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ARTICLEINFO ABSTRACT

Eeywords: Launching effective black-box adverzarial attack against a deep neural network (DNN) without knowledge of the
Deep leaming maodel's details iz challenging. Previous studies involved performing numerous queries on the target modal to
Side-channel ateack generate adversarial examples, which is unacceptable due to the high query volume. Additionally, many of these
Dml Mdmhm gqueries are unnecezzary as the dataset may contain redondant or duplicate data. To address these izgues, we

propose a two-stage black-box adwersarial artack approach that combines side-channel attacks and a data
reduction technique. In the first stage, we employ Long Short Term Memory (LSTM) to gather partial information
about the target DNN through side-channel attacks, enabling us to obtain the class probability of the datazet. In
the second stage, we utilize a new data reduction algorithm based on the class probability to enhance the effi-
ciency of generating adversarial examples. Our approach is capable of precizely identifying the target model and
the data reduction performs better than other reduction methods. Furthermore, when utilizing the reduced
datazets to train the shadow model, the adverzarial examples generated on thiz thadow model demonsrate a

higher tranzferability success rate than SOTA data reduction methods.

1. Introduction

In recent years, researchers have paid more and more attention on
deep learning neural network (DNN), which iz widely used in vanous
fields, such as image classification (Azizi =t al., 2021), natural language
processing (Wang et al | 2021}, and autonomous driving (L1 =t al |, 2022),
ete. Howewver, 1t takes fremendous resourcez to develop the
above-mentioned commercial model Az a result, the security of the

DMN are vulnerable to several types of attacks, especially adversarial
attacks (Cogqueret ot al, 2023; Gupta and Drees, 2023; Acharva et al,
2022). In addition, there are other types of attacks mncluding model
extraction attacks (Ralan et al., 2022b), member inference attacks (Tang
et al., 2022), model inversion attacks (Khowaja et al, 2022), and
hyper-parameter stealing attacks (Ralin et al | 2022a), ete.

The mamstream adversanal attacks include black-box attacks and
white-box attacks. Attackers have no pnor knowledge of the neural
network model in black-box attacks, while attackers have acecess to the

* Correzponding authors.

complete model in white-box attacks. Black-box attacks, such as transfer
attacks (01 =t al, 2020) and optimization attacke (Fnu =t al , 2020],
require querying the target model as a precondition, and then traming
the shadow model with similar decision boundaries to generate adwver-
sarial examples (AEs). However, the large number of queries to the
target model is often extremely costly or even infeasible. Therefore, it 1=
of great importanee to reduce the quenies to the target model (He =t al |
2021) or even not to query the target model

With the exploration of side-channel attack methodology, attackers
can infer the network structure by exploiting memory and timing side
channels (Hua =t al., 20128). Researchers have successfully deciphered
deep learning model by power consumption, computation time, and
clectromagnetic radiabion (Xiang et al , 2020; Aldahdoch =t al, 2022;
Luo et al., 2022; Bhagon et al., 2017), ete. As for deep learning maodel
running on computers, most of the resources are consumed by GPU, so
an attacker can also reverse the structure of a DNN model by collecting
the resource consumption of GPU (Bhagop et al, 2017). Most
side-channel attacks use oscilloscopes or external data acquisition cards
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to collect side channel signals. We believe that it is not feasible for an
attacker to use an oscilloscope-like device to measure the signal directly,
and a feasible method is to measure the signal by a Trojan script.

Since we do not have access to the complete structure of the target
model, we construct multiple alternative models with similar structures.
These models are then used to average the class probabilities obtained in
each model, which enhances generalization ability. The alternative
models are constructed successively, and the samples are ranked based
on their class probabilities. The newly obtained probabilities are aver-
aged with those calculated in previous alternative models, and the
process is stopped when the difference between the class probabilities of
two successive models is below a given threshold. Finally, we use the
reduced dataset to train the shadow model, which is the last alternative
model (LAM).

We make the following contributions in this paper:

We develop and design a new two-stage adversarial attack algorithm,
called Data Reduction for Adversarial Attacks based on Side-Channel
Attacks (DRAASC), which enables an attacker to launch a black-box
attack.

We design a dataset reduction algorithm to simplify the attack pro-
cess and generate adversarial samples based on the dataset to launch
a black-box attack. The results show that our method outperforms
other methods in terms of transferability.

2. Related work

The development of side channel technology poses a great challenge
to the security of DNN model, and the architecture of DNNs were
cracked by many researchers. Papernot et al. (2017) found that a
side-channel attack can obtain the general structure of the DNN model,
such as the activation function, the number of network layers, the
number of output classes, and so on; Wei et al. (2018) proposed that the
input image can be obtained by analyzing the power trajectory in the
first convolutional layer. Yan et al. (2020) presented Cache Telepathy a
fast and accurate mechanism to steal DNN s architecture by the cache
side channel. There are also attacks that extract the architecture of deep
neural networks (DNN), which enhances an adversary s capability to
conduct black-box attacks against the model (Hong et al., 2018). Liu and
Srivastava (2020) proposed GANRED, an attack approach based on the
generative adversarial network (GAN) which utilizes cache timing
side-channel to recover the structure of DNNs without memory sharing
or code access. Luo et al. (2022) utilized electromagnetic (EM)
side-channel leakage to learn the association between DNN architecture
configurations and EM emanations comprehensively. Compared with
previous work, we use LSTM to simplify the work to identify the model
by conventional side channel techniques.

