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Abstract

Neighborhood walkability has a significant influence on older adults’
physical and mental health. These effects are amplified in under-
served communities (e.g., low-income groups, ethnic minorities)
which are often associated with worsening pedestrian infrastruc-
ture and safety concerns. This paper investigates environmental
stressors linked with decreased walkability of older adults from
a low-income Latino community, and how these are associated
with physiological, physical, environmental, and sociological vari-
ables. 68 older adults were recruited from a primarily Hispanic
neighborhood, and each collected two-weeks of multimodal data
using wearable and smartphone devices. The data included loca-
tion, acceleration, and physiological data, such as heart rate and
electrodermal activity, from participants’ outdoor walking trips. En-
vironmental stressors participants encountered during each walk-
ing trip were self-reported through a mobile application. The first
part of this paper discusses unique challenges faced when working
with this under-studied population and strategies used to address
these challenges while maintaining scientific rigor. The second
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part of the paper describes results from the preliminary analysis
employing linear mixed models (LMM) and machine learning clas-
sifiers to examine potential associations between self-reported and
objectively-measured stress levels among participants, as well as
the effect of environmental, sociological, and individual variables
on physiological stress responses while walking. Findings from this
study support new avenues for engaging with and gaining deeper
insights into a unique and often overlooked population while lay-
ing the groundwork for developing new computational models for
quantifying environmental stress using wearable and smartphone
devices.
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« Human-centered computing — Empirical studies in ubiq-
uitous and mobile computing; Empirical studies in accessibility.
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1 Introduction
Neighborhood walkability has been shown to be a vital factor in
allowing older adults to maintain regular physical activity, and has
significant impacts on their mental and physical health as well as
their overall quality of life [29, 40]. Walkable communities encour-
age independent mobility among older adults, allowing the aging
population to safely age in place for longer. Increased activity is
linked to a decrease in obesity and disease, and increased cogni-
tive independence while aging [7, 13, 47]. Even so, older adults
are among the most inactive age groups [43]. Mental conditions
caused by aging can make it challenging for older adults to man-
age environmental stress, further complicating efforts to maintain
regular activity [35]. These complications are amplified in under-
served communities, such as ethnic minorities and low-income
areas, which often contend with poor pedestrian infrastructure, ele-
vated air pollution, higher summer temperatures due to lack of heat
adaptation strategies (e.g., urban greenery for shading), elevated
crime rates, and limited healthcare access [6, 19, 42]. Rising summer
temperatures have been linked to decreased outdoor activity [25]
and elevated crime rates [14], an effect pronounced in low-income
communities where the unequal impact of heat on quality of life
may worsen these effects. Additionally, built environment infras-
tructure such as sidewalks and street lighting have been found to
be more deteriorated in low-socioeconomic status areas, further
exacerbating challenges faced by ethnic minority groups [42].
The most common measure of neighborhood walkability is a
composite walkability index, which integrates factors such as net
residential density, intersection density, retail floor area ratio, and
land use mix [12, 32] that are often derived based on Geographic
Information Systems (GIS). Despite their effectiveness, these objec-
tive environment attributes do not always match with perceived
neighborhood walkability and satisfaction [31]. Alternatively, sur-
veys have been employed to capture individuals’ perceptions of
neighborhood walkability, primarily assessing dimensions of social
capital, personal safety, physical signifiers, and general neighbor-
hood descriptors [17]. However, these methods are susceptible to
drawbacks such as human subjectivity, bias, and lengthy time com-
mitment. They further lack real-time monitoring capabilities of
the built environment, crucial for dynamic urban settings [22], and
predominantly focus on the experiences of the ’average’ individual
while neglecting sensitive populations such as older adults.
Among the older adult population, Latino older adults have been
found to be the most socioeconomically disadvantaged subgroup
[15]. Although Latino older adults tend to lead longer lives than
their white counterparts, they have significantly higher physical
disability levels which could be due to physically intensive occupa-
tions, high child poverty rates, high rates of metabolic issues, and
low education rates [15]. In addition, the Latino population has the
lowest rate of health insurance coverage among ethnic groups, fur-
ther exacerbating health disparities [15]. Ethnic/cultural differences
can alter perceptions of distress while walking. Previous research
indicates that, beyond elements of physical infrastructure, both pos-
itive (e.g., social interaction, community identity) and negative (e.g.,
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crime) attributes of the social environment can contribute to walk-
ability in neighborhoods with predominantly Latino populations
[2], highlighting the need for targeted walkability interventions.

Wearable devices combined with GPS tracking have emerged as a
proxy to neighborhood walkability and identification of poor pedes-
trian infrastructure (e.g., broken sidewalk, litter). Biosignals (e.g.,
heart rate-HR, electrodermal activity-EDA, gait) collected during
outdoor walking trips offer the potential to reduce subjectivity in
current walkability measures, and can serve as a proxy of pedestrian
distress related to uncomfortable walking conditions. Biosignals
further capture rapid changes in infrastructure which cannot be
measured via traditional methods such as street audits [22]. How-
ever, it is important to ensure accessibility and inclusivity of such
technological innovations [33], particularly for marginalized groups
such as ethnic minorities, who face socioeconomic disparities and
often harbor skepticism toward new technologies. This further
underscores the importance in designing targeted technologies to
meet the unique needs of marginalized populations.

