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A B S T R A C T

To effectively mitigate heat risks, it is crucial to pinpoint areas of high vulnerability and assess the severity of
heat-related threats to construction workers. This paper advances the understanding of heat risks in construction
by mapping the associated risks across time and space to support informed decision-making. This paper presents
a framework for heat risk monitoring, enabled by a construction site digital twin. This framework leverages
geometric modeling, incorporates real-time weather data from a weather station, and utilizes computational
simulations for assessing spatio-temporal heat risks. Its effectiveness was validated through a case study in
Stephenville, Texas, USA, where it demonstrated superior fidelity when compared to using the conventional
black-globe thermometer. Moreover, the results substantiated that incorporating the spatio-temporal variability
of heat risks enhances heat risk surveillance in construction workplaces. This approach offers practical insights
into imminent heat-related threats, aiming to prevent potential heat-related accidents in construction.

1. Introduction

Heat is a leading cause of weather-related fatalities, posing a serious
threat to occupational health and safety [1]. Of all US industries, the
construction sector is particularly susceptible to heat risks, accounting
for the highest number of occupational heat-related fatalities [2]. Here,
heat risk refers to the possibility that heat stress (i.e., environmental
heat load on the human body) may cause harmful heat strain (i.e.,
physiological response to heat stress). Such harmful heat strain can lead
to decreased work performance [3–5], impaired cognitive function
[6–8], and an increased risk of heat-related illnesses, such as heat
exhaustion and heat stroke, which are consequences of thermoregula-
tory failures due to extreme heat exposure [9–13]. Concerns about heat
risks are intensifying in the global construction industry (e.g., Asia
[14–16], Europe [17], Australia [18], and Africa [19]), with future
projections indicating that climate change will worsen these issues [20].

To effectively mitigate these risks, it is imperative to understand
where and to what extent heat risks threaten the health and safety of
construction workers [21,22]. This knowledge leads to the development
of informed heat mitigation strategies, such as implementing frequent
breaks, rescheduling work activities to cooler periods, and promoting
hydration. Nonetheless, measuring heat risks in outdoor environments

poses challenges due to the variable nature of heat conditions, influ-
enced by factors like shading and different surface materials [23–25].
Additionally, the dynamic nature of construction sites, where the ma-
terials and structure heights continually change with ongoing con-
struction activities, further complicates these measurements [26].
Current methods for evaluating heat risk in outdoor construction envi-
ronments typically involve mobile environmental sensors carried by
workers [27] or weather stations deployed at a specific location
[28–31], often fail to capture the spatial distribution of heat risks. These
methods may overestimate or underestimate the risks because they do
not account adequately for the spatial and temporal variations in heat
exposure [32]. Consequently, this results in a gap in understanding the
heat exposure faced by construction workers, posing challenges for
effective safety management.

To address this knowledge gap, this study proposes a digital twin-
enabled heat risk monitoring framework that facilitates spatio-
temporal heat risk analysis for data-driven risk management in out-
door construction environments. As illustrated in Fig.1, this framework
is designed to incorporate both visual and weather data collected from a
construction site, simulate microclimates to analyze spatial heat risks,
and offer actionable and timely information for risk-informed decision-
making. In this context, a ‘digital twin’ refers to a geometric digital
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replica of a construction site, synchronized with environmental condi-
tions through an on-site weather station for continuous heat risk sur-
veillance. Leveraging the benefits of digital modeling for site-scale heat
risk analysis, this framework aims to overcome the limitations of current
measurement methods and map risks across time and space, enhancing
workers’ heat resilience and safety.

2. Research background

2.1. Heat risk assessments in construction

Occupational safety institutions, such as the National Institute for
Occupational Safety and Health (NIOSH), the Occupational Safety and
Health Administration (OSHA), and the International Organization for
Standardization (ISO), generally employ the wet bulb globe temperature
(WBGT) to evaluate environmental heat risk [22]. WBGT is a thermo-
physiological model that requires measurements of air temperature,
natural wet bulb temperature, and black globe temperature [33]. NIOSH
establishes Recommended Alert Limits (RALs) and Recommended
Exposure Limits (RELs) based on the WBGT [22]. Similarly, ISO 7243
and OSHA provide a structured approach for assessing environmental
heat stress using WBGT [33,34], while the American Conference of
Governmental Industrial Hygienists (ACGIH) sets thermal limit values
(TLVs) based onWBGT [35]. Guidelines from NIOSH and ISO emphasize
the importance of considering both temporal and spatial factors when
measuring environmental heat risks. For instance, NIOSH suggests
hourly WBGT measurements during the hottest months and spatial
measurements close to the work area, with separate measurements for
different subareas if environmental heat varies within a single area [22].
Similarly, ISO 7243 recommends taking WBGT measurements over one
hour during the hot summer months when heat stress is most likely to
occur [33]. It advises addressing spatial and temporal variations by
determining the necessary number of measurements and calculating an
averaged WBGT value over one hour. Following these established
guidelines, the initial step in managing heat risk safety is to plan how to
effectively assess spatio-temporal environmental heat risk onsite.

