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L a u n c hi n g eff e cti v e bl a c k- b o x a d v er s ari al att a c k a g ai n st a d e e p n e ur al n et w or k ( D N N) wit h o ut k n o wl e d g e of t h e 

m o d el ’s d et ail s i s c h all e n gi n g. Pr e vi o u s st u di e s i n v ol v e d p erf or mi n g n u m er o u s q u eri e s o n t h e t ar g et m o d el t o 

g e n er at e a d v er s ari al e x a m pl e s, w hi c h i s u n a c c e pt a bl e d u e t o t h e hi g h q u er y v ol u m e. A d diti o n all y, m a n y of t h e s e 

q u eri e s  ar e  u n n e c e s s ar y  a s  t h e  d at a s et m a y  c o nt ai n  r e d u n d a nt  or  d u pli c at e d at a. T o  a d dr e s s t h e s e  i s s u e s, w e 

pr o p o s e  a  t w o- st a g e  bl a c k- b o x  a d v er s ari al  att a c k  a p pr o a c h  t h at  c o m bi n e s  si d e- c h a n n el  att a c k s  a n d  a  d at a 

r e d u cti o n t e c h ni q u e. I n t h e fir st st a g e, w e e m pl o y L o n g S h ort T er m M e m or y ( L S T M) t o g at h er p arti al i nf or m ati o n 

a b o ut t h e t ar g et D N N t hr o u g h si d e- c h a n n el att a c k s, e n a bli n g u s t o o bt ai n t h e cl a s s pr o b a bilit y of t h e d at a s et. I n 

t h e s e c o n d st a g e, w e utili z e a n e w d at a r e d u cti o n al g orit h m b a s e d o n t h e cl a s s pr o b a bilit y t o e n h a n c e t h e ef fi -

ci e n c y of g e n er ati n g a d v er s ari al e x a m pl e s. O ur a p pr o a c h i s c a p a bl e of pr e ci s el y i d e ntif yi n g t h e t ar g et m o d el a n d 

t h e  d at a  r e d u cti o n  p erf or m s  b ett er  t h a n  ot h er  r e d u cti o n  m et h o d s.  F urt h er m or e,  w h e n  utili zi n g  t h e  r e d u c e d 

d at a s et s t o tr ai n t h e s h a d o w m o d el, t h e a d v er s ari al e x a m pl e s g e n er at e d o n t hi s s h a d o w m o d el d e m o n str at e a 

hi g h er tr a n sf er a bilit y s u c c e s s r at e t h a n S O T A d at a r e d u cti o n m et h o d s.

1. I nt r o d u cti o n

I n r e c e nt y e ar s, r e s e ar c h er s h a v e p ai d m or e a n d m or e att e nti o n o n 

d e e p l e ar ni n g n e ur al n et w or k ( D N N), w hi c h i s wi d el y u s e d i n v ari o u s 

fi el d s, s u c h a s i m a g e cl a s si fi c ati o n ( A zi zi et al., 2 0 2 1 ), n at ur al l a n g u a g e 

pr o c e s si n g ( W a n g et al., 2 0 2 1 ), a n d a ut o n o m o u s dri vi n g ( Li et al., 2 0 2 2 ), 

et c.  H o w e v er,  it  t a k e s  tr e m e n d o u s  r e s o ur c e s  t o  d e v el o p  t h e 

a b o v e- m e nti o n e d  c o m m er ci al  m o d el.  A s  a  r e s ult,  t h e  s e c urit y  of  t h e 

m o d el s b e c o m e s a n i m p ort a nt i s s u e t h at c a n n ot b e i g n or e d.

D N N ar e v ul n er a bl e t o s e v er al t y p e s of att a c k s, e s p e ci all y a d v er s ari al 

att a c k s ( C o q u er et et al., 2 0 2 3 ; G u pt a a n d Dr e e s, 2 0 2 3 ; A c h ar y a et al., 

2 0 2 2 ).  I n  a d diti o n,  t h er e  ar e  ot h er  t y p e s  of  att a c k s  i n cl u di n g  m o d el 

e xtr a cti o n att a c k s ( R a ki n et al., 2 0 2 2 b ), m e m b er i nf er e n c e att a c k s ( T a n g 

et  al.,  2 0 2 2 ),  m o d el  i n v er si o n  att a c k s  ( K h o w aj a  et  al.,  2 0 2 2 ),  a n d 

h y p er- p ar a m et er st e ali n g att a c k s ( R a ki n et al., 2 0 2 2 a ), et c.

T h e  m ai n str e a m  a d v er s ari al  att a c k s  i n cl u d e  bl a c k- b o x  att a c k s  a n d 

w hit e- b o x  att a c k s.  Att a c k er s  h a v e  n o  pri or  k n o wl e d g e  of  t h e  n e ur al 

n et w or k m o d el i n bl a c k- b o x att a c k s, w hil e att a c k er s h a v e a c c e s s t o t h e 

c o m pl et e m o d el i n w hit e- b o x att a c k s. Bl a c k- b o x att a c k s, s u c h a s tr a n sf er 

att a c k s  ( Qi  et  al.,  2 0 2 0 )  a n d  o pti mi z ati o n  att a c k s  ( F n u  et  al.,  2 0 2 0 ), 

r e q uir e q u er yi n g t h e t ar g et m o d el a s a pr e c o n diti o n, a n d t h e n tr ai ni n g 

t h e s h a d o w m o d el wit h si mil ar d e ci si o n b o u n d ari e s t o g e n er at e a d v er -

s ari al  e x a m pl e s  ( A E s).  H o w e v er,  t h e  l ar g e  n u m b er  of  q u eri e s  t o  t h e 

t ar g et m o d el i s oft e n e xtr e m el y c o stl y or e v e n i nf e a si bl e. T h er ef or e, it i s 

of gr e at i m p ort a n c e t o r e d u c e t h e q u eri e s t o t h e t ar g et m o d el ( H e et al., 

2 0 2 1 ) or e v e n n ot t o q u er y t h e t ar g et m o d el.

Wit h t h e e x pl or ati o n of si d e- c h a n n el att a c k m et h o d ol o g y, att a c k er s 

c a n i nf er t h e n et w or k str u ct ur e b y e x pl oiti n g m e m or y a n d ti mi n g si d e 

c h a n n el s ( H u a et al., 2 0 1 8 ). R e s e ar c h er s h a v e s u c c e s sf ull y d e ci p h er e d 

d e e p  l e ar ni n g  m o d el  b y  p o w er  c o n s u m pti o n,  c o m p ut ati o n  ti m e,  a n d 

el e ctr o m a g n eti c r a di ati o n ( Xi a n g et al., 2 0 2 0 ; Al d a h d o o h et al., 2 0 2 2 ; 

L u o et al., 2 0 2 2 ; B h a g oji et al., 2 0 1 7 ), et c. A s f or d e e p l e ar ni n g m o d el 

r u n ni n g o n c o m p ut er s, m o st of t h e r e s o ur c e s ar e c o n s u m e d b y G P U, s o 

a n att a c k er c a n al s o r e v er s e t h e str u ct ur e of a D N N m o d el b y c oll e cti n g 

t h e  r e s o ur c e  c o n s u m pti o n  of  G P U  (B h a g oji  et  al.,  2 0 1 7 ).  M o st 

si d e- c h a n n el att a c k s u s e o s cill o s c o p e s or e xt er n al d at a a c q ui siti o n c ar d s 

* C orr e s p o n di n g a ut h or s.

E- m ail a d dr ess es: f yl n u 9 @ 1 6 3. c o m ( Y. F e n g), xi a ot ai y a n g 0 5 6 7 @ 1 6 3. c o m ( Y. W a n g), 1 8 7 9 0 3 2 9 6 6 9 @ 1 6 3. c o m ( W. G u o). 

C o nt e nt s li st s a v ail a bl e at S ci e n c e Dir e ct

C o m p ut e r s & S e c urit y

j o ur n al h o m e p a g e: w w w. el s e vi er. c o m/l o c at e/ c o s e

htt p s: / / d oi. or g / 1 0. 1 0 1 6 /j. c o s e. 2 0 2 5. 1 0 4 4 0 1

R e c ei v e d 2 2 M ar c h 2 0 2 4; R e c ei v e d i n r e vi s e d f or m 2 4 N o v e m b er 2 0 2 4; A c c e pt e d 2 4 F e br u ar y 2 0 2 5  

C o m p ut er s  &  S e c u rit y  1 5 3  ( 2 0 2 5) 1 0 4 4 0 1  

A v ail a bl e  o nli n e  2 5  F e b r u ar y  2 0 2 5  

0 1 6 7- 4 0 4 8 / ©  2 0 2 5  El s e vi e r  Lt d.  All  ri g ht s  a r e  r e s e r v e d, i n cl u di n g t h o s e f o r t e xt a n d  d at a  mi ni n g, AI  t r ai ni n g, a n d  si mil a r  t e c h n ol o gi e s. 

mailto:fylnu9@163.com
mailto:xiaotaiyang0567@163.com
mailto:18790329669@163.com
www.sciencedirect.com/science/journal/01674048
https://www.elsevier.com/locate/cose
https://doi.org/10.1016/j.cose.2025.104401
https://doi.org/10.1016/j.cose.2025.104401
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2025.104401&domain=pdf


to collect side channel signals. We believe that it is not feasible for an 
attacker to use an oscilloscope-like device to measure the signal directly, 
and a feasible method is to measure the signal by a Trojan script.

