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ABSTRACT

This study presents a comprehensive computational investigation of band gap characteristics in spiral-based
phononic metamaterials, including Archimedean, Octagon, Hexagon, and Square spiral configurations. It
offers a quantitative understanding of the similarities in Bloch wave properties across these spiral types and
demonstrates the feasibility of using data from known spiral patterns to facilitate the property prediction of
new types. Based on the spiral datasets that vary in the number of turns, cutting width, and inner radius,
we observed strong correlations in band gap counts among patterns (e.g., Rotated Octagon and Octagon,
Archimedean and Rotated Octagon), indicating similar behaviors in band gap occurrence across different
geometries. It was also found that the rotation of geometric shapes had a minor impact on band gap
counts. However, we observed that the distribution of band gap width varies significantly across different
types of spirals, with weak correlations. Furthermore, we demonstrate that transfer learning (TL) enhances
prediction accuracy for new spiral types compared to traditional neural network approaches. TL model
demonstrated superior performance, effectively capturing complex band gap details and improving overall
prediction accuracy, without requiring extensive training data.

1. Introduction

In this computational investigation, we analyze the dynamics of dif-
ferent spiral-based phononic metamaterials and apply transfer learning
to predict their band gaps with minimal data, providing an efficient
framework for designing novel phononic structures. Extensive research
has been conducted on locally resonant elastic/acoustic metamateri-
als [1,2] and phononic crystals [3,4] due to their intriguing dynamic
characteristics, particularly the presence of band gaps where elastic or
acoustic waves cannot propagate. Phononic crystals typically consist
of periodic arrangements of unit cells [5], whereas locally resonant
metamaterials rely on local resonance rather than periodicity to achieve
their unique properties. When periodicity is present, Bloch’s theorem
can be applied to calculate the band structure [6]. In locally resonant
elastic/acoustic metamaterials, hybridization between dispersion and
local resonance can generate local resonance band gaps [7]. In con-
trast, phononic crystals produce Bragg scattering band gaps due to
periodicity and impedance mismatches between unit cells [8].

These band gaps enable a wide range of applications, includ-
ing wave-guiding [9,10], filtering [11,12], wave localization [13,14],
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biomedical devices [15,16], and sound insulation [17,18]. Addition-
ally, locally resonant structures can exhibit unusual dynamic prop-
erties, such as negative effective parameters, including Poisson’s ra-
tio [19,20], mass density [21,22], and stiffness [23,24]. These proper-
ties facilitate novel applications in areas such as cloaking [25,26] and
focusing [27,28].

The unique properties of metamaterials arise not from the intrinsic
characteristics of the constituent materials, but from their precisely
engineered shape, unit cell type, geometry, size, orientation, and ar-
rangement. These factors can impact not only the functionality, but also
the feasibility of mass production, making the selection process crucial
in both research and industrial applications [29-33]. For instance,
the study of different unit cells with various symmetries and scatter-
ers of shapes such as hexagons, circles, squares, and triangles, along
with their orientations and sizes, shows that for triangular, square,
and honeycomb lattices, the most significant absolute phononic band
gap (PBG) can be achieved by using rods with shapes that match
the coordination polygons of the lattice points: hexagonal rods in
triangular lattices, square rods in square lattices, and triangular rods
in honeycomb lattices. In another study, a spider-web metamaterial
structure was proposed, in which circular elements were embedded
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within a supporting frame to induce a phononic band gap; the effects of
material parameters were systematically investigated by employing
either identical or distinct material properties for the spider-web struc-
ture and the frame [34]. Moreover, the band gap can be altered by
changing the orientation and size of the scatterers [35]. By adjusting
geometrical parameters, such as the pillar height in a square lattice of
cylindrical pillars on a substrate, it is possible to create multiple band
gaps. As the height of the pillars increases, the frequency bands shift
to lower frequencies, and new band gaps appear [36]. Additionally,
altering the height of the stubs within the phononic plate can influence
the formation of the band gap. Increasing the height of the stubs leads
to the formation of a Dirac cone, breaking the inversion symmetry, and
resulting in a complete band gap [37]. Furthermore, studies of three-
dimensional helical metamaterial tapered rods with different radii show
that increasing the initial radius while reducing both the residual radius
and the tapered helical region can enhance the local resonance effect,
effectively broadening the band gap [38].

Various geometries have been explored to influence the band gap
of phononic metamaterials, with spiral resonators being one that has
attracted significant attention from researchers [39]. Spiral patterns
are significant not only in nature but also in science due to their
unique structural and functional properties. In nature, spiral patterns
are prevalent in various forms, such as the arrangement of sunflower
seeds, the shells of mollusks, and the growth of galaxies [40,41].
Beyond their natural occurrences, spirals play a crucial role in scientific
and engineering disciplines. In materials science, spiral geometries are
utilized in the design of metamaterials to achieve desired resonant
behaviors and manipulate wave propagation. While Archimedes first
studied spiral curves in the third century BC, researchers today continue
to explore their complexity and applications [41-44].