The training process of deep learning requires a large amount of data.
However, collecting and labeling the data costs much time as well as
resources, and the large amount of data also increases the probability of
poisoning attacks on the dataset. Therefore, simplifying the data with
good quality is also of great interest to researchers. Chitta et al. (2019)
used AL to build subsets from large labeled training datasets to provide
accurate DNNs in less training time. Kholidy and Erradi (2019) intro-
duced VHDRA, a Vertical and Horizontal Data Reduction Approach, to
improve the classification accuracy and speed of the NNGE algorithm
and reduce the computational resource consumption. Tertytchny and
Michael (2020) proposed a machine learning-based framework for
instance-based dataset reduction applied for IFD model. He et al. (2021)
proposed to use mutual information to measure the quality of the dataset
to do data reduction. They obtain the confidence of the dataset based on
the obtained model without querying the target model. We believe that
the confidence of the data on the model reflects the sensitivity of the
model to the dataset, and design the dataset reduction algorithm based
on the confidence.

In this article, we focus on adversarial attacks. White-box access to
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model is usually not allowed for security reasons, so black-box attacks
are more feasible. Chen et al. (2020) launched a general adversarial
attack on commercial ASR systems. Cheng et al. (2019) proposed the
P-RGF model to enhance black-box attack, which exploits both
migration-based priority and query information. Fewer queries are used
for black-box attack with high success rate. Ilyas et al. (2018) proposed
to use NES as a black-box gradient estimation technique and construct
adversarial samples using PGD with estimated gradients (for white-box
attacks). Papernot et al. (2017) proposed to train an alternative model
and have an alternative dataset with inputs from the hacker and the
target model. The alternative model is used to form the adversarial
sample.

3. Threat model

Scenario: The aim of this paper is to introduce a novel black-box
adversarial attack on deep learning models, where an attacker can
infer the model preliminarily through side-channel technology. By
capturing leakage information during the reasoning operation of the
neural accelerator, the attacker does not need to fully reconstruct the
structure of the neural network model, but instead can construct
numerous alternative models with varying network structures, layers,
and other parameters using the partially known model. From the
alternative models generated through queries, a simplified yet high-
quality dataset is selected. This strategy not only saves time and
computing resources during model training, but also enables successful
adversarial attacks with a limited number of target model queries.

Capabilities: Firstly, we assume the attacker has no prior knowledge
of the targeted neural network s structure and parameters. Secondly, the
attacker can monitor power consumption while the model is at runtime
without causing any incorrect calculations or device malfunctions.
Power data from the DNN accelerator can be obtained by utilizing power
monitoring programs or Trojans. We believe these assumptions are
reasonable, as it is feasible to implant Trojans to acquire power traces at
runtime. Thirdly, the attacker s goal is to launch an adversarial attack
against the deep learning model. Therefore, attackers can generate AEs
by the reduced dataset to train the shadow model.

4. System overview

We collect leaked power consumption data from AI devices to
analyze their behavior while running deep learning models. These ac-
tivities may reveal crucial features about the model, which can be
exploited for adversarial attacks. Fig. 1 illustrates the workflow of our
methodology, which comprises five stages: (1) collecting computer
hardware resource consumption; (2) inferring the target model based on
the collected signals (3) constructing alternative models; (4) reducing
the dataset based on alternative models; (5) conducting adversarial
attacks.

In the first stage, a monitoring procedure is used to collect signals of
the monitored device to analyze and estimate the resource consumption.
In the second stage, we employ the LSTM model to infer the target model
based on the collected signals. Since LSTM model is very successful to
deal with various timing tasks, such as language emotion analysis (Cao
and Gao, 2020), we choose it as our basic classification model. In the
third stage, we construct several different alternative models which is
used to reduce the dataset with the partly known model in the side
channel attack phase. In the fourth stage, we use the reduced dataset to
train the shadow model and generate adversarial samples. In the final
stage, an adversarial attack is launched against the target model.
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5. The proposed draase approach
5.1. Side channel

5.1.1. Deep neural networks

In our proposed DRAASC approach, the objective of the side channel
attack iz to ascertain the type of the targeted model via the uhlization of
the LETM model, which iz based on monitored side channel signals. We
selected Convolutional Meural Metworks (CMNMs), Recurrent Meural
Metworks (RNNz) and Transformer as the target models due to their
strong performancs In both image processing and natural language
processing.

5.1.2. Collecting signals

We use the open-source monitoring software Openhardware-monitor
(OpenHardwareMonitor) to measure the power usage of the target
computer that runs a deep leaming model. The software incorporates
certain internal commands, such as "mvidia-semi’, which are utilized to
meonitor the status of the hardware. Since the resourcee consumption of a
deep learming model on one computer may differ from that on another
computer, we conducted experiments on multple computers with
different GPUs and CPU=.

5.1.3. Signals

Architectures of deep learning models (such as cell and fine-grained
components) are different. Henee, they always impose various impacts
on the power consumption of Al deviees (Jha et al | 2020).

Taking GPU power consumption as an example. GPU power can be
considered as the sum of Energy Per Frame (EPF), and EPF depend: on
MACs (multiply and accumulate operations) and energy efficiency. The
former iz determined by the DNN structure (filter parameters, activation
function, and =0 on), and the latter iz determined by the degree of data
reuse.

We implement and test three different structures of deep learning
models for image classification under the same condition, such as the
zame epochs and so on. In addition, we also collect the rezource con-
sumption when the computer 15 idle. The energy consumption is shown
in Fig. 2. When deep learmning models are running for elassification, they
require a lot of computing resources to perform caleulations. Therefore,
there 15 a significant increase on the power consumption when models
are running. In Fis. 2, we eliminated the low power phases that occur at
the beginning and end of the computational process, as they require
minimal computing resources. We can observe that the power con-
sumption of GPUs exhibite strong and consistent peaks for CNNz, which
ocour on average once every 10 s, while RNNs show regular dipe in
power consumpiion, ocouming once approximately every 50 s
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Filg. 2. GPU power consumption on 1060 for deep leaming models.