Since we do not have access to the complete structure of the target 
model, we construct multiple alternative models with similar structures. 
These models are then used to average the class probabilities obtained in 
each model, which enhances generalization ability. The alternative 
models are constructed successively, and the samples are ranked based 
on their class probabilities. The newly obtained probabilities are aver
aged with those calculated in previous alternative models, and the 
process is stopped when the difference between the class probabilities of 
two successive models is below a given threshold. Finally, we use the 
reduced dataset to train the shadow model, which is the last alternative 
model (LAM).

We make the following contributions in this paper: 

We develop and design a new two-stage adversarial attack algorithm, 
called Data Reduction for Adversarial Attacks based on Side-Channel 
Attacks (DRAASC), which enables an attacker to launch a black-box 
attack.
We design a dataset reduction algorithm to simplify the attack pro
cess and generate adversarial samples based on the dataset to launch 
a black-box attack. The results show that our method outperforms 
other methods in terms of transferability.

2. Related work

The development of side channel technology poses a great challenge 
to the security of DNN model, and the architecture of DNNs were 
cracked by many researchers. Papernot et al. (2017) found that a 
side-channel attack can obtain the general structure of the DNN model, 
such as the activation function, the number of network layers, the 
number of output classes, and so on; Wei et al. (2018) proposed that the 
input image can be obtained by analyzing the power trajectory in the 
first convolutional layer. Yan et al. (2020) presented Cache Telepathy a 
fast and accurate mechanism to steal DNN s architecture by the cache 
side channel. There are also attacks that extract the architecture of deep 
neural networks (DNN), which enhances an adversary s capability to 
conduct black-box attacks against the model (Hong et al., 2018). Liu and 
Srivastava (2020) proposed GANRED, an attack approach based on the 
generative adversarial network (GAN) which utilizes cache timing 
side-channel to recover the structure of DNNs without memory sharing 
or code access. Luo et al. (2022) utilized electromagnetic (EM) 
side-channel leakage to learn the association between DNN architecture 
configurations and EM emanations comprehensively. Compared with 
previous work, we use LSTM to simplify the work to identify the model 
by conventional side channel techniques.

The training process of deep learning requires a large amount of data. 
However, collecting and labeling the data costs much time as well as 
resources, and the large amount of data also increases the probability of 
poisoning attacks on the dataset. Therefore, simplifying the data with 
good quality is also of great interest to researchers. Chitta et al. (2019)
used AL to build subsets from large labeled training datasets to provide 
accurate DNNs in less training time. Kholidy and Erradi (2019) intro
duced VHDRA, a Vertical and Horizontal Data Reduction Approach, to 
improve the classification accuracy and speed of the NNGE algorithm 
and reduce the computational resource consumption. Tertytchny and 
Michael (2020) proposed a machine learning-based framework for 
instance-based dataset reduction applied for IFD model. He et al. (2021)
proposed to use mutual information to measure the quality of the dataset 
to do data reduction. They obtain the confidence of the dataset based on 
the obtained model without querying the target model. We believe that 
the confidence of the data on the model reflects the sensitivity of the 
model to the dataset, and design the dataset reduction algorithm based 
on the confidence.

In this article, we focus on adversarial attacks. White-box access to 

model is usually not allowed for security reasons, so black-box attacks 
are more feasible. Chen et al. (2020) launched a general adversarial 
attack on commercial ASR systems. Cheng et al. (2019) proposed the 
P-RGF model to enhance black-box attack, which exploits both 
migration-based priority and query information. Fewer queries are used 
for black-box attack with high success rate. Ilyas et al. (2018) proposed 
to use NES as a black-box gradient estimation technique and construct 
adversarial samples using PGD with estimated gradients (for white-box 
attacks). Papernot et al. (2017) proposed to train an alternative model 
and have an alternative dataset with inputs from the hacker and the 
target model. The alternative model is used to form the adversarial 
sample.

3. Threat model

Scenario: The aim of this paper is to introduce a novel black-box 
adversarial attack on deep learning models, where an attacker can 
infer the model preliminarily through side-channel technology. By 
capturing leakage information during the reasoning operation of the 
neural accelerator, the attacker does not need to fully reconstruct the 
structure of the neural network model, but instead can construct 
numerous alternative models with varying network structures, layers, 
and other parameters using the partially known model. From the 
alternative models generated through queries, a simplified yet high- 
quality dataset is selected. This strategy not only saves time and 
computing resources during model training, but also enables successful 
adversarial attacks with a limited number of target model queries.

Capabilities: Firstly, we assume the attacker has no prior knowledge 
of the targeted neural network s structure and parameters. Secondly, the 
attacker can monitor power consumption while the model is at runtime 
without causing any incorrect calculations or device malfunctions. 
Power data from the DNN accelerator can be obtained by utilizing power 
monitoring programs or Trojans. We believe these assumptions are 
reasonable, as it is feasible to implant Trojans to acquire power traces at 
runtime. Thirdly, the attacker s goal is to launch an adversarial attack 
against the deep learning model. Therefore, attackers can generate AEs 
by the reduced dataset to train the shadow model.

4. System overview

We collect leaked power consumption data from AI devices to 
analyze their behavior while running deep learning models. These ac
tivities may reveal crucial features about the model, which can be 
exploited for adversarial attacks. Fig. 1 illustrates the workflow of our 
methodology, which comprises five stages: (1) collecting computer 
hardware resource consumption; (2) inferring the target model based on 
the collected signals (3) constructing alternative models; (4) reducing 
the dataset based on alternative models; (5) conducting adversarial 
attacks.

In the first stage, a monitoring procedure is used to collect signals of 
the monitored device to analyze and estimate the resource consumption. 
In the second stage, we employ the LSTM model to infer the target model 
based on the collected signals. Since LSTM model is very successful to 
deal with various timing tasks, such as language emotion analysis (Cao 
and Gao, 2020), we choose it as our basic classification model. In the 
third stage, we construct several different alternative models which is 
used to reduce the dataset with the partly known model in the side 
channel attack phase. In the fourth stage, we use the reduced dataset to 
train the shadow model and generate adversarial samples. In the final 
stage, an adversarial attack is launched against the target model.
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5.  T h e p r o p o s e d d r a a s c a p p r o a c h

5. 1. Si d e c h a n n el

5. 1. 1.  D e e p n e ur al n et w or ks

I n o ur pr o p o s e d D R A A S C a p pr o a c h, t h e o bj e cti v e of t h e si d e c h a n n el 

att a c k i s t o a s c ert ai n t h e t y p e of t h e t ar g et e d m o d el vi a t h e utili z ati o n of 

t h e L S T M m o d el, w hi c h i s b a s e d o n m o nit or e d si d e c h a n n el si g n al s. W e 

s el e ct e d  C o n v ol uti o n al  N e ur al  N et w or k s  ( C N N s),  R e c urr e nt  N e ur al 

N et w or k s  ( R N N s)  a n d  Tr a n sf or m er  a s  t h e  t ar g et  m o d el s  d u e  t o  t h eir 

str o n g  p erf or m a n c e  i n  b ot h  i m a g e  pr o c e s si n g  a n d  n at ur al  l a n g u a g e 

pr o c e s si n g.

5. 1. 2.  C oll e cti n g si g n als

W e u s e t h e o p e n- s o ur c e m o nit ori n g s oft w ar e O p e n h ar d w ar e- m o nit or 

(O p e n H ar d w ar e M o nit or )  t o  m e a s ur e  t h e  p o w er  u s a g e  of  t h e  t ar g et 

c o m p ut er t h at r u n s a d e e p l e ar ni n g m o d el. T h e s oft w ar e i n c or p or at e s 

c ert ai n i nt er n al c o m m a n d s, s u c h a s ’n vi di a- s mi ’, w hi c h ar e utili z e d t o 

m o nit or t h e st at u s of t h e h ar d w ar e. Si n c e t h e r e s o ur c e c o n s u m pti o n of a 

d e e p l e ar ni n g m o d el o n o n e c o m p ut er m a y diff er fr o m t h at o n a n ot h er 

c o m p ut er,  w e  c o n d u ct e d  e x p eri m e nt s  o n  m ulti pl e  c o m p ut er s  wit h 

diff er e nt G P U s a n d C P U s.

5. 1. 3. Si g n als

Ar c hit e ct ur e s of d e e p l e ar ni n g m o d el s ( s u c h a s c ell a n d fi n e- gr ai n e d 

c o m p o n e nt s) ar e diff er e nt. H e n c e, t h e y al w a y s i m p o s e v ari o u s i m p a ct s 

o n t h e p o w er c o n s u m pti o n of AI d e vi c e s ( J h a et al., 2 0 2 0 ).