Despite prior efforts in heat risk assessments in construction [27–31],
current on-site measurement approaches have intrinsic limitations in
addressing the spatio-temporal aspects of heat risk assessments. In the
spatial context, previous works measure weather conditions using a
mobile environmental sensor carried by a worker [27] or a weather

station deployed at a single location [28–31]. Both on-site measurement
approaches are limited in capturing the spatial distributions of heat risks
due to challenges including logistical and cost constraints associated
with multiple on-site measurements, and the need for frequent modifi-
cations to adapt to the dynamic nature of construction environments (e.
g., deployment locations) [36]. These limitations can lead to inaccurate
evaluations of overall heat stress levels in specific areas, as measure-
ments are inherently affected by their specific locations [32]. Another
practical aspect often overlooked is the temporal aspect, specifically the
timeliness of translating weather condition measurements into envi-
ronmental heat risk assessments (e.g., WBGT). Timely insights on heat
risk assessment are crucial for determining robust safety management
plans. However, previous works often fail to address this aspect by not
clarifying how to quickly inform safety management practitioners of
heat risks derived from the measured weather conditions. Such trans-
lation should be continuously accessible to practitioners for timely in-
sights. These spatial and temporal challenges in understanding heat risk
assessments in construction settings make it difficult to apply the
established safety guidelines effectively to jobsites. The main objective
of this study is to address this information gap by proposing a digital
twin-enabled heat risk monitoring framework that overcomes spatial
measurement limitations through microclimate simulation and provides
actionable, data-driven insights to practitioners in a timely manner.

2.2. Digital twin applications in construction

The application of digital twins in the construction industry is still in
its early stages, but has been steadily increasing in recent years [37].
Although not explicitly defined [38], the concept of a digital twin
generally encompasses three key elements: a physical entity in physical
space, a virtual counterpart in virtual space, and a connection between
the two for data exchange [37]. In line with digitalization trends in the
construction industry [39], studies have explored digital twins across
different phases of construction projects, including design and engi-
neering phase [40–42], construction phase [43,44], and operation and
maintenance [45–47]. For instance, Jiang et al. [48] proposed a digital
twin framework to monitor unsafe behaviors of tower crane operations.
Similarly, Zheng et al. [49] introduced a digital twin framework for
structural health monitoring, particularly to prevent building collapse
disasters. Furthermore, Lee et al. [50] and Liang et al. [51] leveraged
digital twins where a variety of dynamic site conditions are simulated as

Fig. 1. Digital twin-enabled heat risk monitoring framework.
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training grounds for construction robots. These studies demonstrated
the potential of digital twins to enable near-real-time simulations of
various scenarios offering valuable insights into how digital twins can be
utilized to monitor and mitigate environmental risks. By integrating the
rapid and continuous data collection of heat risk-related conditions into
a virtual space, it is possible to simulate microclimates based on the
collected weather conditions and geometric attributes, thereby identi-
fying spatial heat risks in accordance with safety guidelines. This
computational simulation can also evaluate potential heat mitigation
scenarios, leading to more informed decision-making in construction
safety management. This study explores the potential of this concept to
achieve continuous spatio-temporal heat risk assessment, enabling data-
driven heat risk management in construction.

3. Digital twin-enabled heat risk monitoring

3.1. Geometric data collection and processing

The geometric data is integrated into a virtual space for spatial heat
risk analysis. As depicted in Fig. 2, a series of image processing tech-
niques are employed, including UAV (Unmanned Aerial Vehicle)
photogrammetry and the Canny edge detection [52]. UAV photogram-
metry, a widely employed remote sensing in construction [53–58], en-
ables the efficient collection of site images [59]. The results derived from
UAV photogrammetry include both an orthophoto and geometric
models of the site, such as a 3D virtual representation of the construction
workplace and a digital surface model (DSM). While an orthophoto
delivers a planimetric image map of the construction site [60], a DSM
represents an elevation map of the site [69], offering a top-down view
with spatial relationships of construction resources. As a proof of
concept, the spatial resolution of DSM is set to 1 m by 1 m for data
processing to integrate with other geometric datasets. Following this,
exterior walls are extracted from the DSM, which has been used to
identify and outline edges from construction images [61–63]. Finally,
surface material information is registered into the orthophoto, which is
resized to match the spatial resolution of the DSM. This procedure
generates a surface material map, representing surface material types (e.
g., asphalt, soil, grass) and detected wall locations.

