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Abstract

Ground beetles are a highly sensitive and speciose biolog-
ical indicator, making them vital for monitoring biodiver-
sity. However; they are currently an underutilized resource
due to the manual effort required by taxonomic experts to
perform challenging species differentiations based on sub-
tle morphological differences, precluding widespread ap-
plications. In this paper, we evaluate 12 vision models
on taxonomic classification across four diverse, long-tailed
datasets spanning over 230 genera and 1769 species, with
images ranging from controlled laboratory settings to chal-
lenging field-collected (in-situ) photographs. We further ex-
plore taxonomic classification in two important real-world
contexts: sample efficiency and domain adaptation. Our re-
sults show that the Vision and Language Transformer com-
bined with an MLP head is the best performing model, with
97% accuracy at genus and 94% at species level. Sample
efficiency analysis shows that we can reduce train data re-
quirements by up to 50% with minimal compromise in per-
formance. The domain adaptation experiments reveal sig-
nificant challenges when transferring models from lab to
in-situ images, highlighting a critical domain gap. Overall,
our study lays a foundation for large-scale automated tax-
onomic classification of beetles, and beyond that, advances
sample-efficient learning and cross-domain adaptation for
diverse long-tailed ecological datasets.

1. Introduction

Ground beetles (family Carabidae; commonly known as
carabids) represent one of the largest and most diverse fam-
ilies of beetles, comprising over 40,000 described species
worldwide [35]. This diverse lineage serves as pivotal bio-
indicators of environmental health and natural pest regu-
lators in agricultural ecosystems, highlighting the impor-
tance of their accurate taxonomic classification for track-
ing biodiversity changes, monitoring invasive species, and
evaluating ecosystem resilience [44]. Accurate classifica-
tion remains a major challenge, and therefore an interesting
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Figure 1. Samples from the four datasets described in Section 3.1.
From left: Mecyclothroax konanus (from BeetlePUUM), Poe-
cilus scitulus (from BeetlePalooza), Amara aulica (from NHM-
Carabids), and Carabus vietinghoffii (from I1MC).

computer vision problem, due to several factors: (1) subtle
morphological distinctions between closely related species,
often requiring sub-millimeter scrutiny of elytral striations,
pronotum curvature, or antennal segmentation [48]; (2) sub-
stantial intraspecies variation across geographic clines, life
stages, and environmental conditions [54]; (3) an over-
whelming taxonomic diversity [6]; and (4) lack of well-
curated datasets to train computer vision models for auto-
mated classification [31]. Existing workflows depend on
taxonomists using their domain-specific knowledge to ana-
lyze subtle appendage characteristics that often require both

dorsal and ventral views of a specimen [14, 15, 25, 53].

This manual and labor-intensive process severely constrains

large-scale taxonomic studies. To address these gaps, we

1. Conduct a comprehensive study of 12 state-of-the-art
vision-only and vision-language models, evaluating their
effectiveness in hierarchical taxonomic classification
through linear probing, comparing performance to each
other and to a zero-shot baselines.

2. Investigate sample efficiency, a crucial factor for long-
tailed datasets, by analyzing how accuracy varies with
dataset size and assessing the balance between training
volume and performance. Our findings reveal a trade-
off where strategic subsampling can achieve strong per-
formance and reduce costs - a major consideration for
studies with long-tailed data and limited resources.

3. Assess cross-dataset domain adaptation, investigating
whether pretrained vision models generalize well across
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datasets, particularly from curated collection images to
in-situ field images. This challenge remains fundamental
to ecology given the higher classification accuracy and
greater volume of data in lab collections as compared to
in-situ data, and the potential benefits of reducing de-
structive sampling in favor of collecting in-situ images.
Benchmarking results show that Vision and Language
Transformer (ViLT) [30] achieves the highest accuracy of
97.15% at genus level and 93.97% at species, substan-
tially outperforming zero-shot baselines. For sample effi-
ciency, classification accuracy remains largely unchanged
with 50% data. Domain shift scores indicate that while
models generalize well across controlled lab settings, a per-
formance drop of 37% for in-situ images highlights the need
for robust domain adaptation. In short, our work introduces
a novel approach to streamline taxonomic classification of
carabids, while identifying critical gaps in domain shift.

2. Related Work

The computational identification of insects has emerged as
a critical research domain, with numerous studies address-
ing the challenges of taxonomic classification through ad-
vanced machine learning (ML) techniques [3, 5, 28, 39, 55,
57, 59]. Domain adaptation is critical [17, 29, 37, 49, 61].
For example, [49] investigated the generalization of ML
models across different imaging conditions, revealing sig-
nificant performance drops for out of distribution data. Sev-
eral works proposed multimodal approaches integrating vi-
sual features with ecological metadata [2, 12, 24], show-
ing different signal modalities often evolve independently
to serve distinct functions. A few recent works have ex-
plored automated methods for identifying and monitoring
carabids [1, 6, 21, 25, 45, 58]. Most notable of them is
NEON’s continental-scale ground beetle monitoring pro-
gram [25, 40]. Among others, [6] achieved 84.6% species-
level accuracy using linear discriminant analysis on pitfall
trap-collected carabids; [21] achieved 51.9% species-level
accuracy using applied neural networks; and [1] got 90%
accuracy on Sri Lankan beetles by using background re-
moval, segmentation, and transfer learning. However, these
approaches are limited by small taxonomic coverage and
the use of conventional ML models that lack the representa-
tional power of cutting-edge vision encoders. Our work ad-
dresses these limitations by leveraging that power and cov-
ering a broader taxonomic range.

3. Methodology
3.1. Datasets used in this study

We use four distinctive datasets, comprised of 100,885 cara-
bid images in total, spanning over 230 genera and 1769
species. The datasets are as follows:

¢ BeetlePUUM: A dataset of Hawaiian-endemic carabids,
imaged from pinned specimens at the Pu’u Maka’ala site
(PUUM) of National Ecological Observatory Network
(NEON) [46]. It contains high quality images taken in
controlled settings and is rich with ecological metadata,
though limited in taxonomic diversity.

e BeetlePalooza: Another dataset of NEON carabids, from
30 sites across the continental US, containing images of
beetles preserved in ethanol vials [16]. Although it broad-
ens taxonomic and geographic diversity (36 genera, 76
species) and contains ecological metadata, the specimens
vary in spacing and orientation due to the collection’s
scale and the fragile nature of the specimens.

* NHM-Carabids: A collection from the Natural History
Museum in London [22], with expert-verified taxonomy
labels, no accompanying metadata, and containing some
images that are blurry or show lighting inconsistencies.

* IIMC: A filtered subset of carabids from the Insect-1M
dataset [41]. It includes both lab specimens and in-situ
images, and offers taxonomic diversity but lacks consis-
tency, with variable image quality, inconsistent specimen
orientation, and frequent partial captures instead of com-
plete specimens.

Apart from experimenting on these datasets individually, we

also put together a merged version combining all four to fa-

cilitate large-scale analyses across diverse imaging condi-
tions, taxonomic groups, and ecological contexts. Table |
provides detailed statistics for each dataset and the merged

collection. For more details, see Appendix A.l.

Data No.of No.of No.of Genus Species T+E
Code Images Genera Species N/A N/A  Data

BPM 1803 4 14 0 0 Yes
BPZ 11399 36 76 17 27 Yes
NHMC 63077 71 290 0 0 No

IIMC 24606 206 1531 424 4328 No
Merged 100885 230 1769 441 4355 -

Table 1. Data Codes: BPM: BeetlePUUM, BPZ: BeetlePalooza,
NHMC: NHM-Carabids. Column {Genus/Species} N/A: number
of images where specimens are not identified to {genus/species}
level; T+E Data: availability of morphological trait measurements
(elytra length and width) and environment data.

3.2. Exploratory Data Analysis

We start with an exploratory data analysis. Dataset overlap
shows minimal taxonomic sharing between datasets, with
I1MC having some overlap with both NHM-Carabids and
BeetlePalooza; and BeetlePUUM being isolated due to its
endemic focus (details in Table 2.) Sample distribution per
species varies significantly across datasets. NHM-Carabids
demonstrates a balanced distribution with abundant samples
per species. IIMC, in constrast, has a highly skewed distri-



IIMC BPM NHMC BPZ

IIMC  206\1531 2 68 73
BPM 2 4\14 2 0
NHMC 57 2 77\290 2
BPZ 36 1 16 36\76

Table 2. Overlapping taxa across dataset. Upper triangle: Number
of common species; Lower triangle: Number of common genera.
Diagonal: Number of {genera\species} in that dataset

bution: nearly half of its species are rarely sampled (<3
images). BeetlePUUM covers fewer species but with dense
sampling, whereas BeetlePalooza offers moderate diversity
but skewed representation. (Details in Appendix A.2)

3.3. Taxonomic Classification

Our primary focus is to evaluate the performance of
state-of-the-art models on the taxonomic classification task
across all datasets. To achieve this, we extract feature em-
beddings from various pretrained foundation models and
train a multi-layer perceptron (MLP) classifier on top of
these embeddings. The embeddings are derived from di-
verse vision architectures, categorized into: (1) vision-
only self-supervised models (DINOv2 [42], VITMAE [23],
SwAV [19], MoCov3 [9]), (2) vision-only supervised mod-
els (SWINv2 [33], BelT [4], LeViT [20], ConvNeXt [34]),
and (3) vision+language supervised models (CLIP [43],
BioCLIP [51], SigLIP [62], VILT [30]). For example, the
carabid Carabus vietinghoffii belongs to the family Cara-
bidae, genus Carabus, and species vietinghoffii, illustrating
the hierarchical structure used in our classification. As a
zero-shot baseline, we use BioCLIP [51], a CLIP-variant
for fine-grained biological taxonomic classification.

3.4. Sample Efficient Probing

Next we investigate the critical question, how many labeled
examples per taxon are required to achieve satisfactory re-
sults? Using the NHM-Carabids dataset, we construct train-
ing subsets of increasing size through two sampling strate-
gies: 1) Balanced Sampling, with K (10, 20, 50) samples
per species; 2) Proportional Sampling, where class distribu-
tions are preserved while matching the number of images in
balanced sets (Details in Appendix B.3). For both setups,
we further compare performance using 50% (Half-Set) and
100% (Full-Set) of the available data, evaluating the top-
performing vision models across these configurations.

