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Abstract 
Neighborhood walkability has a signifcant infuence on older adults’ 
physical and mental health. These efects are amplifed in under-
served communities (e.g., low-income groups, ethnic minorities) 
which are often associated with worsening pedestrian infrastruc-
ture and safety concerns. This paper investigates environmental 
stressors linked with decreased walkability of older adults from 
a low-income Latino community, and how these are associated 
with physiological, physical, environmental, and sociological vari-
ables. 68 older adults were recruited from a primarily Hispanic 
neighborhood, and each collected two-weeks of multimodal data 
using wearable and smartphone devices. The data included loca-
tion, acceleration, and physiological data, such as heart rate and 
electrodermal activity, from participants’ outdoor walking trips. En-
vironmental stressors participants encountered during each walk-
ing trip were self-reported through a mobile application. The frst 
part of this paper discusses unique challenges faced when working 
with this under-studied population and strategies used to address 
these challenges while maintaining scientifc rigor. The second 
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part of the paper describes results from the preliminary analysis 
employing linear mixed models (LMM) and machine learning clas-
sifers to examine potential associations between self-reported and 
objectively-measured stress levels among participants, as well as 
the efect of environmental, sociological, and individual variables 
on physiological stress responses while walking. Findings from this 
study support new avenues for engaging with and gaining deeper 
insights into a unique and often overlooked population while lay-
ing the groundwork for developing new computational models for 
quantifying environmental stress using wearable and smartphone 
devices. 
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1 Introduction 
Neighborhood walkability has been shown to be a vital factor in 
allowing older adults to maintain regular physical activity, and has 
signifcant impacts on their mental and physical health as well as 
their overall quality of life [29, 40]. Walkable communities encour-
age independent mobility among older adults, allowing the aging 
population to safely age in place for longer. Increased activity is 
linked to a decrease in obesity and disease, and increased cogni-
tive independence while aging [7, 13, 47]. Even so, older adults 
are among the most inactive age groups [43]. Mental conditions 
caused by aging can make it challenging for older adults to man-
age environmental stress, further complicating eforts to maintain 
regular activity [35]. These complications are amplifed in under-
served communities, such as ethnic minorities and low-income 
areas, which often contend with poor pedestrian infrastructure, ele-
vated air pollution, higher summer temperatures due to lack of heat 
adaptation strategies (e.g., urban greenery for shading), elevated 
crime rates, and limited healthcare access [6, 19, 42]. Rising summer 
temperatures have been linked to decreased outdoor activity [25] 
and elevated crime rates [14], an efect pronounced in low-income 
communities where the unequal impact of heat on quality of life 
may worsen these efects. Additionally, built environment infras-
tructure such as sidewalks and street lighting have been found to 
be more deteriorated in low-socioeconomic status areas, further 
exacerbating challenges faced by ethnic minority groups [42]. 

The most common measure of neighborhood walkability is a 
composite walkability index, which integrates factors such as net 
residential density, intersection density, retail foor area ratio, and 
land use mix [12, 32] that are often derived based on Geographic 
Information Systems (GIS). Despite their efectiveness, these objec-
tive environment attributes do not always match with perceived 
neighborhood walkability and satisfaction [31]. Alternatively, sur-
veys have been employed to capture individuals’ perceptions of 
neighborhood walkability, primarily assessing dimensions of social 
capital, personal safety, physical signifers, and general neighbor-
hood descriptors [17]. However, these methods are susceptible to 
drawbacks such as human subjectivity, bias, and lengthy time com-
mitment. They further lack real-time monitoring capabilities of 
the built environment, crucial for dynamic urban settings [22], and 
predominantly focus on the experiences of the ’average’ individual 
while neglecting sensitive populations such as older adults. 

Among the older adult population, Latino older adults have been 
found to be the most socioeconomically disadvantaged subgroup 
[15]. Although Latino older adults tend to lead longer lives than 
their white counterparts, they have signifcantly higher physical 
disability levels which could be due to physically intensive occupa-
tions, high child poverty rates, high rates of metabolic issues, and 
low education rates [15]. In addition, the Latino population has the 
lowest rate of health insurance coverage among ethnic groups, fur-
ther exacerbating health disparities [15]. Ethnic/cultural diferences 
can alter perceptions of distress while walking. Previous research 
indicates that, beyond elements of physical infrastructure, both pos-
itive (e.g., social interaction, community identity) and negative (e.g., 

crime) attributes of the social environment can contribute to walk-
ability in neighborhoods with predominantly Latino populations 
[2], highlighting the need for targeted walkability interventions. 

Wearable devices combined with GPS tracking have emerged as a 
proxy to neighborhood walkability and identifcation of poor pedes-
trian infrastructure (e.g., broken sidewalk, litter). Biosignals (e.g., 
heart rate-HR, electrodermal activity-EDA, gait) collected during 
outdoor walking trips ofer the potential to reduce subjectivity in 
current walkability measures, and can serve as a proxy of pedestrian 
distress related to uncomfortable walking conditions. Biosignals 
further capture rapid changes in infrastructure which cannot be 
measured via traditional methods such as street audits [22]. How-
ever, it is important to ensure accessibility and inclusivity of such 
technological innovations [33], particularly for marginalized groups 
such as ethnic minorities, who face socioeconomic disparities and 
often harbor skepticism toward new technologies. This further 
underscores the importance in designing targeted technologies to 
meet the unique needs of marginalized populations. 

