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Abstract 

Quadrotors are increasingly used in the evolving field of aerial robotics for their agility and me- 

chanical simplicity. However, inherent uncertainties, such as aerodynamic effects coupled with 

quadrotors’ operation in dynamically changing environments, pose significant challenges for tradi- 

tional, nominal model-based control designs. To address these challenges, we propose a multi-task 

meta-learning method called Encoder-Prototype-Decoder (EPD), which has the advantage of effec- 

tively balancing shared and distinctive representations across diverse training tasks. Subsequently, 

we integrate the EPD model into a model predictive control problem (Proto-MPC) to enhance the 

quadrotor’s ability to adapt and operate across a spectrum of dynamically changing tasks with an 

efficient online implementation. We validate the proposed method in simulations, which demon- 

strates Proto-MPC’s robust performance in trajectory tracking of a quadrotor being subject to static 

and spatially varying side winds. 

Keywords: Multi-task Learning, Meta Learning, Model Predictive Control, Aerial Robotics 

1. Introduction 

In the evolving field of aerial robotics, quadrotors are widely used due to their agility and versatility 

in various applications. To fully leverage the agility of quadrotors, controller designs are heav- 

ily based on quadrotor models. Generally, these models are derived following the Newton-Euler 

equations, which can hardly accommodate dynamic uncertainties in real-world applications (e.g., 

wind, aerodynamic effects, slung or slosh payloads). To address this limitation, recent research has 

focused on using advanced machine learning methods, such as Gaussian Process (Torrente et al., 

2021) and NeuralODE (Chee et al., 2022), to learn an accurate dynamical model from real-world 

data and integrate it with model-based control design, which can significantly enhance the system 

performance. 

Quadrotors operating in real-world scenarios frequently encounter a range of structurally sim- 

ilar yet appearingly different tasks, each with unique dynamical uncertainties. For instance, a 

quadrotor might face varying side wind conditions or be tasked with transporting slung payloads of 

unknown mass. These varied tasks pose a unique challenge for the above-mentioned control meth- 

ods. While relying on a single data-driven model often falls short of achieving optimal performance 

across diverse scenarios, training multiple models for case-specific tasks is inefficient due to 1) chal- 

lenges in data collection for each specific case and 2) potentially time-consuming online switches 

of different trained models that use a relatively large amount of parameters for each individual task. 

To tackle these challenges, a growing line of research investigates the use of online learning and 

meta-learning techniques. These methods operate in an offline-online framework (Connell et al., 
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Figure 1: Framework Overview. a) Collecting data on multiple tasks; b) Pretraining to ensure 

that encoder-decoder pairs can capture the overall patterns of the data; c) Jointly training task- 

specific prototype decoders to capture distinctive task features and regularizing the encoder to avoid 

overfitting; d) Online implementation of Proto-MPC with prototype-decoder-based adaptation. 

2022; Jiahao et al., 2023; Richards et al., 2021; Wang et al., 2024), allowing for adaptation of the 

learned models or real-time retraining of new models to align with the changing characteristics of 

operational tasks. (A comprehensive literature review is available in the Appendix of (Gu et al., 

2024).) 

Integrating online learning methods into model-based control design poses several key chal- 

lenges: 1) adaptivity: the system must rapidly respond to real-time changing conditions; 2) model 

fidelity: as data-driven models evolve through online learning, they risk losing essential knowledge 

learned from the initial training data, which can lead to unpredictable behaviors and reduced perfor- 

mance in situations that they were originally designed to handle; 3) exploration vs. exploitation: 

reaching the right balance between exploring new data and exploiting existing knowledge is critical 

to ensure reliable real-time performance. 

To address these challenges, we introduce Proto-MPC, a novel multi-task meta-learning-based 

model predictive control (MPC) framework. Central to our method is an Encoder-Prototype- 

Decoder (EPD) model, which is designed to learn the residual dynamics of the quadrotor from 

diverse tasks. The EPD model comprises two key components: a universal deep neural network 

(DNN) encoder and a set of task-specific linear prototype decoders. On the one hand, the encoder 

learns the common and essential patterns across various task datasets, providing a generalized un- 

derstanding of the tasks by producing their representations on a low-dimensional manifold (e., 

features). On the other hand, the linear prototype decoder captures the distinctive characteristics 

of a specific task in a computationally efficient way (due to its linear form). In the online infer- 

ence stage, the encoder processes incoming data into features, while prototype decoders are used 

as a “basis” to interpolate encoded features as residuals in the dynamics. This architecture allows 

fast computation of a new decoder aligned with the current task’s characteristics online. Moreover, 

this adaptive approach ensures the MPC has an accurate, up-to-date residual dynamical model. We 

evaluate the proposed framework on a quadrotor under various speeds of side wind. The results 

showcase the generalization and fast adaptation of the proposed Proto-MPC framework. 