3.5. Cross-Dataset Domain Adaptation

In our third experiment, we assess another logistical con-
straint for biodiversity researchers: how well do pretrained
vision models generalize across datasets? We experiment in
two scenarios: (1) lab to lab adaptation, where we train on
NHM-Carabids and test on BeetlePalooza - both containing

lab collections only; (2) lab to in-situ adaptation, where we
train separately on NHM-Carabids and BeetlePalooza, and
test on IIMC (that contains in-situ images). Evaluations
are performed at both genus and species levels and included
only taxa present in both source and target datasets to enable
direct performance comparison across shared taxa.

4. Results
4.1. Model Architecture and Data Preparation

For classification, we employed a simple single hidden-
layer MLP architecture to evaluate the features extracted
from our pretrained vision model. The data was split us-
ing an 80/20 train-test ratio. Images were transformed using
the ImageNet mean [0.485, 0.456, 0.406] and standard devi-
ation [0.229,0.224, 0.225], and resized to 224 x 224 pixels.
Features were standardized to zero mean and unit variance
using a standard scaler fitted on the training set to prevent
information leakage between the training and test data.

4.2. Taxonomic Classification

4.2.1. Zero-Shot Prediction with BioClip

Our first evaluation focuses on the zero-shot prediction per-
formance of BioCLIP across three taxonomic levels (Ta-
ble 3). Accuracy is highest at the family level and declines
rapidly through the genus to the species level. This gradual
drop is attributed to the model’s limited exposure to diverse
taxonomic groups, as BioCLIP’s training data lacks suffi-
cient representation of carabid taxa. Consequently, zero-
shot results for [IMC and NHM-Carabids are omitted due
to their limited taxonomic overlap with BioCLIP’s train-
ing data, which reduces its applicability to these diverse
datasets and is partially reflected in the challenges observed
with the merged dataset.

Table 3. Zero-Shot Taxonomic using BioClip

Dataset Family Genus Species

BeetlePUUM  98.15 5543  23.49
BeetlePalooza  89.95 36.21 11.64
Merged Data 7737  23.17 3.21

4.2.2. Vision Embedding and Probing based Prediction

We report our benchmark evaluations in Tables 8, 9, 10
with micro-accuracy, macro-accuracy, and detailed scores.
Results from Table 8 show that ViLT performs the best
across all datasets at both taxonomic levels, with a micro-
accuracy of 97.15% at genus and 93.97% at species level on
the merged data. However, the macro accuracy (from Table
9) is relatively low, with 78.30% at genus and 65.67% at
species level, implying that the performance may be weaker
for less common or rarer taxa. We observe similar pat-
terns for other models as well. In vision-only categories,
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Figure 2. Probability density distributions of datasets. X-axis: Number of samples per species (abundance). Y-axis: Probability density
(relative frequency of species with given sample count). Histogram: Distribution of species by number of samples. Curve: Fitted proba-
bility distribution based on dataset statistics. The plots illustrate the variation in samples per species, with fitted probability distributions
and key statistical parameters including mean, median, and quartile ranges (Q1, Q3). All four datasets exhibit characteristic right-skewed
distributions (skewness values from 1.53 to 6.30), reflecting the common long-tailed pattern in ecological datasets where a few species are

extensively sampled while most are represented by relatively few specimens.

DINOV2 leads self-supervised and BelT leads supervised
models (See Appendix B.2 for detailed performance report).
Compared to the previous work on NHM-Carabids which
reported 51.9% species-level and 74.9% genus-level accu-
racy using CNN [21], we achieve significantly higher per-
formance with 99.5% accuracy at the species level and
99.8% at the genus level (see Table 10).

4.3. Sample Efficient Probing

Starting from the top performing model ViLT on the full-
dataset taxonomic classification task, we systematically an-
alyze its performance across reduced sized training subsets,
ranging from 2,900 at the small end to 63,077 images with
proportional sampling (See Appendix B.3 for more details).
We report the accuracy scores in Table 11, that exhibit a
pattern of diminishing returns: the most substantial per-
formance improvement (+0.107) emerged between the first
two subsets, with subsequent gains progressively attenuat-
ing and ultimately plateauing to a minimal +0.003 incre-
ment in the full data (See Figure 3). This underlines a no-
table insight: more data does not always result in propor-
tional improvements , implying that strategically sampled
data can achieve robust predictive capabilities while reduc-
ing computational resources.
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Figure 3. Performance of ViLT with different subsets of samples
being probed. Subsetl: 2900 images, Subset2: 5800 images, Sub-
set3: 14500 images, Half-Set: 30000 images, Full-Set: 63077 im-
ages. Y-axis is the model’s accuracy score on corresponding data.

4.4. Cross-Dataset Domain Adaptation

Figure 4 illustrates a comparative overview of the perfor-
mance of the top-performing model ViLT across two adap-
tation scenarios. The model generalizes well when trained
on one lab dataset (NHM-Carabids) and tested on another
(BeetlePalooza), achieving a score of 0.91 at the genus
level, but performs poorly when tested on in-situ images
(I1MC), with an average accuracy score of 0.57. This per-
formance drop is driven by morphological and contextual
variations, such as variable lighting, non-standard orienta-
tions (e.g., lateral views), heterogeneous substrates (e.g.,
leaf litter, soil textures), occlusions by debris or vegetation,
moisture effects on cuticular reflectance, and the presence
of microorganisms (e.g., mites, fungi) in IIMC, unlike the
controlled dorsal views in NHM-Carabids. These scores
highlight the persistent challenge of cross-domain general-
ization in taxonomic classification [49]. Detailed perfor-
mance scores are reported in Table 12. The poor perfor-

Case X

Case E 0.911

-0.443

Case D
Case C 0.576 -0.325
Case B J-0-568- - 0343
Case A I 057
0.0 0.2 0.4 0.6 0.8 1.0

Accuracy Score

Figure 4. Cross-dataset domain adaptation performance of ViLT.
Case A: Train on NHM-Carabids, Test on IIMC (at genus); Case
B: same as A (at species); Case C: Train on BeetlePalooza, Test
on [1MC (at genus); Case D: same as C (at species); Case E: Train
on NHM-Carabids, Test on BeetlePalooza (at genus); Case X: Av-
erage of Cases A, B, C, D. Cases A to D represent lab-to-in-situ
domain shifts for both genus and species levels, while Case E is
evaluated at the genus level only due to limited species-level over-
lap between NHM-Carabids and BeetlePalooza.

mance on [IMC underscores the need for domain-adaptive



strategies to address ecological variability and visual noise,
enhancing model robustness across diverse domains.

5. Conclusion and Future Work

Our work presents a significant advancement in streamlin-
ing carabid taxonomy. However, critical gaps remain to be
addressed. Firstly, although we compile data from four tax-
onomically diverse sources, these still cover less than 5% of
all carabid species. Secondly, the domain-shift score drop
on I1MC data reveals a significant domain gap. While our
study trains separate classifiers for genus and species levels,
this approach may lead to inconsistent hierarchical predic-
tions. To address the possibility of inconsistent hierarchi-
cal predictions for genus and species levels, we look for-
ward to exploring hierarchical classification methods, such
as Flamingo [8], or HAF [18], to ensure consistent taxo-
nomic predictions by integrating the known taxonomy tree
during training. Additionally, the limited taxonomic over-
lap between I1MC and other datasets (Table 2) highlights
the potential for open-set recognition methods to address
unseen classes, which we plan to investigate in future work.
Moving forward, we aim to bridge these gaps by analyzing
predicted taxa using phylogenetic and ecological proximity
and testing the models’ ability to flag novel taxa. Through
these efforts, we hope to develop a scalable framework for
taxonomic classification of carabids, advancing ecological
analysis and biodiversity monitoring.
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A. Methodology Details
A.1. Dataset Details

In this study, we use four datasets, each contributing unique
strengths in taxonomic coverage, imaging methodology,
and ecological context. Below, we provide a comprehen-
sive breakdown of each, including their curation processes,
taxonomic scope, and key characteristics.

BeetlePUUM. This dataset digitize all pinned carabid
specimens from the NEON Pu’u Maka’ala ecological ob-
servatory site in Hawaii. The collection was assembled
from 600 original source images: 420 bulk images cap-
tured with a Canon EOS DSLR camera (model 7D with
a 24-105 macro lens) and 180 high-detail microscopic im-
ages acquired using a SWIFCAM SC1603 system featur-
ing a 16MP 1/2.33” CMOS sensor. The bulk images each
contained 3-5 pinned specimens arranged vertically in se-
quential order according to their unique specimen IDs, with
all individuals within a given image representing the same
species and captured from the same pitfall trap. To en-
sure the images are optimized for advanced ecological ap-
plications like automated trait extraction, we follow the
guidelines outlined in [13], which emphasize standardized
specimen positioning, consistent size and color calibration,
and comprehensive metadata documentation. Then we run
Grounding DINO [32] to precisely detect and crop out in-
dividual beetles from these group images. The group im-
ages include comprehensive metadata comprising geoloca-
tion coordinates, collection dates, and taxonomic authen-
tication by carabid specialists. Using the coordinates and
date, we extract relevant weather data for each specimen,
providing ecological context for morphological analyses.
Morphological traits are measured using a digital annota-
tion tool named TORAS [27]. Figure 5 displays a group
image of carabid specimens and their corresponding indi-
vidual crops.