This paper investigates pedestrian stress as a determinant of 
walkability among older adults residing in a low-income Latino 
community utilizing multimodal data collected in real-life settings. 
The frst part of the paper discusses the longitudinal multimodal 
data collected from older adults via wearable and smartphone de-
vices, as well as cultural and technological barriers faced during 
data collection and strategies used to mitigate those challenges. The 
second part of the paper leverages the collected data to identify 
environmental (i.e., ambient temperature, humidity), sociological 
(i.e., crime rate), and individual (i.e., gender, age, weight, thermal 
comfort) factors of self-reported stress in walking trips. It further 
assesses the impact of those factors on the collected biosignal data 
(i.e., EDA, blood volume pulse-BVP, inertial measurement unit-IMU 
signals), and examines the potential of machine learning models 
that use as an input biosignal measures and environmental, sociolog-
ical, and individual factors in automatically detecting self-reported 
pedestrian stress elicited from the built environment. Results in-
dicate that humidity, crime rate, gender, and thermal comfort are 
signifcantly associated with self-reported stress during walking. 
They further suggest that changes in EDA, BVP, and IMU can be 
attributed to self-reported stress elicited by the built environment, 
alongside factors such as temperature, crime rate, and thermal com-
fort. These fndings are discussed in association to implications in 
designing inclusive intelligent technologies for reducing pedestrian 
stress among Latino older adults and promoting walkability. 

2 Prior Work 
2.1 Factors of neighborhood walkability 
The term ‘walkability’ refers to a measure of the extent to which "the 
built environment of a neighbourhood encourages people to walk" 
[49]. An increasing body of research has explored factors of walka-
bility that include both the built environment and neighborhood’s 
social and physical characteristics. Determinants of walkability that 
pertain to the built environment are the net residential density (i.e., 
number of housing units per unit of land area), intersection density 
(i.e., number of intersections, junctions within a neighborhood), 
retail foor area ratio (FAR) (i.e., total foor area of retail space to 
the total land area) and mixed land uses (i.e., proximity to a mix of 
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residential, commercial, and recreational destinations) [12]. When 
these elements are prevalent, they tend to increase opportunity for 
active transportation and decrease vehicle use. For instance, high 
net residential density indicates a greater concentration of housing 
units in a given area, which can support walkability by increasing 
population density and proximity to amenities. Similarly, higher 
intersection density accomplished via pedestrian infrastructure 
(e.g., sidewalks, crosswalks, pedestrian signals) and street connec-
tivity (e.g., short block lengths and frequent intersections) results 
in more opportunities for pedestrians to change direction, provid-
ing direct and efcient routes. Finally, higher retail FAR values 
and higher mixed land use indicate greater retail development in-
tensity, which can increase access to shops and services within 
walking distance allowing residents to accomplish daily tasks with-
out relying on automobiles. Low-income communities primarily 
inhabited by ethnic minorities face increased challenges regarding 
pedestrian safety [18] and have limited access to local parks [41], a 
disparity that can be attributed to inequities in the urban planning 
process [4]. This paper examines elements of the built environment 
as factors infuencing pedestrian stress, subsequently impacting 
walkability. The components of the built environment are assessed 
through self-reports to capture participants’ unique perceptions of 
the neighborhood in the focal Hispanic community. 

Elements of the social environment relevant to walkability in-
clude socioeconomic status, social support, social networks and in-
teraction, social cohesion, social capital, community identity, racial 
discrimination, safety, and neighborhood disorder [38]. Opportuni-
ties for social interaction, community engagement, and a sense of 
belonging in the community foster a supportive environment for 
walking. Low crime rates and adequate lighting enhance pedestrian 
safety and perceptions of security, encouraging walking. While 
results on crime and neighborhood walkability remain mixed [49], 
crime is a potential reason for people’s reluctance to walk in low-
income and minority neighborhoods [10]. This paper considers 
crime rate, measured via historical data from the local governing 
body, as a factor afecting pedestrian stress. 

Thermal conditions can infuence walkability, since thermal 
stress can degrade the walking experience or lead to signifcant 
health risks such as heat exhaustion or heat stroke [30], particularly 
for older adults who are sensitive to weather conditions and ex-
treme weather events [50]. Pedestrian experience during high heat 
conditions is afected by factors that pertain both to the built envi-
ronment and the individuals’ characteristics. Elements of the built 
environment, such as artifcial shading, vegetation (e.g., trees, green 
roofs), and urban furniture (e.g., drinking fountain, benches) [3] can 
mitigate the adverse efect of high heat on pedestrians. One’s ability 
of thermal adaptation can further moderate vulnerability in thermal 
extremes and walking comfort. The physiologically equivalent tem-
perature (PET) is a widely used thermal comfort index capturing 
one’s ability to tolerate thermal stress and has been applied to cold 
and hot conditions and in diferent climate zone and urban spaces 
[34, 48]. Here, ambient temperature and thermal comfort, measured 
via PET, are considered as factors infuencing pedestrian stress. 