Periodic spiral resonators with various patterns have been inves-
tigated numerically and experimentally in phononic crystals for low-
frequency band gaps. For instance, a phononic crystal plate with an
Archimedean spiral resonator having a fixed steel cylinder in its center
has been proposed to observe a band gap in the lower frequency
range (42-150 Hz). When the frequency of incident elastic waves
approaches the natural frequencies of the internal spring-mass sys-
tem, local resonance is triggered, generating a reactive force that
opposes the harmonic wave excitation on the plate. This interaction
reduces or cancels out the plate’s vibration, preventing elastic waves
near the natural resonance frequencies from propagating through the
phononic crystal, leading to the formation of low-frequency band gaps.
It has been shown that the edges of the band gap can be modulated
by varying the geometrical parameters such as the thickness of the
plate, the angle of the spiral beam, the width of the spiral beam,
the radius of the cylinder, and the height of the cylinder [45]. In
another study, multiple Archimedean spirals within a square honey-
comb structure were studied for low-frequency band gaps. This model
created multiple complete band gaps below 500 Hz. Results have
shown that by adjusting the spiral arrangement, spiral geometry, and
material parameters, the position and width of the frequency band
gaps can be optimized. This model has potential applications in noise
and vibration control [46]. Additionally, by modulating spiral param-
eters such as chirality, rotation angle, number of turns, and spiral
thickness, topological properties can be achieved, specifically Berry
curvature and valley Chern number [47]. Other Archimedean spiral
unit cells have been reported for various applications, including wave
localization at extremely low frequencies [48], designing metasurfaces
as haptic interfaces [49], low-frequency vibration and noise reduc-
tion [45], reprogramming nonlinear metamaterials on-the-fly with no
moving parts [50], isolating low-frequency vibrations (15-45 Hz) to
protect electronic devices and precision instruments on ships [51], and
realizing a topological transition [52].

There are other studies that have investigated different spiral pat-
terns, such as square spirals, as local resonant phononic crystals to
achieve low-frequency band gaps. These include local resonant
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phononic crystals with four square spiral elastic beams surrounding
a square inclusion [53], square spirals with four circles inside [54],
square spirals connecting a square frame to an internal base with a
cylinder mounted on the base [55], double square spirals surrounding
a square inclusion [56], and three square spiral rings covered by a
square frame with a square scatter in the middle of the unit cell [57].
These studies have examined how various parameters, such as spiral
beam thickness, side length of the spiral, length of the elastic beam
base, number of turns, radius of the inner arc, thickness of the central
mass, and the number of parasitic beam segments, affect the band gap.
The proposed models have potential applications in vibration energy
harvesting devices, vibration filtering systems, vibration attenuation
and sound insulation.

Several other spiral-based phononic crystals and elastic/acoustic
metamaterials have been reported in the literature. For instance, a
spiral rod—-mass unit cell has been proposed, demonstrating a large band
gap at low frequencies. This structure exhibits static effective stiffness,
confirming its suitability for practical applications [58]. Fibonacci-
array-inspired metamaterials, composed of metamaterial bricks with
unique physical mechanisms, have also been developed. These struc-
tures demonstrate low-frequency sound absorption capabilities, with
potential applications in customizable absorption, scalability, and ease
of manufacturing [59]. Additionally, a spiral shaft-based metamaterial
has been introduced to manipulate vibration transmission characteris-
tics, enabling applications in unidirectional vibration isolation bushings
across a wide frequency range [60].

Several methods such as plane-wave expansion (PWE) [61-63],
finite-difference time-domain (FDTD) [64-66], lumped mass [67-69],
wavelet-based [70-72], multiple scattering theory (MST) [73-75],
transfer matrix [76-78], energy [79-81], and reduced-order mod-
els [82-84] have been employed to predict phonon dispersion curves.
As phononic metamaterial structures are highly complex and present
considerable challenges in various domains, researchers have exten-
sively used finite element methods (FEM) [45-57,85-94] to address
the difficulties encountered in these applications.

Additionally, topology optimization is widely used to enhance the
design of phononic and photonic crystals, as well as metamateri-
als [95]. Topology optimization, based on the FEM and genetic al-
gorithms, enables the design of two-dimensional phononic crystals to
maximize the relative width of their band gaps [96]. Parameter opti-
mization techniques have also been applied to web-inspired phononic
crystals to achieve maximum band gap widths [97]. Furthermore,
artificial intelligence (AI)-based approaches for predicting dispersion
curves in phononic crystals are often integrated with optimization
methods to enhance design efficiency [98] or to optimize the design of
metamaterials in order to maximize stiffness and Poisson’s ratio, while
minimizing the thermal expansion coefficient in all directions [99].
Moreover, in recent years, machine learning has emerged as a promis-
ing artificial intelligence technique to address various challenges in
phononic metamaterials [100-104]. This approach involves algorithms
that automatically analyze data, identify underlying patterns, and use
these patterns to predict unknown data [105,106].

Machine learning (ML) methods, such as neural networks, can
represent these learned patterns through continuous and differentiable
functions, enabling rapid and precise problem-solving. This makes
machine learning a valuable tool in developing efficient and accurate
solutions for phononic metamaterials [107-111]. For instance, the
properties of phononic crystals can be predicted using various ma-
chine learning algorithms, including logistic/linear regression, random
forests, and artificial neural networks [112]. Additionally, a data-
driven approach for designing phononic crystals has been proposed,
leveraging image-based finite element analysis and deep learning tech-
niques [113]. The predictive performance of some of these machine
learning models depends on the quality and size of the training dataset.
To address limited data in machine learning one can use transfer
learning, which utilizes knowledge gained from one problem to solve
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Fig. 1. Concept: (a) An Archimedean spiral with its parameters. (b) Generating datasets
to create different spiral shapes using Latin Hypercube Sampling (LHS). (¢) Numerically
computing the dispersion curves for all the spiral unit cells. (d) Performing band gap
analysis, including the number of band gaps, band gap width, and rank correlation, for
the proposed unit cells. (e) Predicting band gaps for different spiral geometries using
a neural network.

a related problem, offering the benefits of faster convergence and
improved prediction accuracy [114-116]