This paper investigates pedestrian stress as a determinant of
walkability among older adults residing in a low-income Latino
community utilizing multimodal data collected in real-life settings.
The first part of the paper discusses the longitudinal multimodal
data collected from older adults via wearable and smartphone de-
vices, as well as cultural and technological barriers faced during
data collection and strategies used to mitigate those challenges. The
second part of the paper leverages the collected data to identify
environmental (i.e., ambient temperature, humidity), sociological
(i.e., crime rate), and individual (i.e., gender, age, weight, thermal
comfort) factors of self-reported stress in walking trips. It further
assesses the impact of those factors on the collected biosignal data
(i.e., EDA, blood volume pulse-BVP, inertial measurement unit-IMU
signals), and examines the potential of machine learning models
that use as an input biosignal measures and environmental, sociolog-
ical, and individual factors in automatically detecting self-reported
pedestrian stress elicited from the built environment. Results in-
dicate that humidity, crime rate, gender, and thermal comfort are
significantly associated with self-reported stress during walking.
They further suggest that changes in EDA, BVP, and IMU can be
attributed to self-reported stress elicited by the built environment,
alongside factors such as temperature, crime rate, and thermal com-
fort. These findings are discussed in association to implications in
designing inclusive intelligent technologies for reducing pedestrian
stress among Latino older adults and promoting walkability.

2 Prior Work
2.1 Factors of neighborhood walkability

The term ‘walkability’ refers to a measure of the extent to which "the
built environment of a neighbourhood encourages people to walk"
[49]. An increasing body of research has explored factors of walka-
bility that include both the built environment and neighborhood’s
social and physical characteristics. Determinants of walkability that
pertain to the built environment are the net residential density (i.e.,
number of housing units per unit of land area), intersection density
(i.e., number of intersections, junctions within a neighborhood),
retail floor area ratio (FAR) (i.e., total floor area of retail space to
the total land area) and mixed land uses (i.e., proximity to a mix of
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residential, commercial, and recreational destinations) [12]. When
these elements are prevalent, they tend to increase opportunity for
active transportation and decrease vehicle use. For instance, high
net residential density indicates a greater concentration of housing
units in a given area, which can support walkability by increasing
population density and proximity to amenities. Similarly, higher
intersection density accomplished via pedestrian infrastructure
(e.g., sidewalks, crosswalks, pedestrian signals) and street connec-
tivity (e.g., short block lengths and frequent intersections) results
in more opportunities for pedestrians to change direction, provid-
ing direct and efficient routes. Finally, higher retail FAR values
and higher mixed land use indicate greater retail development in-
tensity, which can increase access to shops and services within
walking distance allowing residents to accomplish daily tasks with-
out relying on automobiles. Low-income communities primarily
inhabited by ethnic minorities face increased challenges regarding
pedestrian safety [18] and have limited access to local parks [41], a
disparity that can be attributed to inequities in the urban planning
process [4]. This paper examines elements of the built environment
as factors influencing pedestrian stress, subsequently impacting
walkability. The components of the built environment are assessed
through self-reports to capture participants’ unique perceptions of
the neighborhood in the focal Hispanic community.

Elements of the social environment relevant to walkability in-
clude socioeconomic status, social support, social networks and in-
teraction, social cohesion, social capital, community identity, racial
discrimination, safety, and neighborhood disorder [38]. Opportuni-
ties for social interaction, community engagement, and a sense of
belonging in the community foster a supportive environment for
walking. Low crime rates and adequate lighting enhance pedestrian
safety and perceptions of security, encouraging walking. While
results on crime and neighborhood walkability remain mixed [49],
crime is a potential reason for people’s reluctance to walk in low-
income and minority neighborhoods [10]. This paper considers
crime rate, measured via historical data from the local governing
body, as a factor affecting pedestrian stress.

Thermal conditions can influence walkability, since thermal
stress can degrade the walking experience or lead to significant
health risks such as heat exhaustion or heat stroke [30], particularly
for older adults who are sensitive to weather conditions and ex-
treme weather events [50]. Pedestrian experience during high heat
conditions is affected by factors that pertain both to the built envi-
ronment and the individuals’ characteristics. Elements of the built
environment, such as artificial shading, vegetation (e.g., trees, green
roofs), and urban furniture (e.g., drinking fountain, benches) [3] can
mitigate the adverse effect of high heat on pedestrians. One’s ability
of thermal adaptation can further moderate vulnerability in thermal
extremes and walking comfort. The physiologically equivalent tem-
perature (PET) is a widely used thermal comfort index capturing
one’s ability to tolerate thermal stress and has been applied to cold
and hot conditions and in different climate zone and urban spaces
[34, 48]. Here, ambient temperature and thermal comfort, measured
via PET, are considered as factors influencing pedestrian stress.