T a ki n g G P U p o w er c o n s u m pti o n a s a n e x a m pl e. G P U p o w er c a n b e 

c o n si d er e d a s t h e s u m of E n er g y P er Fr a m e ( E P F), a n d E P F d e p e n d s o n 

M A C s ( m ulti pl y a n d a c c u m ul at e o p er ati o n s) a n d e n er g y ef fi ci e n c y. T h e 

f or m er i s d et er mi n e d b y t h e D N N str u ct ur e ( filt er p ar a m et er s, a cti v ati o n 

f u n cti o n, a n d s o o n), a n d t h e l att er i s d et er mi n e d b y t h e d e gr e e of d at a 

r e u s e.

W e  i m pl e m e nt  a n d  t e st  t hr e e  diff er e nt  str u ct ur e s of  d e e p  l e ar ni n g 

m o d el s f or i m a g e cl a s si fi c ati o n u n d er t h e s a m e c o n diti o n, s u c h a s t h e 

s a m e e p o c h s a n d s o o n. I n a d diti o n, w e al s o c oll e ct t h e r e s o ur c e c o n -

s u m pti o n w h e n t h e c o m p ut er i s i dl e. T h e e n er g y c o n s u m pti o n i s s h o w n 

i n Fi g. 2 . W h e n d e e p l e ar ni n g m o d el s ar e r u n ni n g f or cl a s si fi c ati o n, t h e y 

r e q uir e a l ot of c o m p uti n g r e s o ur c e s t o p erf or m c al c ul ati o n s. T h er ef or e, 

t h er e i s a si g ni fi c a nt i n cr e a s e o n t h e p o w er c o n s u m pti o n w h e n m o d el s 

ar e r u n ni n g. I n Fi g. 2 , w e eli mi n at e d t h e l o w p o w er p h a s e s t h at o c c ur at 

t h e  b e gi n ni n g  a n d  e n d  of  t h e  c o m p ut ati o n al  pr o c e s s,  a s  t h e y  r e q uir e 

mi ni m al  c o m p uti n g  r e s o ur c e s.  W e  c a n  o b s er v e  t h at  t h e  p o w er  c o n -

s u m pti o n of G P U s e x hi bit s str o n g a n d c o n si st e nt p e a k s f or C N N s, w hi c h 

o c c ur  o n  a v er a g e  o n c e  e v er y  1 0  s,  w hil e  R N N s  s h o w  r e g ul ar  di p s  i n 

p o w er  c o n s u m pti o n,  o c c urri n g  o n c e  a p pr o xi m at el y  e v er y  5 0  s. 

C o n v er s el y, t h e p o w er c o n s u m pti o n of R N N s r e m ai n s c o n si st e ntl y l o w 

a n d st a bl e. T h e p o w er c o n s u m pti o n of Tr a n sf or m er s li e s b et w e e n t h at of 

C N N s a n d R N N s.

I n a n ot h er t e st, t h e G P U p o w er c o n s u m pti o n of t hr e e gr a p hi c s c ar d s 

i s s h o w n i n Fi g. 3 w h e n w e r u n t h e i d e nti c al C N N m o d el. A s c a n b e s e e n, 

alt h o u g h t h e G P U arit h m eti c p o w er diff er s a m o n g t h e gr a p hi c s c ar d s, 

Fi g. 1. T h e w or k fl o w of o ur w or k.

Fi g. 2. G P U p o w er c o n s u m pti o n o n 1 0 6 0 f or d e e p l e ar ni n g m o d el s.

Fi g. 3. G T X 1 0 6 0, G T X 1 0 8 0 a n d G T X 2 0 8 0 P o w er C o n s u m pti o n.

H. Z h o u et al.                                                                                                                                                                                                                                    C o m p ut ers  &  S e c urit y  1 5 3  ( 2 0 2 5 )  1 0 4 4 0 1  

3  



the traces display similar waveform patterns across all three devices, 
despite varying amplitudes. The difference in arithmetic power between 
GTX1080 and GTX1060 is small, so the wave curves of them almost 
merge. On the other hand, GTX2080, which is more powerful in arith
metic, expresses a very similar but more efficient power consumption 
pattern.

We can draw similar conclusion for other representative features 
collected from computers running deep learning model, such as GPU 
Core Load, GPU Frame Buffer, GPU Bus Interface Load, GPU Power, GPU 
PCIE RX and GPU PCIE TX.

5.1.4. Model detection
In stage 2 of Fig. 1, we utilize a deep learning model to identify the 

targeted model based on the collected side-channel signals. The primary 
objective at this stage is to classify deep learning models in real-time by 
analyzing the observed signals. Initially, since the signals in the time 
series are unbounded, we employ a Long Short-Term Memory (LSTM) 
network to address this issue.

5.1.5. Feasibility
Although side-channel attacks may not be effective in some well- 

protected environments, we focus on scenarios where side-channel at
tacks can be effectively executed. Specifically, we can exploit common 
Trojan horses, viruses, or backdoor vulnerabilities to deploy legitimate 
system power consumption monitoring programs onto the victim ma
chine that hosts the target model. Since programs designed to gather 
system power consumption typically leverage legitimate system calls, 
they are not considered as malicious or viral by protection software.

5.2. Data reduction

We try to construct multiple alternative models with different model 
structures to launch black-box adversarial attacks, but the large amount 
of data used in queries leads to inefficiency, particularly if not all queries 
need to be executed and some data is duplicated and left unused. 
Therefore, it is necessary to reduce the dataset to make queries more 
efficient.

Data reduction is considered as a technique that removes duplicate 
and redundant data from a large dataset, but the remaining data is still 
representative.

We now describe the task of data reduction as follows: 

Model stealing: In this section, the attacker utilizes an alternative 
model to imitate the functionality of the target model when the 
model is only partially known through side-channel attacks and 
when the dataset is available.
Target model: The purpose of the target model is to perform a 
specific task (e.g., image classification), and we do not query the 
target model directly because of limitations on the number of queries 
as well as efficiency. We deem the target model as a black box model 
which attackers cannot know.
Attacker behavior: The attacker knows the type of the deep 
learning model by the side channel attack and is not aware of the 
model details (e.g., internal structure, hyper parameters). Therefore, 
the attacker chooses to build classifiers with different structures and 
uses the obtained dataset to train them. Confidence of the classifiers 
can be obtained for all the data when they are output by the classi
fiers, and the results obtained by querying images on several classi
fiers are averaged to get the ranking of the images. We select images 
from the dataset based on this ranking and train a shadow model 
with these images.
Target: Our purpose is to train a shadow model that can launch a 
adversarial attack on the target model when the target model cannot 
be queried in large numbers and the structure of the target model is 
not available. This shadow model may improve the effectiveness of 
black-box attacks.

The details of our entire data reduction approach are as follows.
Algorithm 1 describes the overall process of reducing the dataset. It 

performs several iterations. For each iteration, it constructs an alterna
tive model. Ft

c represents the t-th alternative model. Then the segmented 
sub-datasets are used to query the t-th alternative model. The subse
quent step is to average sorting results of previous queries. After the loop 
terminates, our task is to select valuable data from the ordered results. 
We set the size of the reduced dataset by a reduction factor and use the 
reduction function Fsample: DATAsample DataReduction( DATA to 
reduce the dataset.

As shown in Algorithm 2, We classify the dataset into k classes based 
on the label yi of DATA(xi,yi), where k is the number of classes in the 
dataset, and save each sub-dataset as Nj, j [1,k].

In this research, we commence by performing a side-channel attack, 
which enables us to acquire the model type c of the target model. This 
facilitates the identification of the architecture of the target model that 
requires attacking. Upon determining the model type, we select certain 
model parameters that are likely to impact performance and proceed to 
construct a series of alternative models Ft

c. These models are essentially 
variations of the target model architecture, designed to minimize data 
dimensionality and optimize their effect on the target model. To elab
orate, we describe the steps involved in constructing these alternative 
models in detail below:

Consider a model A with several construction structures, denoted by 
A1, A2, , An. Using CNN as an example, Ai represents various param
eters such as the number and size of convolution layers, the number of 
fully connected layers, and other relevant aspects in the convolution 
neural network. These parameters provide us with several options for 
constructing alternative models Ft

c.
For instance, A1 is a parameter that represents the number of 

convolution layers in the convolution neural network. It offers a range of 
possible layer values, which vary from between a minimum of two to a 
maximum of four layers. Therefore, A1 has three distinct options: A11, 
A12, and A13. As presented in Fig. 4, in the process of constructing 
alternative models, this manuscript formulates the various parameter 
options into a directed acyclic graph (DAG), which bears resemblance to 
a neural network structure. Through the amalgamation of options from 
heterogeneous structures, the study develops novel alternative models.

To regulate the overall complexity of constructing alternative 
models, this paper assigns weights to different options based on their 
intricacy within the construction structure.