The contributions of this paper are summarized as follows: we propose Proto-MPC, a novel 

model predictive control framework for quadrotor control subject to uncertainties and disturbances. 

We propose an EPD model as a data-driven augmentation to the physics-based dynamics to capture 

the uncertainties. The EPD model can achieve the balance between generalizing across a wide array
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of tasks, both trained and unseen tasks, and rapidly adapting to dynamically evolving task conditions 

with tunable parameters. 

2. Background: Nonlinear MPC for Quadrotor Control 

We consider the 6 DoF rigid body dynamics of the quadrotor (with mass ™m and inertia J/) 

p=v,v=m 'fze+g,q= 548 [Ow '|', w= J7'(M —w x Jw), (1) 

where p € R®, v € R® stand for the position and velocity of the quadrotor in the inertial frame, 

q = [ao,q'|' € S? (where qo € R and q € R®*) is the unit quaternion for rotation from the inertial 
to body frame, and w € R® is the angular velocity in body frame. The gravitational acceleration is 

denoted by g. The vector zp is the unit vector aligning with the z-axis of the body frame. The state 

«z —|p' v' q! w']' follows a discretized version of the dynamics in (1) as #p41 = foom(&k, Up) 
with control being u = [f M']! € R* (total thrust f and moment M € R?). 

The model in (1) describes the nominal case with no dynamical uncertainty. In general, uncer- 

tainties (e.g., wind or aerodynamic effects) exist in a real system. We consider lumped uncertainties 

(see (Wu et al., 2022)), denoted by fa, in the dynamics to account for the impact to the system, 

resulting in the real dynamics freal = fnom + fa. In this paper, we will learn the lumped uncertain- 

ties as fa. The objective is to ensure that the learned dynamics from + f A Closely approximate the 

actual dynamics frea1, which allows us to use it as a trustworthy model in an MPC formulation. We 

consider the following nonlinear MPC 

N-1 

up.n—1 =argmin =} late — Fel] + lux — Gall + llaw — En|lGy 
Uo:N—1 k=0 

(2) 
subject to a@gs1 = foom(@k, Un) + fa(ae, Uz), Lo = Gini, 

Umin < U < Umax; 

where 2, and w, denote the reference state and control, @ and F are the penalty matrices for 

deviating from the references, and tin and Umax represent the limits on the control actions. 

3. Method 

3.1. Dataset 

Consider a set of N tasks, 7 = {T7,}4-1.1. We are given their corresponding datasets, D = 

{Dt\,_1.y, where D™ = {(x,y)}7* consists of task-specific identically independently dis- 

tributed input-output pairs. The joint distribution of the input-output pairs D7* is P7*(a,y). 

The task-specific batch data (of size n) is D?*, which is uniformly sampled from D7*, denoted 

as Dik ~ D7, and its empirical distribution is P7* (a, y). 

3.2. Prototype-Decoder-Based Meta-Learning 

In our approach, we decompose the learned residual dynamics into the following form: 

y = fa(a, u) = weo(2), (3)
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where x = concat|a, u| represents the concatenated state and control input vectors, @g is an en- 

coder, and w is a linear decoder. Here, the @g: R!’ > R? isa DNN parameterized by 0 that encodes 

input data into a feature space in R?. The decoder w is a matrix with appropriate dimension and 

w EW = {w: |lwllo = Omax(w) < wo}. The decoder maps the encoded features to the output as 
residuals in the dynamics. 

We use the encoder-decoder as shown in (3) to capture the residual dynamics when a quadrotor 

conducts structurally similar yet appearingly different tasks, such as flying in side-wind of different 

speeds. However, for an encoder-decoder pair with fixed parameters to adapt to different tasks, 

significant modifications or separate models may be required. To tackle this multi-task scenario, 

we introduce the EPD model that comprises a task-agnostic encoder ¢g and a set of task-specific 

prototype encoders W = {wz},—-1:n. (Note that we use the bold font w to denote the prototype 

decoder, which should be distinguished from an arbitrary decoder denoted by w.) On the one hand, 

the encoder ¢g is trained to be task-agnostic in the sense that it captures the essential characteristics 

of all task datasets and allows for fast adjustments of the decoder. On the other hand, each prototype 

decoder w;, takes the encoded features and outputs precise task-relevant residuals, which essentially 

fine-tunes the EPD model to operate on the given task 7;. As key components in our method, 

prototype decoders are used as a “basis” to span a subspace in the task space, which enables 1) 

offline inter-task regularization and 2) online inter-task interpolation. 