2.2 Multimodal measures of pedestrian stress
Prior work has leveraged a variety of measures, including image,
physiology, and acceleration in order to quantify neighborhood
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walkability and pedestrian stress associated with the built environ-
ment. Nagata et al. leveraged image data collected via Google Street
View (GSV) to assess urban walkability [39]. The authors used an
image segmentation method of GSV images via deep learning. Each
pixel of an image was classified into 19 different segments (e.g., sky,
vegetation, sidewalk) from which street infrastructure and aesthetic
information was extracted. Using regression models, each location
was given a walkability score and compared to audit scores as well
as participants’ foot traffic. Although promising, these image-based
approaches are subject to limitations. GSV images may be outdated
and are not updated frequently enough to keep up with rapidly
changing infrastructure which can hinder accuracy levels. In ad-
dition, these methods overlook the human-perception component
and non-visible factors such as noise levels.

In recent years, researchers have explored pedestrian’s move-
ment data as a complementary method for evaluating walkability
and assessing elements of the built environment. Kim et al. aimed
to detect defective sidewalks hampering walkability through data
collected via smartphones [20]. Participants carried a smartphone
in their front pants pocket which collected IMU and GPS data while
they walked a predefined path on a sidewalk. Signal vector magni-
tude (SVM) was extracted from the IMU signal in order to detect
slight gait abnormalities. The study found that IMU irregularities
had a high correlation with sidewalk defects with an accuracy of
96.2%, precision of 0.943, and recall of 0.702 in classifying between
defective and non-defective sidewalks. This method is centered
around people’s responses to the environment and allows pedestri-
ans to participate in sidewalk monitoring. These results indicate
the feasibility in using IMU data collected from smartphone devices
to continuously monitor sidewalk conditions. In order to apply this
method to real-life settings, factors such as differences in walking
behaviors, diverse sidewalk issues, built environment characteris-
tics, and considerations for minority demographics (e.g., disabled
and older individuals) should be taken into account.

Another method being explored to estimate neighborhood walk-
ability, is the use of wearable sensors for detecting pedestrians’ dis-
tress levels during walking trips through biosignals. One such study,
aims to detect distress from participants 20-34 years of age during
predefined walking trips within commercial and residential set-
tings by leveraging a multimodal approach, integrating biosignals
collected from wearable sensors (e.g., EDA, HR, Gait) in conjunc-
tion with image-based data collected via chest-mounted camera
to integrate context to the information obtained from personal-
ized biosignals [22]. Data was segmented using timestamps that
corresponded to the negative stimuli from the built environment.
Each time segment including negative stimuli was compared to
the time segments preceding and following the stimuli. The study
found that using solely biosignal data or image data resulted in low
accuracy levels with each physiological modality achieving 50.37%
- 60.38% unweighted average recall (UAR) accuracy and the image
data features achieving 52.40%-60.38% UAR accuracy. Meanwhile,
combining biosignal and image-based data resulted in up to 91.32%
UAR accuracy. In another study, 31 participants walked a prede-
fined path while collecting physiological, movement, and GPS data
via wrist sensor, ankle monitor, and smartphone respectively [24].
In addition, video was recorded to pinpoint environmental stressor
locations. During the predefined walk, participants encountered
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a dead animal replica which simulated a negative stimuli. After
the predefined walk, participants answered survey questions about
how they felt when encountering the stimuli. It was found that
participants experienced maximum EDA levels approximately 5.31
seconds after encountering the stimuli. Similarly, participants ex-
perienced maximum change in gait measures approximately 4.30
seconds after. Overall, EDA and gait patterns were found to be
indicators of negative environmental stimuli.

EDA and BVP responses, aggregated across participants, were
used as a proxy measure of pedestrian stress during walking [28].
Results on 20 participants indicate no correlation between partici-
pant stress and roadway crossings. However, pedestrian stress in-
creased near main road arteries and in areas with industrial/ mixed
land uses. Similarly, high-stress pedestrian experiences in the ur-
ban environment, identified via changes in heart rate variability,
were associated with issues such as pedestrian-scooter interaction
on pedestrian paths, high foot traffic areas, and poor visibility at
pedestrian crossings due to inadequate lighting [9]. Finally, a stress
index that measured relative change in temperature and EDA was
used to identify environmental hotspots in an urban environment
[27]. Visual inspection of results indicate that the proposed stress
index was associated with spatial locations of self-reported stress.

The contributions of this paper in relation to prior work are
as follows: (1) Most studies examining biosignals as a way to cap-
ture pedestrian stress focus on predetermined paths [22, 24] or
geofenced areas within specific boundaries [9]. We aim to inves-
tigate the feasibility of detecting stress in daily-life walking trips,
which may be influenced by various factors related to the built
environment and other environmental and sociological conditions;
(2) Previous research predominantly focuses on young student pop-
ulations [20, 22, 24, 28], whereas our study analyzes data from a
less explored demographic of Latino older adults who may depict
unique biosignal patterns of stress elicited from the built environ-
ment; (3) While much of the previous research concentrates on
identifying overall stress patterns aggregated across pedestrians to
generate global trends within a space [9, 27, 28], our study focuses
on individual stress responses associated with elements of the built
environment. This approach can provide valuable insights into the
unique ways older adults experience stress and inform personalized
interventions such as customized route planning that could mitigate
these effects; and (4) While prior work uses image data to provide
environmental context [39], our research uses publicly available so-
ciological and environmental data, without encountering the same
privacy concerns associated with visual data.