For precise model architecture, measurable structures, such as the 
number of layers, are normalized based on their numerical magnitude. 
Contrarily, imprecise structures, such as the convolution kernel size in a 
convolutional neural network, are sorted in ascending order according 
to their intricacy and subsequently normalized with respect to their 
position.

Following the determination of substitute model weights, this study 
employs a roulette wheel selection algorithm to better account for the 
contribution of each alternative model. The roulette wheel algorithm 
converts each individual s fitness value into a probability distribution 

Algorithm 1 
Data reduction.

Data: K is the number of classes of the dataset, DATA is dataset of the kind (xi,yi), c is 
Model Type, St is the softmax output probability for each class of dataset on the t-th 
alternative model,nummove is the sorting difference between St 1 and St .

1 N SplitDATA (k,DATA xi,yi )
2 Weight Struct ProduceAModel
3 While nummove DATA do
4 St SelcetModel(Ft

c)
5 S Avg(St)
6 nummove CountOrder(St 1 St)
7 End While
8 Reduction ratio
9 Datasimple DataReduction( S
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and selects them according to the resultant probabilities.
By utilizing this method to select alternative models, the selection 

probability of each model is determined by its respective fitness value, 
which is directly proportional. The normalization of weights further 
reduces discrepancies between variable varying weights and encourages 
more equitable selection. The following steps elucidate the procedural 
process:

The process for selecting substitute models is outlined as follows: 

(1) Compute the fitness value of each model, which serves as the 
probability for a roulette wheel selection. This approach utilizes a 
fitness function based on the weight of each model, with those 
possessing higher values being more likely to be selected.

(2) Normalize the fitness values to ensure an accurate probability 
distribution. The Softmax function is employed for this purpose, 
as demonstrated in the formula below: 

Softmax zi
ezi

c
c 1ezc

(1) 

(3) Generate a random number r within the range of 0 to 1.
(4) Arrange the models in descending order of probability and 

calculate the cumulative probability until it exceeds the 
randomly generated number from step 3. The corresponding 
substitute model is then selected.

(5) Return the selected substitute model and update the weight and 
structure sequences by removing the chosen model from them.

As shown in Algorithm 5, we obtain Ś t 1 and Ś t from the alternative 

models Ft 1
ctest and Ft

ctest , respectively. And then we sort sk
t 1 and sk

t in the k- 
th class as Ś t 1 and Ś t , and record the different position of xi between 
sk
t 1 and sk

t ,which is named as nummove.
In Algorithm 6, we fetch data every span samples, where span is 

calculated as span subsizei
n .Then the fetched data is stored in array Data 

[].

5.3. Adversarial attack

Adversarial attacks are considered as the important way to threaten 
the security of deep learning model. Attackers usually use white-box 
attacks to generate adversarial examples by constructing shadow 

Algorithm 2 
Dataset split based on category.

Data: DATA is dataset of the kind (xi,yi);K is the number of classes of the dataset
1 

2 
3 
4 
5 
6 
7

procedure SplitDATA (k, DATA) 
k Type of dataset 
for j 1,k do 

Ni kth kind of data 
end for 

return N(N1 N2 Nk) 
end procedure

Fig. 4. Construction of alternative models.

Algorithm 3 
ProduceAModel.

Data: c is the Model,
1 Procedure ProducePModel(c)
2 Ai construction structure for the type c.
3 Aij Options under the construction structure.
4 Wij weight of Aij using equation 4.1
5 Weightt weight of the substitute model
6 return Weight Struct
7 End Procedure

Algorithm 4 
SelcetModel.

Data: Weight Struct DATA, N
1 Procedure SelectAModel(c)
2 W Initialize the fitness list.
3 W Normalize Weight[] using equation 4.2.
4 r random (0,1)
5 acc Initialize cumulative probability
6 for 1 to n-1
7 acc acc w[i]
8 if(acc r):
9 Nextselect Struct i
10 delete Weight i , Struct i
11 End if
12 End for
13 Ft

c Nextselect
14 Ft

ctest SaveBEST(Ft
c DATA xi,yi )

15 for 1 to k:
16 st

i EVALUATE(Ft
ctest Ni)

17 End for
18 return St(st

1 st
2 st

k)
19 End Procedure

Algorithm 5 
Replacement optimization.

Data: St is the softmax output probability for each class on the t-th alternative model
1 

2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19

procedure Avg(St) 

Ś
S1 S2 St

t 
S order Ś ) 
return S(ś 1 ś 2 ś k) 

end procedure 
procedure CountOrder(St 1 St) 

Ś t Avg(St 1) 
Ś t 1 Avg(St) 
for i 1, k do 

Flag beforei order(ś i ś i Ś t 1) 
Flag nowi order(ś i ,ś i Ś t) 
for j 1, ś i do 

if Flag beforei[j] Flag nowi 

nummove nummove 1 
end if 

end for 
end for 

return nummove 

end procedure

Algorithm 6 
Data reduction process.

Data: is the Ratio of reduction; S is the current sub-dataset
1 

2 
3 
4 
5 
6 
7

procedure DataReduction( S
n ( S 10 
subsize size of S 
span subsize n 
Data[] S (0, end, span) 
return Data 

end procedure
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model. And then the generated examples are input to the target model to 
evaluate the effectiveness of the attacks.

In this paper, attackers can obtain probability distribution of inputs 
on classes by querying the alternative models, which is black-box attack. 
Then attackers label each input as the class with the maximum proba
bility. In this way, they construct their reduced training dataset. Finally, 
Project Gradient Descent (PGD) attacks are launched on LAM. It can be 
considered as another form of Fast Gradient Sign Method (FGSM) 
(Goodfellow et al., 2014) attack. It is a projected gradient descent of a 
negative loss function. Unlike FGSM, which attacks with only one iter
ation in a large perturbation, PGD perturbs in a small range during each 
iteration and performs multiple iterations, in which the perturbation 
range can be defined by attackers.

5.4. Simplifying attacks

For clean neural network models published on third-party model 
marketplaces, Users can download and deploy the model for legitimate 
commercial or personal applications. Therefore, if the victim system is 
implemented by the model available online, attackers can launch 
adversarial attacks based on the data reduction without the side-channel 
attack and constructing shadow model. However, if the target model is 
not available, we can employ feature engineering techniques to select 
the top n significant features, which is crucial in the process of side- 
channel attacks. Furthermore, we can also simplify the architecture of 
the LSTM model by reducing the number of layers, hidden units, or other 
methods to further simplify our approach.

5.5. Protection

Adding power consumption noise is an effective strategy for pre
venting power side-channel attacks. Firstly, we can incorporate noise 
into the power consumption monitored by side-channel attacks to 
render it difficult for attackers to extract useful information. For 
example, a random power consumption pattern can be created by 
starting and stopping unrelated programs. Furthermore, reinforcement 
learning can be employed to learn how to add noise in a more sophis
ticated and adaptive manner. The system can dynamically adjust the 
type, intensity, and timing of the noise based on real-time observations 
of the power consumption.

6. Evaluation

In order to evaluate the performance of the proposed attack, at
tackers track the power consumption trajectory when the model is 
running on the computer, and use the collected signals to identify the 
model. Furthermore, attackers can reduce dataset based on the identi
fied model and generate AEs on the shadow model. We use the trans
ferability as the evaluation metric.

6.1. Environment configuration

Throughout this work, we conducted experiments on computers 
equipped with three different resources. Table 1 provides detailed in
formation about each computer used in our experiments. The systems 
have significantly different computing capacity, bandwidth, and mem
ory resources but with identical system configuration.

6.2. Signals

We use the open-source monitoring software Open hardware- 
monitor (OpenHardwareMonitor) to measure the power usage of the 
computer. The software integrates some internal commands used to 
monitor the hardware status, such as nvidia-smi. The supported hard
ware suppliers include NVIDIA, AMD and Intel, and the sampling rate of 
built-in hardware monitoring commands is different. Take nvidia-smi for 
example, the sampling rate depends on the built-in power sensor in GPU. 
Therefore, it is necessary to ensure accurate measurement under the 
same sampling rate.

6.3. Dataset

We employed the TensorFlow (TensorFlow) deep learning frame
work to construct CNN, RNN and Transformer models for classifying the 
MNIST, GTRSB and CIFAR-10 datasets. The MNIST dataset is a funda
mental computer vision dataset that features various handwritten nu
merical images (YannLecun). The utilized MNIST dataset contains 60, 
000 images for training and 10,000 images for testing. The GTSRB 
dataset is an image collection consisting of 43 traffic signs. Specifically, 
we reserved 35,000 images for the training set and 4000 for the vali
dation set (from the available 39,209 samples), while the test set con
tains 10,000 images (from the available 12,630). The goal for the 
CIFAR-10 dataset was to create a cleanly labeled subset of Tiny Im
ages. To this end, the researchers assembled a dataset consisting of ten 
classes with 6000 images per class. These classes are airplane, auto
mobile, bird, cat, deer, dog, frog, horse, ship, and truck. The standard 
train / test split is class-balanced and contains 50,000 training images 
and 10,000 test images. We use three DNNs as the target model, and the 
target model is unknown by attackers.