Previous research has focused on single spiral geometries (e.g.,
Archimedes or Square) and has studied the effect of variations in spiral
parameters to compute the phononic band gap for various applications.
However, studying and predicting the band gap properties of different
complex-shaped spiral resonators remains a challenging issue. The
hypotheses for this paper are: (1) there is a similarity between different
spiral patterns with respect to the number of band gaps; (2) it is
possible to predict the band gap of various spiral patterns; and (3) it is
possible to predict the band gap of new spiral types using knowledge
from known spiral patterns, even with a limited amount of data for
training the ML model. To achieve this, we first generate datasets
for various spiral patterns and study their dynamics by numerically
computing their dispersion curves. Then, we perform a comparative
analysis of these spiral patterns in terms of the number of band gaps,
band gap width, and rank correlation. After that, we predict the band
gap regions of different spiral geometry unit cells using neural network
architectures. Finally, we develop a model for predicting the band gap
of new spiral patterns using limited training datasets by transferring
knowledge from known spiral patterns.

The remainder of this paper is organized as follows: Section 2 begins
with Section 2.1, data generation, followed by Section 2.2 a detailed
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analysis of the unit cell and Section 2.3 numerical simulations. Section
3 presents an Analysis of similarities in geometry-property relationship
across spiral types. Section 4 introduces band gap prediction by lever-
aging data from different spiral types. Finally, Section 5 concludes the

paper.
2. Methodology and computational framework

The proposed framework consists of four steps:

(1) Generating spiral patterns by sampling the parameterized design
space (Fig. 1)(b).

(2) Obtaining dispersion curves for all samples through numerical
computation (Fig. 1)(c).

(3) Conducting data analysis to understand the similarities in
structure—property relationships across various spiral types (Fig. 1)(d).

(4) Validating the hypothesis that data from known spiral types can
improve property prediction for new types using transfer learning (Fig.

1)(e).
2.1. Data generation

To generate the data for this study, we create spiral patterns by
sampling the parameterized design space defined by cutting width (0.9
to 3), inner radius (0.01 to 0.35), and the number of turns (1 to 10),
as shown in Fig. 1(a) using Latin Hypercube Sampling (LHS) [117],
while keeping other parameters, such as orientation, outer radius, and
unit cell size, fixed. For instance, to generate the Archimedean spiral
shape, we use the equation of the spiral which can be written in polar
coordinates:

r(s)= R—(R—r)s, ¢(s) =2xns @

where r is the inner radius, R is the outer radius, »n is the number
of turns; in regular polygon-based spirals, each turn of the spiral
corresponds to one complete traversal around the polygon. Therefore,
the number of sides of the polygon directly relates to the number of
turns in the spiral. For instance, a regular polygon with four sides
(e.g., a square) will complete one full turn after traversing all four sides.

LHS divides the range of each parameter into N = 60 equally
probable intervals, ensuring that each sample covers a unique region
of the parameter space:

x;;=a;+u;-(b;—a)) (2)

where x;; is the sampled value for parameter j at sample i, a; and b; are
the lower and upper bounds of the jth dimension, and u;; is a uniformly
random number in [0, 1]. Instead of random sampling, the center of
each interval can be used to generate sample points. In this case, the
equation for each point is:

a; +b;
Xy = J . J 3)

To ensure uniformity, we employed the ‘center’ criterion, placing
samples at the midpoints of these intervals, which promotes an even
distribution across each parameter’s range. A random permutation of
the midpoints across parameters ensures the Latin property, guaran-
teeing that each interval is sampled exactly once per parameter, thus
enhancing representativeness. This approach, visualized in a 3D scatter
plot, confirms a uniform and representative distribution of the 60
samples across the parameter space, enabling robust exploration of
spiral pattern variations for unit cell design.

To create 60 samples for each spiral pattern, we follow two steps:
(1) LHS sample set with shared input parameter values, and (2) LHS
sample set with unique input parameter values. This approach allows
us not only to study and compare trends across all patterns but also to
generate more data. Fig. 2(a) shows that LHS is used to generate 60
sample datasets for each spiral pattern, and one example of each spiral
pattern is shown in Fig. 2(b). Additionally, we use the LHS sample set
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Fig. 2. Generating sixty datasets (a) using LHS sample set with shared input parameters
for seven spiral patterns. One example of each pattern is shown inside a unit cell.

with unique input parameter values to generate 60 sample datasets for
each spiral pattern, as illustrated in Fig. A.1 in Appendix A. In total, 840
sample datasets are generated using LHS to design the unit cells. Then,
we use these sample datasets to generate spiral patterns with MATLAB
version R2023b. Finally, we save the output patterns as images for
conversion into solid unit cells.

2.2. Unit cell analysis

To study the dynamics of all proposed spiral-based unit cell meta-
materials, we assume an infinite repetition of each unit cell in space,
implementing a Bloch solution [118] in the following form:

u(x, k3 1) = b(x, k)e'*x=) )]

where @ represents the Bloch displacement vector, x is the position
vector, « is the wave number, ® is the frequency, and ¢ is time. By
utilizing the Bloch solution, we express the dispersion relation as an
eigenvalue problem in the following form:

[—®M +K()u=0 (5)

where M, K are the mass and stiffness matrices, respectively. We calcu-
late the dispersion curves, which correlate frequency and wavenumber,
for our unit cells by solving the formulated eigenvalue problem. To
compute these dispersion curves, we calculated the eigenfrequencies for
a given reciprocal wave vector, sweeping along the edge (I"-X /Y-M-I")
of the Brillouin zone, using the finite element method in COMSOL
Multiphysics version 6.1. Our unit cell is square, with dimensions of
x = y = 10mm. The material of the unit cell is acrylic, with a Young’s
modulus of E = 3.2026 x 10° Pa, density p = 1180 kg/m>, and Poisson’s
ratio v = 0.35.