3 Dataset Description

3.1 Participants

Data included 68 participants from the Magnolia Park/Manchester
area in Houston, TX aged between 60 to 90 years recruited from
community events. All participants were Latino and live in a 96%
Latino neighborhood. Out of the 68 participants, 3 participants did
not provide personal demographic data. Among the remaining 65
participants, 13 were male and 52 were female. Furthermore, 5 of
our participants indicated the use of walking aids such as walkers
or canes. The majority of participants reported earning less than
$15,000 a year (Table 1) and have attained below a high school
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level education (Table 2), providing insight into the population’s
socioeconomic status.

Income % Participants
Less than $10,000 33.8%
$10,000 - $14,999 20.0%
$15,000 - $24,999 18.4%
$25,000 to $34,999 3.0%
Don’t know / Prefer not to answer 24.6%

Table 1: Distribution of income among participants.

Education Level % Participants
Less than high school 58.5%
Some high school, but no degree or GED 10.7%
High school diploma or GED 9.2%
Some College 7.6%
Associates Degree 3.0%
Bachelor’s Degree 3.0%

Table 2: Education levels among participants.

3.2 Data Collection Protocol

The user study was approved by the research ethics committee at
Texas A&M University. Data collection was conducted from January
to July 2023 averaging a temperature of 27°C with a low of 5°C and
a high of 34°C. After obtaining informed consent, participants were
presented the study objectives, protocol, and conducted a tutorial
on how to use the study equipment. Each participant was provided
with an Empatica E4 sensor and a Google Pixel phone worn around
the waist equipped with our customized Daynamica application [1]
(Figure 1). The wrist-worn E4 captured BVP and EDA data. The IMU
from the smartphone collected participants’ acceleration, while the
GPS sensor was employed to collect location data. On the first day
of their data collection, participants walked a predetermined route
approximately 0.65 miles, and took the devices home to continue
collecting data on their own for the following 14 days in locations
of their choosing. After each walking trip, participants completed a
post-walk digital survey administered via the smartphone applica-
tion [1] where participants were asked to report any encountered
stressors while walking, pinpoint the location of these stressors
on the map, and rate the perceived stress level on a Likert scale
from 1 to 5 for each identified stressor. Participants selected from a
list of stressors that included poor walking surface (cracks, holes),
unattended dog, litter (dumping, broken glass), people (homeless,
rowdy, catcalling, hostile), and uneven walking, or had the option
to describe the stressor in their own words.

3.3 Cultural and Technological Barriers in Data
Collection & Mitigation Strategies

In conducting data collection, we recognized the importance of ad-
hering to our participants’ cultural norms and needs, even so, many
adjustments had to be made along the way. Given that Spanish
was the primary language spoken in the focal Latino community,
our team included bilingual researchers and a bilingual field coor-
dinator who actively participated in participant recruitment and
data collection. The field coordinator began by forming meaningful
connections with community and local government leaders, and
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A2
Street 1 J&
/ -

Have you encountered any stressful walking
condition while walking along this route?

oo

Please select the location where you encountered
stressful conditions, using the slider below.

07:37 AM 07:43:30 AM 07:56 AM

Large Map

How stressed did you feel?

Alittle stressed Extremely stressed

1 2 3 4 5

Figure 1: Post-walk survey on the Daynamica application
volunteering in local events. This proved to be vital in gaining com-
munity trust and insight into the community culture. In addition,
all research materials, including informed consent, surveys, and
smartphone interfaces, were translated and provided in English
and Spanish. The team was further actively engaged in community
meetings and informational sessions to explain research objectives
of the project, methods, and potential benefits to the community.

During initial stages of recruitment, many community members
were hesitant to participate and declined involvement in research,
expressing concerns about their ability to use the data collection
devices. In addition, several initial participants felt frustrated trying
to learn how to use the devices, even after receiving a tutorial on the
study equipment. To help participants feel more comfortable taking
part in the study, and to mitigate participant drop-out, the field
coordinator became available every morning in-person to address
technical issues, promptly assisting participants who needed help
learning to use the devices. This also encouraged others to partic-
ipate as it helped ease their concerns in using new technologies.
Even so, some participants needed additional accommodations to
successfully and comfortably participate in the study. These par-
ticipants did not take the data collection devices home with them,
and instead, visited the field coordinator every morning during
their data collection period to retrieve the devices and receive assis-
tance with setting up. We further allowed for flexible study formats
implementing a hybrid survey system. Participants who needed
help filling out the post-walk survey through the smartphone ap-
plication, but felt comfortable collecting sensor data, completed
data collection on their own and filled out the post-walk survey
on paper. They later worked with the field coordinator to transfer
their paper surveys to the smartphone application.