2.2 Multimodal measures of pedestrian stress 
Prior work has leveraged a variety of measures, including image, 
physiology, and acceleration in order to quantify neighborhood 

walkability and pedestrian stress associated with the built environ-
ment. Nagata et al. leveraged image data collected via Google Street 
View (GSV) to assess urban walkability [39]. The authors used an 
image segmentation method of GSV images via deep learning. Each 
pixel of an image was classifed into 19 diferent segments (e.g., sky, 
vegetation, sidewalk) from which street infrastructure and aesthetic 
information was extracted. Using regression models, each location 
was given a walkability score and compared to audit scores as well 
as participants’ foot trafc. Although promising, these image-based 
approaches are subject to limitations. GSV images may be outdated 
and are not updated frequently enough to keep up with rapidly 
changing infrastructure which can hinder accuracy levels. In ad-
dition, these methods overlook the human-perception component 
and non-visible factors such as noise levels. 

In recent years, researchers have explored pedestrian’s move-
ment data as a complementary method for evaluating walkability 
and assessing elements of the built environment. Kim et al. aimed 
to detect defective sidewalks hampering walkability through data 
collected via smartphones [20]. Participants carried a smartphone 
in their front pants pocket which collected IMU and GPS data while 
they walked a predefned path on a sidewalk. Signal vector magni-
tude (SVM) was extracted from the IMU signal in order to detect 
slight gait abnormalities. The study found that IMU irregularities 
had a high correlation with sidewalk defects with an accuracy of 
96.2%, precision of 0.943, and recall of 0.702 in classifying between 
defective and non-defective sidewalks. This method is centered 
around people’s responses to the environment and allows pedestri-
ans to participate in sidewalk monitoring. These results indicate 
the feasibility in using IMU data collected from smartphone devices 
to continuously monitor sidewalk conditions. In order to apply this 
method to real-life settings, factors such as diferences in walking 
behaviors, diverse sidewalk issues, built environment characteris-
tics, and considerations for minority demographics (e.g., disabled 
and older individuals) should be taken into account. 

Another method being explored to estimate neighborhood walk-
ability, is the use of wearable sensors for detecting pedestrians’ dis-
tress levels during walking trips through biosignals. One such study, 
aims to detect distress from participants 20-34 years of age during 
predefned walking trips within commercial and residential set-
tings by leveraging a multimodal approach, integrating biosignals 
collected from wearable sensors (e.g., EDA, HR, Gait) in conjunc-
tion with image-based data collected via chest-mounted camera 
to integrate context to the information obtained from personal-
ized biosignals [22]. Data was segmented using timestamps that 
corresponded to the negative stimuli from the built environment. 
Each time segment including negative stimuli was compared to 
the time segments preceding and following the stimuli. The study 
found that using solely biosignal data or image data resulted in low 
accuracy levels with each physiological modality achieving 50.37% 
- 60.38% unweighted average recall (UAR) accuracy and the image 
data features achieving 52.40%–60.38% UAR accuracy. Meanwhile, 
combining biosignal and image-based data resulted in up to 91.32% 
UAR accuracy. In another study, 31 participants walked a prede-
fned path while collecting physiological, movement, and GPS data 
via wrist sensor, ankle monitor, and smartphone respectively [24]. 
In addition, video was recorded to pinpoint environmental stressor 
locations. During the predefned walk, participants encountered 
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a dead animal replica which simulated a negative stimuli. After 
the predefned walk, participants answered survey questions about 
how they felt when encountering the stimuli. It was found that 
participants experienced maximum EDA levels approximately 5.31 
seconds after encountering the stimuli. Similarly, participants ex-
perienced maximum change in gait measures approximately 4.30 
seconds after. Overall, EDA and gait patterns were found to be 
indicators of negative environmental stimuli. 

EDA and BVP responses, aggregated across participants, were 
used as a proxy measure of pedestrian stress during walking [28]. 
Results on 20 participants indicate no correlation between partici-
pant stress and roadway crossings. However, pedestrian stress in-
creased near main road arteries and in areas with industrial/ mixed 
land uses. Similarly, high-stress pedestrian experiences in the ur-
ban environment, identifed via changes in heart rate variability, 
were associated with issues such as pedestrian-scooter interaction 
on pedestrian paths, high foot trafc areas, and poor visibility at 
pedestrian crossings due to inadequate lighting [9]. Finally, a stress 
index that measured relative change in temperature and EDA was 
used to identify environmental hotspots in an urban environment 
[27]. Visual inspection of results indicate that the proposed stress 
index was associated with spatial locations of self-reported stress. 

The contributions of this paper in relation to prior work are 
as follows: (1) Most studies examining biosignals as a way to cap-
ture pedestrian stress focus on predetermined paths [22, 24] or 
geofenced areas within specifc boundaries [9]. We aim to inves-
tigate the feasibility of detecting stress in daily-life walking trips, 
which may be infuenced by various factors related to the built 
environment and other environmental and sociological conditions; 
(2) Previous research predominantly focuses on young student pop-
ulations [20, 22, 24, 28], whereas our study analyzes data from a 
less explored demographic of Latino older adults who may depict 
unique biosignal patterns of stress elicited from the built environ-
ment; (3) While much of the previous research concentrates on 
identifying overall stress patterns aggregated across pedestrians to 
generate global trends within a space [9, 27, 28], our study focuses 
on individual stress responses associated with elements of the built 
environment. This approach can provide valuable insights into the 
unique ways older adults experience stress and inform personalized 
interventions such as customized route planning that could mitigate 
these efects; and (4) While prior work uses image data to provide 
environmental context [39], our research uses publicly available so-
ciological and environmental data, without encountering the same 
privacy concerns associated with visual data. 