BeetlePalooza. This dataset, also digitizing NEON speci-
mens, significantly expands geographic and taxonomic cov-
erage, comprising 11,399 images collected from 30 NEON
sites across the continental United States. Unlike tradi-
tional pinned specimens, this dataset focuses on beetles
preserved in ethanol-filled vials—specifically, the ‘excess’
specimens (those beyond the first 10 individuals per pit-
fall trap, which are pinned separately). During digitiza-

Figure 5. A sample group image and corresponding individual
crops from the BeetlePUUM dataset. Leftmost panel shows the
group image with measurement scale, while the four right panels
present images of those specimens individually cropped.

tion, specimens are carefully air-dried to remove residual
ethanol, mounted on minute staging sticks to standardize
orientation, and imaged in bulk. However, due to the deli-
cate nature of ethanol-preserved specimens, some individu-
als could not be repositioned, resulting in orientation vari-
ability. As with BeetlePUUM, we run Grounding DINO
to isolate individual beetles from group images; incorpo-
rated with weather data and morphological traits (for this
dataset, we use another digital annotation platform, Zooni-
verse [50]). Figure 6 shows a group image and individual
images after detection and cropping.
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Figure 6. A sample group image and corresponding individual
crops from the BeetlePalooza dataset. Leftmost panel shows the
group image with measurement checkbox, while the right panels
present individual crops of the same specimens.
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[47] presents a compilation of datasets BeetlePUUM and
BeetlePalooza, featuring meticulously-measured morpho-
logical traits of individual specimens and offering a trait-
based foundation for exploring taxonomic relationships and
ecological variation among carabids. Beyond that, it serves
as a valuable testbed for small-data regimes with multi-
modal data, a relatively less-explored area in ML where
conventional approaches often underperform [52, 56].

NHM-Carabids. This dataset has 63,077 high-resolution
habitus images of 361 carabid species from the British
Isles, digitized from the curated collections of Natural His-
tory Museum in London. All specimens are taxonomically
verified to species level, with metadata including collec-
tion dates (spanning 150+ years), collector annotations, and
morphological descriptors. Imaging was performed under
controlled lighting, though some historical digitizations ex-
hibit moderate blurring. As a museum collection, it lacks
ecological metadata but provides an unparalleled reference
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Figure 7. Sample specimens from the NHM-Carabids dataset

for alpha taxonomy, temporal trait shifts, and rare specimen
studies. Experiments on species-level classification with
CNN revealed that larger-bodied species and those in less
speciose genera were classified more reliably. Figure 7 il-
lustrates a few sample museum specimens.

IIMC Diverse but Noisy Field and Lab Imagery Ex-
tracted from the Insect-1M foundational dataset, this sub-
set includes 24,606 carabid images combining in-situ field
observations and lab-digitized specimens. Sourced from
naturalist-contributed HTML repositories, the raw data un-
derwent expert vetting to remove mislabeled, corrupted, or
non-insect images, resulting in a cleaned dataset with hier-
archical taxonomic labels (Subphylum to Species). Despite
covering 206 genera and 1,531 species, the broadest taxo-
nomic range among all datasets used, only 60% of images
are identified to species level due to community-sourced
limitations (4328 samples not identified to species level;
and 424 samples not identified to genus level). Field images
often exhibit occlusions or uneven lighting, while lab spec-
imens vary in preservation quality. The dataset’s strength
lies in its ecological context and scale, supporting pretrain-
ing for generalist vision models. On the other hand, its pri-
mary limitation stems from image quality inconsistencies:
frequently having images of parts of a beetle rather than a
full beetle pictured, varying perspective orientations (dor-
sal, lateral, ventral, and anterior), and recurrent issues with
image clarity and focus. Figure 8 illustrates some examples
of these.

s

Figure 8. Sample specimens from the IIMC dataset. Complex
backgrounds: Top row, Ist to 3rd images; Varying viewpoints:
Ventral (Top row, 4th image), Anterior (Bottom row, 2nd image);
Partial occlusion: Bottom row, 3rd image; Incomplete: Top row,
5th image; Lighting/Shadow: Bottom row, Sth image

A.2. Exploratory Data Analysis

We conduct an exploratory data analysis on the datasets to
uncover patterns in taxonomic diversity, sample distribu-
tion, and dataset overlap. The analysis leverages summary
statistics, quartile distributions, abundance classifications,
Jaccard indices for overlap, and visualizations of sample
distributions to provide a comprehensive understanding of
the datasets.

A.2.1. Summary Statistics and Distributional Insights

Table 4 presents detailed summary statistics for both genera
and species across the datasets. For genera, NHM-Carabids
exhibits the highest mean samples per genus (819.18) and
the largest maximum (13,298), but also the highest vari-
ability (standard deviation of 1,715.11), indicating a wide
range of sampling efforts. In contrast, BeetlePUUM has
a mean of 450.75 samples per genus but a much smaller
total genera count (4), reflecting its focused scope. I1MC
and BeetlePalooza show more moderate means (117.39 and
316.17, respectively), but both display high skewness (4.93
and 2.38) and kurtosis (32.22 and 5.14), suggesting long-
tailed distributions with many genera having few samples
and a few genera being heavily sampled. The merged
dataset, combining all four, has a mean of 438.62 sam-
ples per genus but an extremely high skewness (7.21) and
kurtosis (66.57), reflecting the combined effect of these
skewed distributions. For species, the patterns shift. NHM-
Carabids again shows a high mean (217.51 samples per
species) with a relatively low standard deviation (152.50),
indicating a more balanced distribution. BeetlePUUM, de-
spite its small species count (14), has a mean of 128.79
samples per species, suggesting dense sampling within its
limited scope. IIMC, however, has a low mean (13.24)
and median (6.0), with a high skewness (6.30) and kurto-
sis (53.01), indicating that most species are sparsely sam-
pled. BeetlePalooza shows a mean of 149.63 but a high
maximum (1,568), reflecting a skewed distribution (skew-
ness: 3.32, kurtosis: 11.72). The merged dataset for species
has a mean of 54.57, with a median of 9.0, further empha-
sizing the prevalence of sparsely sampled species across the
combined data.

A.2.2. Quartile Distribution

Table 5 provides quartile distributions for both species and
genera, illustrating the spread and central tendencies. For
species, NHM-Carabids stands out with a median (Q2) of
170.0 and a third quartile (Q3) of 282.50, reflecting a higher
baseline of samples per species. BeetlePUUM, despite its
small species count, has a median of 32.0 and a Q3 of
62.0, indicating dense sampling. In contrast, [IMC has a
median of 6.0 and a Q3 of 16.0, showing that 75% of its
species have 16 or fewer samples. BeetlePalooza’s median
is 35.0, but its Q4 (maximum) reaches 1,568, highlighting
a long tail. For genera, NHM-Carabids again shows a high



Dataset Mean Median StdDev Min QI (25%) Q3 (75%) IQR Max  Total Genera Total Samples Skewness Kurtosis
I1MC 117.39 25.5 269.17 1 8.00 83.50  75.50 2457 206 24182 4.93 32.22
BeetlePUUM 450.75 333.5 523.45 9 52.50 731.75 679.25 1127 4 1803 0.79 -1.54
NHM-Carabids  819.18 355.0 1715.11 50 125.00 697.00 572.00 13298 77 63077 5.58 37.69
BeetlePalooza  316.17 60.5 562.79 1 9.25 328.75 319.50 2242 36 11382 2.38 5.14
Merged 438.62 58.0 1319.80 1 11.00 328.00 317.00 14771 229 100444 7.21 66.57
Dataset Mean Median StdDev Min Q1 (25%) Q3 (75%) IQR Max Total Species Total Samples Skewness Kurtosis
I1MC 13.24 6.0 25.52 1 2.00 16.00 14.00 339 1531 20278 6.30 53.01
BeetlePUUM 128.79 32.0 25145 2 4.00 62.00  58.00 811 14 1803 2.30 4.35
NHM-Carabids 217.51 170.0 152.50 50 111.25 282.50 171.25 888 290 63077 1.53 2.83
BeetlePalooza 149.63 350  305.27 1 10.00 116.75 106.75 1568 76 11372 3.32 11.72
Merged 54.57 9.0 126.57 1 3.00 25.00 22.00 1581 1769 96530 4.96 36.83

Table 4. Summary statistics for the datasets, divided into two sections. The top section (above the dashed line) presents descriptive
statistics for genera, including mean, median, standard deviation, minimum, 1st quartile (Q1, 25%), 3rd quartile (Q3, 75%), interquartile
range (IQR), maximum, total number of genera, total number of samples, skewness, and kurtosis. The bottom section (below the dashed
line) provides the same statistical measures for species across the same datasets, with the total number of species replacing total genera.
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Figure 9. Horizontal swarm plot illustrating sample distribution across datasets: Data Codes are same as Table 1. X-axis: Number of
samples per species on a logarithmic scale (10° to 10%). The boxplot shows interquartile range and median for each dataset, overlaid with
a swarm plot, where each data point reflects the number of samples for a species. The plot highlights sampling disparities: NHM exhibits
the most balanced distribution, with a relatively even spread of samples per species from 102 to 10®, while IIMC shows a heavy skew
toward minimal samples (near 10°), indicating significant undersampling. BPM and BPZ display significant variability, with some species
having up to 10% samples but still showing a skew toward lower sample counts.

median (355.0) and Q3 (697.0), while BeetlePUUM’s me-
dian is 333.5, reflecting its focused but well-sampled gen-
era. [IMC and BeetlePalooza have medians of 25.5 and
60.5, respectively, with maximum values (2,457 and 2,242)
indicating the presence of a few heavily sampled genera.

A.2.3. Sample Distribution Visualization

Figure 9 visualizes the sample distribution per species on
a logarithmic scale. IIMC shows a median of 6.0 and a
mean of 13.2, with a total of 1,531 species, but its distri-
bution is heavily skewed, with many species having fewer
than 10 samples and a few outliers reaching up to 339.
BeetlePUUM, with only 14 species, has a median of 32.0
and a mean of 128.8, indicating denser sampling, though
its maximum is 811. NHM-Carabids, with 290 species,
has a median of 170.0 and a mean of 217.5, showing a
more balanced distribution, though outliers extend to 888.
BeetlePalooza’s 76 species have a median of 35.0 and a
mean of 149.6, with a maximum of 1,568, reflecting a
skewed distribution. Figure 2 illustrates these statistics on a

Quartile Distribution: Species

Dataset Q0 (0%) Q1 (25%) Q2(50%) Q3 (75%) Q4 (100%)
11MC 1.0 2.00 6.0 16.00 339.0
BeetlePUUM 2.0 4.00 32.0 62.00 811.0
NHM-Carabids 50.0 111.25 170.0 282.50 888.0
BeetlePalooza 1.0 10.00 35.0 116.75 1568.0
Quartile Distribution: Genera
Dataset Q0 (0%) Q1 (25%) Q2(50%) Q3 (75%) Q4 (100%)
11IMC 1.0 8.00 25.5 83.50 2457.0
BeetlePUUM 9.0 52.50 3335 731.75 1127.0
NHM-Carabids 50.0 125.00 355.0 697.00 13298.0
BeetlePalooza 1.0 9.25 60.5 328.75 2242.0

Table 5. Quartile distribution statistics for the datasets: The top
section displays the quartile distribution for species, including the
minimum (QO, 0%), first quartile (Q1, 25%), median (Q2, 50%),
third quartile (Q3, 75%), and maximum (Q4, 100%) values. The
bottom section provides the same quartile measures for genera
across the same datasets. These statistics illustrate the spread and
central tendencies of species and genera within each dataset.



