primary
throughput bottleneck regardless of edge device count. Hence,
there’s neither improvement nor decline in throughput for each
model at each distributed configuration, with one or more edge
devices serving encoded images.

C. Limitations and Future work

The Distributed VLM architecture, while effective, faces
inherent limitations in its potential for throughput gains. As the
system is primarily bottlenecked by LLM inference time, the
benefits of offloading the vision encoding task are constrained
by the proportion of time it occupies in the overall processing
pipeline. This limitation is especially pronounced for larger
models where LLM inference dominates the processing time,
resulting in diminishing returns for our distributed approach as
model size increases. To mitigate this issue, future iterations
of our architecture will employ a distributed cluster of devices
as a server running the LLM. This will pave the way for even
greater efficiency gains in vision-language processing.

VI. CONCLUSION

This paper introduces and evaluates the Distributed VLM,
an accessible hybrid architecture designed to accelerate Vision
Language Model (VLM) inference by distributing tasks be-
tween edge devices and servers. The approach offloads vision
encoding to the edge, while preserving LLM inference on
servers, taking advantage of the modular design of modern
VLMs. Our experiments show up to 33% improvements in
throughput without sacrificing model performance. Although
LLM inference remains a bottleneck, particularly for larger
models, this work lays the groundwork for future cloud-edge
collaborative systems, demonstrating substantial throughput
gains without compromising model capabilities.
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