3.2. On-site weather data synchronization via a weather station

The on-site weather data is collected and integrated into a virtual
space for continuous heat risk analysis. To this end, a weather station
was developed to record and transmit weather conditions through a
cellular network, as shown in Fig. 3 (left). This customized weather
station enables near-real-time synchronization of weather data on-site.
It comprises a pyranometer (Fig. 3-①), a wind sentry anemometer
(Fig. 3-②), and a temperature and relative humidity sensor (Fig. 3-③).
Collectively, these sensors allow the system to capture global horizontal
irradiance (GHI), air velocity (Va), air temperature (Ta) and relative
humidity (RH). The collected data is stored in two different places to
ensure integrity and continuity: an internal storage device, the data
logger (Fig. 3-④), and a secure digital memory card for external storage.
To ensure near-real-time data transmission, the system employs a
cellular module (Fig. 3-⑤) to relay the collected information to a virtual
space. The graphical user interface of the data transmission is shown in
Fig. 3 (right), representing the results of near-real-time transmission.
The weather station is powered by a rechargeable battery (Fig. 3-⑥)
with a charging regulator to ensure a consistent power supply (Fig. 3-
⑦). This weather station is expected to be deployed on-site in an open
area where there is no shadow interference during the daytime.

3.3. Spatio-temporal analysis of heat risk through computational
simulations

Building upon the geometric and meteorological data collection
outlined in Sections 3.1 and 3.2, the proposed framework conducts
multi-level computational simulations to assess spatio-temporal heat
risks, crucial for construction safety management. As depicted in Fig. 4,
this process first generates both a shadow map and a sky view factor
(SVF) map by addressing the geometric features of the construction site
and the sun’s position. These maps, along with a surface material map,
are integrated into a physics-based microclimate simulation, resulting in
a heat radiation map. This map is then utilized to compute a heat risk
map, which provides valuable insights into the spatial distribution of
heat risks and facilitates data-driven decision-making in line with cur-
rent occupational safety guidelines. The details of each step are elabo-
rated in the following subsections.

Fig. 2. Schematic workflow of geometric data processing.
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3.3.1. Shadow map
This study addresses the influence of shadows on heat risk distribu-

tion in outdoor construction workplaces, by generating a shadowmap to
ascertain whether a specific location is under shadow. This shadow map
generation is a two-stage process: solar position calculation and shadow
casting by considering geometric attributes of outdoor physical

environments. Frist, to determine the solar position in relation to the
specific site location and time, we build upon the work done by the
National Renewable Energy Laboratory (NREL) [64] based on historical
records of the Earth’s orbit around the Sun, which has been demon-
strated a high degree of precision with an uncertainty of ±0.0003◦ [65].
By leveraging this algorithm, the calculation of the solar angles,

Fig. 3. Configurations of the weather station (left); example of data transmission process (right).

Fig. 4. Schematic workflow of spatio-temporal analysis of heat risk.
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including solar azimuth and solar elevation, is done for any given time
and location. Subsequently, the shadows cast by surrounding built and
natural environments can be estimated using trigonometric equations,
as illustrated in Fig.5. To further compute the shadow patterns across
construction sites, the proposed framework builds upon the DSM-based
shadow casting [66], which iteratively operates at the site scale, utiliz-
ing the DSM, to provide height-related information of the construction
sites. The computation begins with a 2D array of the same dimensions as
the DSM, initially filled with zeros. During each iteration, the algorithm
shifts the DSM by one pixel in the direction of the solar azimuth angle,
simultaneously adjusting the height values based on the solar elevation
angle. Thereafter, the algorithm updates the shadow volume by select-
ing the maximum value between the currently/previously computed 2D
array. This iterative process continues until the shifted DSM either has
an elevation below the original DSM in elevation or is entirely outside
the original DSM region. Lastly, the shadow volume is subtracted from
the original DSM, then it is converted to a Boolean image in which pixels
with a negative or zero value, which are exposed to sunlight, are
assigned a new value of 1, while pixels with positive values that are in
shade are given a new value of 0. This Boolean image, hereby referred to
as a shadow map, serves as a fundamental component for further anal-
ysis, particularly for identifying areas at high heat risk exposed to direct
solar radiation in construction environments.

3.3.2. Sky view factor (SVF) map
The Sky View Factor (SVF) is crucial to characterize surface geom-

etry to better understand radiation distributions in outdoor environ-
ments [67]. Defined as the ratio of the visible sky area from a specific
point to the total hemispheric sky area [68], SVF values range between
0 and 1. A value of 0 indicates a completely blocked area, while 1 rep-
resents an open area. To generate a SVF map that conveys pixel-level
SVF information, an annulus-weighted SVF computation algorithm
[69] is leveraged, which operates on the principle of iteratively calcu-
lating and adding annulus weights by following the Eq. (1).

SVF =
∑n

i=1
S
1
πsin

( π
180

)
sin

(
π(2αi − 1)

2n

)
360
θi

(1)

Where, n denotes the total number of shadow maps generated. S is
the Boolean variable from the shadow map generated using the same
shadow casting algorithm described in Section 3.3.1. αi and θi are pre-
defined elevation angles and azimuth angles in degrees, respectively.
For determining these parameters, this study builds on the parameteri-
zation scheme proposed by [70], which offers the predefined set of 153
combinations of elevation angles and azimuth angles for the generation

of SVF map.