Dataset Codes Rare Uncommon Common Abundant
I1IMC 750 (48.99%) 469 (30.63%) 286 (18.68%) 26 (1.70%)
BPM 5 (35.71%) 1 (7.14%) 5(35.71%) 3(21.43%)
NHM 0 (0.00%) 0(0.00%)  61(21.03%) 229 (78.97%)
BPZ 14 (18.42%) 16 (21.05%)  25(32.89%) 21 (27.63%)

Table 6. Species abundance classification: The table categorizes
species into four abundance classes based on their counts: Rare
(less than 5), Uncommon (5-20), Common (21-100), and Abun-
dant (more than 100). For each dataset, the number of species in
each category is shown, followed by the percentage of total species
in that dataset. This classification highlights the distribution of
species abundance, reflecting differences in rarity and prevalence
across the datasets. Dataset codes are same as Table 1.

logarithmic scale, with probability density curves. IIMC’s
distribution is highly right-skewed (skewness: 6.30), with
a peak near the lower end (1-10 samples) and a long tail
extending to 339. BeetlePUUM’s distribution, despite its
small species count, shows a peak around 32 samples but
extends to 811, with a skewness of 2.30. NHM-Carabids
has a more symmetric distribution (skewness: 1.53), peak-
ing around 170 samples, though it still has a tail up to 888.
BeetlePalooza’s distribution is skewed, with a peak near 35
samples and a long tail reaching 1,568.

A.2.4. Species Abundance Classification

Table 6 classifies species into four abundance categories:
Rare, Uncommon, Common, and Abundant. I1MC has a
striking 48.99% of its species (750) classified as Rare, and
30.63% (469) as Uncommon, with only 1.70% (26) be-
ing Abundant, confirming its highly skewed distribution.
BeetlePUUM, with only 14 species, has 35.71% (5) Rare
and 21.43% (3) Abundant, reflecting its dense sampling
within a small scope. NHM-Carabids has no Rare or Un-
common species, with 21.03% (61) Common and 78.97%
(229) Abundant, highlighting its balanced and abundant
sampling. BeetlePalooza shows a more even spread, with
18.42% (14) Rare, 21.05% (16) Uncommon, 32.89% (25)
Common, and 27.63% (21) Abundant, indicating moderate
diversity but skewed representation.

A.2.5. Taxonomic Overlap

Taxonomic overlap between datasets was assessed using the
Jaccard index' (Table 7) and raw counts of common taxa
(Table 2). The Jaccard index reveals minimal overlap over-
all. For species (upper triangle), IIMC shares the highest
overlap with BeetlePalooza (0.0469) and NHM-Carabids
(0.0388), while BeetlePUUM (BPM) shows very low over-

IThe Jaccard Index between two sets A and B is defined as:

|AN B|

J(4B) = |[AU B

where | AN B| is the size of the intersection of sets A and B, and |A U B|
is the size of their union. If A and B are empty, J(A, B) is defined as 1.

I1MC BPM NHM BPZ

I1MC - 0.0013  0.0388  0.0469
BPM  0.0096 - 0.0253  0.0256
NHM 02522 0.0253 - 0.1649

BPZ 0.1691  0.0256  0.1649 -

Table 7. Jaccard index values representing the overlap of genera
and species: The upper triangle indicates the Jaccard index for
the number of common species shared between pairs of datasets,
while the lower triangle represents the Jaccard index for the num-
ber of common genera. Values range from O (no overlap) to 1
(complete overlap), with higher values indicating greater similar-
ity. Dataset codes correspond to those defined in Table 1.

lap with all datasets (e.g., 0.0013 with I1MC). For gen-
era (lower triangle), NHM-Carabids and IIMC have the
highest overlap (0.2522), followed by BeetlePalooza and
I1MC (0.1691). BeetlePUUM remains isolated, with over-
laps as low as 0.0096 with I1MC. Table 2 provides raw
counts: I1MC shares 68 species with NHM-Carabids and
73 with BeetlePalooza, while BeetlePUUM shares only
2 species with IIMC and NHM-Carabids, and none with
BeetlePalooza. For genera, [IMC and NHM-Carabids share
57 genera, while BeetlePUUM shares only 2 genera with
I1MC and NHM-Carabids, and 1 with BeetlePalooza. This
confirms BeetlePUUM s isolation, likely due to its endemic
focus, while I[IMC shows moderate overlap with NHM-
Carabids and BeetlePalooza.

Treemap Visualization. Figures 10 and 11 show the dis-
tribution of genera and species across four datasets through
treemap visualizations. These hierarchical visualizations
represent taxonomic abundance data where rectangle sizes
correspond to the relative frequency of each taxon. In both
figures, only the top 10 taxa are displayed individually for
each dataset, with remaining taxa consolidated into an ‘Oth-
ers’ category. The visualizations are normalized to ensure
comparable area allocation across datasets while maintain-
ing the relative proportions within each dataset. This repre-
sentation allows for immediate visual identification of dom-
inant taxa in each dataset and facilitates cross-dataset com-
parison of taxonomic composition patterns.

A.3. Pretrained Vision Encoders

Our evaluation includes three model categories to provide
comprehensive insights into representation learning for tax-
onomy. Vision-language models offer potential semantic
alignment between visual features and taxonomic concepts
through natural language grounding. Self-supervised mod-
els present the advantage of learning robust visual repre-
sentations without requiring extensive labeled data, which
is particularly valuable given the taxonomic annotation bot-
tleneck. And lastly, vision-only supervised models serve as
important baselines representing the conventional approach
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Figure 10. Treemap representation of genus distribution across four datasets. In each dataset, the top 10 genera by frequency are shown
individually, with all other genera combined into an ‘Others’ category. Rectangle sizes are normalized to ensure each dataset has the same
total area, and the ‘Others’ group is set to 5% of the total size of the top genera.
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Figure 11. Treemap visualization of species distribution across four datasets, presented in the same format as Figure 10. For each dataset,
the top 10 species by count are displayed individually, with all other species grouped into an ‘Others’ category. The area of each rectangle
is normalized to ensure equal total area per dataset, and the ‘Others’ category is scaled to 5% of the total size of the top species.

to visual classification tasks. By systematically compar-
ing these complementary paradigms, we can identify which
fundamental learning approaches best capture the hierarchi-
cal and fine-grained distinctions for classification.

A.3.1. Data Preparation

First, we filter and clean the dataset so that it contains only
the images and corresponding genus and species labels,
with missing labels designated as Unknown. For feature ex-
traction, images were processed using a pretrained vision
model. Each image was loaded, converted to RGB, and
passed through a transformation pipeline—where images
were resized to 224 x 224 pixels, converted to tensors, and
normalized using a mean of [0.485, 0.456, 0.406] and stan-
dard deviation of [0.229, 0.224, 0.225]. These preprocess-
ing parameters follow standard practices used for models
trained on the ImageNet dataset. The transformed images
were then fed into the model, and features were extracted
from the last hidden state, averaged across the sequence di-
mension, producing a 768-dimensional feature vector per
image. The dataset was divided into labeled and unlabeled
samples. Features for labeled samples were extracted and
stacked into a matrix, with labels encoded as integers using
a label encoder. A train-test split was applied to the labeled
samples, using a train-test ratio of 0.80 to 0.20. Features for
unlabeled samples were similarly extracted and combined
with the labeled test set to form the final test feature ma-
trix. To prepare the features for modeling, standardization
was performed using a standard scaler. The scaler was fitted

on the training features to compute the mean and variance,
then applied to both training and test features, ensuring zero
mean and unit variance across all dimensions. This step
optimizes the data for downstream machine learning algo-
rithms sensitive to feature scaling.

B. Result Details

B.1. Performance Evaluation Metrics

For our performance analysis, we select the Matthews Cor-
relation Coefficient (MCC) as one of our primary evalua-
tion metrics due to its robustness in handling significant
class imbalance, a key characteristic of the datasets we
use. For instance, some genera in our study comprise over
14,000 specimens, while others are represented by fewer
than 5. Unlike simpler metrics, MCC provides a balanced
assessment by integrating all elements of the confusion ma-
trix—true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN) — making it particu-
larly well-suited for taxonomic identification tasks. In such
tasks, accurately classifying rare taxa is just as critical as
identifying common ones, and MCC'’s sensitivity to all four
components ensures a comprehensive evaluation [7, 10, 11].
For completeness, we also report the four baseline perfor-
mance metrics- accuracy, precision, recall, and F1-score, to
provide a broader perspective on model performance. Addi-
tionally, given the long-tailed nature of our datasets, we cal-
culate macro-accuracy to better reflect performance across
all classes. Macro-accuracy averages the accuracy for each



class without weighting by class size, offering a clearer pic-
ture of the model’s ability to handle underrepresented taxa.
This complements the MCC by emphasizing equitable per-
formance across the dataset’s skewed distribution, ensuring
that our evaluation captures both overall effectiveness and
fairness in classification.

B.2. Benchmarking

Our comprehensive evaluation of vision and vision lan-
guage models reveals significant performance patterns. Ta-
bles 8 and 9 present the micro and macro accuracy scores
respectively, for genus and species classification across all
datasets, while Table 10 provides a breakdown of multiple
performance metrics. From the scores, we see that vision
language models consistently outperform other approaches,
with ViLT demonstrating superior performance across all
datasets and metrics. ViLT achieves perfect genus-level ac-
curacy (1.0) and exceptional species identification (0.997)
on smaller, curated collections like BeetlePUUM, with cor-
responding perfect MCC scores (1.0 for genus, 0.995 for
species). It maintains decent performance even on the chal-
lenging I1MC dataset (0.891 genus, 0.763 species micro-
accuracy; MCC scores of 0.889 and 0.763 respectively),
confirming that the integration of visual and textual fea-
tures provides powerful taxonomic discrimination capabil-
ities. Among other vision-language models, BioCLIP con-
sistently ranks second, showing particularly strong perfor-
mance on curated datasets but experiencing a more signif-
icant performance drop on larger, more heterogeneous col-
lections. CLIP and SigLIP follow similar patterns but with
lower performance scores.