Conversely, the power consumption of RNNs remains consistently low
and stable. The power consumption of Transformers lies between that of
CHNz and RNNe.

In ancther test, the GPU power consumption of three graphics cards
1z ehown In Fiz. 3 when we run the identical CNN model. Az can be seen,
although the GPU anthmetic power differs among the graphics cards,
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the traces display similar waveform patterns across all three devices,
despite varying amplitudes. The difference in arithmetic power between
GTX1080 and GTX1060 is small, so the wave curves of them almost
merge. On the other hand, GTX2080, which is more powerful in arith-
metic, expresses a very similar but more efficient power consumption
pattern.

We can draw similar conclusion for other representative features
collected from computers running deep learning model, such as GPU
Core Load, GPU Frame Buffer, GPU Bus Interface Load, GPU Power, GPU
PCIE RX and GPU PCIE TX.

5.1.4. Model detection

In stage 2 of Fig. 1, we utilize a deep learning model to identify the
targeted model based on the collected side-channel signals. The primary
objective at this stage is to classify deep learning models in real-time by
analyzing the observed signals. Initially, since the signals in the time
series are unbounded, we employ a Long Short-Term Memory (LSTM)
network to address this issue.

5.1.5. Feasibility

Although side-channel attacks may not be effective in some well-
protected environments, we focus on scenarios where side-channel at-
tacks can be effectively executed. Specifically, we can exploit common
Trojan horses, viruses, or backdoor vulnerabilities to deploy legitimate
system power consumption monitoring programs onto the victim ma-
chine that hosts the target model. Since programs designed to gather
system power consumption typically leverage legitimate system calls,
they are not considered as malicious or viral by protection software.

5.2. Data reduction

We try to construct multiple alternative models with different model
structures to launch black-box adversarial attacks, but the large amount
of data used in queries leads to inefficiency, particularly if not all queries
need to be executed and some data is duplicated and left unused.
Therefore, it is necessary to reduce the dataset to make queries more
efficient.

Data reduction is considered as a technique that removes duplicate
and redundant data from a large dataset, but the remaining data is still
representative.

We now describe the task of data reduction as follows:

Model stealing: In this section, the attacker utilizes an alternative
model to imitate the functionality of the target model when the
model is only partially known through side-channel attacks and
when the dataset is available.

Target model: The purpose of the target model is to perform a
specific task (e.g., image classification), and we do not query the
target model directly because of limitations on the number of queries
as well as efficiency. We deem the target model as a black box model
which attackers cannot know.

Attacker behavior: The attacker knows the type of the deep
learning model by the side channel attack and is not aware of the
model details (e.g., internal structure, hyper parameters). Therefore,
the attacker chooses to build classifiers with different structures and
uses the obtained dataset to train them. Confidence of the classifiers
can be obtained for all the data when they are output by the classi-
fiers, and the results obtained by querying images on several classi-
fiers are averaged to get the ranking of the images. We select images
from the dataset based on this ranking and train a shadow model
with these images.

Target: Our purpose is to train a shadow model that can launch a
adversarial attack on the target model when the target model cannot
be queried in large numbers and the structure of the target model is
not available. This shadow model may improve the effectiveness of
black-box attacks.

40
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The details of our entire data reduction approach are as follows.

Algorithm 1 describes the overall process of reducing the dataset. It
performs several iterations. For each iteration, it constructs an alterna-
tive model. F. represents the t-th alternative model. Then the segmented
sub-datasets are used to query the t-th alternative model. The subse-
quent step is to average sorting results of previous queries. After the loop
terminates, our task is to select valuable data from the ordered results.
We set the size of the reduced dataset by a reduction factor and use the
reduction function Fygppre: DATAsqmpe  DataReduction( DATA to
reduce the dataset.

As shown in Algorithm 2, We classify the dataset into k classes based
on the label y; of DATA(x;,y;), where k is the number of classes in the
dataset, and save each sub-dataset as Nj, j [1,k].

In this research, we commence by performing a side-channel attack,
which enables us to acquire the model type c of the target model. This
facilitates the identification of the architecture of the target model that
requires attacking. Upon determining the model type, we select certain
model parameters that are likely to impact performance and proceed to
construct a series of alternative models F.. These models are essentially
variations of the target model architecture, designed to minimize data
dimensionality and optimize their effect on the target model. To elab-
orate, we describe the steps involved in constructing these alternative
models in detail below:

Consider a model A with several construction structures, denoted by
A1, Az, , A, Using CNN as an example, A; represents various param-
eters such as the number and size of convolution layers, the number of
fully connected layers, and other relevant aspects in the convolution
neural network. These parameters provide us with several options for
constructing alternative models F:.

For instance, A; is a parameter that represents the number of
convolution layers in the convolution neural network. It offers a range of
possible layer values, which vary from between a minimum of two to a
maximum of four layers. Therefore, A; has three distinct options: A3,
A1, and A;3. As presented in Fig. 4, in the process of constructing
alternative models, this manuscript formulates the various parameter
options into a directed acyclic graph (DAG), which bears resemblance to
a neural network structure. Through the amalgamation of options from
heterogeneous structures, the study develops novel alternative models.

To regulate the overall complexity of constructing alternative
models, this paper assigns weights to different options based on their
intricacy within the construction structure.

For precise model architecture, measurable structures, such as the
number of layers, are normalized based on their numerical magnitude.
Contrarily, imprecise structures, such as the convolution kernel size in a
convolutional neural network, are sorted in ascending order according
to their intricacy and subsequently normalized with respect to their
position.