3.3.3. Heat radiation map
Heat radiation map is generated by microclimate simulation.

Microclimate simulation models [71–73] offer a promising solution to
complement the limitations of on-site measurement methods. These
models employ physics-based numerical simulations to emulate micro-
climates, taking into account geometric features, thermodynamic prin-
ciples, and regional climate data [74]. This methodology overcomes the
spatial constraints of on-site measurements, enabling a comprehensive
heat risk analysis in complex outdoor environments. Accordingly, a
growing body of literature in other disciplines, such as climatology
[75,76], urban planning [77–79], and architecture [80,81], has effec-
tively employed microclimate simulation models. This study builds on
the SOlar and LongWave Environmental Irradiance Geometry (SOL-
WEIG) microclimate model [73] to generate a heat radiationmap, which
is specifically designed to analyze the spatial distribution of mean
radiant temperature (Tmrt) in outdoor environments. Tmrt is a critical
factor for evaluating heat radiation and inherently sensitive to both
spatial and temporal variations in outdoor environments [82–84].

The SOLWEIG model comprehensively incorporates the thermody-
namic principles of both built and natural environments, considering the
impact of local weather conditions. It incorporates three discrete mul-
tispectral maps (i.e., surface material map, shadow map, and SVF map)
and on-site weather data (i.e., Ta, RH, and GHI) collected by the weather
station. The resulting heat radiation map presents the Tmrt distribution
across construction sites. The SOLWEIG model calculates Tmrt using a
Stephan-Boltzmann law-based equation:

Tmrt =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Sstr
/(

εpσ
)4

√

+273.15 (2)

Here, εp denotes the emissivity of the human body, set at 0.97 [85],
while σ represents the Stephan-Boltzmann constant (5.67 × 10−8 W/
m2⋅K4). Sstr is derived from the six-directional method, which accounts
for short- and longwave radiation fluxes impacting the human body in a
three-dimensional environment as per Eq. (3) [86].

Sstr = ξk
∑6

i=1
KiFi + εp

∑6

i=1
LiFi (3)

where Ki and Li represent the shortwave and longwave radiation fluxes,
respectively. The angular factors Fi, describing the geometric relation-
ship between a person and the surrounding surfaces, are set to 0.22 for
the sides and 0.06 for the above and below. The absorption coefficient
for shortwave radiation, denoted as ξk, is set at 0.7. The calculation of Ki
requires information on SVF, shadow, the sun’s position, surface tem-
perature, and GHI, while Li calculations require information on SVF,
shadow, the sun’s position, surface temperature, and Ta. These param-
eters are computed through a series of empirical formulas documented
in [87–90]. Consequently, Tmrt is determined once Ki and Li are calcu-
lated, as the other variables are predefined constants.

3.3.4. Heat risk map
Mapping the spatial distribution of heat risk is crucial for identifying

and managing safety risks [91]. This mapping provides actionable in-
sights into heat risks quantified by the WBGT index or the universal
thermal climate index (UTCI) [92]. The WBGT formula, as defined by
the ISO 7243 standard for outdoor conditions [33], can be represented
by Eq. (4):

WBGT = 0.7Tnw + 0.2Tg + 0.1Ta (4)

Here, Tnw represents the natural wet bulb temperature and Tg is the
globe temperature of a 0.15m diameter black globe. To calculate Tnw, an
empirical regression model [93] is employed, given by Eq. (5):

Fig. 5. Trigonometric relationship for calculating shadows based on sun-
light angle.
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Tnw =Taarctan
[
0.151977(RH+8.313659)

0.5
]

+arctan(Ta+RH)

−arctan(RH−1.676331)+0.00391838RH1.5arctan(0.023101RH)

−4.686035
(5)

Also, Tg is calculated based on the ISO 7726 standard [94] (Eq. (6)):

Tg4 −Tmrt4 +
1.1 × 108 × Va0.6

ε × D0.4 ×
(
Tg −Ta

)
= 0 (6)

In this equation, the globe emissivity (ε) is set as 0.95 and the
diameter of globe thermometer (D) is 0.15 m. Tg, the unknown value in
this quartic equation, is computed based on the assumption that the
solution of this quartic equation is a real number that is the closest to Ta
and Tmrt. Following this computation, the heat radiation map is then
transformed into a heat risk map, providing spatial information to
identify areas with increased risk levels based on the WBGT index. Note
that the WBGT index is widely recognized and employed, for example,
the National Institute for Occupational Safety and Health (NIOSH) [22]
and the Occupational Safety and Health Administration (OSHA) [95].
These organizations have used the WBGT index to evaluate heat risk
levels, as well as to establish guidelines and recommendations for
minimizing heat exposure among workers [22]. On the other hand, the
UTCI is an advanced thermal index, developed using a multi-node model
[96]. This index is not only applicable across all climatic zones but also
capable of representing extreme thermal sensations. The UTCI has been
proven as an effective estimator of thermal stress intensity in outdoor
environments, affected by dynamic solar and wind conditions [97]. As a
result, the UTCI map is extensively employed to assess public heat-
related health risks at specific grid points for a given time [98–100].