6.4. Signals preliminary

Next, we utilized a script to gather hardware resource consumption 
of the computer during the execution of diverse DNNs and during pe
riods of computer idleness. We collected several parameters related to 
the mainboard. CPU, GPU, memory, and hard disk. And we select 
representative features as follows: GPU Core Load, GPU Frame Buffer, 
GPU Bus Interface Load, GPU Power, GPU PCIE RX, GPU PCIE TX. Fig. 5
shows the resource consumption when the deep learning models work 
on NVidia GTX 1060 GPUs.

The green line corresponds to the CNN model, the orange line rep
resents the RNN model, and the red line represents the Transformer 
model while the blue line denotes the computer in an idle state. Each 
model runs for 2.5 min, and it is evident that the GPU features exhibit a 
notable periodicity with multiple cycles of similar waveforms. The RNN 
curve remains stable owing to the large scale of the axis. However, we 
confirm that it remains distinguishable by scaling down the axis.

We also observe that it is easy to distinguish deep learning model by 
the peaks in the signal. To ascertain the generalizability of our results, 
we replicate the experiment on the NVidia GTX 1080 GPU and NVidia 
GTX 2080 GPU. By visualizing the waveform plots of the collected sig
nals, we find that the signals are not always regular and visually 
distinguishable.

6.5. LSTM

LSTM can resolve the problem that multiple power signals are 
difficult to distinguish. we divide the collected datasets into two subsets: 
the training dataset and the test dataset. The model can be evaluated 
quantitatively by metrics as follows.

We denote TP as the number of true positives, FN as the number of 
false negatives, FP as the number of false positives, TN as the number of 
true negatives. Accuracy is the ratio of all correctly identified samples. 

Table 1 
Configuration of hardware used in the experiment.

CPU GPU GPU memory

Desktop I I5-3450 GTX1060 6144MB
Desktop II I7-4770 GTX1080 8192MB
Server E5-2678 GTX2080 16384MB
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A c c ur a c y =
T P + F N

T P + F P + T N + F N
( 2) 

Pr e ci si o n  i n di c at e s  t h e  n u m b er  of  a ct u al  p o siti v e  s a m pl e s  a m o n g 

t h o s e pr e di ct e d t o b e p o siti v e.

Pr e cisi o n = T P
T P + F P ( 3)

R e c all  r at e  i n di c at e s  t h e  pr o p orti o n  of  s a m pl e s  t h at  ar e  a ct u all y 

p o siti v e t h at ar e j u d g e d t o b e p o siti v e. 

R e c all =
T P

T P + F N
( 4) 

F 1- S c or e: 

F 1 = 2 ×
Pr e cisi o n × R e c all

Pr e cisi o n + R e c all
( 5) 

Aft er c o n d u cti n g e x p eri m e nt s, w e pr e s e nt t h e r e s ult s i n T a bl e 2 . B y 

utili zi n g t h e L S T M m o d el, t h e att a c k er i s a bl e t o i nf er t h e n e ur al n et w or k 

m o d el r u n ni n g o n t h e c o m p ut er. It i s e vi d e nt fr o m T a bl e 2 t h at t h e L S T M 

m o d el o ut p erf or m s ot h er m o d el s. T hi s i n di c at e s t h at t h e att a c k er c a n 

s u c c e s sf ull y l e v er a g e si d e- c h a n n el si g n al s t o l a u n c h att a c k s a n d i d e ntif y 

t h e  af or e m e nti o n e d  t hr e e  d e e p  l e ar ni n g  m o d el s  at  r u nti m e.  T h e s e 

r e s e ar c h  fi n di n g s  r e v e al  t h e  p ot e nti al  of  si d e- c h a n n el  att a c k s  a n d  t h e 

a bilit y t o i nf er m o d el t y p e s b y a n al y zi n g t h eir p erf or m a n c e a n d b e h a vi or 

d uri n g r u nti m e.

6. 6.  D at a r e d u cti o n

T o  v ali d at e  t h e  p erf or m a n c e  of  o ur  a p pr o a c h,  w e  p erf or m  t h e  e x -

p eri m e nt s o n t h e M NI S T, G T R S B a n d CI F A R- 1 0 d at a s et. B a s e d o n t h e 

cl a s si fi c ati o n of t h e d at a s et, M NI S T a n d CI F A R- 1 0 ar e di vi d e d i nt o 1 0 

s u b- d at a s et s a n d G T S R B i s di vi d e d i nt o

4 3 s u b- d at a s et s. O ur p ur p o s e i s t o c o n str u ct a si m pli fi e d d at a s et i n 

e a c h c at e g or y a n d r e c o m bi n e t h e m i nt o a n e w tr ai ni n g d at a s et.

W e  fir stl y  cl a s sif y  t h e  D N N  m o d el  ( e. g.,  C N N,  R N N,  Tr a n sf or m er) 

b a s e d o n t h e si d e c h a n n el att a c k, a n d t h e n c o n str u ct m ulti pl e alt er n ati v e 

m o d el s wit h diff er e nt str u ct ur e s a n d h y p er p ar a m et er s. C N N s, R N N s a n d 

Tr a n sf or m er s  ar e  d e e m e d  a s  t ar g et  m o d el s  w hi c h  ar e  s u bj e ct e d  t o 

a d v er s ari al att a c k s.

T a bl e 3 s h o w s C 3 F 2 ’s m o d el ar c hit e ct ur e. T h er e ar e 3 c o n v ol uti o n al 

l a y er s, 2 p o oli n g l a y er s, a n d 2 f ull y c o n n e ct e d l a y er s. T a bl e 4 d et ail s 

R N N ’s m o d el ar c hit e ct ur e. T h er e ar e 3 r e c urr e nt l a y er s. T a bl e 5 d et ail s 

Tr a n sf or m er ’s m o d el ar c hit e ct ur e.

R e g ar di n g C N N m o d el s, t hi s st u d y u s e s diff er e nt p ar a m et er s etti n g s, 

i n cl u di n g t h e c o n v ol uti o n k er n el si z e, t h e n u m b er of c o n v ol uti o n l a y er s, 

t h e  c o n n e cti vit y  of  c o n v ol uti o n  l a y er s,  a n d  t h e  n u m b er  of  f ull y  c o n -

n e ct e d ( F C) l a y er s, t o c o n str u ct v ari o u s alt er n ati v e m o d el s. W e s et t h e 

m a xi m u m  n u m b er  of  c o n v ol uti o n  l a y er s  t o  fi v e  a n d  t h e  mi ni m u m  t o 

t w o. M or e o v er, t h e m a xi m u m n u m b er of F C l a y er s i s t hr e e, w hil e t h e 

mi ni m u m  i s  t w o.  W e  c arr y  o ut  e x p eri m e nt s  u si n g  3 × 3  a n d  5 × 5 

c o n v ol uti o n  k er n el s.  A s  f or  R N N  m o d el s,  w e  c o n si d er  t h e  n u m b er  of 

l a y er s a n d diff er e nt c ell s a s p ar a m et er s t o c o n str u ct alt er n ati v e m o d el s. 

T h e n u m b er of l a y er s r e pr e s e nt s t h e n u m b er of c ell s t h at c a n b e st a c k e d 

o n t h e ti m e s e q u e n c e. I n t hi s e x p eri m e nt, w e s et t h e mi ni m u m n u m b er of 

l a y er s t o t w o a n d t h e m a xi m u m t o fi v e. T h e r el ati o n s hi p b et w e e n t h e 

Fi g. 5. R e s o ur c e c o n s u m pti o n of G P U.

T a bl e 2 

Cl a s si fl c ati o n b y L S T M a n d I L S T M.

A c c ur a c y F 1- S c or e R e c all Pr e ci si o n

S V M 8 7. 6 8 % 8 7. 5 4 % 8 7. 6 5 % 8 7. 9 5 %

R N N 8 4. 7 3 % 8 4. 7 2 % 8 4. 7 5 % 8 5. 0 3 %

L S T M 8 9. 4 4 % 8 9. 1 7 % 8 9. 4 4 % 9 1. 9 8 %

T a bl e 3 

P a r a m et er s of t h e C N N m o d el.

I n p ut 1 * 2 8 * 2 8

C o n v ol uti o n al l a y er 1 6 * 2 4 * 2 4

C o n v ol uti o n al l a y er 3 2 * 2 0 * 2 0

M a x- P o oli n g l a y er 3 2 * 1 0 * 1 0

C o n v ol uti o n al l a y er 6 4 * 6 * 6

M a x- P o oli n g l a y er 6 4 * 3 * 3

F ull y c o n n e ct e d l a y er 1 0 0

F ull y c o n n e ct e d l a y er 1 0 0
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number of layers and the number of cells is as follows. If the number of 
layers is five, the maximum number of cells is 256, which decreases to 
128 for four layers, and so on. We choose both RNN and Long Short- 
Term Memory (LSTM) cells as the cell. For the transformer model, we 
consider the number of encoder layers as a parameter to construct 
alternative architectures. In this experiment, we set the minimum 
number of layers to three and the maximum to five. Each layer is 
equipped with multi-head self-attention, layer normalization, residual 
connections and feedforward network. The dimensionality of the multi- 
head attention is 300, comprising 8 heads.