Following the determination of substitute model weights, this study
employs a roulette wheel selection algorithm to better account for the
contribution of each alternative model. The roulette wheel algorithm
converts each individual s fitness value into a probability distribution

Algorithm 1
Data reduction.

Data: K is the number of classes of the dataset, DATA is dataset of the kind (x;,y;), ¢ is
Model Type, S; is the softmax output probability for each class of dataset on the t-th
alternative model,numy,q,. is the sorting difference between S; ; and S;.

N SplitDATA (k,DATA x,y; )
Weight Struct  ProduceAModel
While numy,,,e DATA do

S: SelcetModel(F.)
S Avg(S)
NUMpeye CountOrder(S; 1 S;)
End While

Reduction ratio
DataReduction( S

O 0N A WN -

Datagimple
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Algorithm 2
Dataset split based on category.
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Algorithm 4

Data: DATA is dataset of the kind (x;,y;);K is the number of classes of the dataset

1 procedure SplitDATA (k, DATA)
2 k Type of dataset
3 forj 1,kdo
4 N; kth kind of data
5 end for
6 return N(N; N»  Ni)
7 end procedure

Weightl:all+a21+a31
Structl:A11 A21 A31

Weight2: al1+a2l+a32
Struct2: A1l A21 A32

Weight3: all+a21+a31
Struct3: A1l A22 A31

Struct:A32
Weight:a32

Weight:a22

Weight12: al3+a22+a32

DA13 A22 A3
Struct:A13 Struct12: A13 A22 A32

Weightal3

Fig. 4. Construction of alternative models.

and selects them according to the resultant probabilities.

By utilizing this method to select alternative models, the selection
probability of each model is determined by its respective fitness value,
which is directly proportional. The normalization of weights further
reduces discrepancies between variable varying weights and encourages
more equitable selection. The following steps elucidate the procedural
process:

The process for selecting substitute models is outlined as follows:

(1) Compute the fitness value of each model, which serves as the
probability for a roulette wheel selection. This approach utilizes a
fitness function based on the weight of each model, with those
possessing higher values being more likely to be selected.
Normalize the fitness values to ensure an accurate probability
distribution. The Softmax function is employed for this purpose,
as demonstrated in the formula below:

(2)

efi
Softmax z ~———

2
zlec

@

(3)
4

Generate a random number r within the range of 0 to 1.
Arrange the models in descending order of probability and
calculate the cumulative probability until it exceeds the
randomly generated number from step 3. The corresponding
substitute model is then selected.

Return the selected substitute model and update the weight and
structure sequences by removing the chosen model from them.

(5)

As shown in Algorithm 5, we obtain S, ; and S/, from the alternative

Algorithm 3
ProduceAModel.

SelcetModel.
Data: Weight Struct DATA, N
1 Procedure SelectAModel(c)
2 W Initialize the fitness list.
3 W Normalize Weight[] using equation 4.2.
4 r random (0,1)
5 acc Initialize cumulative probability
6 for 1 ton-1
7 acc acc wli]
8 if(acc 1)
9 Nextselect Struct i
10 delete Weight i, Struct i
11 End if
12 End for
13 F.  Nextselect
14 F..: SaveBEST(F. DATA x.y; )
15 for 1 to k:
16 st EVALUATE(F, N})
17 End for
18 return Si(s{ s,  sf)
19 End Procedure

Algorithm 5
Replacement optimization.

Data: S; is the softmax output probability for each class on the t-th alternative model

1 procedure Avg(S,)
2 s S1 S St
3 t
4 S order S)
5 return S(s7 s> Sk)
6 end procedure
7 procedure CountOrder(S; 1 S)
8 St Avg(S: 1)
9 St 1 Avg(S)
10 fori 1,kdo
11 Flag_before;  order(s; s S 1)
12 Flag_now; order(si,si St)
13 forj 1, s; do
14 if Flag_before;[j1 Flag-now;
15 NUMpeve NUMpove 1
16 end if
17 end for
18 end for
19  return nuMpove

end procedure

models F!,,}, and F.,,, respectively. And then we sort s¥ ; and sk in the k-
th class as S ;1 and S, and record the different position of x; between
sk | and sk, which is named as numypoye.

In Algorithm 6, we fetch data every span samples, where span is
calculated as span s“b% Then the fetched data is stored in array Data

(1.
5.3. Adversarial attack

Adversarial attacks are considered as the important way to threaten
the security of deep learning model. Attackers usually use white-box

attacks to generate adversarial examples by constructing shadow

Algorithm 6
Data reduction process.

Data: c is the Model,

Procedure ProducePModel(c)
A; construction structure for the type c.
Ay Options under the construction structure.
W;  weight of A using equation 4.1
Weight, weight of the substitute model
return Weight Struct

End Procedure

NO U~ WN -

Data: is the Ratio of reduction; S is the current sub-dataset
1 procedure DataReduction( S
n ( S 10
subsize size of S
span  subsize n
Data[] S (0, end, span)
return Data
end procedure

NO U b wN

50
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model. And then the generated examples are input to the target model to
evaluate the effectiveness of the attacks.

In this paper, attackers can obtain probability distribution of inputs
on classes by querying the alternative models, which is black-box attack.
Then attackers label each input as the class with the maximum proba-
bility. In this way, they construct their reduced training dataset. Finally,
Project Gradient Descent (PGD) attacks are launched on LAM. It can be
considered as another form of Fast Gradient Sign Method (FGSM)
(Goodfellow et al., 2014) attack. It is a projected gradient descent of a
negative loss function. Unlike FGSM, which attacks with only one iter-
ation in a large perturbation, PGD perturbs in a small range during each
iteration and performs multiple iterations, in which the perturbation
range can be defined by attackers.