4. Experiments and discussion

4.1. Experimental setup

The case study was conducted at an actual construction site located
in Stephenville, TX (32◦12′47.1”N 98◦13′15.4”W) on June 18, 2023,
from 6:00 to 21:00. Texas has been identified as one of the most
vulnerable states to heat-related risks. In Roelofs’ study [101], Texas
reported the second-highest count of occupational heat fatalities from
2014 to 2016, accounting for 18 % (n= 14) of the total. The climate type
in Texas, classified as a humid subtropical type (Cfa) by the Köppen
climate classification system [102], is the common climate type of most

southeastern regions in the US. Fig. 6 illustrates the geometric features
of the case study site (i.e., 3D virtual model, orthophoto, DSM, and SVF).
For geometric data collection and processing, 300 UAV images were
collected and used for processing the 3D virtual model, DSM, and SVF, as
described in Sections 3.2 and 3.3. For weather data collection, two
weather stations (Stations A and B) were deployed near the site in an
open area without shadows during the study period, as shown in Fig. 7.
Station A is our weather station, supplemented with an additional net
radiometer, while Station B includes a black-globe thermometer sensor
and two net radiometers. These supplementary sensors, collecting six-
directional short- and longwave radiation and black globe tempera-
ture, were used to verify the accuracy of the simulation-based method
for heat risk estimation at the location described in Section 4.2. The
examples of collected weather data are provided in Table 1.

Fig. 8 illustrates the weather data collected through on-site mea-
surements in the case study site, showing the diurnal variations in Ta,
RH, GHI, and Va on the given day, with Table 1 presenting the hourly
observed values. During the observation period, the Ta gradually
increased from an initial value of 26 ◦C, reaching a peak of 35.9 ◦C at
16:30. Conversely, the RH exhibited a consistent decline, decreasing
from 92.9 % to 37.7 % at 18:30 as shown in Fig. 8a. The sunrise occurred
at 6:26, followed by sunset at 20:42, resulting in approximately 14 h of
sunshine duration. The clear sky conditions were evident from the
smooth shape of the GHI curve, which displayed a peak value of 1034
W/m2 at 13:30, representing the intensity of solar radiation during that
time (Fig. 8b). Furthermore, the Va reached its maximum value of 6.1 m/
s at 14:30 before following a decreasing trend (Fig. 8c). These observed
weather variables were utilized in microclimate simulation and heat risk

Fig. 6. Geometric features of the case study site.

Fig. 7. Setup of the weather stations.

Y. Kim and Y. Ham Automation in Construction 168 (2024) 105805 

6 



assessment to evaluate the spatio-temporal heat risks at the case study
site.

4.2. Evaluation of the simulation-based method for heat risk estimation

The simulation accuracy was evaluated compared to the two mea-
surement methods for estimating Tmrt, a widely used parameter for
representing heat radiation. The benchmarking methods include (1) the
six-directional integral radiation method [86] (hereafter the six-
directional method) and (2) the black-globe thermometer method. The
six-directional method is considered the most reliable technique for Tmrt
estimation, employing three net radiometers [103]. Despite its accuracy,
the high operational cost and limited mobility significantly impede its
practical applications [104]. In this case study, Tmrt estimated by this
method served as the reference to assess the accuracy of both the black-
globe thermometer method and the simulation-based method. The
black-globe thermometer method, grounded in the ISO 7726 standard, is
widely utilized in construction-related studies [28,31,105] due to its
cost-effectiveness and ease of use [106]. Nevertheless, this method often
exhibits reduced precision [107] due to its inherent constraints, such as
slow heat convection, especially in outdoor settings [108]. As a result,
supplementary calibrations that factor in the regional weather condi-
tions becomes necessary [109,110], which still remains overlooked in
the previous works on heat analysis in jobsites. Meanwhile, the
simulation-based method leverages the SOLWEIG model, detailed in
Section 3.3.3. Earlier studies have validated the performance of the
SOLWEIG model compared to the six-directional method when peak
solar radiation is under 900 W/m2 [111,112]. Despite these validations,
there remains a dearth of understanding regarding the potential influ-
ence of inherent inaccuracies in the simulation-based method on heat
risk assessments, specifically under extreme solar radiation conditions.
This concern becomes especially pertinent in regions prone to high heat

risks, such as Texas, where solar radiation often exceeds 1000 W/m2

during the summer peak. In this context, this study evaluates the accu-
racy of the simulation-based method for heat risk estimation under
extreme solar radiation conditions. In our microclimate simulation, we
adjust the albedo and emissivity of the ground surface to 0.15 and 0.95
respectively, referring to [113]. The simulation results are compared to
the Tmrt estimated by the black-globe thermometer method. The per-
formance of these two methods is compared using two statistical mea-
sures: the root mean square error (RMSE) and the coefficient of
determination (R2). The RMSE represents the total error in the linear
model fit of the methods, while R2 indicates the proportion of the total
variance. Therefore, a lower RMSE (closer to 0) and a higher R2 (closer
to 1) indicate superior performance, more closely aligning with the
reference data obtained from the six-directional method.