We use the sub-datasets to query the alternative models to obtain the 
class probability. And then we sort the queried images based on category 
probability. We repeat the process above until the adjacent results are 
similar. (We set the nummove used in Algorithm 1 to 6,000)

Based on the size of the reduced dataset and the size of the current 
sub-dataset (subsizei), we set the interval span to fetch data as span 
subsizei

n , and then fetch one data every span samples in each sorted sub- 
dataset. We set used in Algorithm 6 to 1 % (600), 0.5 % (300), and 
0.3 % (200), which means that we set n to 60, 30, and 20 for each 
category in the dataset.

We use the simplified dataset to train the shadow model, and set the 
batch size to 64, and use the cross-entropy loss function to calculate the 
loss, and set adaptive moment estimation as the optimizer, and set the 
learning rate to 0.001.

6.7. Adversarial attack

We evaluate the similarity of the decision boundary between the 
target model and the shadow model by the transferability of the 
Adversarial Examples (AEs) attack, which is named as transferability. 
Deep learning models are confronted with adversarial attacks, and 
training shadow model is one way to launch black-box attack. By 
obtaining class probabilities of inputs with different structures of the 
same model in the data reduction phrase, we can train a shadow model 
and generate adversarial examples. These AEs can then be used to attack 
the target model. Our evaluation of attacks is based on transferability

6.7.1. Target
PGD whose perturbation can be set by attacker is essentially pro

jected gradient descent with a negative loss function. We use PGD to 
generate target AEs based on last alternative model (LAM) trained by 
reduction data. Then we take these AEs that can successfully attack LAM 
to attack the target model. The target model is trained on the overall 
training dataset and performs well on the test dataset.

We set the perturbation upper limit ( ) to 0.5, and the attack becomes 
increasingly better as increases. As for attacks, we select 5000 images 
randomly in the test dataset, and we generate nine additional target AEs 
for each image in addition to itself. As a result, 45,000 target AEs are 

generated. The results are shown in Table 5. Although the details of the 
target model is unknown, the AEs which can attack LAM can also attack 
the target model. That means LAM can help attackers to generate AEs.

As shown in Table 6, For the MNIST dataset, we train the LAM 
shadow model using 600 data instances, and the generated adversarial 
examples achieve transferability of 68.28 %, 65.34 % and 66.75 %, 
respectively, when attacking the target model trained on the complete 
dataset. When trained on 300 data instances, the transferability decrease 
to 56.9 %, 55.62 % and 57.64 %. Similarly, when trained on 200 data 
instances, the transferability drop to 45.67 %, 46.79 % and 45.58 %, and 
further decrease to 42.72 %, 40.17 % and 40.48 % when trained on 150 
data instances. As for the GTSRB dataset, we also train the LAM shadow 
model using 600 data instances, and the generated adversarial examples 
achieve transferability of 62.42 %, 59.97 % and 60.17 % when used to 
attack the target model trained on the complete dataset. When the model 
is trained on only 300 data instances, the transferability decreases to 
50.61 %, 48.65 % and 48.13 %. Similarly, the transferability decreases 
to 43.79 %, 44.57 % and 44.91 % when the model is trained on 200 data 
instances, and further decreases to 40.64 %, 39.76 % and 41.02 % when 
the model is trained on only 150 data instances. Finally, the trans
ferability of the three deep learning models diminishes as the number of 
training data instances decreases on the CIFAR-10 dataset, which is 
similar to the performance observed on the previous two datasets.

The SOTA methods, such as PRADA (Goodfellow et al., 2014), 
Practical (YannLecun) and DRMI, generate target AEs based on the 
model whose structure is the same as the target model. Therefore, we 
evaluate DRAASC under the same condition with the SOTA methods. 
The results are shown in Table 7.

Under the same perturbation settings, we found that our method 
achieves higher transferability rates when compared to DRMI. Our re
sults show that for the MNIST dataset, the transferability of AEs with 600 

Table 4 
Parameters of the RNN model.

Input 784

RNN1 128
RNN2 64
RNN3 32
Output 10

Table 5 
Parameters of the Transformer model.

Input 1 * 28 * 28

Encoder 8 128 300
Encoder 8 128 300
Encoder 8 128 300
Output 10

Table 6 
Transferability of adversarial examples on target model generated by LAM.

Dataset Queries Target Model Transferability

MNIST 600 LAM(CNN) 68.28 %
LAM(RNN) 65.34 %
LAM(Transformer) 66.75 %

300 LAM(CNN) 56.9 %
LAM(RNN) 55.62 %
LAM(Transformer) 57.64 %

200 LAM(CNN) 45.67 %
LAM(RNN) 46.79 %
LAM(Transformer) 45.58 %

150 LAM(CNN) 42.72 %
LAM(RNN) 40.17 %
LAM(Transformer) 40.48 %

GTSRB 600 LAM(CNN) 62.42 %
LAM(RNN) 59.97 %
LAM(Transformer) 60.17 %

300 LAM(CNN) 50.61 %
LAM(RNN) 48.65 %
LAM(Transformer) 48.13 %

200 LAM(CNN) 43.79 %
LAM(RNN) 44.57 %
LAM(Transformer) 44.91 %

150 LAM(CNN) 40.64 %
LAM(RNN) 39.76 %
LAM(Transformer) 41.02 %

CIFAR-10 600 LAM(CNN) 74.54 %
LAM(RNN) 72.54 %
LAM(Transformer) 74.75 %

300 LAM(CNN) 68.94 %
LAM(RNN) 66.25 %
LAM(Transformer) 66.47 %

200 LAM(CNN) 60.47 %
LAM(RNN) 61.79 %
LAM(Transformer) 61.75 %

150 LAM(CNN) 54.23 %
LAM(RNN) 55.17 %
LAM(Transformer) 54.48 %
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q u eri e s i s 8 8. 3 5 % wit h o ur m et h o d, w hil e it i s o nl y 7 8. 5 1 % wit h D R MI. 

Si mil arl y, f or t h e

G T S R B d at a s et, t h e tr a n sf er a bilit y of A E s wit h 6 0 0 q u eri e s i s 8 4. 3 7 % 

wit h o ur m et h o d, a s o p p o s e d t o o nl y 7 6. 3 2 % wit h D R MI. R e g ar di n g t h e 

CI F A R- 1 0 d at a s et, A E s wit h 6 0 0 q u eri e s e x hi bit a tr a n sf er a bilit y r at e of 

8 5. 1 9  %,  si g ni fi c a ntl y  o ut p erf or mi n g  7 5. 0 2  %  tr a n sf er  r at e  of  A E s 

cr aft e d  wit h  t h e  D R MI  a p pr o a c h.  O ur  m et h o d  o ut p erf or m s  D R MI  b y 

n e arl y  t e n  p er c e nt a g e  p oi nt s  u n d er  t h e  s a m e  cir c u m st a n c e s,  a n d  it  i s 

n ot a bl y s u p eri or t o ot h er m et h o d s, i n cl u di n g P R A D A. W hil e t h e tr a n s -

f er a bilit y  r at e s  of  all  m et h o d s  d e cr e a s e  a s  t h e  n u m b er  of  q u eri e s  d e-

cr e a s e s,  o ur  m et h o d  m ai nt ai n s  a  hi g h er  tr a n sf er a bilit y  r at e.  T a ki n g 

T a bl e s 6 a n d 7 i nt o a c c o u nt, w e fi n d t h at e v e n t h o u g h w e u s e L A M, w e 

still a c hi e v e a hi g h er tr a n sf er a bilit y t h a n P R A D A a n d Pr a cti c al.

Fi g. 6 s h o w s t h e c o nf u si o n m atri c e s of t ar g et e d A E s att a c k s a g ai n st 

C N N  u n d er  1 5 0  a n d  6 0 0  q u eri e s.  T h e  v al u e  i n  i  t h  r o w,  j-t h  c ol u m n 

r e pr e s e nt s  t h e  n u m b er  of  s a m pl e s  w h o s e  ori gi n al  l a b el  i s  i  w hi c h  i s 

cl a s si fi e d i nt o j. T h e di a g o n al el e m e nt s ar e t h e n u m b er of f ail e d att a c k s. 