2.3. Numerical simulation

To obtain the band structures for all spiral patterns, we first need
to convert all 840 images into solid geometry. The workflow for this
conversion, including steps (i) to (vi), is illustrated in Fig. A.2(a) in
Appendix A. We begin by using the image-to-curve add-in, which
allows us to use an image as the starting point for our analysis. Next,
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we generate an interpolation curve from a contour plot of the imported
image using the add-in. This curve can then serve as a component
within the geometry. Afterward, we add a solid square unit cell and
use the Difference tool to subtract the solid spiral from the unit cell.
Finally, we create a mesh for the unit cell. The finer mesh leads to
higher computational time and can also impact the accuracy of the
predicted band gap [119-121]. Therefore, depending on the problem
and geometry type, we employ an appropriate meshing technique.
In this study, we examine pixel and conformal meshes and select
the technique that provides the most accurate dispersion curves. The
conformal mesh proves to be the most effective, as shown in Fig.
A.2(b-c).

We numerically compute the dispersion curves of the 840 spiral
geometries created in the previous step. An example of the numerically
computed dispersion curves for selected patterns from Fig. 2(b) is
shown in Fig. 3. To further analyze and utilize all the output data, we
normalize the frequency on the dispersion curves using the following
equation:

; . _ _ f—min(f)

normalized max(f) — min(f)
where f is original eigenfrequency values, min(f) is the minimum
value in the dataset, and max(f) is the maximum value in the dataset.
The color-coded vector next to each dispersion curve indicates the pass
band, highlighted in blue, while the magenta-shaded region highlights
the frequency ranges of the band gaps. We discretize the vector into
0 s and 1 s, representing the pass bands and band gaps, respectively,
with an increment of 0.1. It is important to note that if the frequency
range between two adjacent band gaps is very close, the band gaps are
merged. This simplification facilitates tracking all the bands for further
analysis and predictions.

©

3. Analysis of similarities in geometry-property relationship
across spiral types

After computing the dispersion curves for all the proposed spiral
patterns, our goal is to obtain a quantitative understanding of the sim-
ilarities in the geometry-property relationship across various types of
spirals and quantify the similarities using Spearman’s rank correlation
coefficient [122]. This coefficient quantifies the degree of association
between two ranked variables by comparing their ranks rather than
their actual values. To guide metamaterial design effectively, we use
rank correlation because it allows us to assess the relationships be-
tween geometric features such as spiral shape and their corresponding
material properties like band gap counts and widths without being
influenced by outliers or the specific values of the properties. We
examine the correlation between band gap counts and band gap widths
to understand how these characteristics relate among the various spiral
patterns using the following equation:

3L,

n(n? -1)
where d; is the difference between the ranks of each pair of values, and
n is the number of observations. The coefficient, denoted by p, ranges
from —1 to 1. A value of p = 1 indicates a perfect positive correlation,
p = —1 indicates a perfect negative correlation, and p = 0 indicates no
correlation. To count the number of band gaps and calculate the band
gap width, we use the following equations:

p=1 (7)

n

C=) 1) ®)
i=1

where I(b;) is an indicator function that returns 1 if a band gap is

present and O otherwise.

W = fend = fstart )]

where foq and fg, are the frequencies at the end and start of the
band gap, respectively.
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Fig. 3. Example of (a) unit cells with different spiral geometries created from the same LHS. (b) Numerically computed dispersion curves for infinitely repeated unit cells. The
frequency of all dispersion curves is normalized to provide consistent output for further analysis. The color-coded vectors for each dispersion curve, shown next to each plot,
represent pass bands and band gap details. These vectors are later discretized for band gap detail analysis and band gap prediction. Each dispersion curve indicates the pass band,

highlighted in blue, while the magenta-shaded regions highlight the frequency ranges of the band gaps.

reader is referred to the web version of this article.)

The Spearman’s rank correlation is computed for both band gap
counts Fig. 4(a) and widths Fig. 4(b) for seven distinct geometric pat-
terns: Archimedean spiral, octagon, rotated octagon, hexagon, rotated
hexagon, square, and rotated square. These correlation coefficients
provided a quantitative basis to assess the degree of similarity in
band gap characteristics between different geometrical structures. The
analysis shows strong positive correlations in band gap counts among
most geometrical patterns. The Archimedean spiral and octagon exhibit
a strong positive correlation of p = 0.87, suggesting synchronized
occurrence of band gaps despite their differing geometries. In contrast,
the highest correlation of p = 0.96 between the rotated octagon and
octagon indicates that rotation minimally affects band gap counts.
Suggesting that the symmetry in pattern contributes to stable band
gap formation. Similarly, the hexagon and rotated hexagon show a
high correlation of p = 0.86, implying that geometric rotation has
limited effects on band gap counts in hexagonal structures. The square
and rotated square also demonstrate a significant correlation of p =
0.83, reinforcing the idea that rotations minimally influence band gap
occurrences. The correlation p = 0.84 between the rotated hexagon and
rotated square suggests a close relationship in their band gap counts,
despite their differing geometries. Notably, the correlation p = 0.88
between the octagon and hexagon reflects a strong similarity in band
gap behavior, despite their different side counts. Lastly, the strong
correlation of p = 0.90 between the Archimedean spiral and rotated
octagon shows a strong positive relationship, which is notable given
the structural differences between these shapes.