3.4 Description of Resulting Data

In preparing the dataset for analysis, we found that participants
walked an average of 14 days within their data collection period.
As 27% of E4 data was found to be missing, only trips without
missing E4 data were considered. From this subset of trips, 3.9%
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Figure 2: Histograms of (a) trip duration; (b) number of trips
per participant; and (c) type of reported stressors.

were missing IMU data. The resulting data included a total of 1,121
trips from the 68 participants. It is important to note that often times,
walking trips were split up into multiple smaller trips if participants
took breaks during their walk. Participants had an average of 16.4
trips each lasting an average of 18 minutes. Participants reported an
average of 8.7 total stressors each throughout their data collection
period. The distribution of the number of trips, trip duration per
participant, and reported stressors is provided in Figure 2.

4 Methodology

First, we detail the multimodal measures extracted from the wear-
able and smartphone devices, including variables used in the subse-
quent analysis (Section 4.1). Next, we outline the statistical analysis
conducted using linear mixed models (LMM) to investigate environ-
mental, sociological, and individual factors of older Latino adults’
self-reported stress associated with walkability (Section 4.2). Finally,
we discuss analysis employing LMM and machine learning models,
aimed at assessing the feasibility of utilizing multimodal data to
automatically detect pedestrians’ self-reported stress (Section 4.3).

4.1 Feature Extraction

A multimodal set of physiological, environmental, sociological,
and individual difference measures were extracted for analysis.
EDA signals were denoised using a low-pass Butterworth filter
to remove frequencies over 1.0 Hz from which a set of statistics
was computed on the filtered EDA signal and its tonic and phasic
components (Table 3). The skin conductance responses (SCR) were
further detected in the EDA signal [36] and the mean amplitude,
maximum amplitude, and mean frequency of SCRs was extracted,
resulting in a total of 15 EDA features. In addition, BVP signals were
filtered to remove frequencies below 0.6 Hz and above 2.0 Hz [23]
from which the HR signal was calculated and 3 features extracted.
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Type Measure Statistic
EDA mean, max, range, frequency
Tonic mean, max, range
Phasic mean, max, range
Biosignals SCR mean, max, frequency, max amplitude
BVP HR mean, HR max, HR range
IMU SVM mean, max, range
IMU RAV mean, max, range
. Temperature mean
Environmental 1
Humidity mean
Sociological Crime rate frequency
Gender n.a.
Individual Age na
Weight n.a
PET na

Table 3: Summary of extracted multimodal features

Finally, high frequencies over 3 Hz were removed from the IMU data
through a low-pass filter [21] from which 6 Sum Vector Magnitude
and Resultant Angular Velocity (RAV) features were extracted [8].
All of the physiological features were extracted at the trip-level
(Table 3) and z-score normalized for each participant.

Environmental features encompassed ambient temperature and
humidity, which were considered due to the significant impact of
these factors on EDA signals [5, 37]. The average ambient tempera-
ture and humidity levels for each trip were calculated using publicly
available historical weather data.

Crime rate was included as a sociological variable and deemed
important due to the general assumption that areas with increased
crime will cause people to feel unsafe which will negatively impact
physical activity [11]. Crime rate was calculated for each trip using
crime data from 2019 publicly provided by the city of Houston
localized with the GPS data collected through participants’ smart-
phones. We calculated the number of unique crimes (i.e., Disorderly
conduct, Aggravated Assault, Robbery) that occurred within a 0.125
mile radius of each trip, the approximate length of a block [26].

Demographic, anthropometric, and thermo-physiological mea-
sures were further extracted in order to take into account individ-
ual differences that might affect stress and physiological measures.
Demographic measures included gender and age, while anthropo-
metric features included weight. Finally, the PET, a personalized
measure of thermal comfort [34, 48], was extracted using envi-
ronmental factors such as air and radiant temperatures; personal
demographics such as age, height, weight, and gender; and other
variables such as metabolic rate and clothing insulation [48]. Meta-
bolic rate was estimated to 2.45 met based on a study analyzing
older adults [44]. Clothing insulation was estimated based on the
season, and was estimated as 0.5 clo for summer, 0.9 clo for spring
and autumn, and 1.0 clo for winter, aligning with literature [16].

Self-reported stress at the trip-level was calculated by taking the
maximum stress reported by the participant in each trip. If no stress
was reported, a stress level of 0 was assigned to that trip.

4.2 Factors of pedestrian self-reported stress

In investigating the impact of environmental, sociological, and
individual variables on participants’ perceived stress levels, we use
a LMM that allows us to model the hierarchical nature of the data
(i.e., trips nested within participants). The LMM accommodates
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participant variability by treating participants as random effects,
and its equation is as follows:

Xij =Po+p1-Tij+ P2 - Hij + P3 - CRij + fu - Git+

1
ﬁs*Ai+ﬁ6-VVi+ﬂ7~PETij+xi+€ ()

where X;; is the self-reported stress of participant i over trip j, T;;
and Hj; are the ambient temperature and humidity, respectively,
experienced by participant i over trip j, CR;; is crime rate over trip
Jj walked by participant i, and G; (i.e., G; = 0 for male participants,
G; = 1 for female participants), A;, W;, and PET;; are participant’s i
gender, age, weight, and PET, respectively. The variable f indicates
the intercept of the LMM, while fy, ..., B7 are the fixed-effects coef-
ficients. The latter are the same for all participants and quantify the
association between self-reported stress and temperature, humidity,
crime rate, gender, age, weight, and PET, respectively. Finally, the
variable x; is a random-effect coefficient which is different for each
participant i, while ¢ indicates the error term.