3 Dataset Description 
3.1 Participants 
Data included 68 participants from the Magnolia Park/Manchester 
area in Houston, TX aged between 60 to 90 years recruited from 
community events. All participants were Latino and live in a 96% 
Latino neighborhood. Out of the 68 participants, 3 participants did 
not provide personal demographic data. Among the remaining 65 
participants, 13 were male and 52 were female. Furthermore, 5 of 
our participants indicated the use of walking aids such as walkers 
or canes. The majority of participants reported earning less than 
$15,000 a year (Table 1) and have attained below a high school 

level education (Table 2), providing insight into the population’s 
socioeconomic status. 

Income % Participants 
Less than $10,000 
$10,000 - $14,999 
$15,000 - $24,999 
$25,000 to $34,999 

Don’t know / Prefer not to answer 

33.8% 
20.0% 
18.4% 
3.0% 
24.6% 

Table 1: Distribution of income among participants. 

Education Level % Participants 
Less than high school 

Some high school, but no degree or GED 
High school diploma or GED 

Some College 
Associates Degree 
Bachelor’s Degree 

58.5% 
10.7% 
9.2% 
7.6% 
3.0% 
3.0% 

Table 2: Education levels among participants. 

3.2 Data Collection Protocol 
The user study was approved by the research ethics committee at 
Texas A&M University. Data collection was conducted from January 
to July 2023 averaging a temperature of 27°C with a low of 5°C and 
a high of 34°C. After obtaining informed consent, participants were 
presented the study objectives, protocol, and conducted a tutorial 
on how to use the study equipment. Each participant was provided 
with an Empatica E4 sensor and a Google Pixel phone worn around 
the waist equipped with our customized Daynamica application [1] 
(Figure 1). The wrist-worn E4 captured BVP and EDA data. The IMU 
from the smartphone collected participants’ acceleration, while the 
GPS sensor was employed to collect location data. On the frst day 
of their data collection, participants walked a predetermined route 
approximately 0.65 miles, and took the devices home to continue 
collecting data on their own for the following 14 days in locations 
of their choosing. After each walking trip, participants completed a 
post-walk digital survey administered via the smartphone applica-
tion [1] where participants were asked to report any encountered 
stressors while walking, pinpoint the location of these stressors 
on the map, and rate the perceived stress level on a Likert scale 
from 1 to 5 for each identifed stressor. Participants selected from a 
list of stressors that included poor walking surface (cracks, holes), 
unattended dog, litter (dumping, broken glass), people (homeless, 
rowdy, catcalling, hostile), and uneven walking, or had the option 
to describe the stressor in their own words. 

3.3 Cultural and Technological Barriers in Data 
Collection & Mitigation Strategies 

In conducting data collection, we recognized the importance of ad-
hering to our participants’ cultural norms and needs, even so, many 
adjustments had to be made along the way. Given that Spanish 
was the primary language spoken in the focal Latino community, 
our team included bilingual researchers and a bilingual feld coor-
dinator who actively participated in participant recruitment and 
data collection. The feld coordinator began by forming meaningful 
connections with community and local government leaders, and 
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Figure 1: Post-walk survey on the Daynamica application 
volunteering in local events. This proved to be vital in gaining com-
munity trust and insight into the community culture. In addition, 
all research materials, including informed consent, surveys, and 
smartphone interfaces, were translated and provided in English 
and Spanish. The team was further actively engaged in community 
meetings and informational sessions to explain research objectives 
of the project, methods, and potential benefts to the community. 

During initial stages of recruitment, many community members 
were hesitant to participate and declined involvement in research, 
expressing concerns about their ability to use the data collection 
devices. In addition, several initial participants felt frustrated trying 
to learn how to use the devices, even after receiving a tutorial on the 
study equipment. To help participants feel more comfortable taking 
part in the study, and to mitigate participant drop-out, the feld 
coordinator became available every morning in-person to address 
technical issues, promptly assisting participants who needed help 
learning to use the devices. This also encouraged others to partic-
ipate as it helped ease their concerns in using new technologies. 
Even so, some participants needed additional accommodations to 
successfully and comfortably participate in the study. These par-
ticipants did not take the data collection devices home with them, 
and instead, visited the feld coordinator every morning during 
their data collection period to retrieve the devices and receive assis-
tance with setting up. We further allowed for fexible study formats 
implementing a hybrid survey system. Participants who needed 
help flling out the post-walk survey through the smartphone ap-
plication, but felt comfortable collecting sensor data, completed 
data collection on their own and flled out the post-walk survey 
on paper. They later worked with the feld coordinator to transfer 
their paper surveys to the smartphone application. 

3.4 Description of Resulting Data 
In preparing the dataset for analysis, we found that participants 
walked an average of 14 days within their data collection period. 
As 27% of E4 data was found to be missing, only trips without 
missing E4 data were considered. From this subset of trips, 3.9% 

(a) (b) 

(c) 

Figure 2: Histograms of (a) trip duration; (b) number of trips 
per participant; and (c) type of reported stressors. 
were missing IMU data. The resulting data included a total of 1,121 
trips from the 68 participants. It is important to note that often times, 
walking trips were split up into multiple smaller trips if participants 
took breaks during their walk. Participants had an average of 16.4 
trips each lasting an average of 18 minutes. Participants reported an 
average of 8.7 total stressors each throughout their data collection 
period. The distribution of the number of trips, trip duration per 
participant, and reported stressors is provided in Figure 2. 