3.3. Prototype Decoder 

In this subsection, we formally define and derive a prototype decoder. In brief, given an encoder @@, 

a prototype decoder is the most representative of the given task data in some set of decoders. The 

representativeness of an encoder-decoder pair (#9, w) for a task T;, is measured by its empirical risk 

on task T}.’s batch data: 
1 . 

Rik(w,doa)=— >) (ly — Gill”, (4) 
(wisys)EDn! 

where 9; = wdo(2;), and D7* is sampled from D?7*. To ensure that the pair (¢9, w) captures the 
overall data patterns effectively, the empirical risk must be bounded in a predefined threshold. We 

define this property as the achievability condition as follows: 

Definition 1 (Achievability) For a task T, € 7, an encoder-decoder pair (¢g,w) is achievable 

with some Ro € R® if: 

The achievability condition essentially imposes an upper bound on the expected risk to ensure that 

an encoder-decoder pair has a bounded error over the entire task dataset. One can pretrain the 

encoder by the alternating minimization method (minimization of the empirical risk by alternating 

between ¢g and w. More discussions are given in Remark 3) to satisfy the achievability condition. 

The pretraining step is critical in the sense that the model can learn from data in a “lossy” way while 

staying anchored to the core features. 

Given an encoder @g, we define the set of decoders satisfying (5) as a task-achievable decoder 

set Ay, (Tk) = {w €W: limp soo RA*(w, G9) < Ro}. The task-achievable decoder set Ay, (Tk) 
consequently specifies a task-specific achievable region in WV. We are now ready to introduce a
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novel component called the prototype decoder, which is a representative in Ag, (Tj). The prototype 

decoder is a critical part of our model, aimed at effectively capturing the individual characteristics 

of each task: 

Definition 2 (Prototype Decoder) For a given task T" © T, the prototype decoder, denoted by wy, 

achieves the minimal empirical risk over the achievable set: Ww, = argmin,,< bq (Tr) Rik (w, be): 

The prototype decoder captures the central characteristics of its corresponding task to achieve min- 

imal risk among all the achievable decoders. This choice aligns with the principle of risk mini- 

mization, focusing on achieving the most efficient and effective learning outcome for each task. In 

practice, the prototype decoder can be computed empirically via 

Wk,emp — argmin. cy RS (w, be), (6) 

where W is finite set of achievable decoders. This empirical computation results in a geometric in- 

terpretation of the role of the prototype decoder: it 1s the geometric center of the achievable decoders 

under the “distance” defined by the risk, which is a concept that closely relates to Prototypical Net- 

works (Snell et al., 2017) for few-shots classification. Similarly the prototype decoder acts as a 

representative of the associated task in our EPD model framework. 

Remark 3 /n Rate-Distortion Theory, the definition of empirical risk in (4) ts in fact a distor- 

tion measure between sequences (Cover, 1999). In our formulation, an achievable decoder set 

Ag, (Ii) with an encoder dg specifies a rate-distortion region for a given task T;,. Moreover, the 

encoder-prototype-decoder pair (2) is the rate-distortion function that achieves the infimum rate 

for a given distortion threshold Ro. The Blahut-Arimoto algorithm (Arimoto, 1972) was proposed 

for calculating the rate-distortion function, which is an alternating minimization procedure. This 

algorithm can be specialized in our setting to pretrain the model to ensure achievability by alter- 

nating between encoder and decoder to minimize the empirical risk. In addition, such an achiev- 

ability constraint in effect imposes an information bottleneck (Tishby et al., 2000) to balance the 

compression-representation trade-off. 

With the prototype decoder effectively capturing task-specific characteristics, we next introduce 

a Prototype-Decoder Based Meta-Update method to fine-tune the encoder. This approach pre- 

vents overfitting on the training tasks, ensuring that the encoder remains general enough for di- 

verse tasks while preserving the EPD model’s ability to adapt effectively to specific tasks online. 