(For interpretation of the references to color in this figure legend, the

In contrast to the band gap counts, the reordered Spearman’s rank
correlation matrix for band gap widths reveals more diverse relation-
ships. The negative correlation of p = —0.024 between the Archimedean
spiral and octagon suggests that, despite similar band gap counts,
the widths of the band gaps differ considerably. Similarly, the low
correlation of p = 0.013 between the rotated octagon and octagon
further indicates that while band gap counts are nearly identical, their
widths are not closely aligned. A negative correlation of p = —0.10
between the hexagon and rotated hexagon indicates that the band
gap widths are inversely related, and even slight geometric rotation
can significantly affect band gap width distribution. In contrast, the
positive correlation of p = 0.23 between the rotated hexagon and
rotated square indicates similarities in band gap widths distribution,
despite their different shapes. Similarly, a correlation of p = 0.21
between the octagon and hexagon suggests that, despite structural
differences, they also share similarities in band gap width distribution.
Additionally, the moderate positive correlation of p = 0.18 between the
Archimedean spiral and hexagon suggests some alignment in band gap
widths, despite their distinct structures. Lastly, the negative correlation
of p = —0.041 between the square and rotated square indicates that
while their band gap counts are close, rotation significantly impacts
width distribution.

We observed that geometric rotation minimally impacts band gap
counts across similar patterns, such as a rotated octagon and octagon.
The Archimedean spiral, despite not being a polygon-based spiral,
exhibits a high correlation and shares certain geometric properties
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Fig. 4. Spearman’s Rank correlation coefficient analysis. (a) Correlation between band
gap counts and (b) correlation between band gap widths. These heat maps visualize the
strength and direction of monotonic relationships between band gap counts and their
widths, with color intensity representing the degree of correlation. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

regarding band gap counts with all patterns. Polygon-based spirals, like
the octagon and hexagon, demonstrate a high correlation despite their
differing geometries and number of sides.

However, band gap widths exhibit greater variability between pat-
terns, suggesting that structural differences, such as shape (change
in spiral parameters) and rotation, play a more significant role in
determining gap widths. Overall, while polygon-based spirals show
a correlation in band gap counts, they exhibit minimal or even in-
verse correlation in band gap widths, with only a moderate correla-
tion observed between the hexagon and octagon. Despite not being
a polygon-based spiral, the Archimedean spiral shows minimal or in-
verse correlation in band gap widths with all patterns, except for the
hexagon.

The weak correlation observed in band gap width can be attributed
to the complex influence of geometric parameters on the band struc-
ture. Specifically, changes in parameters such as the number of turns,
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inner radius, and cutting width significantly affect both the position
and width of the band gaps. For example, increasing the number of
turns while keeping other parameters constant tends to shift the band
gaps to lower frequencies and reduce their width, while decreasing
the number of turns has the opposite effect. Similarly, reducing the
inner radius results in a higher frequency shift and an increase in band
gap width, whereas increasing the inner radius lowers the band gap
frequency and narrows the width. Adjusting the cutting width also
impacts the band gap characteristics: a larger cutting width shifts the
band gap to lower frequencies and narrows the width, while a smaller
width raises the band gap frequency and broadens it. It should be noted
that the shift in band gap frequency is primarily due to changes in
the effective stiffness within the core of the unit cells. Altering the
geometric parameters modifies the internal structure, thereby affecting
the local stiffness and consequently the dynamic response of the unit
cell. Despite these variations in band gap position and width, the total
number of band gaps tends to remain relatively similar or close across
different geometries, which explains the stronger correlation observed
in band gap count.

4. Band gap prediction by leveraging data from different spiral
types

After analyzing the correlations among all spiral patterns, we con-
firm our hypothesis that similarities exist between them. This section
aims to demonstrate the feasibility of leveraging data of known spiral
types to enhance the prediction accuracy of band gaps of new spiral

types.
4.1. General idea of neural network models

Building on the insights gained from our analysis of the correlations
among spiral patterns, we establish different neural network models
to predict their band gaps. To do this, we start with two models:
Baseline 1 (B1) and Baseline 2 (B2). We use the B1 model to train on all
seven spiral patterns, totaling 840 datasets (see Fig. 5(a)). For the B2
model, we use the same neural network to train on three spiral types of
interest: (i) Archimedean, (ii) Octagon, and (iii) Square. Each pattern
has 120 datasets, as illustrated in Fig. 5(b). To enhance the accuracy of
the band gap prediction, we first employ Transfer Learning Preliminary
(TLP) to train on data excluding the spiral types of interest (see Fig. 5(c)
(i-iii)). We then introduce Transfer Learning (TL) model to train on
small datasets of 120 for each spiral type of interest (i-iii). This model
leverages knowledge from the different spiral configurations to enhance
the band gap prediction of unknown spiral patterns. The models include
an input layer that consists of specific parameters of spiral geometry,
such as cutting width, inner radius, and the number of turns, as shown
in Fig. 1(a). Additionally, we have included one extra variable labeled
as pattern type, which ranges from 0 to 6, ensuring representation
of each pattern type in both the training and testing sets. Detailed
descriptions of the B1, B2, and TL models’ architectures and training
procedures are provided in Appendix B.