4 Methodology 
First, we detail the multimodal measures extracted from the wear-
able and smartphone devices, including variables used in the subse-
quent analysis (Section 4.1). Next, we outline the statistical analysis 
conducted using linear mixed models (LMM) to investigate environ-
mental, sociological, and individual factors of older Latino adults’ 
self-reported stress associated with walkability (Section 4.2). Finally, 
we discuss analysis employing LMM and machine learning models, 
aimed at assessing the feasibility of utilizing multimodal data to 
automatically detect pedestrians’ self-reported stress (Section 4.3). 

4.1 Feature Extraction 
A multimodal set of physiological, environmental, sociological, 
and individual diference measures were extracted for analysis. 
EDA signals were denoised using a low-pass Butterworth flter 
to remove frequencies over 1.0 Hz from which a set of statistics 
was computed on the fltered EDA signal and its tonic and phasic 
components (Table 3). The skin conductance responses (SCR) were 
further detected in the EDA signal [36] and the mean amplitude, 
maximum amplitude, and mean frequency of SCRs was extracted, 
resulting in a total of 15 EDA features. In addition, BVP signals were 
fltered to remove frequencies below 0.6 Hz and above 2.0 Hz [23] 
from which the HR signal was calculated and 3 features extracted. 
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Type Measure Statistic 

Biosignals 

EDA 
Tonic 
Phasic 
SCR 
BVP 

IMU SVM 
IMU RAV 

mean, max, range, frequency 
mean, max, range 
mean, max, range 

mean, max, frequency, max amplitude 
HR mean, HR max, HR range 

mean, max, range 
mean, max, range 

Environmental Temperature 
Humidity 

mean 
mean 

Sociological Crime rate frequency 

Individual 

Gender 
Age 

Weight 
PET 

n.a. 
n.a 
n.a 
n.a 

Table 3: Summary of extracted multimodal features 

Finally, high frequencies over 3 Hz were removed from the IMU data 
through a low-pass flter [21] from which 6 Sum Vector Magnitude 
and Resultant Angular Velocity (RAV) features were extracted [8]. 
All of the physiological features were extracted at the trip-level 
(Table 3) and z-score normalized for each participant. 

Environmental features encompassed ambient temperature and 
humidity, which were considered due to the signifcant impact of 
these factors on EDA signals [5, 37]. The average ambient tempera-
ture and humidity levels for each trip were calculated using publicly 
available historical weather data. 

Crime rate was included as a sociological variable and deemed 
important due to the general assumption that areas with increased 
crime will cause people to feel unsafe which will negatively impact 
physical activity [11]. Crime rate was calculated for each trip using 
crime data from 2019 publicly provided by the city of Houston 
localized with the GPS data collected through participants’ smart-
phones. We calculated the number of unique crimes (i.e., Disorderly 
conduct, Aggravated Assault, Robbery) that occurred within a 0.125 
mile radius of each trip, the approximate length of a block [26]. 

Demographic, anthropometric, and thermo-physiological mea-
sures were further extracted in order to take into account individ-
ual diferences that might afect stress and physiological measures. 
Demographic measures included gender and age, while anthropo-
metric features included weight. Finally, the PET, a personalized 
measure of thermal comfort [34, 48], was extracted using envi-
ronmental factors such as air and radiant temperatures; personal 
demographics such as age, height, weight, and gender; and other 
variables such as metabolic rate and clothing insulation [48]. Meta-
bolic rate was estimated to 2.45 met based on a study analyzing 
older adults [44]. Clothing insulation was estimated based on the 
season, and was estimated as 0.5 clo for summer, 0.9 clo for spring 
and autumn, and 1.0 clo for winter, aligning with literature [16]. 

Self-reported stress at the trip-level was calculated by taking the 
maximum stress reported by the participant in each trip. If no stress 
was reported, a stress level of 0 was assigned to that trip. 

4.2 Factors of pedestrian self-reported stress 
In investigating the impact of environmental, sociological, and 
individual variables on participants’ perceived stress levels, we use 
a LMM that allows us to model the hierarchical nature of the data 
(i.e., trips nested within participants). The LMM accommodates 

participant variability by treating participants as random efects, 
and its equation is as follows: 

�� � =�0 + �1 · �� � + �2 · �� � + �3 · ��� � + �4 · �� + 
(1)

�5 · �� + �6 · �� + �7 · ���� � + �� + � 
where �� � is the self-reported stress of participant � over trip � , �� � 
and �� � are the ambient temperature and humidity, respectively, 
experienced by participant � over trip � , ��� � is crime rate over trip 
� walked by participant � , and �� (i.e., �� = 0 for male participants, 
�� = 1 for female participants), �� , �� , and ���� � are participant’s � 
gender, age, weight, and PET, respectively. The variable �0 indicates 
the intercept of the LMM, while �1, ..., �7 are the fxed-efects coef-
fcients. The latter are the same for all participants and quantify the 
association between self-reported stress and temperature, humidity, 
crime rate, gender, age, weight, and PET, respectively. Finally, the 
variable �� is a random-efect coefcient which is diferent for each 
participant � , while � indicates the error term. 