P™ ; (0,0, 1] 

3.4. Encoder Meta-Update based on Prototype Decoder 

The prototype decoder is a /ocal definition that only represents its 

corresponding task. The global relationships among prototypes are 

embedded within the encoder in a black-box manner, which deter- 

mines our ability to understand the underlying task similarities and 

leverage them for task generalization. To explore the global rela- 

tionships among the prototypes, we introduce an V-dimensional 

statistical model with the prototype set as a basis in the “‘task’”’ dis- 

tribution space (see Figure 2): 

Figure 2: Illustration of the 

statistical model of task distri- 

bution. 

N N 

Sw (a) = {S_ QW; | Sai — | and QQ; > QO}, (7) 

1=1 1=1
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where a = [a1, a2, ...,an]* is the coordinates in the prototype basis, representing the location of 

a task distribution in this model. With this model structure (7), we introduce a prototype-decoder- 

based meta-update strategy for jointly training the decoders, focusing on exploring the subspace 

spanned by the prototype basis. The exploration is achieved by adjusting the learning direction 

through negative weighting of the risk gradients of other tasks’ prototypes (see Figure 3). For task 

T; € 7, the one-step meta update is given by: 

0<—0—e((1—B)VoRIA(we.9)— 8 > VoRi(w', do), (8) 
w/EW \{wz } 

where § © [0,1) is a trade-off parameter, balancing task-specific learning and inter-task interpo- 

lation, and € is the learning rate. In the case of 6 = O, the task-specific prototype remains highly 

representative of its corresponding task, yet this choice restricts the interpolation on the statisti- 

cal model (7). Increasing the value of 6 broadens the model’s interpolation and coverage during 

the learning phase but will degrade the representativeness in the sense of a higher risk for the 

given task. The selection of 9 should align with specific performance metrics: a smaller { for 

concentrated representation to trained tasks and a larger 6 for better extrapolation to new tasks. 

The meta update is reminiscent of gradient ma- R 

nipulation in the multi-task learning (Maninis et al., a - 
de SSF) VR (wi, b¢) 2019; Liu et al., 2021a,b), which aims to balance a n J 

the learning quality between task-shared and task- “ 7 
. / 

specific representations. Note that this balance is ex- ee OR (w'; 9) 

plicitly addressed by our EPD structure. Here, the 

use of adversarial gradient regularization is specifi- 

cally designed to explore the vicinity of a given task 

by introducing tendencies towards other tasks. The 

complete algorithm, including the pretraining step, 

is detailed in the algorithm section of the Appendix in (Gu et al., 2024). 

Figure 3: Illustration of meta update. Blue 

indicates the weighted gradients and red in- 

dicates the update direction 

3.5. Proto-MPC 

The EPD model offers an adaptation strategy when used with the MPC to handle uncertainties or 

disturbances associated with tasks. If privileged information about a task is available online, then 

Proto-MPC can utilize a task-specific residual dynamics model provided by the prototype decoder. 

Otherwise, in scenarios where task information is not immediately available, we can use prototype 

decoders to interpolate online data to infer a residual dynamics model. 

With Privileged Task Information: Under this condition, MPC can readily choose which model 

(1.e., prototype decoder) to use. Formally, we describe the task information to be provided by exter- 

nal modules in terms of Privileged Information denoted as PI as follows w; = PI (Dy""), where 

D,* = {(©1, Y1), ++; (In; Yn) }7” is a batch of data from the real-time task Tyuery. This opera- 
tion essentially outputs the prototype candidate to be used by the MPC. 

Without Privileged Task Information: When task information is not immediately available dur- 

ing operation, the statistical model Sw(a) (with prototype decoders as a basis) enables a more effi- 

cient sampling-based real-time adaptation strategy than recursively solving the empirical risk mini-



Proto-MPC 

mization. Intuitively, this strategy sequentially /ocates the operational task Tquery in the (sub)space 

spanned by the prototype decoders. 

Different from the offline learning stage, we shift our focus from exploration to exploitation 

at the stage of online adaptation. For exploitation, a challenge comes from the center region in 

Sw/(a) (see Figure 2) being a low-confidence region which is poorly represented in the training 

data. In particular, the point a* = [4 + ... 4] at the center of Sw (a) represents the state of highest 
uncertainty, where each task is equally probable. To address this challenge, we propose a prototype- 

based coordinates sampling method with an acceptance criterion, which sequentially updates a 

in the high confidence region of Sw(a). 