Model’s performance generally declines as the dataset size
and heterogeneity increase, with all models showing a
marked reduction in species-level identification accuracy
on larger datasets. For instance, while ViLT maintains
high precision and recall (both >0.99) for both genus and
species on BeetlePUUM and BeetlePalooza, these metrics
decline to approximately 0.74 for species classification on
the IIMC dataset. Among vision-only models, supervised
approaches (particularly BeIT and ConvNeXt) outperform
self-supervised alternatives. BelT achieves the best results
in its category (0.923 genus, 0.821 species micro-accuracy
on the merged dataset; MCC scores of 0.919 and 0.821),
indicating that representations pretrained on general im-
age collections transfer effectively to specialized taxonomic
tasks. Within self-supervised models, DINOvV2 consistently
leads (with MCC scores reaching 0.968 for genus classifica-
tion on BeetlePUUM), though it falls short of both vision-
language models and supervised vision models. The perfor-
mance gap between genus and species classification widens
considerably in larger datasets, highlighting the increasing
difficulty of fine-grained classification as taxonomic speci-
ficity increases. This pattern is consistent across all model

types, with species-level F1 scores typically 10-30% points
lower than genus-level scores on the larger datasets.

Macro-accuracy scores reveal similar patterns, but all mod-
els show considerably lower macro-accuracy compared to
micro-accuracy, particularly for species-level classification,
highlighting significant class imbalance challenges in long-
tailed datasets. This disparity is most pronounced in larger,
more diverse datasets like IIMC, where even the top-
performing ViLT model shows a substantial gap between
micro-accuracy (0.763) and macro-accuracy (0.546) for
species classification. The gap between genus and species
classification is further amplified in macro-accuracy met-
rics. For example, on the merged dataset, ViLT achieves
a genus macro-accuracy of 0.783 but drops to 0.657 for
species classification, indicating that models struggle par-
ticularly with rare or underrepresented species. This pattern
holds across all categories but is most severe for vision-only
self-supervised models, where DINOv2’s species macro-
accuracy reaches only 0.391 on the merged dataset.

B.3. Sample Efficient Probing

To assess sample efficiency and evaluate the cost-
performance trade-offs for long-tailed datasets, we bench-
mark six leading vision models (ViLT, BioCLIP, ConvNeXt,
CLIP, SWINvV2, LeViT) across multiple dataset sizes and
two sampling strategies: Balanced Sampling and Propor-
tional Sampling. Balanced Sampling ensures equal repre-
sentation across taxa, whereas Proportional Sampling main-
tains the natural class distribution, aligning with real-world
imbalances. In our experimental design, we implemented
both approaches across three dataset sizes. With Bal-
anced Sampling, we extracted precisely 10, 20, and 50
images per species, resulting in total datasets of 2,900,
5,800, and 14,500 images respectively (across 290 species).
For the corresponding Proportional Sampling datasets, we
maintained identical total image counts (2,900, 5,800, and
14,500) but distributed them according to the natural fre-
quency of each species in the source collection. This paral-
lel sampling approach allowed us to evaluate classification
performance under both artificial balance and natural distri-
bution conditions, providing insight into model robustness
across varying levels of class imbalance. The Balanced ap-
proach addresses potential bias against rare taxa, while the
Proportional approach better reflects deployment conditions
where certain species occur more frequently than others.
As illustrated in Figure 12 and Table 11, ViLT consis-
tently outperformed all other models across both sampling
strategies and all dataset sizes, achieving near-ceiling per-
formance with full supervision (Acc 0.9929, MCC 0.9928).
Notably, even on small balanced subsets (e.g., Subset] with
2900 images), ViLT achieved a strong accuracy of 0.8345,
with a +0.107 jump in accuracy between the Subset1 (2900
images) and Subset2 (5800 images). However, the per-
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Figure 12. Performance of vision models under Proportional and Balanced Sampling strategies across increasing dataset sizes, highlighting
sample efficiency and the impact of sampling on model performance. The models show a steep initial improvement with smaller subsets,
followed by a plateau in performance as dataset size grows, indicating diminishing returns with scale. ViLT outperforms the rest.

formance gains quickly diminished with scale, culminating
in a marginal +0.003 improvement when scaling from the
Half-set to the Full-set. This highlights an important in-
sight: while adding more data improves results, the perfor-
mance gains become progressively smaller, implying that
strategically selected or subsampled training data - espe-
cially with balanced representation - can lead to compet-
itive or even near-optimal performance without the com-
putational burden of full-scale training. Furthermore, we
observe that models exhibit varied sensitivity to sampling
strategy. While ViLT maintained strong performance across
both strategies, models like CLIP and LeViT performed no-
tably worse under Proportional Sampling, suggesting that
class imbalance exacerbates weaknesses in certain archi-
tectures. These findings provide a critical guide for prac-
titioners working with long-tailed or resource-constrained
settings: strategic subsampling can yield high-performance
outcomes with significantly reduced data requirements, re-
inforcing the need for thoughtful dataset design over brute-
force scaling.

B.4. Cross-Dataset Domain Adaptation

The evaluation of pretrained vision models for cross-dataset
domain adaptation reveals significant insights into their
generalizability, particularly in the context of taxonomic
classification across lab and in-situ imaging domains. Our
experiments highlight the challenges and varying perfor-
mance levels when adapting models between curated lab
collections (NHM-Carabids and BeetlePalooza) and in-situ
field images (I1MC). In the lab-to-lab adaptation scenario,
where models were trained on NHM-Carabids and tested on
BeetlePalooza at the genus level, ViLT demonstrated excep-
tional performance with an accuracy of 0.9230 and an MCC
of 0.9106 across 16 shared taxa. This high performance un-

derscores ViLT’s ability to generalize effectively between
lab-based datasets, likely due to the controlled imaging
conditions and taxonomic consistency between NHM and
BeetlePalooza. Conversely, the lab-to-in-situ adaptation
scenarios - training on NHM or BeetlePalooza and testing
on I1MC - revealed a marked decline in performance across
all models, reflecting the challenge of adapting from con-
trolled lab settings to the variable conditions of field im-
ages. When trained on NHM and tested on I1MC at the
genus level (57 taxa), ViLT again outperformed others with
an accuracy of 0.6907 and an MCC of 0.6736, though these
scores are notably lower than in the lab-to-lab case. At the
species level (68 taxa), VILT’s accuracy dropped to 0.5740
with an MCC of 0.5680, highlighting the increased diffi-
culty of fine-grained classification in in-situ contexts. Train-
ing on BPZ and testing on I1MC produced similar trends.
At the genus level (33 taxa), ViLT achieved an accuracy
of 0.6001 and an MCC of 0.5756; at the species level (72
taxa), VILT’s accuracy was 0.4757 with an MCC of 0.4676.
These results underscore the inherent difficulty of adapting
to in-situ data, which is challenging by nature due to un-
controlled conditions. The drop in performance is further
exacerbated by I1MC-specific limitations, including incon-
sistent image quality, frequent partial views of specimens,
varied perspectives (dorsal, lateral, ventral, anterior), and
issues with focus and clarity.

C. Multi-Modal Feature Integration

Fine-grained visual recognition often relies on more than
just visual cues [26, 36, 38, 60]. As two of our used datasets
contain morphological traits and environmental data, we
examine how effectively incorporating these additional
modalities enhances taxonomic classification. To investi-
gate this, we conduct experiments using the BeetlePalooza



dataset and a 1000-specimen subset, comparing image-only
classification to approaches that combine visual features
with morphological measurements (elytral dimensions) and
environment metadata (geographic coordinates, elevation).

Experiment Results

We evaluate four models - BioCLIP, ConvNeXt, DINOv2,
and ViLT - across three data configurations: image-only,
image and morphological traits (image+traits), and image,
traits, and environmental data (image+traits+env). Sum-
mary of model performance on two data sets with four mod-
els across all modality configurations is presented in Ta-
ble 13. Scores show that for the 1,000-specimen subset,
vision-only models showed mixed responses to additional
modalities. DINOv2’s accuracy was 0.7750 with just im-
ages, dropping to 0.7600 with traits and further to 0.7550
with traits and environmental data, suggesting extra modal-
ities were not helpful. ConvNeXt started at 0.8150 with
images alone, improved slightly to 0.8350 with traits, but
fell to 0.8000 with environmental data added, indicating in-
consistent benefits. In contrast, vision-language models be-
haved differently. BioCLIP’s accuracy rose steadily from
0.8150 (image-only) to 0.8300 (image+traits) and 0.8450
(image+traits+env), showing consistent gains. ViLT, how-
ever, achieved a strong 0.9350 with images alone but re-
mained unchanged with traits (0.9350) and dropped sub-
stantially to 0.9050 with environmental data, suggesting ad-
ditional modalities may disrupt its performance.

On the full dataset, trends shifted. Vision-only models ben-
efited more from multi-modal inputs at scale. DINOv2’s
accuracy increased from 0.9496 (image-only) to 0.9478
(image+traits) and 0.9513 (image+traits+env), while Con-
vNeXt improved from 0.9531 (image-only) to 0.9566 (im-
age+traits) and 0.9649 (image+traits+env), indicating that
additional modalities became helpful with more data. For
vision-language models, BioCLIP again showed steady im-
provement, rising from 0.9373 (image-only) to 0.9417 (im-
age-+traits) and 0.9579 (image+traits+env), reinforcing its
ability to leverage extra data. ViLT, starting near-perfect
at 0.9982 (image-only), dropped marginally to 0.9956 with
both traits and traits+env, suggesting limited or negative im-
pact from additional modalities. These results reveal dis-
tinct patterns. DINOv2 and ConvNeXt struggle to bene-
fit from extra modalities in the subset but improve at full
scale, possibly due to better generalization with larger data.
BioCLIP consistently gains from multi-modal inputs across
both scales, highlighting its robustness. ViLT, however,
shows no benefit in the subset where it suffers a substan-
tial drop, and a marginal decline at scale, possibly indicat-
ing saturation or sensitivity to non-visual data. Given these
inconsistencies, we cannot draw a firm conclusion on the
effectiveness of multi-modal integration. Further experi-
ments, varying dataset sizes, modalities, and model archi-

tectures, are needed to clarify these trends and determine
optimal strategies for taxonomic classification.