4.3 Automatic detection of self-reported stress 
using multimodal data 

Here, we examine the feasibility of using biosignal measures for 
automatically detecting pedestrian self-reported stress. We frst 
conduct a LMM analysis that will allow us to better understand 
associations between each biosignal measure and self-reported 
stress, as well as the efect of the aforementioned confounding 
variables on each biosignal measures. Toward this, we run a LMM 
that treats each biosignal feature as the dependent variable, along 
with self-reported stress rating and confounding factors of humidity, 
temperature, crime rate, and PET as the independent variables: 

�� � = �0 +�1 ·�� � +�2 · �� � +�3 ·�� � +�4 ·��� � +�5 · ���� � +�� +� (2) 

where �� � is a biosignal measure recorded from participant � over 
trip � , �� � is the self-reported stress of participant � over trip � , �� � 
and �� � are the ambient temperature and humidity, respectively, 
experienced by participant � over trip � , ��� � is crime rate over trip 
� walked by participant � , and ���� is participant’s � PET. The vari-
able �0 is the intercept of the LMM, while the variables �1, ..., �5 are 
the fxed-efects coefcients that quantify the association between 
the physiological measure with self-reported stress, humidity, tem-
perature, crime rate, and PET, respectively. The variable �� is a 
random-efect coefcient and � is the error term. The LMM in 2 is 
ftted for each physiological variable in Table 3. The LMM described 
by (2) is run for all biosignal measures as outlined in Table 3. 

Machine learning models were used to detect self-reported stress. 
Trips with a stress rating of 1 or higher were labeled as ‘Stress’ (515 
total) and trips with no reported stress were labeled as ‘No-Stress.’ 
(563 total). A random forest classifer and an XGBoost classifer were 
examined. EDA, HR, IMU, PET and confounding variables were 
taken as input (i.e., 32 features in total) and the binary stress level 
as the output. A 5-fold cross validation and a leave-one-subject-out 
(LOSO) cross-validation were used for both classifers. Hyperpa-
rameter tuning was conducted via LOSO or 5-fold grid search cross-
validation considering number of estimators between 5 and 300, 
and tree depths between 3 and 10. Feature selection was conducted 
via relative feature importance based on the decrease in impurity 
to fne-tune the input variables. A total of 18 features were selected 
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Fixed Efect Coefcient P-value 
Intercept �0 2.744 0.000 

Temperature �1 -0.006 0.500 
Humidity �2 0.004 0.030 
Crime rate �3 0.129 0.000 

Gender (Female) �4 -0.260 0.025 
Age �5 -0.010 0.205 

Weight �6 -0.003 0.060 
PET �7 -0.020 0.012 

Table 4: Linear mixed model (LMM) results from analyzing 
the efect of environmental, sociological, and individual vari-
ables on self-reported stress. 

for classifcation. Evaluation of the models’ performance in clas-
sifying between stressful and non-stressful trips was conducted 
via weighted metrics of recall, precision, and F1-score, where each 
metric was calculated for the ‘Stress’ and ‘No-stress’ class and then 
averaged for both classes. 

5 Results 
Through the frst LMM in (1), we analyzed the efect of environmen-
tal, sociological, and individual variables on self-reported stress (Ta-
ble 4). Ambient temperature did not have a signifcant association 
with reported stress which could be due to the fact that participants 
reported environmental stressors in the built environment, so while 
temperature can alter physiology [37], it was not found to infuence 
self-reported stress. Humidity levels had a slight positive correla-
tion with reported stress, which could be due to increased physical 
discomfort during humid summer days. Crime rate depicted a sig-
nifcant positive correlation with reported stress indicating that 
participants were more inclined to report environmental stress in 
areas with previously documented high crime rate. Findings also 
indicate a signifcant negative association between self-reported 
stress and PET, suggesting an increase in self-reported stress levels 
during decreased thermal comfort. The coefcient corresponding 
to gender was signifcant, indicating that women reported lower 
levels of stress than men. Participant weight and age did not have 
signifcant associations with reported stress. 

Through the second LMM in (2), we investigated associations 
between biosignal measures, self-reported stress, and confounding 
factors. Overall, results indicate moderate associations between a 
subset of the biosignal measures and self-reported stress, strong 
associations between biosignal measures (i.e., predominantly EDA 
measures) and temperature, and weak associations between biosig-
nal measures and humidity, PET, and crime rate (Table 5). EDA 
range and tonic range depict positive correlations with self-reported 
stress and ambient temperature. This is expected as EDA is a mea-
sure of sympathetic activity, meaning that stressful stimuli can 
lead to changes in EDA. EDA also refects sweat production, thus 
we anticipate an increase in tonic EDA measures with high am-
bient temperature. EDA Mean, Phasic Mean/Max/Range, Tonic 
Mean/Max, and SCR Amplitude did not depict signifcant associa-
tion with self-reported stress, possibly due to the strong infuence 
of ambient temperature on these measures. Consistent with previ-
ous literature, SCR frequency did not have a signifcant correlation 
with temperature [37], but SCR Amplitude depicted a slight posi-
tive association with temperature. The majority of EDA measures 
depicted negative associations with PET, indicating that individuals 

with high thermal comfort depict lower EDA reactivity compared 
to those with low thermal comfort. 