Fig. 9a and b display the results of three methods used to estimate
Tmrt at half-hour intervals, from 6:00 to 21:00, during the case study
period. When comparing the results derived from the black-globe ther-
mometer method and the simulation-based method, the latter demon-
strates a superior performance, featuring a RMSE of 4.21 ◦C and a R2 of
0.93. This method, however, exhibits a slight tendency to overestimate
Tmrt after 14:00. Conversely, the black-globe thermometer method re-
veals substantial discrepancies, with an RMSE of 11.80 ◦C and an R2 of
0.44. Errors appear to increase in severity when Tmrt is higher, peaking
at a maximum difference of 20.86 ◦C at 10:00. Fig. 9c presents the
resultant heat risks, as assessed by the UTCI. The heat risks assessed by
the Tmrt from the six-directional and simulation-based methods corre-
spond closely in terms of their heat stress classification levels (i.e.,
moderate, strong, and very strong heat stress, refer to Table 2). How-
ever, the heat risks assessed by the Tmrt from the black-globe ther-
mometer method differ significantly in their stress levels between 8:30
and 15:00. This discrepancy highlights the errors associated with the
black-globe thermometer method and how these errors can distort the
overall perception of heat risks in our case study. Consequently, this
finding underscores the need for calibration of the black-globe ther-
mometer method to incorporate regional weather conditions in jobsites,
which has been unaddressed in prior research.

We further investigated the potential for calibrating the albedo and
emissivity values of ground surfaces when using a simulation-based
method. In our case study, we empirically adjusted the albedo and
emissivity to 0.33 and 0.81, respectively. Fig. 10 depicts the improve-
ments achieved through this calibration. For upward shortwave radia-
tion (Kup), the RMSE dropped significantly from 120.36 to 5.50, while R2

improved substantially from 0.06 to 1.0, compared to the observed Kup
(Fig. 10a). For upward longwave radiation (Lup), the RMSE declined
from 89.64 to 35.95, and the R2 rose from −4.57 to 0.10, relative to the
observed Lup (Fig. 10b). Consequently, the RMSE of Tmrt estimation
reduced from 4.21 to 4.12 (Fig. 10c). This adjustment emphasizes the
significance of selecting appropriate albedo and emissivity values for
ground surface materials. However, the extensive variation in material
properties typically found on-site presents an underlying challenge to

Table 1
Hourly observed weather data in the case study.

Time Ta (◦C) RH (%) GHI (W/m2) Va (m/s)

6:00 25.99 92.9 4.77 1.85
7:00 26.53 92.2 33.45 1.25
8:00 27.26 90.7 134.8 2
9:00 28.58 82.7 439.9 2.75
10:00 30.16 74.66 774 3.2
11:00 31.17 65.89 906 5.3
12:00 31.72 58.46 953 5
13:00 32.66 53.94 1029 5.3
14:00 33.63 45.76 1031 5.45
15:00 34.67 38.33 986 5.15
16:00 34.66 40.88 853 4.1
17:00 35.72 39.15 681.6 3.35
18:00 35.63 37.76 490.7 2.9
19:00 34.6 38.68 275.6 3.65
20:00 33.45 40.61 78.06 2.6
21:00 31.81 44.14 5.97 1.4

Fig. 8. Observed weather trends in the case study: (a) Ta and RH, (b) GHI, and (c) Va.
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this task. In Section 4.4, we further discuss a potential solution to this
issue, focusing particularly on surface temperature estimation, which
influences longwave radiation trends.

4.3. Spatio-temporal heat risk assessments via the proposed framework

By leveraging computational simulations, the proposed framework
advances spatio-temporal heat risk assessments. Fig. 11 provides a vi-
sual depiction of the resultant spatio-temporal distribution of Tmrt by the
proposed framework. The estimated Tmrt demonstrates substantial
spatio-temporal variability, with values between 22 ◦C and 82 ◦C. This
variability is influenced by weather factors, including GHI, Ta, and RH.
The impact of geometrical features, such as surface materials and
shading from proximal structures, further contributes to these spatio-

temporal complexities. For instance, during our case study, we
observed a Tmrt differential of 43.28 ◦C at 16:30, a result of heteroge-
neity in surface materials and shading patterns. From these findings, it
can be inferred that larger and more architecturally complex construc-
tion sites, characterized by a variety of surface materials and structures
(including adjacent high-rise buildings), could exhibit even greater
variability. This underscores the significance of performing heat radia-
tion assessments to gain a comprehensive spatio-temporal understand-
ing of potential heat risks on construction sites.