5.4. Simplifying attacks

For clean neural network models published on third-party model
marketplaces, Users can download and deploy the model for legitimate
commercial or personal applications. Therefore, if the victim system is
implemented by the model available online, attackers can launch
adversarial attacks based on the data reduction without the side-channel
attack and constructing shadow model. However, if the target model is
not available, we can employ feature engineering techniques to select
the top n significant features, which is crucial in the process of side-
channel attacks. Furthermore, we can also simplify the architecture of
the LSTM model by reducing the number of layers, hidden units, or other
methods to further simplify our approach.

5.5. Protection

Adding power consumption noise is an effective strategy for pre-
venting power side-channel attacks. Firstly, we can incorporate noise
into the power consumption monitored by side-channel attacks to
render it difficult for attackers to extract useful information. For
example, a random power consumption pattern can be created by
starting and stopping unrelated programs. Furthermore, reinforcement
learning can be employed to learn how to add noise in a more sophis-
ticated and adaptive manner. The system can dynamically adjust the
type, intensity, and timing of the noise based on real-time observations
of the power consumption.

6. Evaluation

In order to evaluate the performance of the proposed attack, at-
tackers track the power consumption trajectory when the model is
running on the computer, and use the collected signals to identify the
model. Furthermore, attackers can reduce dataset based on the identi-
fied model and generate AEs on the shadow model. We use the trans-
ferability as the evaluation metric.

6.1. Environment configuration

Throughout this work, we conducted experiments on computers
equipped with three different resources. Table 1 provides detailed in-
formation about each computer used in our experiments. The systems
have significantly different computing capacity, bandwidth, and mem-
ory resources but with identical system configuration.

Table 1
Configuration of hardware used in the experiment.
CPU GPU GPU memory
Desktop I 15-3450 GTX1060 6144MB
Desktop II 17-4770 GTX1080 8192MB
Server E5-2678 GTX2080 16384MB

6]
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6.2. Signals

We use the open-source monitoring software Open hardware-
monitor (OpenHardwareMonitor) to measure the power usage of the
computer. The software integrates some internal commands used to
monitor the hardware status, such as nvidia-smi. The supported hard-
ware suppliers include NVIDIA, AMD and Intel, and the sampling rate of
built-in hardware monitoring commands is different. Take nvidia-smi for
example, the sampling rate depends on the built-in power sensor in GPU.
Therefore, it is necessary to ensure accurate measurement under the
same sampling rate.

6.3. Dataset

We employed the TensorFlow (TensorFlow) deep learning frame-
work to construct CNN, RNN and Transformer models for classifying the
MNIST, GTRSB and CIFAR-10 datasets. The MNIST dataset is a funda-
mental computer vision dataset that features various handwritten nu-
merical images (YannLecun). The utilized MNIST dataset contains 60,
000 images for training and 10,000 images for testing. The GTSRB
dataset is an image collection consisting of 43 traffic signs. Specifically,
we reserved 35,000 images for the training set and 4000 for the vali-
dation set (from the available 39,209 samples), while the test set con-
tains 10,000 images (from the available 12,630). The goal for the
CIFAR-10 dataset was to create a cleanly labeled subset of Tiny Im-
ages. To this end, the researchers assembled a dataset consisting of ten
classes with 6000 images per class. These classes are airplane, auto-
mobile, bird, cat, deer, dog, frog, horse, ship, and truck. The standard
train / test split is class-balanced and contains 50,000 training images
and 10,000 test images. We use three DNNs as the target model, and the
target model is unknown by attackers.

6.4. Signals preliminary

Next, we utilized a script to gather hardware resource consumption
of the computer during the execution of diverse DNNs and during pe-
riods of computer idleness. We collected several parameters related to
the mainboard. CPU, GPU, memory, and hard disk. And we select
representative features as follows: GPU Core Load, GPU Frame Buffer,
GPU Bus Interface Load, GPU Power, GPU PCIE RX, GPU PCIE TX. Fig. 5
shows the resource consumption when the deep learning models work
on NVidia GTX 1060 GPUs.

The green line corresponds to the CNN model, the orange line rep-
resents the RNN model, and the red line represents the Transformer
model while the blue line denotes the computer in an idle state. Each
model runs for 2.5 min, and it is evident that the GPU features exhibit a
notable periodicity with multiple cycles of similar waveforms. The RNN
curve remains stable owing to the large scale of the axis. However, we
confirm that it remains distinguishable by scaling down the axis.

We also observe that it is easy to distinguish deep learning model by
the peaks in the signal. To ascertain the generalizability of our results,
we replicate the experiment on the NVidia GTX 1080 GPU and NVidia
GTX 2080 GPU. By visualizing the waveform plots of the collected sig-
nals, we find that the signals are not always regular and visually
distinguishable.

6.5. LSTM

LSTM can resolve the problem that multiple power signals are
difficult to distinguish. we divide the collected datasets into two subsets:
the training dataset and the test dataset. The model can be evaluated
quantitatively by metrics as follows.

We denote TP as the number of true positives, FN as the number of
false negatives, FP as the number of false positives, TN as the number of
true negatives. Accuracy is the ratio of all correctly identified samples.
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TP+ FN
Accuracyf = —— ™ ™M——— 2
e TP + FP + TN + FN 2

Precizion indicates the number of actual positive samples among
sion = 5(3)
Recall rate indicates the proporbion of samples that are actually
positive that are judged to be positive.