Ot h er el e m e nt s ar e t h e n u m b er of s u c c e s sf ul att a c k s a m pl e s. T h e li g ht er 

t h e c ol or i s, t h e l ar g er t h e v al u e i s. O b vi o u sl y, t h e ( 3, 3) el e m e nt i n 1 5 0 

q u eri e s i s t h e li g ht e st, w hi c h m e a n s m a n y a d v er s ari al s a m pl e s g e n er at e d 

b y t h e s a m pl e s wit h l a b el 3 d o n ot s u c c e e d i n att a c k s. I n 6 0 0 q u eri e s, t h e 

( 3, 3) el e m e nt t ur n s d ar k er d u e t o t h e l ar g er d at a s et. Fi g. 7 s h o w s t h e 

c o nf u si o n m atri c e s of t ar g et e d A E s att a c k s a g ai n st R N N u n d er 1 5 0 a n d 

6 0 0 q u eri e s. Si mil arl y, Fi g. 8 s h o w s t h e c o nf u si o n m atri c e s of t ar g et e d 

A E s att a c k s a g ai n st Tr a n sf or m er u n d er 1 5 0 a n d 6 0 0 q u eri e s. L a b el 3 still 

p erf or m s t h e w or st i n b ot h Fi g ur e s. W e c a n c o n cl u d e t h at it i s dif fi c ult t o 

att a c k s a m pl e s i n l a b el 3 s u c c e s sf ull y. H o w e v er, t h e att a c k s f or ot h er 

l a b el s ar e m or e eff e cti v e. W e c a n dr a w si mil ar c o n cl u si o n o n c o nf u si o n 

m atri c e s i n G T S R B a n d CI F A R- 1 0 d at a s et. T h er ef or e, w e will n ot el a b -

or at e o n t h at f urt h er d u e t o s p a c e li mit ati o n s.

6. 7. 2.  U nt ar g et e d

W e al s o u s e t h e P G D a p pr o a c h t o  g e n er at e u nt ar g et e d  a d v er s ari al 

i m a g e s wit h L A M t o att a c k t h e t ar g et m o d el. W e s et ε ( m a x p ert ur b ati o n) 

a s  0. 3,  a n d  t e st  t h e  tr a n sf er a bilit y  of  1 0 0 0  u nt ar g et e d  A E s  f or  e a c h 

e x p eri m e nt. T h e r e s ult s ar e s h o w n i n T a bl e 8 . F or t h e M NI S T d at a s et, o ur 

m et h o d  u s e s  1 5 0  q u eri e s  t o  g e n er at e  1 0 0 0  n o n-t ar g et  A E s,  a n d  w e 

a c hi e v e a tr a n sf er a bilit y of 7 0. 1 %, a n d w e c a n g e n er at e a n A E i n a b o ut 

0. 0 9  s.  F or  t h e  G T S R B  d at a s et,  o ur  m et h o d  e m pl o y s  1 5 0  q u eri e s  t o 

g e n er at e  1 0 0 0  n o n-t ar g et  a d v er s ari al  e x a m pl e s,  a c hi e vi n g  t h e  tr a n s -

f er a bilit y of 6 6. 9 5 %, a n d w e ar e a bl e t o g e n er at e a n a d v er s ari al e x a m pl e 

wit hi n  a p pr o xi m at el y  0. 1 3 1  s.  Fi n all y,  o ur  a p pr o a c h  e m pl o y s  1 5 0 

q u eri e s t o pr o d u c e 1 0 0 0 u nt ar g et e d A E s) f or t h e CI F A R- 1 0 d at a s et. W e 

a c hi e v e a tr a n sf er a bilit y r at e of 7 0. 9 5 % w hil e g e n er ati n g e a c h A E i n 

a p pr o xi m at el y 0. 1 2 6 s.

F urt h er m or e, w e c o n d u ct e x p eri m e nt s t o g e n er at e t ar g et A E s b a s e d 

o n t h e  m o d el wit h t h e s a m e str u ct ur e a s  t h e t ar g et m o d el u si n g S O A 

m et h o d s a n d D R A A S C. Wit h ε ( m a x p ert ur b ati o n) s et t o 0. 3, w e t e st t h e 

tr a n sf er a bilit y  r at e  of  1 0 0 0  u nt ar g et e d  A E s  f or  e a c h  e x p eri m e nt  a n d 

pr e s e nt t h e r e s ult s i n T a bl e 9 . F or t h e M NI S T d at a s et, D R MI r e q uir e s 1 5 0 

T a bl e 7 

Tr a n sf er a bilit y  of  a d v er s ari al  e x a m pl e s  o n  t ar g et  m o d el  g e n er at e d  b y  t h e 

s h a d o w m o d el w h o s e str u ct ur e i s t h e s a m e a s t h e t ar g et m o d el.

Q u eri e s T ar g et M o d el M NI S T G T S R B CI F A R- 1 0

6 0 0 P R A D A ( W ei et al., 2 0 1 8 ) 4 9 % 4 1 % 4 8 %

Pr a cti c al ( H o n g et al., 2 0 1 8 ) 3 9 % 3 2 % 4 0 %

D R MI 7 8. 5 1 % 7 6. 3 2 % 7 5. 0 2 %

D R A A S C ( C N N ) 8 8. 3 5 % 8 7. 3 7 % 8 6. 4 2 %

D R A A S C ( R N N ) 8 9. 1 9 % 8 6. 1 6 % 8 5. 0 6 %

D R A A S C ( T r a n sf o r m e r ) 8 8. 2 1 % 8 7. 0 4 % 8 5. 1 9 %

3 0 0 P R A D A 3 9 % 3 2 % 4 0 %

Pr a cti c al 3 3 % 2 7 % 3 3 %

D R MI 7 6. 3 7 % 7 3. 1 2 % 7 1. 0 5 %

D R A A S C ( C N N ) 8 7. 4 6 % 8 4. 7 7 % 8 1. 0 4 %

D R A A S C ( R N N ) 8 6. 2 7 % 8 3. 4 4 % 8 0. 1 4 %

D R A A S C ( T r a n sf o r m e r ) 8 7. 4 3 % 8 3. 7 4 % 8 1. 9 5 %

2 0 0 P R A D A 3 1 % 3 0 % 2 9 %

Pr a cti c al 2 8 % 2 5 % 2 6 %

D R MI 7 0. 1 3 % 7 0. 3 5 % 6 5. 1 7 %

D R A A S C ( C N N ) 8 0. 8 8 % 8 0. 1 5 % 7 4. 5 8 %

D R A A S C ( R N N ) 6 9. 8 4 % 7 8. 0 3 % 7 5. 9 4 %

D R A A S C ( T r a n sf o r m e r ) 8 0. 1 4 % 7 9. 8 8 % 7 4. 0 6 %

1 5 0 P R A D A 2 9 2 7 % 2 5 %

Pr a cti c al 2 7 % 2 3 % 2 3 %

D R MI 6 9. 6 4 % 6 4. 3 3 6 3. 5 4 %

D R A A S C ( C N N ) 7 8. 4 1 % 7 5. 4 7 % 7 3. 0 6 %

D R A A S C ( R N N ) 7 9. 1 4 % 7 4. 3 8 % 7 3. 1 8 %

D R A A S C ( T r a n sf o r m e r ) 7 9. 8 5 % 7 4. 0 4 % 7 3. 8 5 %

Fi g.  6. C o nf u si o n  m atri c e s  of  t ar g et e d  a d v er s ari al  e x a m pl e s  att a c ki n g  t h e 

t ar g et C N N m o d el.

Fi g.  7. C o nf u si o n  m atri c e s  of  t ar g et e d  a d v er s ari al  e x a m pl e s  att a c ki n g  t h e 

t ar g et R N N m o d el.

Fi g.  8. C o nf u si o n  m atri c e s  of  t ar g et e d  a d v er s ari al  e x a m pl e s  att a c ki n g  t h e 

t ar g et Tr a n sf or m er m o d el.

T a bl e 8 

Tr a n sf er a bilit y of u nt ar g et e d a d v er s ari al e x a m pl e s o n t ar g et m o d el g e n er at e d b y 

s h a d o w m o d el ( L A M).

D at a s et M et h o d Tr a n sf er- 

a bilit y

Q u eri e s ti m e

M NI S T L A M ( C N N ) 7 0. 1 % 1 5 0 0. 0 8 9

L A M ( R N N ) 6 5. 8 2 % 1 5 0 0. 0 8 9

L A M ( T r a n sf o r m e r ) 6 8. 1 3 1 5 0 0. 0 8 9

G T R S B L A M ( C N N ) 6 6. 9 5 % 1 5 0 0. 1 3 1

L A M ( R N N ) 6 1. 0 3 % 1 5 0 0. 1 3 1

L A M ( T r a n sf o r m e r ) 6 5. 0 8 1 5 0 0. 1 3 1

CI F A R- 1 0 L A M ( C N N ) 7 0. 9 5 % 1 5 0 0. 1 2 6

L A M ( R N N ) 6 4. 0 3 % 1 5 0 0. 1 2 6

L A M ( T r a n sf o r m e r ) 6 8. 0 8 1 5 0 0. 1 2 6
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m o d el q u eri e s a n d t w o mi n ut e s t o g e n er at e 1 0 0 0 n o n-t ar g et A E s wit h a 

tr a n sf er a bilit y  r at e  of  7 3. 2  %  a g ai n st  t h e  t ar g et  m o d el.  O ur  m et h o d, 

D R A A S C,  al s o  g e n er at e s  1 0 0 0  n o n-t ar g et  A E s  wit h  1 5 0  q u eri e s  a n d 

a c hi e v e s a hi g h er tr a n sf er a bilit y r at e of 7 7. 1 % wit h a n A E g e n er ati o n 

ti m e of a p pr o xi m at el y 0. 0 9 s. O ur m et h o d o ut p erf or m s D R MI b y 3. 9 5 % 

w hil e r e d u ci n g t h e e x e c uti o n ti m e. F or t h e G T S R B a n d CI F A R- 1 0 d at a -

s et s, o ur a p pr o a c h r e m ai n s eff e cti v e i n att a c ki n g.