HR measures depicted signifcant positive associations with self-
reported stress and no signifcant association with temperature. 
This indicates that an increase in HR variables is linked to self-
reported stress, while these measures are not heavily impacted 
by changes in ambient temperature. SVM Mean exhibited a weak 
negative correlation with stress levels but no signifcant correlation 
with temperature. Interpreting this result alongside the negative 
association between SCR frequency and self-reported stress, it may 
suggest that participants move more slowly around stressful stim-
uli, resulting in a decrease in both acceleration magnitude and the 
phasic sweat responses. Finally, RAV Mean/Max display positive 
coefcients with stress and temperature. Prior work indicates that 
the type of environmental stressor impacts IMU features difer-
ently [45], which may explain why SVM and RAV features depict 
opposite correlations with self-reported stress. A possible explana-
tion could be that participants need to walk around the environ-
mental stimuli such as deteriorated sidewalks or litter, leading to a 
reduction in acceleration magnitude and an increase in rotation. 

Results further reveal interesting patterns in the correlations 
between physiological measures and crime frequency. EDA Range, 
tonic range, HR Max, and HR Range depict a signifcant positive as-
sociation with crime frequency, suggesting that participants depict 
an increase in physiology when walking through paths including 
blocks with higher crime frequencies. Conversely, SCR Frequency 
demonstrates a negative coefcient and signifcant p-value with 
crime rate, suggesting that higher SCR frequencies are associated 
with lower crime rates. Given that SCRs are triggered by a specifc 
stimuli and the crime rate variable captures an overall pattern of 
crime for a location rather than individual crime events occurring 
during the walk, this discrepancy might explain why SCR Frequency 
depicts negative association with crime rate. 

Classifcation results indicate above chance weighted recall, pre-
cision, and F1-score for both classifers and cross-validation frame-
works (Table 6), suggesting the feasibility of automatically detecting 
pedestrian self-reported stress from biosignals and confounding 
factors. The type of classifer (i.e., random forest, XGBoost) does 
not appear to signifcantly impact the classifcation result. Within 
the XGBoost classifer, results do not vary signifcantly between 
LOSO and random-split cross-validation, indicating that removing 
participant dependence via LOSO does not afect the results. 

6 Discussion 
This paper examined the efect of environmental, sociological, and 
individual variables of self-reported pedestrian stress of older Latino 
adults. Findings indicate an increase in self-reported stress on days 
with high humidity and in regions with high crime rate. Women and 
individuals with high thermal comfort depict lower levels of self-
reported stress. These fndings can have important implications for 
environmental interventions aimed at modifying elements of the 
built environment to promote walkability in the focal population. 
Interventions that improve lighting could help mitigate stress in 
areas with high crime rates. Ensuring that these areas are well-
maintained and free of physical disorder (e.g., litter, grafti) can 
further create a perception of safety and discourage criminal activity. 
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Stress �1 Humidity �2 Temperature �3 Crime Rate �4 PET �5 
EDA Mean -0.040 (p = 0.305) -0.005 (p = 0.038) 0.043 (p = 0.000) 0.015 (p = 0.612) -0.015 (p = 0.005) 
EDA Max 0.038 (p = 0.332) -0.004 (p = 0.074) 0.041 (p = 0.000) 0.024 (p = 0.428) -0.013 (p = 0.019) 
EDA Range 0.100 (p = 0.010) -0.004 (p = 0.120) 0.036 (p = 0.000) 0.059 (p = 0.049) -0.010 (p = 0.077) 
Phasic Mean 0.038 (p = 0.389) 0.000 (p = 0.995) -0.002 (p = 0.888) 0.057 (p = 0.060) -0.001 (p = 1.000) 
Phasic Max 0.023 (p = 0.557) -0.005 (p = 0.059) 0.033 (p = 0.000) -0.004 (p = 0.892) -0.011 (p = 0.061) 
Phasic Range 0.035 (p = 0.375) -0.004 (p = 0.092) 0.035 (p = 0.000) 0.010 (p = 0.727) -0.011 (p = 0.049) 
Tonic Mean -0.040 (p = 0.305) -0.005 (p = 0.038) 0.043 (p = 0.000) 0.015 (p = 0.612) -0.015 (p = 0.005) 
Tonic Max 0.041 (p = 0.288) -0.004 (p = 0.082) 0.041 (p = 0.000) 0.026 (p = 0.389) -0.013 (p = 0.017) 
Tonic Range 0.117 (p = 0.001) -0.003 (p = 0.153) 0.035 (p = 0.000) 0.068 (p = 0.022) -0.009 (p = 0.100) 
SCR Freq -0.212 (p = 0.000) -0.007 (p = 0.023) 0.012 (p = 0.422) -0.058 (p = 0.052 0.004 (p = 1.000) 
SCR Amp -0.048 (p = 0.219) -0.003 (p = 0.286) 0.033 (p = 0.000) -0.025 (p = 0.405) -0.012 (p = 0.029) 
HR Mean 0.132 (p = 0.001) -0.003 (p = 0.204) 0.009 (p = 0.255) -0.018 (p = 0.552) -0.000 (p = 0.993) 
HR Max 0.194 (p = 0.000) 0.000 (p = 0.909) -0.016 (p = 0.285) 0.082 (p = 0.006) -0.002 (p = 1.000) 
HR Range 0.264 (p = 0.000) 0.003 (p = 0.254) -0.018 (p = 0.219) 0.079 (p = 0.008) -0.002 (p = 1.000) 
SVM Mean -0.094 (p = 0.031) -0.001 (p = 0.662) 0.017 (p = 0.243) -0.045 (p = 0.130) 0.002 (p = 0.000) 
SVM Max -0.028 (p = 0.522) 0.001 (p = 0.707) 0.023 (p = 0.104) -0.058 (p = 0.050) 0.001 (p = 1.000) 
SVM Range 0.078 (p = 0.074) 0.005 (p = 0.072) 0.035 (p = 0.015) -0.064 (p = 0.030) -0.004 (p = 1.000 
RAV Mean 0.268 (p = 0.000) 0.000 (p = 0.915) 0.033 (p = 0.019) -0.045 (p = 0.122) -0.001 (p = 0.000) 
RAV Max 0.096 (p = 0.025) 0.000 (p = 0.999) 0.039 (p = 0.006) 0.004 (p = 0.898) -0.002 (p = 0.710) 
RAV Range -0.046 (p = 0.443) 0.003 (p = 0.456) 0.035 (p = 0.074) -0.027 (p = 0.513) 0.000 (p = 1.000) 