4.3 Automatic detection of self-reported stress
using multimodal data

Here, we examine the feasibility of using biosignal measures for
automatically detecting pedestrian self-reported stress. We first
conduct a LMM analysis that will allow us to better understand
associations between each biosignal measure and self-reported
stress, as well as the effect of the aforementioned confounding
variables on each biosignal measures. Toward this, we run a LMM
that treats each biosignal feature as the dependent variable, along
with self-reported stress rating and confounding factors of humidity,
temperature, crime rate, and PET as the independent variables:

Yij =co+c1-Sij+ca-Hij+cs-Tij+ca-CRjj+cs5-PETj+yi+e¢ (2)

where Yj; is a biosignal measure recorded from participant i over
trip j, Si; is the self-reported stress of participant i over trip j, Tj;
and H;; are the ambient temperature and humidity, respectively,
experienced by participant i over trip j, CR;; is crime rate over trip
Jj walked by participant i, and PET; is participant’s i PET. The vari-
able ¢y is the intercept of the LMM, while the variables cj, ..., ¢5 are
the fixed-effects coefficients that quantify the association between
the physiological measure with self-reported stress, humidity, tem-
perature, crime rate, and PET, respectively. The variable y; is a
random-effect coefficient and ¢ is the error term. The LMM in 2 is
fitted for each physiological variable in Table 3. The LMM described
by (2) is run for all biosignal measures as outlined in Table 3.
Machine learning models were used to detect self-reported stress.
Trips with a stress rating of 1 or higher were labeled as ‘Stress’ (515
total) and trips with no reported stress were labeled as ‘No-Stress.
(563 total). A random forest classifier and an XGBoost classifier were
examined. EDA, HR, IMU, PET and confounding variables were
taken as input (i.e., 32 features in total) and the binary stress level
as the output. A 5-fold cross validation and a leave-one-subject-out
(LOSO) cross-validation were used for both classifiers. Hyperpa-
rameter tuning was conducted via LOSO or 5-fold grid search cross-
validation considering number of estimators between 5 and 300,
and tree depths between 3 and 10. Feature selection was conducted
via relative feature importance based on the decrease in impurity
to fine-tune the input variables. A total of 18 features were selected
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Fixed Effect Coefficient | P-value
Intercept Sy 2.744 0.000
Temperature f; -0.006 0.500
Humidity S 0.004 0.030
Crime rate f3 0.129 0.000
Gender (Female) f4 -0.260 0.025
Age fs -0.010 0.205
Weight ¢ -0.003 0.060
PET 3, -0.020 0.012

Table 4: Linear mixed model (LMM) results from analyzing
the effect of environmental, sociological, and individual vari-
ables on self-reported stress.

for classification. Evaluation of the models’ performance in clas-
sifying between stressful and non-stressful trips was conducted
via weighted metrics of recall, precision, and F1-score, where each
metric was calculated for the ‘Stress’ and ‘No-stress’ class and then
averaged for both classes.

5 Results

Through the first LMM in (1), we analyzed the effect of environmen-
tal, sociological, and individual variables on self-reported stress (Ta-
ble 4). Ambient temperature did not have a significant association
with reported stress which could be due to the fact that participants
reported environmental stressors in the built environment, so while
temperature can alter physiology [37], it was not found to influence
self-reported stress. Humidity levels had a slight positive correla-
tion with reported stress, which could be due to increased physical
discomfort during humid summer days. Crime rate depicted a sig-
nificant positive correlation with reported stress indicating that
participants were more inclined to report environmental stress in
areas with previously documented high crime rate. Findings also
indicate a significant negative association between self-reported
stress and PET, suggesting an increase in self-reported stress levels
during decreased thermal comfort. The coefficient corresponding
to gender was significant, indicating that women reported lower
levels of stress than men. Participant weight and age did not have
significant associations with reported stress.

Through the second LMM in (2), we investigated associations
between biosignal measures, self-reported stress, and confounding
factors. Overall, results indicate moderate associations between a
subset of the biosignal measures and self-reported stress, strong
associations between biosignal measures (i.e., predominantly EDA
measures) and temperature, and weak associations between biosig-
nal measures and humidity, PET, and crime rate (Table 5). EDA
range and tonic range depict positive correlations with self-reported
stress and ambient temperature. This is expected as EDA is a mea-
sure of sympathetic activity, meaning that stressful stimuli can
lead to changes in EDA. EDA also reflects sweat production, thus
we anticipate an increase in tonic EDA measures with high am-
bient temperature. EDA Mean, Phasic Mean/Max/Range, Tonic
Mean/Max, and SCR Amplitude did not depict significant associa-
tion with self-reported stress, possibly due to the strong influence
of ambient temperature on these measures. Consistent with previ-
ous literature, SCR frequency did not have a significant correlation
with temperature [37], but SCR Amplitude depicted a slight posi-
tive association with temperature. The majority of EDA measures
depicted negative associations with PET, indicating that individuals

308

ICMI °24, November 04-08, 2024, San Jose, Costa Rica

with high thermal comfort depict lower EDA reactivity compared
to those with low thermal comfort.