6. 8.  A r e al- w orl d c as e

W e c o n d u ct a t e st u si n g f a ci al i m a g e s s y st e m ( Fi g. 9. a) of i n di vi d u al s 

n ot e nr oll e d i n t h e s y st e m, a n d v erif y t h at t h e s y st e m d o e s n ot u nl o c k t h e 

d o or ( Fi g. 9. b). T h e n, w e a p pl y o ur pr o p o s e d att a c k a p pr o a c h o n t hi s 

s y st e m. Fir stl y, a si g n al c oll e cti o n pr o gr a m i s e m b e d d e d i nt o t h e c o ntr ol 

s y st e m. S e c o n dl y, t h e L S T M m o d el i s u s e d t o i d e ntif y t h e t y p e of f a ci al 

r e c o g niti o n  m o d el  ( C N N).  T hir dl y,  a  s h a d o w  m o d el  i s  c o n str u ct e d  t o 

g e n er at e i m a g e s w hi c h i s c a p a bl e of d e c ei vi n g t h e t ar g et m o d el. Fi n all y, 

w e e m pl o y t h e s h a d o w m o d el t o g e n er at e a d v er s ari al e x a m pl e s c orr e -

s p o n di n g t o t h e f a ci al i m a g e u s e d i n Fi g. 9. b, w hi c h s u c c e s sf ull y tri c k s 

t h e  s y st e m  i nt o  u nl o c ki n g  t h e  d o or  (Fi g.  9. c).  T o  s af e g u ar d  p er s o n al 

pri v a c y, w e a p pl y m o s ai c s t o t h e f a ci al i m a g e s i n Fi g. 9 f or ill u str ati o n 

p ur p o s e s; h o w e v er, n o m o s ai c s ar e u s e d d uri n g t h e e x p eri m e nt s.

7.  C o n cl u si o n

I n t hi s p a p er, w e pr o p o s e a n o v el a d v er s ari al att a c k c o m bi n e d wit h 

si d e- c h a n n el att a c k, w hi c h c a n b e l a u n c h e d wit h o ut q u er yi n g t h e t ar g et 

m o d el  t o  a c hi e v e  c o m pl et e  bl a c k- b o x  att a c k.  Fir stl y,  w e  u s e  L S T M  t o 

o bt ai n t h e p arti al t ar g et m o d el b y t h e si d e- c h a n n el att a c k s. T h e n a n o v el 

d at a s et r e d u cti o n t e c h ni q u e i s utili z e d t o i m pr o v e t h e att a c k ef fi ci e n c y. 

I n st e a d of q u er yi n g t o t h e t ar g et m o d el, att a c k er s c o n str u ct alt er n ati v e 

m o d el s t o s el e ct hi g h- q u alit y r e pr e s e nt ati v e d at a t o l a u n c h a d v er s ari al 

att a c k.  O ur  a p pr o a c h  o ut p erf or m s  S O T A  m et h o d s  i n  t er m s  of  tr a n s -

f er a bilit y f or b ot h t ar g et e d a n d u nt ar g et e d A E att a c k s, b y n e arl y 1 0 % 

a n d 3 % r e s p e cti v el y.

C R e di T a ut h o r s hi p c o nt ri b uti o n st at e m e nt

H a n x u n Z h o u: Writi n g – r e vi e w & e diti n g, V ali d ati o n, S u p er vi si o n, 

R e s o ur c e s, I n v e sti g ati o n, F u n di n g a c q ui siti o n, C o n c e pt u ali z ati o n. Z hi -

h ui  Li u: Writi n g – r e vi e w & e diti n g,  V ali d ati o n,  S u p er vi si o n,  F or m al 

a n al y si s, D at a c ur ati o n, C o n c e pt u ali z ati o n. Y uf e n g H u: Writi n g – ori g -

i n al dr aft, V ali d ati o n, R e s o ur c e s, F or m al a n al y si s, D at a c ur ati o n. S h u o 

Z h a n g: V ali d ati o n,  S u p er vi si o n,  I n v e sti g ati o n. L o n g y u  K a n g: V ali d a -

ti o n, F or m al a n al y si s. Y o n g F e n g: S u p er vi si o n, Pr oj e ct a d mi ni str ati o n, 

F u n di n g  a c q ui siti o n,  F or m al  a n al y si s. Y a n  W a n g: S u p er vi si o n,  R e -

s o ur c e s, Pr oj e ct a d mi ni str ati o n. W ei G u o: R e s o ur c e s, Pr oj e ct a d mi ni s -

tr ati o n, F u n di n g a c q ui siti o n. Cliff C. Z o u: Writi n g – r e vi e w & e diti n g, 

V ali d ati o n, S u p er vi si o n.

D e cl a r ati o n of c o m p eti n g i nt e r e st

T h e a ut h or s d e cl ar e t h at t h e y h a v e n o k n o w n c o m p eti n g fi n a n ci al 

i nt er e st s or p er s o n al r el ati o n s hi p s t h at c o ul d h a v e a p p e ar e d t o i n fi u e n c e 

t h e w or k r e p ort e d i n t hi s p a p er.

A c k n o wl e d g m e nt s

T h e a ut h or s gr at ef ull y a c k n o wl e d g e c o n str u cti v e c o m m e nt s b y t h e 

a n o n y m o u s r e vi e w er s. T hi s w or k w a s s u p p ort e d i n p art b y t h e N ati o n al 

K e y  R e s e ar c h  a n d  D e v el o p m e nt  Pr o gr a m  u n d er  Gr a nt 

2 0 1 9 Y F B 1 4 0 6 0 0 2, i n p art b y t h e N ati o n al S ci e n c e F o u n d ati o n of C hi n a 

u n d er Gr a nt 5 1 7 0 4 1 3 8, i n p art b y t h e K e y S ci e nti fi c R e s e ar c h Pr oj e ct of 

Li a o ni n g Pr o vi n ci al D e p art m e nt of E d u c ati o n u n d er Gr a nt L Z D 2 0 2 0 0 2, 

i n p art b y t h e Li a o ni n g E d u c ati o n D e p art m e nt u n d er Gr a nt J Y T 1 9 0 5 3, i n 

p art  b y  t h e  N ati o n al  N at ur al  S ci e n c e  F o u n d ati o n  of  Li a o ni n g  u n d er 

Gr a nt  2 0 2 0- M S- 2 3 9,  i n  p art  b y  T e a c hi n g  R ef or m  Pr oj e ct  of  Li a o ni n g 

U ni v er sit y u n d er Gr a nt J G 2 0 2 0 Y B X W 1 2 7.

D at a a v ail a bilit y

D at a will b e m a d e a v ail a bl e o n r e q u e st.

R ef e r e n c e s

A c h ar y a, R. Y., G a nji, F., F ort e, D., 2 0 2 2. I nf or m ati o n t h e or y- b a s e d e v ol uti o n of n e ur al 
n et w or k s f or si d e- c h a n n el a n al y si s. I n: I A C R Tr a n s a cti o n s o n Cr y pt o gr a p hi c 

H ar d w ar e a n d E m b e d d e d S y st e m s .

Al d a h d o o h, A., H a mi d o u c h e, W., F e z z a, S. A., D éf o r g e s, O., 2 0 2 2. A d v er s ari al e x a m pl e 
d et e cti o n f or d n n m o d el s: a r e vi e w a n d e x p eri m e nt al c o m p ari s o n. Artif. I nt ell. R e v. 

5 5 ( 6), 4 4 0 3 – 4 4 6 2 .
A zi zi, S., M u st af a, B., R y a n, F., B e a v er, Z., Fr e y b er g, J., D e at o n, J., L o h, A., 

K art hi k e s ali n g a m, A., K or n blit h, S., C h e n, T., et al., 2 0 2 1. Bi g s elf- s u p er vi s e d m o d el s 

a d v a n c e m e di c al i m a g e cl a s si fi c ati o n. I n: Pr o c. I E E E / C V F I nt. C o nf. C o m p ut. Vis., 
A u g ust , p p. 3 4 7 8– 3 4 8 8 .

B h a g oji, A. N., H e, W., Li, B., S o n g, D., 2 0 1 7. E x pl ori n g t h e s p a c e of bl a c k- b o x att a c k s o n 
d e e p n e ur al n et w or k s. ar Xi v pr e pri nt. ar Xi v: 1 7 1 2. 0 9 4 9 1 . D e c. 
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