For the prototype coordinate a, its kth element a, has a probabilistic interpretation as the proba- 

bility of the task Tyuery being Tx, ie., ag = P(Tquery = Th). Therefore, the coordinate a essentially 
bye ge es True 

gives the probability distribution of Tguery over task set 7. In practice, given D,,""", we can empir- 

ically approximate a, using Boltzmann distribution: 

exp ( — Rak (we, 0)) 

SS wrew exp (— Rn"? (w!, 9) 

where y > 0 is a scaling parameter that controls the weighting to the risk (.e., a lower value of + 

tends to “flatten out” Pemp). To keep aem , away from the highest uncertain point a*, we define an 

acceptance criterion using Kullback—Leibler divergence with a predefined acceptance threshold Do, 

i.e., if the following inequality holds Dx (aemp||a*) > Do, then agmp is considered as bounded 

away from a* and will be accepted. In the inference stage, agm, can be recursively computed 

using a moving horizon data buffer to sequentially update the decoder weights online while the 

acceptance criterion ensures that agin, stays away from the central low-confidence region. The 

complete algorithm of Proto-MPC is detailed in the algorithm section of the Appendix in (Gu et al., 

2024). The block diagram of Proto-MPC for controlling the quadrotor is illustrated in Fig. 1d. 

, (9) ap = P(Tquery = Tk) © Pemp(Lquery = Tr) = Aemp,k = 

4. Experiments 

In this section, we evaluate our method in simulation. We use the RotorPy simulator (Folk et al., 

2023), a multirotor simulation environment with aerodynamic wrenches, to collect data for training 

the EPD model and test the Proto-MPC. Further details on the experimental setup and results can be 

found in Sections 6.3 and 6.6 of the Appendix in (Gu et al., 2024). Additionally, the learning results 

of the EPD model within this experimental setup, including the effects of the trade-off parameter {, 

are discussed in detail in Sections 6.4 and 6.5 of the Appendix in (Gu et al., 2024). 

Experimental Setup: The learning task set is designed for constant side wind in the x-direction at 

speeds of 2, 4, and 6 m/s. In this scenario, the lumped forces dominate the residual dynamics fa. 

Therefore, only the lumped forces are considered in the learned residual dynamics of this experi- 

mental setup. 

Experimental Results: To evaluate our method, we compare it with 1) nonlinear MPC with nomi- 

nal model fom, 2) KNODE-MPC-Online (Jiahao et al., 2023), and 3) MPC with task-specific DNN 

residual model ( fy’ * is a DNN trained using the 7;,-specific dataset). In other words, for each task, 

a DNN residual model is trained and used for deployment on the given task. On the contrary, for
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all the testing trials we conduct in this subsection, the prototype-based meta-model 1s kept fixed so 

that the adaptation is only based on prototype decoders corresponding to constant side wind with 

speeds of 2, 4, and 6 m/s. We evaluate our method under static and dynamic wind scenarios. For 

the former, we command the quadrotors to track the training trajectory under constant side wind 

of various speeds. For the latter, we command the quadrotors to track different testing trajectories 

under spatially dependent winds (O—10 m/s along the x-direction; see the illustration in Figure 4). 

Spatially Varying Wind Visualization 

Constant Side Wind: Table | presents a comparison of ‘ 

tracking RMSE for nominal MPC, task-specific DNN- = 

MPC, KNODE-MPC-Online, and Proto-MPC under con- 

stant side wind conditions with speeds ranging from 0 to 

10 m/s. We followed the implementation of KNODE- 

MPC-Online as described 1n (Jiahao et al., 2023) for han- 

dling sudden mass changes online but adapted it for our 

side wind setup. Empirically, we found that the original 

implementation suffers from instability issues with the Figure 4: Spatially varying wind distri- 

online learned model in our experimental setup. To ad- bution. 

dress this, we applied spectral normalization to control the Lipschitz constant of the online-learned 

KNODE model, thereby improving its closed-loop stability. 

The result shows a substantial reduction in RMSE for all task-specific DNN-MPC, KNODE- 

MPC-Online and Proto-MPC compared to the baseline MPC. Note that the task-specific DNN-MPC 

is expected to exhibit superior tracking performance, as the DNN 1s specifically trained for each 

task’s wind condition. Both KNODE-MPC-Online and Proto-MPC consistently halve the RMSE 

relative to the nominal MPC across all test wind speeds. However, Proto-MPC requires less online 

computation compared to KNODE-MPC-Online, as it only updates the decoders instead of training 

the whole model online. This comparison demonstrates not only a significant improvement over 

the baseline MPC but also demonstrates Proto-MPC’s robust generalization capabilities on tasks 

unseen during training, with significantly lower computational demands. 