HR measures depicted significant positive associations with self-
reported stress and no significant association with temperature.
This indicates that an increase in HR variables is linked to self-
reported stress, while these measures are not heavily impacted
by changes in ambient temperature. SVM Mean exhibited a weak
negative correlation with stress levels but no significant correlation
with temperature. Interpreting this result alongside the negative
association between SCR frequency and self-reported stress, it may
suggest that participants move more slowly around stressful stim-
uli, resulting in a decrease in both acceleration magnitude and the
phasic sweat responses. Finally, RAV Mean/Max display positive
coefficients with stress and temperature. Prior work indicates that
the type of environmental stressor impacts IMU features differ-
ently [45], which may explain why SVM and RAV features depict
opposite correlations with self-reported stress. A possible explana-
tion could be that participants need to walk around the environ-
mental stimuli such as deteriorated sidewalks or litter, leading to a
reduction in acceleration magnitude and an increase in rotation.

Results further reveal interesting patterns in the correlations
between physiological measures and crime frequency. EDA Range,
tonic range, HR Max, and HR Range depict a significant positive as-
sociation with crime frequency, suggesting that participants depict
an increase in physiology when walking through paths including
blocks with higher crime frequencies. Conversely, SCR Frequency
demonstrates a negative coeflicient and significant p-value with
crime rate, suggesting that higher SCR frequencies are associated
with lower crime rates. Given that SCRs are triggered by a specific
stimuli and the crime rate variable captures an overall pattern of
crime for a location rather than individual crime events occurring
during the walk, this discrepancy might explain why SCR Frequency
depicts negative association with crime rate.

Classification results indicate above chance weighted recall, pre-
cision, and F1-score for both classifiers and cross-validation frame-
works (Table 6), suggesting the feasibility of automatically detecting
pedestrian self-reported stress from biosignals and confounding
factors. The type of classifier (i.e., random forest, XGBoost) does
not appear to significantly impact the classification result. Within
the XGBoost classifier, results do not vary significantly between
LOSO and random-split cross-validation, indicating that removing
participant dependence via LOSO does not affect the results.

6 Discussion

This paper examined the effect of environmental, sociological, and
individual variables of self-reported pedestrian stress of older Latino
adults. Findings indicate an increase in self-reported stress on days
with high humidity and in regions with high crime rate. Women and
individuals with high thermal comfort depict lower levels of self-
reported stress. These findings can have important implications for
environmental interventions aimed at modifying elements of the
built environment to promote walkability in the focal population.
Interventions that improve lighting could help mitigate stress in
areas with high crime rates. Ensuring that these areas are well-
maintained and free of physical disorder (e.g., litter, graffiti) can
further create a perception of safety and discourage criminal activity.
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Temperature c3

Crime Rate ¢4

PET cs

Stress c1 Humidity ¢,
EDA Mean | -0.040 (p = 0.305) | -0.005 (p = 0.038)
EDA Max 0.038 (p = 0.332) | -0.004 (p = 0.074)
EDA Range | 0.100 (p = 0.010) | -0.004 (p = 0.120)
Phasic Mean | 0.038 (p = 0.389) | 0.000 (p = 0.995)
Phasic Max 0.023 (p = 0.557) | -0.005 (p = 0.059)
Phasic Range | 0.035 (p = 0.375) | -0.004 (p = 0.092)
Tonic Mean -0.040 (p = 0.305) | -0.005 (p = 0.038)
Tonic Max 0.041 (p = 0.288) | -0.004 (p = 0.082)
Tonic Range | 0.117 (p = 0.001) | -0.003 (p = 0.153)
SCR Freq -0.212 (p = 0.000) | -0.007 (p = 0.023)
SCR Amp -0.048 (p = 0.219) | -0.003 (p = 0.286)
HR Mean 0.132 (p = 0.001) | -0.003 (p = 0.204)
HR Max 0.194 (p = 0.000) | 0.000 (p = 0.909)
HR Range 0.264 (p = 0.000) | 0.003 (p = 0.254)
SVM Mean -0.094 (p = 0.031) | -0.001 (p = 0.662)
SVM Max -0.028 (p = 0.522) | 0.001 (p = 0.707)
SVM Range 0.078 (p = 0.074) | 0.005 (p = 0.072)
RAV Mean | 0.268 (p = 0.000) | 0.000 (p = 0.915)
RAV Max 0.096 (p = 0.025) | 0.000 (p = 0.999)
RAV Range | -0.046 (p = 0.443) | 0.003 (p = 0.456)

0.043 (p = 0.000)
0.041 (p = 0.000)
0.036 (p = 0.000)
-0.002 (p = 0.888)
0.033 (p = 0.000)
0.035 (p = 0.000)
0.043 (p = 0.000)
0.041 (p = 0.000)
0.035 (p = 0.000)
0.012 (p = 0.422)
0.033 (p = 0.000)
0.009 (p = 0.255)
-0.016 (p = 0.285)
-0.018 (p = 0.219)
0.017 (p = 0.243)
0.023 (p = 0.104)
0.035 (p = 0.015)
0.033 (p = 0.019)
0.039 (p = 0.006)
0.035 (p = 0.074)