Recall= — % (4
TP+ FN
Fl-Seore:
Fy=12 x Precision » Recall (5)

Precizion + Recall

After conducting experiments, we present the results in Table 2. By
utilizing the LSTM model, the attacker i able to infer the neural network
model running on the computer. It i evident from Table 2 that the LSTM
model outperforms other models. Thie indicates that the attacker can
successfully leverage side-channel eignals to launch attacks and identify
research findings reveal the potential of side-channel attacks and the
during runtime.

6.6. Data reduction

To validate the performanes of our approach, we perform the ex-
periments on the MNIST, GTRSB and CIFAR-10 dataset Based on the

Table 2
Accuracy Fl-Scares Bacall Precision
5VM 8768 % B7.54 % B7.65 % B7.95 %
RNN 84.73 % B4.72% B475 % B5.03 %
LeTM 8944 % BO17 % 5044 %% 01.98 %

classification of the dataset, MNIST and CIFAR-10 are divided into 10
sub-datasete and GTSRE i& divided into

43 sub-datasets. Our purpose is to construct a simplified dataset in
each eategory and recombine them into a new training dataset.

We firstly claesify the DNN model (e.g., CNN, RNN, Transformer)
based on the side channel attack, and then construct multiple alternative
models with different structures and hyperparameters. CHNs, RNNz and
Transformers are deemed as target models which are subjected to
adversarial attacks.

Table 2 showe C3F2's model architecture. There are 3 convolutional
layers, 2 pooling layers, and 2 fully connected layers. Table 4 details
RNN's model architecture. There are 3 recurrent layers. Table 5 details
Transformer’s model architecture.

Regarding CNN models, this study uses different parameter settings,
including the convolution kernel size, the number of convelution layers,
the connectivity of convolution layers, and the number of fully con-
nected (FC) layers, to construct various altemative models. We set the
maximum number of convolution layers to five and the minimum to
two. Moreover, the maximum number of FC layers iz three, while the
mimmum iz two. We carry out experiments using 3 % 3 and 5 % 5
convolution kernels. Az for RNN models, we conzider the number of
layers and different cells as parameters to construct alternative models.
The number of layers represents the number of cells that can be stacked
on the time sequence. In this experiment, we set the minimum number of
layers to two and the maximum to five. The relationship between the

Table 3

Parameters of the CNMN model.
Ingat 1+28+28
Comolutional Layer 16*24* 24
Comolutional Layer 320" 20
Max-Pooling layer 32+ 1010
Comolutional Layer 64*6*6
Max-Pooling layer 64°3+3
Fully connected layer 100
Fully connected layer 100
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Table 4
Parameters of the RNN model.
Input 784
RNN1 128
RNN2 64
RNN3 32
Output 10
Table 5
Parameters of the Transformer model.
Input 1*28*28
Encoder 8 128 300
Encoder 8 128 300
Encoder 8 128 300
Output 10

number of layers and the number of cells is as follows. If the number of
layers is five, the maximum number of cells is 256, which decreases to
128 for four layers, and so on. We choose both RNN and Long Short-
Term Memory (LSTM) cells as the cell. For the transformer model, we
consider the number of encoder layers as a parameter to construct
alternative architectures. In this experiment, we set the minimum
number of layers to three and the maximum to five. Each layer is
equipped with multi-head self-attention, layer normalization, residual
connections and feedforward network. The dimensionality of the multi-
head attention is 300, comprising 8 heads.

We use the sub-datasets to query the alternative models to obtain the
class probability. And then we sort the queried images based on category
probability. We repeat the process above until the adjacent results are
similar. (We set the numy,q,. used in Algorithm 1 to 6,000)

Based on the size of the reduced dataset and the size of the current
sub-dataset (subsize;), we set the interval span to fetch data as span
%n"zei, and then fetch one data every span samples in each sorted sub-
dataset. We set used in Algorithm 6 to 1 % (600), 0.5 % (300), and
0.3 % (200), which means that we set n to 60, 30, and 20 for each
category in the dataset.

We use the simplified dataset to train the shadow model, and set the
batch size to 64, and use the cross-entropy loss function to calculate the
loss, and set adaptive moment estimation as the optimizer, and set the
learning rate to 0.001.

6.7. Adversarial attack

We evaluate the similarity of the decision boundary between the
target model and the shadow model by the transferability of the
Adversarial Examples (AEs) attack, which is named as transferability.
Deep learning models are confronted with adversarial attacks, and
training shadow model is one way to launch black-box attack. By
obtaining class probabilities of inputs with different structures of the
same model in the data reduction phrase, we can train a shadow model
and generate adversarial examples. These AEs can then be used to attack
the target model. Our evaluation of attacks is based on transferability

6.7.1. Target

PGD whose perturbation can be set by attacker is essentially pro-
jected gradient descent with a negative loss function. We use PGD to
generate target AEs based on last alternative model (LAM) trained by
reduction data. Then we take these AEs that can successfully attack LAM
to attack the target model. The target model is trained on the overall
training dataset and performs well on the test dataset.

We set the perturbation upper limit ( ) to 0.5, and the attack becomes
increasingly better as increases. As for attacks, we select 5000 images
randomly in the test dataset, and we generate nine additional target AEs
for each image in addition to itself. As a result, 45,000 target AEs are

8]
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generated. The results are shown in Table 5. Although the details of the
target model is unknown, the AEs which can attack LAM can also attack
the target model. That means LAM can help attackers to generate AEs.