Table 5: Linear mixed model (LMM) results including the coefcients and p-values representing associations between biosignal 
measures and self-reported stress along with confounding factors. 

Model Balanced Acc WP WR WF1 
Random Forest: LOSO 
Random Forest: 5-fold 

XGBoost: LOSO 
XGBoost: 5-fold 

0.666 
0.636 
0.637 
0.624 

0.778 
0.633 
0.646 
0.626 

0.634 
0.631 
0.643 
0.625 

0.664 
0.629 
0.621 
0.624 

Table 6: Balanced accuracy (Acc), weighted precision (WP), 
weighed recall (WR), and weighted F1 (WF1) for classifying 
walking paths between ‘Stress’ and ‘No-stress.’ 

Additionally, initiatives focusing on improving thermal comfort via 
increasing shading and green spaces may be important. 

Signifcant associations between self-reports and physiological 
variables underscore the feasibility of automated systems in detect-
ing environmental stressors. Notably, results reveal signifcant cor-
relations between EDA, HR, and IMU measures, and self-reported 
stress levels. Confounding factors such as humidity, crime, PET, and 
gender could also infuence individual’s stress reports and should be 
considered when designing automated systems. These fndings hold 
signifcant implications for technological interventions aimed at re-
ducing pedestrian stress. Wearable and smartphone devices coupled 
with machine learning algorithms could be used to suggest walking 
routes that prioritize pedestrian safety and comfort and provide 
real-time information on nearby amenities, such as shaded areas or 
water fountains. Biosignals can serve as evidence to community de-
cision makers, informing policies and environmental interventions, 
and improving the well-being of older adults. Through reported 
stressors, we can see the need for specifc interventions; 30.51% 
of stressors were related to people (i.e., homeless, rowdy), 17.18% 
of were related to sidewalk conditions (i.e., poor walking surface, 
blocked sidewalk) and 22.25% were related to litter. These insights 
can lead to interventions such as providing support to homeless 
individuals, improving sidewalk conditions, and removing litter. 

The machine learning experiments in this study consistently 
achieved above chance accuracy (i.e., 63-66% balanced accuracy) 
in classifying stressful and non-stressful paths. Although results 
demonstrate the potential of biosignals captured via wearable sen-
sors to detect environmental stressors, deploying such a system 

in real-life may encounter limitations. It is essential to assess user 
experience with such a system and determine if the resulting per-
formance is sufcient to establish trustworthiness among older 
Latino adults, particularly for applications such as route planning. 
In this under-studied population, a key question remains regarding 
whether the achieved accuracy is acceptable or whether it may har-
bor additional skepticism, potentially hindering adoption of such 
technologies. Additional environmental factors such as GSV images 
and GIS data, sociological factors such as specifc crimes, or audit 
data from experts, could further improve accuracies. 

Despite promising fndings, this study has several limitations 
to consider. The analysis of this paper was conducted at the route 
level. While valuable for intelligent route planning purposes, it 
would be important to identify stressors of the built environment 
at a higher temporal and spatial resolution. Given prior work high-
lighting the signifcance of social cohesion for walkability in Latino 
communities [46], it would be valuable to incorporate this factor in 
future work. Additionally, participant weight, age, and gender in 
the frst LMM (2) might better be represented as moderator vari-
ables. Finally, it is important to recognize that these fndings refect 
the characteristics and dynamics of the specifc geographical area 
of the study and may not generalize across diferent countries due 
to diverse environmental, sociological, and infrastructural factors. 

7 Conclusion 
This paper examined the interplay among self-reported stress, 
biosignal measures, as well as environmental, sociological, and 
individual factors associated with pedestrian stress of older Latino 
adults. Several physiological features depicted signifcant correla-
tions with perceived stress. Likewise, environmental and sociologi-
cal factors such as crime rate and temperature were found to afect 
physiology. These fndings can inform future interventions aimed 
at enhancing walkability of older Latino adults. 
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