Data preparation involves normalizing the input data using Min—
Max scaling:

X - Xmin

Xmax - Xmin

X,

norm =

10)

where X is the original feature value, X ;, and X,,., are the minimum
and maximum values of the feature in the datasets, respectively. It
ensures all features contribute equally by scaling them to the same
range. The neural network architecture includes six dense layers with
ReLU activation functions as hidden layers. Batch normalization and
dropout layers are applied after each dense layer to enhance general-
ization and prevent overfitting. For the output, we focus on quantifying
and comparing consecutive sequences of positive instances, referred to
as band gaps, in binary classification datasets. The process involves
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Fig. 5. Architecture of three neural network models. (a) Baseline 1 (B1): This model is trained using seven different spiral patterns, each with 120 data points, resulting in a
total of 840 datasets. (b) Baseline 2 (B2): This model is trained separately on three spiral types of interest: (i) Archimedean, (ii) Octagon, and (iii) Square, with each having 120
datasets. (c) Transfer Learning preliminary (TLP): The model is trained in three separate steps: (i) on all spiral patterns excluding Archimedean (720 datasets in total), (ii) on all
spiral patterns excluding Octagon (720 datasets in total), and (iii) on all spiral patterns excluding Square (720 datasets in total). Transfer Learning (TL): Transferring knowledge
from the TLP model to the TL model to enhance the accuracy of the band gap prediction for three spiral types of interest using limited training data (each having 120 datasets).
In the transfer learning model, all layers of the trained model are frozen except the last one, where a new layer is added and trained as the final layer. For each model, 80% of

the data is used for training and 20% is used for testing for each pattern.

counting these band gaps separately for actual and predicted data. For
the actual data, we identify sequences of consecutive 1 s by traversing
through indices where the true values are 1. We count the length of
each sequence to determine the number of band gaps. Similarly, for
the predicted data, we analyze the predicted 1 s and their overlap
with actual 1 s to count the number of predicted band gaps. By
comparing these counts, we evaluate the model’s accuracy in detecting
and predicting consecutive sequences of positive instances, providing
insight into the model’s performance and areas for improvement. For
training the neural network, we use a batch size of 64 and train for
2000 epochs.

4.2. Specific test cases

To predict the band gaps of all spiral patterns, we set up our
computational experiments as follows. In model B1, we allocate 80%
of the datasets for training and 20% for testing for each of the seven
known spiral patterns. For model B2, we consider 80% of the datasets
for training and 20% for testing for three known spiral types of in-
terest: (i) Archimedean, (ii) Octagon, and (iii) Square. Furthermore,
we introduce three TLP models to predict band gaps of various spiral
patterns. The first model trains on six known spiral patterns, excluding
Archimedean; the second model trains on six known spiral patterns,
excluding Octagon; and the third model trains on six known spiral
patterns, excluding Square. In all three models, we allocate 80% of
the datasets for training and 20% for testing for each spiral pattern.
To improve the accuracy of the band gap predictions, we transfer five

Table 1
Performance of three different models in predicting the validation set for Archimedean
spirals.

Performance metric Baseline 1 Baseline 2 TL

Accuracy 0.917 0.910 0.908
Recall 0.439 0.418 0.538
Precision 0.593 0.544 0.518
F1 score 0.504 0.473 0.528

layers from TLP model to the TL model and discard the last layer. Only
the newly added layer is trainable. These steps allow us to transfer
knowledge from known spiral patterns to enhance the accuracy of the
band gap prediction of three unknown spiral patterns: (i) Archimedean,
(ii) Octagon, and (iii) Square.

4.3. Results of test cases

To evaluate the performance of our neural network models, we
employ several metrics and visualizations on the test set. We calculate
accuracy, recall, precision, and the F1 score to assess classification
performance [123]. Accuracy provides a measure of overall correctness,
while recall and precision assess the model’s ability to identify positive
instances. The F1 score combines these metrics into a single value that
balances precision and recall.

Our analysis shows the comparative performance of three different
models, B1, B2, and TL, on predicting validation sets for three spiral
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Table 2

Performance of three different models in predicting the validation set for Octagon
spirals.

Performance metric Baseline 1 Baseline 2 TL

Accuracy 0.925 0.916 0.941
Recall 0.337 0.377 0.516
Precision 0.389 0.343 0.530
F1 score 0.361 0.359 0.523

Table 3
Performance of three different models in predicting the validation set for Square
spirals.

Performance metric Baseline 1 Baseline 2 TL

Accuracy 0.989 0.980 0.989
Recall 0.650 0.620 0.750
Precision 0.680 0.540 0.652
F1 score 0.660 0.580 0.697

types of interest: Archimedean spirals (Table 1), Octagon spirals (Table
2), and Square spirals (Table 3). In each table, B1 and B2 focus on
general prediction accuracy for known spirals, while TL is designed
to predict accuracy for unknown spirals. For the Archimedean spiral
pattern, as shown in Table 1, the TL model performs slightly better than
B1 and B2 in terms of F1 score, achieving a value of 0.528 compared
to B1’s 0.504 and B2’s 0.473. While the accuracy of TL is marginally
lower than B1 for known spirals, it outperforms in recall (0.538) and
F1 (0.528). This suggests that, although B1 has the highest accuracy
(0.917) for known spirals, TL shows a more balanced performance
across recall, precision, and F1 score. This indicates its robustness
in handling both false positives and false negatives when predicting
unknown spirals.

For Octagon spirals, Table 2 indicates that TL again achieves supe-
rior results for unknown spirals, with the highest F1 score of 0.523,
compared to B1 (0.361) and B2 (0.359) for known spirals. TL also
excels in recall (0.516) and precision (0.530), suggesting better pre-
dictive capability for this pattern type among unknown spirals. The
accuracy values for all models are comparable, with TL slightly outper-
forming the other models at 0.941. For Square spirals, both B1 and TL
exhibit identical accuracies of 0.989 for known and unknown spirals,
respectively, indicating that they predict the same number of correct
instances overall. However, TL significantly outperforms B1 and B2 in
recall (0.750) and F1 score (0.697) for unknown spirals, suggesting
that TL is more effective at identifying true positive instances, while
also maintaining strong performance in identifying true negatives,
particularly those that are harder to detect.