As shown in Table 6, For the MNIST dataset, we train the LAM
shadow model using 600 data instances, and the generated adversarial
examples achieve transferability of 68.28 %, 65.34 % and 66.75 %,
respectively, when attacking the target model trained on the complete
dataset. When trained on 300 data instances, the transferability decrease
to 56.9 %, 55.62 % and 57.64 %. Similarly, when trained on 200 data
instances, the transferability drop to 45.67 %, 46.79 % and 45.58 %, and
further decrease to 42.72 %, 40.17 % and 40.48 % when trained on 150
data instances. As for the GTSRB dataset, we also train the LAM shadow
model using 600 data instances, and the generated adversarial examples
achieve transferability of 62.42 %, 59.97 % and 60.17 % when used to
attack the target model trained on the complete dataset. When the model
is trained on only 300 data instances, the transferability decreases to
50.61 %, 48.65 % and 48.13 %. Similarly, the transferability decreases
to 43.79 %, 44.57 % and 44.91 % when the model is trained on 200 data
instances, and further decreases to 40.64 %, 39.76 % and 41.02 % when
the model is trained on only 150 data instances. Finally, the trans-
ferability of the three deep learning models diminishes as the number of
training data instances decreases on the CIFAR-10 dataset, which is
similar to the performance observed on the previous two datasets.

The SOTA methods, such as PRADA (Goodfellow et al., 2014),
Practical (YannLecun) and DRMI, generate target AEs based on the
model whose structure is the same as the target model. Therefore, we
evaluate DRAASC under the same condition with the SOTA methods.
The results are shown in Table 7.

Under the same perturbation settings, we found that our method
achieves higher transferability rates when compared to DRMI. Our re-
sults show that for the MNIST dataset, the transferability of AEs with 600

Table 6
Transferability of adversarial examples on target model generated by LAM.
Dataset Queries Target Model Transferability
MNIST 600 LAM(CNN) 68.28 %
LAM(RNN) 65.34 %
LAM(Transformer) 66.75 %
300 LAM(CNN) 56.9 %
LAM(RNN) 55.62 %
LAM(Transformer) 57.64 %
200 LAM(CNN) 45.67 %
LAM(RNN) 46.79 %
LAM(Transformer) 45.58 %
150 LAM(CNN) 42.72 %
LAM(RNN) 40.17 %
LAM(Transformer) 40.48 %
GTSRB 600 LAM(CNN) 62.42 %
LAM(RNN) 59.97 %
LAM(Transformer) 60.17 %
300 LAM(CNN) 50.61 %
LAM(RNN) 48.65 %
LAM(Transformer) 48.13 %
200 LAM(CNN) 43.79 %
LAM(RNN) 44.57 %
LAM(Transformer) 44.91 %
150 LAM(CNN) 40.64 %
LAM(RNN) 39.76 %
LAM(Transformer) 41.02 %
CIFAR-10 600 LAM(CNN) 74.54 %
LAM(RNN) 72.54 %
LAM(Transformer) 74.75 %
300 LAM(CNN) 68.94 %
LAM(RNN) 66.25 %
LAM(Transformer) 66.47 %
200 LAM(CNN) 60.47 %
LAM(RNN) 61.79 %
LAM(Transformer) 61.75 %
150 LAM(CNN) 54.23 %
LAM(RNN) 55.17 %
LAM(Transformer) 54.48 %
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Table 7
Transferability of adverzarial examples on target model generated by the
shadow model whose structure iz the zame as the target model.

Queries  Target Model MMNIET OTERB CIFAR-10
600 PRADA (Wei =t al, 2018) 9% 41 % FLTT
Practical (Hong = 2l 2013} 39% 32 % 0%
DRMI 7TE51% 7632 TS50
DRAASC(ONN) 8335%  O7.37% 05420
DRAASCRNN) 89.19%  B616%  O5.06%
DRAASO{Transformer) 8321%  S7.04% 85190
300 PRADA 0% 32 % 0%
Practical 3% 27 % EEETY
DRMI 7637%  TI12  TLOSM
DRAASC(ONN) B746%  B4TTH D104
DRAASCRNN) 8527 %  B3.44%  00.14%
DRAASO{Transformer) 8743% 8374 D195%%
200 PRADA % 30 % 9%
Practical 8% 25 % 5%
DRMI TO13% 7035 6517
DRAASC(ONN) 2088% 8015 74500
DRAASCRNN) 69.84%  TOO3W 7504
DRAASO{Transformer) 80.14%  TO.B3W  T406%
150 PRADA 29 27 % 5%
Practical 7% 23 9% 3%
DRMI 6954% 6433 63.54 %
DRAASC(ONN) TE41%  T5ATH  TIOEM
DRAASCRNN) TO14% 7433 TIIEW
DRAASO{Transformer) TOB5%  T404%  TIAS M

queries is 85.35 % with our method, while it is only 75.51 % with DEMI.
Similarly, for the

GTSRE dataset, the transferability of AE= with 600 queries 1z 84.37 %
with our method, as opposed to only 76.32 % with DEMI. Regarding the
CIFAR-10 dataset, AEz with 600 quernies exhibit a transferability rate of
85.19 %, zignificantly outperforming 75.02 % transfer rate of ABs
crafted with the DEMI approach. Our method outperforms DRMI by
nearly ten percentage points under the same eireumstanees, and it 1=
notably supenior to other methods, including PRADA. While the trans-
ferability rates of all methods decrease as the number of queries de-
creages, our method maintains a higher transferability rate. Taking
Tables 6 and 7 into account, we find that even though we use LAM, we
still achieve a higher transferability than PRADA and Practieal

Fig. 6 showe the confusion matrices of tarpeted AE=s attacks against
CNN under 150 and 600 gueries. The value in i1 th row, j-th column
represents the number of samples whose oniginal label 1= 1 which 12
claszified into ). The diagenal elements are the number of failed attacks.
Other elements are the number of successful attack samples. The Lighter
the coler iz, the larger the value iz, Obvicusly, the (3,3) element in 150
queries is the hightest, which means many adversanal samples generated
by the eamples with label 3 do not succeed in attacks. In 600 queries, the
(3,3) element tums darker due to the larger dataset. Fig. 7 chowe the
confusion matrices of targeted AEs attacks against BNN under 150 and
600 queries. Smmilarly, Fiz 2 chows the confusion matrices of tarpeted
AEz attacks against Transformer under 150 and 600 queries. Label 3 stll
performs the worst in both Figures. We can conclude that 1t iz difficult to

. : - - =a . - - e
- -
120
U s =
- i -
e
. . =

{n) Confision matrix (b} Confusion matrix
under 150 queries umider GO0 querics

Flg. 6. Confusion matrices of targeted adwversarial examples attacking the
target CNN model.
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Flg. 7. Confuzion mamrices of targeted adwerzarial examplez attacking the
arget BNMN model.