W
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Spatially Varying Wind: Under this condition, to test Proto-MPC’s task-adaptation capacity, the 

quadrotor is subject to a varying-speed wind in the x-direction from O to 10 m/s. We compare it 

with nominal-MPC and KNODE-MPC-Online (with spectral normalization) on various trajectories. 

Figure 5 shows the tracking performance with the colorbar highlighting the deviation from the refer- 

ence trajectory. Table 2 shows the RMSE of the three methods on the testing trajectories. Compared 

with nominal MPC and KNODE-MPC-online, the Proto-MPC achieves the best trajectory tracking 

under drastically changing wind conditions with significantly less online computation. 

5. Conclusion 

This paper proposes a novel EPD model designed to capture shared and distinctive features across 

various training tasks. The EPD model consists of a universal task-agnostic DNN encoder and a 

set of task-specific linear prototype decoders to balance task-shared and task-specific representa- 

tions. In the online setting, the encoder processes incoming data into features. Simultaneously, 

the linear prototype decoders are used as a “basis” to interpolate encoded features, which allows 

fast computation of a new decoder aligned with the current task’s characteristics. We then use the
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Table 1: Tracking RMSE on the training trajectory under constant side winds of different speeds. The bold 

font for 2, 4, and 6 m/s cases indicate the wind speeds for the training tasks. 

RMSE[m] axis Om/s 2m/s 4m/s 6m/s 8m/s_ 10m/s 

x 0.10 O15 024 036 048 0.63 

nominal-MPC y 0.07 0.07 0.08 0.08 0.09 0.10 

Zz 0.03 0.03 0.05 0.08 0.12 0.16 

x - 0.08 0.09 O11 O12 &#0.15 

Task-DNN-MPC y - 0.06 0.05 0.06 0.05 ~ 0.05 

Zz - 0.03 0.03 0.003 0.04 # 0.04 

x 0.08 0.09 O11 O18 026 0.31 

y 0.05 0.07 0.07 0.13 O16 O11 

z 006 0.05 0.08 0.17 0.18 0.22 

x 0.09 0.07) 009 O11 O17 0.30 

KNODE-MPC-Online 

(with Spectral Normalization) 

‘(with Pty y 0.004 0.04 0.05 0.05 0.05 0.05 

z 0.03 0.02 0.03 0.03 0.03 0.04 

Proto-MPC x 010 0.07 O13 O17 0.24 0.32 

y 0.004 0.04 0.04 0.05 0.05 0.05 
(without PT) z 0.03 0.02 0.02 0.03 0.03 0.04 

Table 2: Tracking RMSE on the testing trajectories (shown in Figure 5) under spatially varying wind. 

RMSE[m] axis trajectory 1 trajectory 2 trajectory 3 

x 0.25 0.31 0.35 
nominal-MPC y 0.05 0.06 0.11 

Zz 0.06 0.06 0.09 

KNODE-MPC-Online . 0.» oN O28 
(with Spectral Normalization) 7 0.06 0.05 0.09 Pee NORANZATS 0.09 0.08 0.06 

x 0.12 0.15 0.18 
a "theut 1) y 0.03 0.03 0.12 
wine z 0.02 0.02 0.08 

EPD model to capture residual dynamics in our Proto-MPC, which can quickly adapt the model 

to cope with uncertainties from dynamically evolving task scenarios. We evaluate Proto-MPC’s 

performance in controlling a quadrotor to track agile trajectories under various static and dynamic 

side wind conditions, which demonstrates its robust performance compared to nominal MPC and its 

generalization capacity compared to MPC augmented with task-specific DNN residual models. Fu- 

ture directions include deploying this framework in real-world experiments and investigate how the 

geometric properties of prototype decoders help to better understand the underlying relationships 

between tasks on the manifold.
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3D Trajectory 3D Trajectory 3D Trajectory 

(a) (D) 

3D Trajectory 3D Trajectory 

(d) (e) (f) 
3D Trajectory 3D Trajectory 3D Trajectory 

Law| 

—2 

~- Desired Path 2 , —777> Desired Path 2 , —777> Desired Path 

(g) (1) (7) 

Figure 5: Tracking performance subject to spatially varying winds on different trajectories. The first 

row (5(a), 5(b), 5(c)) shows the tracking performance of MPC with the nominal model, the second 

row (5(d), 5(e), 5(f)) shows the tracking performance of KNODE-MPC-Online (with spectral nor- 

malization) and the third row (5(g), 5(/), 5(i)) shows the tracking performance of Proto-MPC. The 

colorbar highlights the deviation from the reference trajectory 
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