Across all three tables, the TL model consistently demonstrates
strong performance in identifying unknown spirals. While B1 occasion-
ally achieves higher accuracy for known spirals, TL’s balanced results

in recall, precision, and F1 score indicate superior pattern recogni-
tion. Additionally, TL’s robust feature learning from pre-trained models
enhances its ability to generalize across various geometrical patterns,
making it a more reliable choice for predicting band gaps.

The band gap prediction results for the Archimedean spiral, as
shown in Fig. 6(a), indicate that the actual number of band gaps is
92. B1 and B2 underperform significantly, with B1 predicting 38 band
gaps and B2 slightly better at 42 for known spirals. In contrast, the TL
model demonstrates stronger predictive power by identifying 55 band
gaps for unknown spirals. Although this still falls short of the actual
count, TL shows a clear improvement over Bl and B2, highlighting
its superior ability to capture the underlying patterns in this dataset.
For the Octagon spiral, illustrated in Fig. 6(b), the models again show
varying levels of prediction accuracy. The actual number of band gaps
is 58. B1 predicts 30 band gaps, while B2 is slightly lower at 27, both of
which considerably underpredict for known spirals. TL performs better,
predicting 32 band gaps for the unknown spirals, demonstrating its
effectiveness in this context. In the case of the Square spiral, the actual
number of band gaps is 30, as illustrated in Fig. 6(c). Both B1 and B2
predict 23 band gaps for known spirals. TL, on the other hand, performs
better, predicting 24 band gaps and coming closest to the actual value.
Here, the predictions made by all three models are relatively close to
the actual count, with TL demonstrating the highest degree of accuracy.
Overall, these results indicate that while B1 and B2 excel in accuracy
for known spirals, the TL model is the most effective in balancing
prediction accuracy with recall and precision for unknown spirals. This
comparison underscores the importance of evaluating multiple metrics
when selecting a model for predictive tasks, particularly when handling
geometrically complex patterns like spirals.

We also analyze the percentage of band gap predictions across
different models for the spiral types of interest: Archimedean, Octagon,
and Square. The results indicate that 20% of the hidden test sets are
used for both known and unknown spiral patterns, as shown in Fig. 7.
For the Archimedean spirals (Fig. 7(a)), B1 accurately predicts 100%
of the band gaps in 13 cases, with a total of 15 predictions exceeding
50% accuracy and 9 falling below 50%. B2 demonstrates slightly better
performance, predicting 100% of the band gaps in 14 cases, with a total
of 15 predictions above 50% accuracy and 9 below 50%. The TL model
performs best, achieving 100% prediction accuracy in 14 cases, with
18 predictions above 50% and only 6 below 50% for unknown spirals.
For the Octagon spirals (Fig. 7(b)), B1 correctly predicts 100% of the
band gaps in 14 cases, with 17 predictions exceeding 50% accuracy
and 7 below 50%. B2 achieves 100% accuracy in 12 cases, with 15
predictions above 50% and 9 below 50%. Once again, the TL model
outperforms the others, achieving 100% prediction accuracy in 15
cases, with 18 predictions above 50% and 6 below 50%. This reinforces
TL’s capability to predict unknown spirals effectively. In the case of the
Square spirals (Fig. 7(c)), both Bl and B2 successfully predict 100%
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of the band gaps in 19 cases, with all 19 predictions exceeding 50%
accuracy and only 5 predictions below 50% for known spirals. The TL
model shows strong performance with 100% accuracy in 20 cases, with
20 predictions exceeding 50% accuracy and only 4 predictions below
50% for unknown spirals.

It is worth noting that in the B1 and B2 models, there are instances
across all three spirals where the models are unable to predict any band
gaps for some datasets. In contrast, the TL model demonstrates better
performance by successfully predicting those band gaps that are missed
by B1 and B2, highlighting its robustness in dealing with unknown
spirals.

The superior performance of the TL model can be attributed to its
ability to reuse abstract feature representations learned from related
spiral geometries during the preliminary phase. These features, such as
the influence of spiral parameters on the band gap, allow the model
to generalize better to unseen spiral types, even with limited training
data. This capability is particularly critical in phononic metamaterials,
where generating large datasets through finite element simulations is
computationally expensive. By transferring knowledge from a related
but different task, TL captures nuanced structural-property relation-
ships, such as variations in band gap width, which are often missed
by models (B1 and B2) trained from scratch. Furthermore, in practical
applications like wave filtering or vibration isolation, TL’s ability to
accurately predict band gaps with minimal data makes it a highly
efficient tool for the rapid design of novel metamaterial structures.

5. Conclusions

This study provides a comprehensive analysis of band gap prop-
erties in phononic metamaterials featuring various spiral geometries,
specifically Archimedean, Octagon, Hexagon, and Square spirals. By
generating synthetic data for these spiral patterns and conducting
extensive computational analyses, we examine key aspects such as
band gap width, count, and rank correlation. Our findings reveal that
Archimedean spirals have a high correlation with all spiral patterns
in terms of band gap counts. Notably, the correlation between band
gap widths for different spiral geometries is less consistent, reflecting
how variations in geometry can affect the distribution of band gaps
across the frequency spectrum. The Spearman’s rank correlation anal-
ysis highlights that geometric rotation has minimal impact on band
gap counts. In addition to our analysis, we leverage knowledge from

known spiral patterns to improve the prediction accuracy of band gaps
for new types of spirals. The findings highlight that the TL model
consistently demonstrates superior predictive accuracy and a better
grasp of underlying patterns for unknown spiral patterns compared
to Bl and B2 across different known spiral patterns. While B1 and
B2 tend to significantly underpredict the number of band gaps, the
TL model exhibits a more refined understanding of the data, leading
to predictions that are closer to the actual values, even with a small
dataset. This indicates that TL’s approach is more adept at capturing
the complexities of the dataset and providing more reliable predictions,
especially in scenarios where precise pattern recognition is crucial.
Overall, this research underscores the critical role of geometric patterns
in influencing the dynamic properties of phononic metamaterials. By
offering a detailed comparison of various spiral geometries and their
effects on band gap characteristics, our study provides valuable insights
that can guide the design and optimization of phononic materials. This
contribution paves the way for more targeted and efficient applications
in wave manipulation.
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Fig. A.1. Generating sixty datasets using LHS sample set with unique input parameter values for seven spiral patterns. One example of each pattern is shown inside a unit cell.