Next, we conducted a comparative study exploring spatial variations
in heat risks based on three heat indices: the Heat Index, the WBGT
index, and the UTCI. To enable effective comparisons, we classified the
levels of heat risks for each index, as detailed in Table 2. The Heat Index,
derived from Ta and RH, is unable to capture spatial variations as it
excludes heat radiation variations from its calculation, as shown in
Fig. 12a. On the other hand, the WBGT index and UTCI represent the
spatio-temporal trends of minimum, mean, and maximum values,
aligning with the classified heat risk levels in Fig. 12b and c. Fig. 12d
provides an hourly assessment of the variances in heat risks as evaluated
by these three heat indices. Notably, even within identical construction
sites and similar weather conditions, heat risk levels can vary signifi-
cantly based on the type of heat indices applied and the areas of focus.
Overlooking such variations could lead to either underestimation or
overestimation of heat risks, depending on measurement locations. Such
omissions may obscure crucial insights into the diverse exposure levels
of construction workers, which could vary based on their work locations
and durations. The proposed approach has the potential to offer insights
that can advance the understanding of heat stress levels, which lead to
the development of effective heat mitigation strategies.

Fig. 9. (a) Tmrt estimation across three methods, (b) Tmrt estimations by simulation-based and black-globe thermometer methods compared to the reference data, (c)
heat risk assessments derived from three Tmrt estimation methods.

Table 2
Classes of the heat risk levels for the Heat Index, WBGT index, and UTCI.

Heat Index [114] WBGT index [22] UTCI [115]

Class Index
(◦C)

Class Index
(◦C)

Class Index
(◦C)

None
below
27 None

below
25.6

No thermal
stress 9 to 26

Caution 27 to 32
Category

1
25.6 to
27.8

Moderate heat
stress 26 to 32

Extreme
caution

32 to 41 Category
2

27.8 to
29.5

Strong heat
stress

32 to 38

Danger 41 to 54 Category
3

29.5 to
31.1

Very strong
heat stress

38 to 46

Extreme
danger

above
54

Category
4

31.1 to
32.2

Extreme heat
stress

above
46

– –
Category

5
above
32.2

– –

Fig. 10. Pre and post-calibration (a) upward shortwave radiation of simulation-based method, (b) upward longwave radiation of simulation-based method, (c) Tmrt
estimation comparison for simulation-based method.
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4.4. Integrating infrared thermography for enhanced surface temperature
estimations

In Section 4.2, the variations in onsite material properties were
highlighted as a challenge in achieving accurate surface temperature
estimations. Recognizing this, an approach incorporating infrared
thermography was employed to evaluate the accuracy of simulation-
based estimations of surface temperature and explore alternative
methods. Utilizing the thermal camera, hourly surface temperatures of
construction materials including asphalt, plywood, and soil were
recorded, as shown in Fig. 13a, b, and c. The results revealed that
plywood recorded a peak temperature of 58.9 ◦C at 14:00 (Fig. 13d). In
comparison, soil and asphalt showed temperatures of 55.7 ◦C and
51.7 ◦C, respectively. These findings indicate that, under the given
climate conditions, plywood retains more heat than both soil and
asphalt. Furthermore, upon comparing the observed temperatures with
the simulation results for asphalt and soil (Fig. 13e and Fig. 13f), the
simulation results consistently yielded overestimated values, with the
largest deviations recorded as 23.6 ◦C for asphalt at 14:00 and 16.3 ◦C
for soil at 10:00.

Understanding the surface temperatures enhances the insights into
spatial heat distribution in outdoor settings [116–118]. However,
simulating these thermal distributions poses underlying challenges.

First, as highlighted in Fig. 13, simulating surface temperatures using
predetermined factors and weather variables, such as Ta and RH, is
complicated given the intricate and diverse nature of surface materials.
This challenge becomes even more pronounced in areas with intense
sunlight radiation, leading to unpredictable surface temperature pat-
terns [119]. Second, manually registering surface materials to generate
a surface material map is time-consuming and labor-intensive. This
challenge becomes particularly problematic in dynamic construction
settings, where surface materials continuously change, and heat risk
assessments need to be conducted promptly.

To address these challenges, we conducted extensive research into
the potential of incorporating UAV infrared thermography into a digital
twin framework as a proof-of-concept. This has been studied in struc-
tural health monitoring due to its rapid data gathering [120–122], and
has demonstrated its efficiency in mapping surface temperatures in
urban settings [123]. In our case study, we utilized a FLIR Vue Pro R
thermal camera to capture surface temperatures at five distinct in-
tervals, as shown in Fig. 14. A notable finding was the consistently
elevated temperatures on roofs of the surrounding buildings, high-
lighting a potential area for improvement in the SOLWEIG model that
takes account of the associated thermal properties. Furthermore, our
findings indicated that soil surfaces consistently show higher tempera-
tures than concrete, aligning with the findings from Fig. 13a. A

Fig. 11. Spatio-temporal variations of Tmrt in the case study.
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significant surface temperature difference of up to 53 ◦C was observed
between the highest and lowest surface temperatures recorded during
the fourth interval. While UAV infrared thermography exhibits promise
in capturing surface temperatures in construction environments, it does
have certain limitations that require addressing for future implementa-
tion within the digital twin framework, especially concerning data
processing efficiency. This limitation largely stems from the computa-
tional demands of collecting and processing thermal images on a site-
wide scale within reduced timeframes.