D. Feature Mapping

For better visualization of taxonomic relationships, we ex-
tract feature embeddings from pretrained vision models and
apply dimensionality reduction techniques. These embed-
dings are derived from high-dimensional representations of
the input data, capturing intricate patterns and characteris-
tics that are not easily discernible in their raw form. To
make these relationships more interpretable, we employ
a dimensionality reduction method, t-SNE, that projects
the high-dimensional embeddings into a two-dimensional
space while preserving the underlying structure of the data
as much as possible. The embeddings are then plotted to
reveal distinct clustering patterns. In the plot, each cluster
is represented by a unique color, with the legend indicating
the corresponding genera, allowing for a clear visual inter-
pretation of how closely related or distinct the groups are
based on their feature representations. This mapping helps
visualizing the effectiveness of pretrained models in captur-
ing meaningful taxonomic differences among various taxa
in a more intuitive manner. Such insights can guide further
analysis, such as identifying potential misclassifications or
discovering previously unrecognized similarities between
genera. Figures 13 and 14 illustrate how the pretrained
model captures meaningful taxonomic structure, with clear
cluster separation at both genus and species levels, and re-
veal cases of morphological similarity where overlap oc-
curs in the embedding space. On the other hand, figures 15
and 16 highlight the limitations of the IIMC dataset. In
these visualizations, the model struggles to clearly separate
genera and species, particularly at the genus level, where
scattered and overlapping clusters suggest that the dataset’s
inherent variability makes it difficult for the model to cap-
ture distinct genus boundaries. This high intra-genus vari-
ance and inter-genus proximity emphasize the challenges
of the dataset in providing clean and separable data rep-
resentations. At the species level, overlap within genera
Cicindela further underscores the dataset’s complexity, as
species within the same genus exhibit significant morpho-
logical similarity, making it harder for the model to differ-
entiate them. From the accuracy scores in Tables 8 and 9, it
is evident that the feature embeddings provide a prior signal
of how performance is likely to unfold.
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Figure 13. t-SNE visualization of feature embeddings extracted from ViLT for the top 10 genera in the NHM-Carabids dataset. Areas of
overlap between genera suggest shared morphological traits that represent taxonomic challenges for automated identification systems.

Em Ophonus rufibarbis Bl Paranchus albipes W Agonum fuliginosum B Bembidion lampros I Harpalus affinis
W Notiophilus biguttatus ~ EEE Amara aenea B Amara familiaris B Pterostichus strenuus W Bembidion tetracolum

Figure 14. t-SNE visualization of feature embeddings extracted from ViLT for the top 10 species in the NHM-Carabids dataset. Some
species (particularly within the same genus: Amara aenea and Amara familiaris) show partial overlap in feature space, indicating morpho-
logical similarities that challenge classification. The distinct separation between most clusters demonstrates the model’s ability to capture
species-specific visual characteristics despite intraspecific variation.



Il Cicindela I Chlaenius Im Bembidion mm Cicindelidia [ Agonum
I Calosoma WM Harpalus B Lebia B Amara B Pterostichus

Figure 15. t-SNE visualization of feature embeddings extracted from ViLT for the top 10 genera in the IIMC dataset. Scattered and
overlapping clusters imply that the model struggles to capture clear genus boundaries. High intra-genus variance and inter-genus proximity
highlight the limitations of the embedding space, reflecting inconsistencies in data representation.
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Figure 16. t-SNE visualization of feature embeddings for the top 10 species in the IIMC dataset, extracted using ViLT. Species within
the genus Cicindela exhibit significant overlap, reflecting high morphological similarity within the genus. In contrast, species from other
genera (e.g., Calosoma scrutator, Chlaenius tricolor) form well-separated clusters, indicating more distinctive visual features. This suggests
that while the model captures genus-level distinctions well, species-level differentiation within certain genera remains a challenge.



Model BeetlePUUM BeetlePalooza NHM-London IIMC Merged-Dataset
Genus Species Genus Species Genus Species Genus Species Genus Species
Vision-Language Models
VIiLT 1.0000 0.9969 0.9987 0.9982 0.9984 0.9950 0.8905 0.7633 0.9715 0.9397
BioCLIP 0.9969 0.9292 0.9653 0.9376 0.9457 0.8498 0.7936 0.6095 0.9109 0.8054
SigLIP 0.9908 0.9323 0.9614 0.9328 0.9245 0.7864 0.6795 0.4852 0.8690 0.7372
CLIP 0.9815 0.8985 0.9310 0.8928 0.8725 0.7158 0.5483 0.3681 0.8037 0.6640
Vision-Only Self-Supervised Models
DINOv2 0.9846 0.9108 0.9715 0.9499 0.9367 0.8106 0.6440 0.4426 0.8663 0.7352
SwAV 0.9846 0.9231 0.9051 0.8660 0.8185 0.6582 0.4199 0.2571 0.7384 0.5928
MoCov3 0.9723 0.8923 0.8853 0.8418 0.7355 0.5543 0.3967 0.2414 0.6727 0.5142
ViTMAE 0.9354 0.8369 0.8770 0.8336 0.7303 0.5387 0.3861 0.2152 0.6496 0.4762
Vision-Only Supervised Models
BelT 0.9969 0.9354 0.9798 0.9592 0.9673 0.8876 0.7641 0.5720 0.9225 0.8213
ConvNeXt 0.9938 0.9385 0.9793 0.9534 0.9620 0.8785 0.7505 0.5409 0.9138 0.8060
SWINv2 0.9692 0.8831 0.9618 0.9337 0.9105 0.7837 0.6425 0.4278 0.8511 0.7140
LeViT 0.9785 0.8985 0.9218 0.8779 0.8426 0.6719 0.5274 0.3306 0.7766 0.6171

Table 8. Performance comparison of vision and vision-language models: Models are grouped by category, and ranked by (micro)-accuracy
for genus and species classification. Bold and Underlined values denote the highest score in each column across all models and Underlined
values refer to category-wise highest score in each column. lfalicized and underlined text indicates the top model within each category;
and Bold, Italicized and underlined text shows the best model across all categories.

Model BeetlePUUM BeetlePalooza NHM-London InMC Merged-Dataset
Genus Species Genus Species Genus Species Genus Species Genus Species
Vision-Language Models
VIiLT 1.0000 0.9091 0.9650 0.9669 0.9978 0.9936 0.6798 0.5457 0.7830 0.6567
BioCLIP 0.9984 0.6612 0.8434 0.7908 0.9219 0.8317 0.6037 0.4303 0.6669 0.4983
SigLIP 0.9936 0.6470 0.8875 0.7497 0.8940 0.7671 0.4451 0.3118 0.5968 0.4069
CLIP 0.9593 0.5406 0.8365 0.6764 0.8269 0.6906 0.3100 0.2106 0.5069 0.3281
Vision-Only Self-Supervised Models
DINOv2 0.9380 0.5592 0.9006 0.7861 0.9092 0.7848 0.4195 0.2782 0.5786 0.3914
SwAV 0.9625 0.5464 0.7616 0.6058 0.7679 0.6267 0.2406 0.1681 0.4135 0.2625
MoCov3 0.9202 0.5060 0.7803 0.6130 0.6710 0.5173 0.2323 0.1415 0.3892 0.2339
VITMAE 0.8485 0.3960 0.7797 0.5848 0.6384 0.5066 0.1893 0.1140 0.3490 0.1998
Vision-Only Supervised Models
BelT 0.9984 0.7980 0.9189 0.8082 0.9533 0.8744 0.5686 0.3899 0.6979 0.5007
ConvNeXt 0.9936 0.7006 0.9075 0.7743 0.9464 0.8634 0.5359 0.3550 0.6880 0.4790
SWINv2 0.9202 0.5451 0.8711 0.7633 0.8841 0.7576 0.4589 0.2712 0.5877 0.3890
LeViT 0.9300 0.4932 0.7757 0.6267 0.7997 0.6454 0.2887 0.1838 0.4855 0.2916

Table 9. Performance comparison of vision and vision-language models: Models are grouped by category, and ranked by macro-accuracy
for genus and species classification. Bold and Underlined values denote the highest score in each column across all models and Underlined
values refer to category-wise highest score in each column. lfalicized and underlined text indicates the top model within each category;
and Bold, Italicized and underlined text shows the best model across all categories.
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Vision-Language Models

ViLT 1.0000 1.0000 1.0000 1.0000 1.0000
BioCLIP  0.9969 0.9972 0.9969 0.9970 0.9936
CLIP 0.9815 0.9816 0.9815 0.9815 0.9613
SigLIP 0.9908 0.9908 0.9908 0.9908 0.9808

0.9969
0.9292
0.8985
0.9323

0.9942 0.9969
0.9208 0.9292
0.8875 0.8985
0.9280 0.9323

0.9955 0.9954 0.9987 0.9983
0.9233 0.8917 0.9653 0.9651
0.8892 0.8435 0.9310 0.9312

0.9987
0.9653

0.9310 0.9302 0.9222 0.8928
0.9281 0.8971 0.9614 0.9612 0.9614 0.9603 0.9564 0.9328

0.9985 0.9985 0.9982 0.9974 0.9982
0.9633 0.9608 0.9376 0.9327 0.9376

0.8871 0.8928
0.9232 0.9328

0.9978 0.9981
0.9326 0.9333
0.8867 0.8854
0.9256 0.9282

Vision-Only Self-Supervised Models

DINOv2  0.9846 0.9877 0.9846 0.9859 0.9678
ViTMAE 0.9354 0.9349 0.9354 0.9345 0.8636
SwAV 0.9846 0.9847 0.9846 0.9846 0.9678
MoCov3  0.9723 0.9723 0.9723 0.9720 0.9429