{h) Confusion matrix
umider 600 queries

(a} Confision matrix
under 150 querics

Flg. 8. Confuzion mamices of targeted adwerzarial examplez attacking the
marget Transformer model.

attack samples in label 3 successfully. However, the attacks for other
labels are more effective. We can draw smmilar conclusion on confusion
matrices iIn GTSREB and CIFAR-10 dataset. Therefore, we will not elab-
orate on that further due to space imitations.

6.7.2. Untargeted

We also use the PGD approach to generate untargeted adversarial
images with LAM to attack the target model We set £ (max perturbation)
as 0.3, and test the transferability of 1000 untargeted AEs for each
experiment. The results are shown in Table 2. For the MNIST dataset, our
method uses 150 queres to generate 1000 non-tarset AEs, and we
achieve a transferability of 70.1 %, and we can generate an AE in about
0.09 s. For the GTSRE dataset, our method employs 150 guenes to
generate 1000 non-target adversarial examples, achieving the trans-
ferability of 66.95 %, and we are able to generate an adversarial example
within approximately 0.131 e Fimally, our approach emplovs 150
queries to produee 1000 untargeted AEs) for the CIFAR-10 dataset We
achieve a transferability rate of 70.95 % while generating each AE in
approximately 0.126 .

Furthermore, we conduct experiments to generate target AEs based
on the model with the same structure as the target model using SOA
methods and DRAASC. With £ (max perturbation) set to 0.3, we test the
transferability rate of 1000 untargeted ARz for each experniment and
present the results in Table 9. For the MNIST dataset, DEMI requires 150

Table 8

Transferability of untargeted adwversarial examples on target model generated by
shadow model (LAM).

Dataget Method Tranafer- eries time
Lili

MNIST LAM{CNN) 701 % 150 0.039
LAM{RMNN) 6551 % 150 0.039
LAM(Transformer) 63.13 150 0.039

GTREB LAM{CNN) 66.95 ¥ 150 0131
LAM{RMNN) G103 % 150 0131
LAM(Transformer) 6508 150 0131

CIFAR-10 LAM{CNN) 7095 % 150 0126
LAM{RMNN) 64.03 % 150 0126
LAM(Transformer) 6308 150 0126
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Table 9
Transferability of untargeted adwersarial examples on target model generated by
shadow model whose structure iz the zame as the target model.

Dataset Method Transfer-ability — Queries  time
MMNIST OB (Papemnot et al, 2017)  615% 196 0.011
DBMI (Miang =t al, 2020)  T3.2% 150 0113
DRAASC TT1% 150 0.080
GTSRB OB (Papernot et al | 2017)  55.72% 196 0.021
DRMI (Mizng =t al, 2020)  69.64% 150 0.154
DRAASC 73.18 % 150 0.131
CIFAR-10  OF (Papermot etal, 2017  6BAT % 196 0.027
DRMI (Xiang =t al, 2020)  T3.64% 150 0.143
DRAASC TB.BT % 150 0126

model queries and two minutes to generate 1000 non-target AEs with a
transferability rate of 73.2 % against the target model. Our method,
DRAASC, also generatez 1000 non-target AEs with 150 guenes and
achieves a higher transferability rate of 77.1 % with an AE generation
time of approximately 0.09 =. Our method outperforms DRMI by 3.95 %
while reducing the execution time. For the GTSRB and CIFAR-10 data-
gete, our approach remaine effective in attacking.

6.8. A real-world caze

We conduct a test uzsing facial images syetem (Fiz. ©.a) of individuals
not enrolled in the system, and verify that the system does not unlock the
door (Fiz. 9.b). Then, we apply our proposed attack approach en this
syetem. Firstly, a signal collection program iz embedded into the control
system. Secondly, the LSTM model is uszed to identify the type of facial
recogmtion model (CNN). Thirdly, a shadow model 1z constructed to
generate images which iz eapable of deceiving the target model. Finally,
we employ the chadow model to generate adversarial examples corre-
sponding to the facial image used in Fig 9.b, which suceessfully tricks
the syetem into unlocking the door (Fiz. 9.¢). To safeguard perscomal
privacy, we apply mosaics to the facial images in Fiz. 9 for illustration
purposes; however, no mosaics are used during the experiments.

7. Concluzion

In thiz paper, we propoee a novel adversarial attack combined with
gide-channel attack, which can be launched without querying the target
model to achieve complete black-box attack Firetly, we use LSTM to
obtain the partial target model by the side-channel attacks. Then a nowel
dataset reduction technique iz utilized to improve the attack efficiency.
Instead of querying to the target model, attackers construct alternative
models to select high-quality representative data to launch adversarial
attack. OQur approach outperforms SOTA methods in terms of trans-
ferability for both targeted and untargeted AE attacks, by nearly 10 3%
and 3 % respectively.
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Flg. 9. Example of antacking campus access control system.
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