4.5. Practical implications and limitations

The proposed framework aims to enhance heat resilience and safety
for construction workers in outdoor environments. By utilizing geo-
metric image processing and computational simulations, the framework
provides near-real-time heat risk information at construction sites, of-
fering actionable insights and establishing a foundation for data-driven
heat mitigation solutions. Notably, except for the vision-based site
geometric modeling, all processes in the framework are fully automated.

Fig. 12. Spatial variations in heat risk assessments: hourly distributions of heat risks assessed by (a) the Heat Index, (b) WBGT index, and (c) UTCI, with (d) hourly
variations in heat risk levels assessed by the three heat indices.

Fig. 13. Surface temperature measurements of (a) asphalt, (b) plywood, (c) soil, along with (d) observed data for different materials, (e) deviations in asphalt surface
temperatures, and (f) deviations in soil surface temperatures.

Y. Kim and Y. Ham Automation in Construction 168 (2024) 105805 

10 



This study contributes to two aspects of literature and industry. Firstly,
the framework offers essential and timely insights for managing heat
risks at the site level using established occupational heat risk metrics like
theWBGT index and the UTCI. It addresses limitations of on-site weather
measurements by considering the spatio-temporal contexts of heat risks,
as recommended by NIOSH [22] and ISO [33]. Additionally, it provides
near-real-time heat risk information to inform heat mitigation strategies,
including managing heat exposure of construction workers using RELs/
RALs [22] and TLVs [35]. Secondly, the framework provides heat risk
maps in a timely manner, which are crucial for safety management. As
evidenced in [124–126], risk maps are effective safety communication
tools that effectively identify high-risk zones and facilitate proactive
safety decisions. Beyond visualization, this data layer can enhance the
granularity of safety management in future studies. For example, a prior
study [127] used heat radiation maps with GPS trajectory data to esti-
mate outdoor heat exposure. Building on these insights, the heat risk
map in this framework can estimate the outdoor heat exposure of con-
struction workers if their locations are tracked. These approaches can be
connected to established safety standards, facilitating the use of indi-
vidual exposure data for improved assessments of heat-related risks.

Despite the insights this study offers, there are still open research
challenges and limitations for improving the proposed framework. First,
although the SOLWEIG model has been widely utilized and validated in
various fields for its reliability [88–90], careful data interpretation is
required as undetectable and random errors are inevitable, as with other
numerical simulation models [128]. For example, our study highlights
the need to improve the thermophysical attributes of construction ma-
terials, which results in deviations in surface temperature estimation

and influences longwave radiation trends. As a proof-of-concept, we
explore an alternative solution using UAV infrared thermography to
minimize surface temperature estimation errors in Section 4.4. How-
ever, the computational demands of collecting and processing thermal
images on a site-wide scale inhibit its practical implementation on-site.
Second, while geometric data collection and processing are geometry-
free approaches that can address various geometrical elements with
differing shapes, the update of geometric attributes is directly dependent
on the update and processing of UAV images. Since the geometric virtual
model is not synchronized in the proposed framework, geometric up-
dates between image updates may not be reflected in the simulation
results. For example, if UAV images are updated daily, the geometric
features of structures erected on that day or moving objects (e.g., ex-
cavators, tower crane booms) are not addressed in the proposed
framework. In this context, integrating other reality capture technolo-
gies (e.g., laser scanners) [129] or plans [130] can be considered to
minimize the update time for geometric attributes, which is beyond the
scope of this study.

5. Conclusion

Heat risk is a pressing safety concern in the construction industry,
requiring a comprehensive understanding to effectively safeguard
workers’ health and safety. Current analysis methods lack a focus on
spatial and temporal aspects, hindering effective heat risk assessment
and management in outdoor environments. To address this gap, this
paper proposes a framework based on the concept of a digital twin. The
proposed framework was evaluated through a case study in

Fig. 14. Spatio-temporal surface temperature variations using infrared thermography.
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Stephenville, Texas, USA, and it showed superior fidelity compared to
the conventional approach based on black-globe thermometer. By
leveraging near-real-time heat risk maps and simulations, stakeholders
can visualize high-risk areas in terms of heat-related hazards and deploy
targeted interventions, enhancing the protection of construction
workers against increasing heat-related challenges. Future research
could further enhance this framework by integrating biometric sensors
for real-time monitoring of workers’ physiological responses to outdoor
heat environments. These advancements could lead to more individu-
alized and robust heat risk assessments, contributing to improved con-
struction safety measures.
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