0.9108
0.8369
0.9231
0.8923

0.9060 0.9108
0.8212 0.8369
0.9162 0.9231
0.8702 0.8923

0.9064 0.8637 0.9715 0.9709

0.9715

0.9707 0.9678 0.9499

0.9456 0.9499

0.8228 0.7469 0.8770 0.8766 0.8770 0.8744 0.8612 0.8336 0.8176 0.8336
0.9034 0.8931 0.8660 0.8539 0.8660

0.9140 0.8824 0.9051 0.9075
0.8793 0.8349 0.8853 0.8868

0.9051
0.8853

0.8831 0.8704 0.8418

0.8294 0.8418

0.9449 0.9465
0.8206 0.8216
0.8519 0.8565
0.8306 0.8305

Vision-Only Supervised Models

ConvNeXt 0.9938 0.9939 0.9938 0.9938 0.9871
SWINv2  0.9692 0.9695 0.9692 0.9687 0.9353
BelT
LeViT

0.9785 0.9780 0.9785 0.9780 0.9549

0.9385
0.8831

0.8985

0.9329 0.9385
0.8762 0.8831

0.9969 0.9970 0.9969 0.9969 0.9936 0.9354 0.9327 0.9354

0.8873 0.8985

0.9350 0.9065 0.9793 0.9792
0.8749 0.8198 0.9618 0.9611
0.9324 0.9024 0.9798 0.9790
0.8890 0.8434 0.9218 0.9231

0.9793
0.9618
0.9798
0.9218

0.9784 0.9767 0.9534 0.9428 0.9534

0.9608 0.9569 0.9337

0.9261 0.9337

0.9791 0.9772 0.9592 0.9544 0.9592

0.9203 0.9118 0.8779

0.8697 0.8779

0.9464 0.9502
0.9269 0.9291
0.9541 0.9564
0.8687 0.8694

NHM-Carabids

nMcC

Model Genus

Species

Genus

Species

Acc Pre F1 MCC

Acc

Pre Rec

F1 MCC Acc Pre

F1

MCC Acc Pre Rec

F1  MCC

Vision-Language Models

ViLT 0.9984 0.9984 0.9984 0.9984 0.9983
BioCLIP  0.9457 0.9461 0.9457 0.9457 0.9417
CLIP 0.8725 0.8734 0.8725 0.8723 0.8630
SigLIP 0.9245 0.9248 0.9245 0.9243 0.9189

0.9950
0.8498
0.7158
0.7864

0.9951 0.9950
0.8533 0.8498
0.7221 0.7158
0.7921 0.7864

0.9950 0.9950 0.8905 0.8883
0.8498 0.8490 0.7936 0.7983
0.7158 0.7143 0.5483 0.5472
0.7866 0.7852 0.6795 0.6784

0.8905

0.5483
0.6795

0.8855 0.8867 0.7633
0.7936 0.7879 0.7865 0.6095
0.5391 0.5321 0.3681

0.7420 0.7633
0.5977 0.6095
0.3663 0.3681

0.6714 0.6681 0.4852 0.4660 0.4852

0.7370 0.7626
0.5800 0.6082
0.3442 0.3659
0.4527 0.4835

Vision-Only Self-Supervised Models

DINOv2  0.9367 0.9372 0.9367 0.9366 0.9320 0.8106 0.8155 0.8106

VITMAE 0.7303 0.7308 0.7303 0.7299 0.7104
SwAV 0.8185 0.8192 0.8185 0.8184 0.8051
MoCov3  0.7355 0.7372 0.7355 0.7353 0.7162

0.5387
0.6582
0.5543

0.5439 0.5387
0.6660 0.6582
0.5590 0.5543

0.8103
0.5385
0.6569

0.8096 0.6440 0.6388
0.5363 0.3792 0.3805

0.6440 0.6353 0.6314 0.4426 0.4468
0.3792 0.3679 0.3559 0.2108
0.6564 0.4172 0.4144 0.4172 0.4041 0.3954 0.2571
0.5526 0.5519 0.3967 0.3916 0.3967 0.3850 0.3740 0.2411

0.4426
0.2108
0.2571
0.2411

0.2127
0.2491
0.2407

0.4189 0.4407
0.1910 0.2076
0.2314 0.2542
0.2231 0.2382

Vision-Only Supervised Models

ConvNeXt 0.9620 0.9623 0.9620 0.9620 0.9591
SWINv2  0.9105 0.9111 0.9105 0.9105 0.9039
BelT 0.9673 0.9675 0.9673 0.9673 0.9649
LeViT 0.8426 0.8440 0.8426 0.8423 0.8309

0.8785
0.7837
0.8876
0.6719

0.8819 0.8785
0.7902 0.7837
0.8899 0.8876
0.6784 0.6719

0.8784 0.8779 0.7505 0.7530 0.7505 0.7443 0.7417 0.5409
0.6394 0.6299 0.4278
0.7582 0.7559 0.5720 0.5581
0.6716 0.6702 0.5274 0.5270 0.5274 0.5174 0.5104 0.3306 0.3159

0.7845 0.7825 0.6425
0.8874 0.8870 0.7641

0.6521
0.7661

0.6425
0.7641

0.5385
0.4437

0.5409
0.4278
0.5720
0.3306

0.5164 0.5395
0.4103 0.4259
0.5400 0.5706
0.3022 0.3283

IIMCv2

Merged-Dataset

Model Genus

Species

Genus

Species

Acc Pre Rec F1  MCC

Acc

Pre Rec

F1 MCC Acc Pre

F1

MCC Acc Pre Rec

F1 ~ MCC

Vision-Language Models

ViLT 0.8928 0.8907 0.8928 0.8879 0.8890
BioCLIP 0.7936 0.7983 0.7936 0.7879 0.7865
CLIP 0.5483 0.5472 0.5483 0.5391 0.5321
SigLIP 0.6812 0.6802 0.6812 0.6736 0.6699

0.7638
0.6095
0.3681
0.4862

0.7431 0.7638
0.5977 0.6095
0.3663 0.3681
0.4686 0.4862

0.7379 0.7631 0.9715 0.9709
0.5800 0.6082 0.9109 0.9103
0.3442 0.3659 0.8037 0.8011
0.4543 0.4845 0.8690 0.8677

0.9715

0.9706 0.9701 0.9397 0.9383
0.9109 0.9089 0.9067 0.8054 0.7993
0.8037 0.7997 0.7944 0.6640 0.6573
0.8690 0.8670 0.8628 0.7372 0.7335

0.9397
0.8054
0.6640
0.7372

0.9350 0.9394
0.7958 0.8047
0.6529 0.6627
0.7281 0.7362

Vision-Only Self-Supervised Models

DINOv2  0.6418 0.6394 0.6418 0.6336 0.6291
VITMAE 0.3861 0.3768 0.3861 0.3700 0.3625
SwAV 0.4199 0.4176 0.4199 0.4081 0.3983

0.4426 0.4494 0.4426 0.4195
0.2152 0.2138 0.2152 0.1943
0.2554 0.2520 0.2554 0.2329
MoCov3  0.3962 0.3925 0.3962 0.3854 0.3736 0.2414 0.2391 0.2414 0.2232

0.4407 0.8663 0.8658
0.2121 0.6496 0.6499
0.2526 0.7384 0.7368
0.2385 0.6727 0.6693

0.8663 0.8641 0.8599 0.7352 0.7345
0.6496 0.6481 0.6332 0.4762 0.4763

0.7352
0.4762

0.7384 0.7353 0.7259 0.5928 0.5910 0.5928
0.6727 0.6687 0.6575 0.5142 0.5059 0.5142 0.5036 0.5123

0.7274 0.7342
0.4697 0.4741
0.5843 0.5913

Vision-Only Supervised Models

ConvNeXt 0.7505 0.7530 0.7505 0.7443 0.7417

SWINvV2  0.6425 0.6521 0.6425 0.6394 0.6299
BelT 0.7641 0.7661 0.7641 0.7582 0.7559
LeViT

0.5409 0.5385 0.5409 0.5164 0.5395 0.9138 0.9137 0.9138 0.9124 0.9098 0.8060 0.8074 0.8060 0.8004 0.8053
0.8492 0.8441 0.7140 0.7117 0.7140 0.7063 0.7129
0.9211 0.9189 0.8213 0.8202 0.8213 0.8147 0.8206

0.4278 0.4437 0.4278 0.4103
0.5720 0.5581 0.5720 0.5400 0.5706 0.9225
0.5274 0.5270 0.5274 0.5174 0.5104 0.3306 0.3159 0.3306 0.3022 0.3283 0.7766 0.7740 0.7766 0.7725 0.7661 0.6171 0.6086 0.6171 0.6048 0.6156

0.4259 0.8511 0.8504

0.9221

0.8511
0.9225

Table 10. Taxonomic Prediction at Genus and Species Level by Vision Models across all carabids datasets. Performance metrics include
Accuracy (Acc), Precision (Pre), Recall (Rec), F1 score (F1), and Matthews Correlation Coefficient (MCC). NB. I1MC-v2 is a version of
the I1MC dataset where we kept the images NOT identified to genus/species level in the test set for future work



Subsetl (size: 2900) Subset2 (size: 5800) Subset3 (Size: 14500)
Acc Prec Rec F1 MCC Acc Prec Rec F1 MCC Acc Prec Rec F1 MCC

Model

Balanced Sampling

ViLT 0.8345 0.8479 0.8345 0.8188 0.8341 0.9371 0.9457 0.9371 0.9344 09369 09797 0.9814 0.9797 09796 0.9796
BioCLIP  0.6655 0.6826 0.6655 0.6455 0.6647 0.7121 0.7415 0.7121 0.7071 0.7112 0.7793 0.7936 0.7793 0.7784 0.7786
ConvNeXt 0.5845 0.5836 0.5845 0.5585 0.5834 0.6810 0.7098 0.6810 0.6734 0.6801 0.7817 0.7922 0.7817 0.7789 0.7810

CLIP 0.4086 0.4093 0.4086 0.3839 0.4069 0.5000 0.5351 0.5000 0.4924 0.4984 0.6021 0.6160 0.6021 0.6005 0.6008
SWINv2 0.3983 0.3921 0.3983 0.3712 0.3965 0.5138 0.5516 0.5138 0.5081 0.5123 0.6521 0.6680 0.6521 0.6502 0.6509
LeViT 0.3345 0.3195 0.3345 03079 0.3325 0.4612 04998 0.4612 0.4518 04595 0.5690 0.5848 0.5690 0.5682 0.5675