0.015 (p = 0.612)
0.024 (p = 0.428)
0.059 (p = 0.049)
0.057 (p = 0.060)
-0.004 (p = 0.892)

0.010 (p = 0.727)
0.015 (p = 0.612)
0.026 (p = 0.389)
0.068 (p = 0.022)

-0.058 (p = 0.052
-0.025 (p = 0.405)
-0.018 (p = 0.552)
0.082 (p = 0.006)
0.079 (p = 0.008)
-0.045 (p = 0.130
-0.058 (p = 0.050
-0.064 (p = 0.030
-0.045 (p = 0.122
0.004 (p = 0.898)
-0.027 (p = 0.513)

)
)
)
)

-0.015 (p = 0.005)
-0.013 (p = 0.019)
-0.010 (p = 0.077)
-0.001 (p = 1.000)
-0.011 (p = 0.061)
-0.011 (p = 0.049)
-0.015 (p = 0.005)
-0.013 (p = 0.017)
-0.009 (p = 0.100)
0.004 (p = 1.000)
-0.012 (p = 0.029
-0.000 (p = 0.993
-0.002 (p = 1.000
-0.002 (p = 1.000
0.002 (p = 0.000)
0.001 (p = 1.000)
-0.004 (p = 1.000
-0.001 (p = 0.000)
-0.002 (p = 0.710)
0.000 (p = 1.000)

)
)
)
)

Yupanqui, et al.

Table 5: Linear mixed model (LMM) results including the coefficients and p-values representing associations between biosignal
measures and self-reported stress along with confounding factors.

Model Balanced Acc | WP WR | WF1
Random Forest: LOSO 0.666 0.778 | 0.634 | 0.664
Random Forest: 5-fold 0.636 0.633 | 0.631 | 0.629

XGBoost: LOSO 0.637 0.646 | 0.643 | 0.621
XGBoost: 5-fold 0.624 0.626 | 0.625 | 0.624

Table 6: Balanced accuracy (Acc), weighted precision (WP),
weighed recall (WR), and weighted F1 (WF1) for classifying
walking paths between ‘Stress’ and ‘No-stress.

Additionally, initiatives focusing on improving thermal comfort via
increasing shading and green spaces may be important.
Significant associations between self-reports and physiological
variables underscore the feasibility of automated systems in detect-
ing environmental stressors. Notably, results reveal significant cor-
relations between EDA, HR, and IMU measures, and self-reported
stress levels. Confounding factors such as humidity, crime, PET, and
gender could also influence individual’s stress reports and should be
considered when designing automated systems. These findings hold
significant implications for technological interventions aimed at re-
ducing pedestrian stress. Wearable and smartphone devices coupled
with machine learning algorithms could be used to suggest walking
routes that prioritize pedestrian safety and comfort and provide
real-time information on nearby amenities, such as shaded areas or
water fountains. Biosignals can serve as evidence to community de-
cision makers, informing policies and environmental interventions,
and improving the well-being of older adults. Through reported
stressors, we can see the need for specific interventions; 30.51%
of stressors were related to people (i.e., homeless, rowdy), 17.18%
of were related to sidewalk conditions (i.e., poor walking surface,
blocked sidewalk) and 22.25% were related to litter. These insights
can lead to interventions such as providing support to homeless
individuals, improving sidewalk conditions, and removing litter.
The machine learning experiments in this study consistently
achieved above chance accuracy (i.e., 63-66% balanced accuracy)
in classifying stressful and non-stressful paths. Although results
demonstrate the potential of biosignals captured via wearable sen-
sors to detect environmental stressors, deploying such a system
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in real-life may encounter limitations. It is essential to assess user
experience with such a system and determine if the resulting per-
formance is sufficient to establish trustworthiness among older
Latino adults, particularly for applications such as route planning.
In this under-studied population, a key question remains regarding
whether the achieved accuracy is acceptable or whether it may har-
bor additional skepticism, potentially hindering adoption of such
technologies. Additional environmental factors such as GSV images
and GIS data, sociological factors such as specific crimes, or audit
data from experts, could further improve accuracies.

Despite promising findings, this study has several limitations
to consider. The analysis of this paper was conducted at the route
level. While valuable for intelligent route planning purposes, it
would be important to identify stressors of the built environment
at a higher temporal and spatial resolution. Given prior work high-
lighting the significance of social cohesion for walkability in Latino
communities [46], it would be valuable to incorporate this factor in
future work. Additionally, participant weight, age, and gender in
the first LMM (2) might better be represented as moderator vari-
ables. Finally, it is important to recognize that these findings reflect
the characteristics and dynamics of the specific geographical area
of the study and may not generalize across different countries due
to diverse environmental, sociological, and infrastructural factors.

7 Conclusion
This paper examined the interplay among self-reported stress,

biosignal measures, as well as environmental, sociological, and
individual factors associated with pedestrian stress of older Latino
adults. Several physiological features depicted significant correla-
tions with perceived stress. Likewise, environmental and sociologi-
cal factors such as crime rate and temperature were found to affect
physiology. These findings can inform future interventions aimed
at enhancing walkability of older Latino adults.
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