Appendix A. Data generation, workflow, and mesh selection for
spiral geometries

We use LHS sample set with unique input parameter values to
generate 60 sample datasets for each spiral pattern. Fig. A.1 shows one
example of each spiral pattern generated using LHS sample set with
unique input parameter values.

Fig. A.2 shows the workflow for converting an image to solid ge-
ometry and selecting the appropriate mesh type for the proposed spiral
geometries. To select the appropriate mesh type for the generated spiral
geometries, we analyze various meshing techniques and compare their
effectiveness. We first start by analyzing the dyanmics of the unit cell
that has rectilinear geometry, as shown in Fig. A.2(b). We analytically
and numerically compute the dispersion curves for the cross or plus
geometry using two different meshing techniques: pixel and conformal.
We obtain Similar dispersion curves for both methods, as shown in Fig.
A.2(b) (I) and (II). The question now arises: can we achieve the accurate
results for non-rectilinear geometries using the same methods? Next,
we consider the spiral pattern and repeat the simulations using both
meshing techniques. The results show that (I) there is a discrepancy in
the dispersion curves when using the pixel mesh, as it fails to capture
all areas of the curved pattern, which alters the cutting width within
the spiral geometry and impacts the dispersion branches. However, (II)
the conformal mesh captures more details, resulting in more accurate
dispersion curves, as shown in Fig. A.2(c)

Appendix B. Machine learning models

B.1. Baseline 1 (B1)

The neural network consists of six fully connected hidden layers
with varying sizes: 128 units in the first and last layers, 512 units
in the second and third layers, and 256 units in the fourth and fifth
layers. Each hidden layer is followed by a Batch Normalization and a
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Dropout (with a rate of 0.3) to enhance training stability and mitigate
overfitting. The ReLU activation function is used in all hidden layers
to introduce non-linearity, while the output layer employs the sigmoid
activation function to independently produce probabilities for each of
the 101 output labels. The model is compiled using the binary cross-
entropy loss function and optimized with the Adam optimizer at an
initial learning rate of 0.001. A batch size of 64 and up to 2000 training
epochs were used to ensure full convergence. The input to the neural
network consists of 4 features per sample — three scaled using Min—
Max normalization and one categorical pattern type — while the output
consists of 101 binary labels, representing a multi-label classification
problem across 840 total samples.

B.2. Baseline 2 (B2)

The neural network consists of six fully connected hidden layers
with varying sizes: 128 units in the first and last layers, 512 units
in the second and third layers, and 256 units in the fourth and fifth
layers. Each hidden layer is followed by a Batch Normalization and a
Dropout (with a rate of 0.3) to stabilize training and reduce overfitting.
The ReLU activation function is used throughout all hidden layers to
introduce non-linearity, while the output layer uses a sigmoid activa-
tion function to independently predict probabilities for each of the 101
output labels. The model is compiled with the binary cross-entropy
loss function and optimized using the Adam optimizer with an initial
learning rate of 0.001. Training is conducted with a batch size of 64
over up to 2000 epochs. The input to the neural network consists of
3 features per sample, scaled using Min-Max normalization, and the
output consists of 101 binary labels per sample, forming a multi-label
classification task across 120 total samples.

B.3. Transfer Learning (TL)

We train a preliminary model on 720 samples of known spiral, the
model consists of six fully connected hidden layers with varying sizes:
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consistent for rectilinear geometry, while there is a discrepancy between the dispersion curves for non-rectilinear geometry when using pixel and conformal meshes.

128 units in the first and last layers, 512 units in the second and third
layers, and 256 units in the fourth and fifth layers. Each hidden layer
is followed by a Batch Normalization and a Dropout (with a rate of
0.3). The ReLU activation function is used throughout all hidden layers.
Training is carried out with a batch size of 64 for up to 2000 epochs.
The input to the neural network consists of 4 features per sample: three
scaled using Min-Max normalization and one pattern type, and the
output consists of 101 binary labels per sample, forming a multi-label
classification task across 720 total samples. For the transfer learning
approach, we adapt a pre-trained preliminary model to a new dataset of
120 samples. The new input data includes 4 features per sample: three
scaled using Min-Max normalization and one pattern type, while the
output remains a multi-label classification task with 101 binary labels
per sample. To retain previously learned feature representations, the
pre-trained model is transferred by setting all layers as non-trainable,
except the last layer before the output, which is removed and replaced
with new layers: a dense layer with 256 units, followed by Batch
Normalization and a Dropout layer with a rate of 0.3. The output layer,
a sigmoid-activated dense layer with 101 units remains structurally the
same as in the original model to maintain compatibility with the multi-
label task. Training on the new dataset is also conducted with a batch
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size of 64 for up to 2000 epochs, allowing the model to fine-tune on
the new data while preserving the generalized structure learned from
the original dataset.

Data availability

Data will be made available on request.
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