Proportional Sampling

ViLT 0.8155 0.7740 0.8155 0.7782 0.8148 0.9224 0.9211 0.9224 09144 0.9221 0.9662 0.9676 0.9662 0.9646 0.9660
BioCLIP  0.5828 0.5336 0.5828 0.5351 0.5808 0.7026 0.7102 0.7026 0.6876 0.7012 0.7659 0.7713 0.7659 0.7592 0.7647
ConvNeXt 0.5431 0.5047 0.5431 0.4994 0.5409 0.7000 0.6968 0.7000 0.6809 0.6985 0.7752 0.7842 0.7752 0.7704 0.7740

CLIP 0.3741 0.3077 03741 0.3228 0.3708 0.5009 0.4983 0.5009 0.4784 0.4982 0.5921 0.5931 0.5921 0.5805 0.5899
SWINvV2 0.3828 0.3358 0.3828 0.3445 0.3796 0.4931 0.4904 0.4931 0.4740 0.4904 0.6434 0.6455 0.6434 0.6347 0.6416
LeViT 0.3552 0.3121 0.3552 0.3151 0.3516 0.4586 0.4524 0.4586 0.4385 0.4557 0.5490 0.5600 0.5490 0.5418 0.5465
Model Half-set (Size: 30000) Full-set (Size: 63077)

Acc Prec Rec F1 MCC Acc Prec Rec F1 MCC
ViLT 0.9900 0.9905 0.9900 0.9900 0.9900 0.9929 0.9930 0.9929 0.9928 0.9928

BioCLIP  0.8208 0.8274 0.8208 0.8207 0.8202 0.8496 0.8524 0.8496 0.8488 0.8488
ConvNeXt 0.8432 0.8491 0.8432 0.8434 0.8426 0.8699 0.8721 0.8699 0.8694 0.8693
CLIP 0.6753 0.6847 0.6753 0.6757 0.6742 0.7188 0.7215 0.7188 0.7177 0.7173
SWINv2 0.7320 0.7422 0.7320 0.7327 0.7311 0.7803 0.7832 0.7803 0.7792 0.7791
LeViT 0.6230 0.6375 0.6230 0.6249 0.6217 0.6713 0.6749 0.6713 0.6700 0.6696

Table 11. Performance of vision models across Balanced Sampling (equal class representation) and Proportional Sampling (natural class
distribution). Strategies and Varying Dataset Sizes (Subsetl: 2900, Subset2: 5800, Subset3: 14500, Half-set: 30000, Full-set: 63077).
Metrics Include Accuracy (Acc), Precision (Prec), Recall (Rec), F1-Score (F1), and Matthews Correlation Coefficient (MCC)



Case Train Test Type #Taxa Model Accuracy  Precision Recall F1-Score MCC

NHM-I1M-genus NHM IIM genus 57 BioCLIP 0.3899 0.6190 0.3899 0.4103 0.3623
NHM-I1M-genus NHM IIM genus 57 CLIP 0.1946 0.3595 0.1946 0.1844 0.1425
NHM-I1M-genus NHM IIM genus 57 ConvNeXt 0.3603 0.5438 0.3603 0.3610 0.3205
NHM-I1M-genus NHM IIM genus 57 LeViT 0.2497 0.3919 0.2497 0.2510 0.2070
NHM-I1M-genus NHM IIM genus 57 SWINv2 0.3238 0.4822 0.3238 0.3165 0.2898
NHM-I1M-genus NHM IIM genus 57 ViLT 0.6907 0.8168 0.6907 0.6966 0.6736
NHM-I1M-species =~ NHM M species 68 BioCLIP 0.4221 0.6546 0.4221 0.4362 0.4133
NHM-I1M-species =~ NHM 1M species 68 CLIP 0.0875 0.2436 0.0875 0.0856 0.0761
NHM-I1M-species = NHM  IIM species 68 ConvNeXt 0.2291 0.4589 0.2291 0.2507 0.2204
NHM-I1M-species NHM 1M species 68 LeViT 0.1120 0.1942 0.1120 0.1195 0.1026
NHM-I1M-species = NHM M species 68 SWINv2 0.1750 0.3112 0.1750 0.1624 0.1618
NHM-I1M-species =~ NHM  IIM species 68 ViLT 0.5740 0.7737 0.5740 0.6132 0.5680
BPZ-11M-genus BPZ 1M genus 33 BioCLIP 0.3553 0.5198 0.3553 0.3558 0.3257
BPZ-I1M-genus BPZ 1M genus 33 CLIP 0.1386 0.2623 0.1386 0.1489 0.1071
BPZ-11M-genus BPZ 1M genus 33 ConvNeXt 0.3464 0.4843 0.3464 0.3430 0.3142
BPZ-11M-genus BPZ M genus 33 LeViT 0.1985 0.3115 0.1985 0.2042 0.1725
BPZ-11M-genus BPZ 1M genus 33 SWINv2 0.3395 0.3881 0.3395 0.3202 0.2986
BPZ-I1M-genus BPZ 1M genus 33 ViLT 0.6001 0.6931 0.6001 0.5823 0.5756
BPZ-11M-species BPZ M species 72 BioCLIP 0.3656 0.4298 0.3656 0.3400 0.3558
BPZ-11M-species BPZ 1M species 72 CLIP 0.1128 0.2835 0.1128 0.1107 0.1025
BPZ-11M-species BPZ 1M species 72 ConvNeXt 0.2592 0.3895 0.2592 0.2394 0.2498
BPZ-I1M-species BPZ M species 72 LeViT 0.1422 0.1897 0.1422 0.1413 0.1276
BPZ-11M-species BPZ M species 72 SWINv2 0.1913 0.3177 0.1913 0.1855 0.1802
BPZ-11M-species BPZ 1M species 72 ViLT 0.4757 0.4998 0.4757 0.4287 0.4676
NHM-BPZ-genus NHM  BPZ genus 16 BioCLIP 0.4632 0.7094 0.4632 0.5178 0.4222
NHM-BPZ-genus NHM  BPZ genus 16 CLIP 0.3076 0.4796 0.3076 0.2993 0.2161
NHM-BPZ-genus NHM  BPZ genus 16 ConvNeXt 0.3697 0.6106 0.3697 0.3770 0.3010
NHM-BPZ-genus NHM  BPZ genus 16 LeViT 0.3481 0.4962 0.3481 0.3284 0.2591
NHM-BPZ-genus NHM BPZ genus 16 SWINv2 0.4371 0.5217 0.4371 0.3886 0.3546
NHM-BPZ-genus NHM  BPZ genus 16 ViLT 0.9230 0.9552 0.9230 0.9311 0.9106

Table 12. Evaluation of Pretrained Vision Models for Cross-Dataset Domain Adaptation in Taxonomic Classification. This table reports
performance metrics, including accuracy and Matthews Correlation Coefficient (MCC), alongside Accuracy (Acc), Precision (Prec), Recall
(Rec), F1 Score (F1) - for models assessed in two domain adaptation scenarios: (1) lab-to-lab (NHM-Carabids to BeetlePalooza) and (2)
lab-to-in-situ (NHM-Carabids or BeetlePalooza to IIMC). Results are presented at genus and species levels for taxa shared across source
and target datasets, illustrating model generalizability across lab and field imaging contexts.



Dataset  Images Data Type Model Acc Prec Rec F1 MCC

Subset 1000 image BioCLIP 0.8150 0.7585  0.8150  0.7780  0.8038
Subset 1000 image ConvNeXt 0.8150 0.7733  0.8150 0.7864  0.8037
Subset 1000 image DINOv2 0.7750  0.7313  0.7750  0.7349  0.7609
Subset 1000 image ViLT 09350 09121 09350 09172 09314
Subset 1000 image+traits BioCLIP 0.8300 0.7603  0.8300 0.7850  0.8198
Subset 1000 image-+traits ConvNeXt  0.8350 0.7899  0.8350  0.8052  0.8251
Subset 1000 image+traits DINOv2 0.7600  0.7312  0.7600  0.7290  0.7449
Subset 1000 image+traits ViLT 0.9350 09121 09350 09172 0.9314

Subset 1000 image+traits+env BioCLIP 0.8450  0.7958  0.8450  0.8064  0.8347
Subset 1000 image+traits+env ~ ConvNeXt  0.8000 0.7304 0.8000 0.7528  0.7863
Subset 1000 image-+traits+env DINOv2 0.7550 0.6896  0.7550  0.7030  0.7379
Subset 1000 image-+traits+env ViILT 0.9050 0.8783  0.9050 0.8814  0.8990

Full 11372 image BioCLIP 09373  0.9325 09373 0.9323  0.9330
Full 11372 image ConvNeXt  0.9531 0.9426 09531 09461  0.9498
Full 11372 image DINOv2 0.9496 09453 09496 0.9446 0.9461
Full 11372 image ViLT 0.9982  0.9974 09982  0.9978  0.9981
Full 11372 image+traits BioCLIP 0.9417 09357 09417 0.9368  0.9375
Full 11372 image+traits ConvNeXt 09566 09512 09566 0.9514  0.9535
Full 11372 image+traits DINOv2 0.9478  0.9445 0.9478  0.9430 0.9441
Full 11372 image-+traits ViLT 0.9956  0.9951 0.9956  0.9948  0.9953
Full 11372  image+traits+env BioCLIP 09579 09531 09579 0.9536  0.9549
Full 11372 image+traits+env ~ ConvNeXt 0.9649  0.9604 0.9649 0.9604 0.9624
Full 11372 image-+traits+env DINOv2 09513  0.9502 0.9513 0.9468 0.9479
Full 11372 image+traits+env ViLT 0.9956  0.9952  0.9956  0.9950  0.9953

Table 13. Performance comparison of four models (BioCLIP, ConvNeXt, DINOv2, ViLT) on species-level classification using the
BeetlePalooza dataset. Results are reported for both the full dataset and a 1,000-specimen subset across three input configurations: image-
only, image with morphological traits (image+traits), and image with both traits and environmental metadata (image-+traits+env). Metrics
include Accuracy (Acc), Precision (Prec), Recall (Rec), F1 Score (F1), and Matthews Correlation Coefficient (MCC).
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