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Abstract
5G wireless networks leverage complex scheduling, retransmission,
and adaptation mechanisms to maximize their efficiency. These
mechanisms interact to produce significant fluctuations in uplink
and downlink capacity and latency, markedly impacting the the per-
formance of real-time communication and multimedia applications,
such as video conferencing. These applications are particularly
sensitive to such fluctuations, resulting in lag, stuttering, distorted
audio, and low video quality. In this paper, we present a cross-layer
view of 5G networks and their impact on and interaction with
video-conferencing applications. We conduct novel, detailed mea-
surements of both private CBRS and commercial carrier cellular
network dynamics, capturing physical- and link-layer events and
correlating them with their effects at the network and transport lay-
ers, and the video-conferencing application itself. Our two datasets
comprise days of low-rate campus-wide Zoom telemetry data, and
hours of high-rate, correlated WebRTC-network-5G telemetry data.
Based on these data, we trace performance anomalies back to root
causes, identifying 24 previously unknown causal event chains
that degrade 5G video conferencing. Armed with this knowledge,
we build Domino, a tool that automates this process and is user-
extensible to future wireless networks and interactive applications.
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1 Introduction
Real-time communication applications, such as interactive video
conferencing and telephony, are ubiquitous in today’s digital land-
scape, enabling seamless communication and collaboration across
distances. Over the past years, their use cases have expanded mas-
sively from video conferencing for business or education; today,
applications like FaceTime and WhatsApp are heavily used from
cellular devices and commonly replace regular phone calls [9, 21,
24, 27, 32]. Common across these real-time communication (RTC)
applications is a sensitivity to high and fluctuating latency and a
demand for stable throughput [9, 12, 31, 32, 37, 38].
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Fig. 1— Domino detects causality chains leading to perfor-
mance degradation from cross-layer measurements.

In contrast to traditional applications such as web browsing and
on-demand video streaming, RTC applications have several unique
characteristics. First, they rely on uplink bandwidth and link quality
since they involve bidirectional communication. Second, partici-
pants usually connect to the Internet from various locations, includ-
ing home, office, or public spaces, using different (often wireless)
access-network technologies such as cellular or Wi-Fi networks.
Last, where many other applications can tolerate some delay stem-
ming from retransmissions, RTC requires minimal packet loss and
low latency to maintain a satisfactory user experience.

Wireless networks are inherently complex, relying on schedul-
ing, duplexing, retransmission, and multiple-access mechanisms
that introduce significant fluctuations in available capacity and
latency [13, 29, 31, 33, 37, 38] which are particularly pronounced in
the 5G uplink (§2.1). RTC applications have mechanisms to adapt
to changing network conditions through congestion-control algo-
rithms (e.g., Google Congestion Control in WebRTC [5, 8]) that
adjust media quality and transmission rate based on live feedback
from receivers. Furthermore, applications leverage jitter buffers
to smooth out variations in packet-arrival times, ensuring a more
consistent user experience.

However, while these mechanisms are effective in many scenar-
ios, they are not sufficient for modern 5G cellular networks. Our
real-world, 500-day, campus-wide measurement dataset demon-
strates how video conferencing performs consistently worse over
cellular networks compared to wired networks and even Wi-Fi
(§2.2). The impact on user quality of experience (QoE) is signifi-
cant: even transient periods of increased delay can cause noticeable
lag in conversations, video stuttering, and distorted audio, heavily
degrading interactivity. Additionally, rapid fluctuations in link con-
ditions can mislead congestion-control algorithms, causing them to
overreact and unnecessarily throttle transmission rates, and cause
the jitter buffer to increase lag and hinder interactivity [11]. This
excessive throttling and slow recovery, combined with temporary
latency spikes, consistently leads to poor QoE for users.
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Dataset Configuration Duration Time Event Rate (per min.) VariablesType Frequency Bandwidth Duplex. DCI gNB Pkt. WebRTC

T-Mobile 1 Public 622.85 MHz 15 MHz FDD 120 min. Day 37941 0 98241 12976 227
30 min. Night 36469 0 120051 13154 227

T-Mobile 2 Public 2506.95 MHz 100 MHz TDD 120 min. Day 14052 0 119979 8664 227
30 min. Night 13731 0 129811 9759 227

Amarisoft Private 3547.20 MHz 20 MHz TDD 60 min. Day 29094 29094 96691 12143 247
Mosolabs Private 3630.72 MHz 20 MHz TDD 60 min. Day 31683 0 132215 9542 227

Zoom API (Organization-wide API data) 500 days Day+Night 1 62

Table 1— Overview of datasets used in this study: collection duration, event rates, and variable record sizes.

While the problem is well known [13, 17, 37, 38], the underly-
ing causes of these performance issues remain poorly understood.
In particular, it is crucial to move beyond anecdotal evidence and
systematically investigate the underlying causes. We need to un-
derstand how different types of 5G network effects—such as la-
tency spikes, bandwidth fluctuations, and retransmissions—impact
the performance of real-time communication applications. This re-
quires a comprehensive and methodical approach to measurement,
correlation, and analysis, capturing the full scope of cellular net-
work dynamics. By examining these effects across all layers, from
the intricacies of 5G to the high-level decision-making processes
in the application layer, we can develop a deeper understanding
of the challenges and potential solutions for improving real-time
application performance.

This paper presents Domino, a measurement framework and auto-
mated, cross-layer causal-chain detection tool that scrutinizes RTC
application performance by looking across all layers of the stack,
from the cellular physical and link layers, through the network and
transport layers, and ending at the RTC application itself (§4). This
enables a previously unprecedented cross-layer view of cellular
networks and their impact on video-conferencing applications. To
build this framework, we have conducted first-of-kind, detailed
measurements of WebRTC in cellular networks, capturing physical-
and link-layer events and correlating them with their effects at the
transport and application layers (Sections 3 and 4.1). WebRTC is
an open-source framework to build RTC applications that is imple-
mented in all major browsers andwidely used in video-conferencing
applications (VCA), including Google Meet and Microsoft Teams.
Our study encompasses both private 5G CBRS small cells and com-
mercial 5G networks operated by a major carrier, allowing for a
comprehensive analysis across different deployment scenarios.

From our measurements and a detailed analysis of 5G (§5) across
six datasets (Table 1), we identify a series of precise causal relation-
ships across layers, originating from events in the physical (PHY),
medium access control (MAC), and radio link control (RLC) layers
of the cellular Radio Access Network (RAN), leading to delays in the
network layer, impacting the operation of the RTC transport layer,
and finally terminating at multiple possible user-visible impacts at
the application layer. By bridging the gaps between low-level net-
work behavior and RTC application performance, Domino yields
valuable insights into the challenges faced by VCAs in cellular en-
vironments. In our commercial 5G dataset, Domino identifies an
average of approximately five video quality degradation events per
video session per minute, attributing these degradations primar-
ily to cross-traffic (28%), retransmissions (42%), and poor-quality
channels (12%). In our private 5G dataset, uplink scheduling delays

(36%) and poor quality channels (37%) dominate the causes.
Using these findings, we develop the Domino analysis tool that

automates the identification of the root causes of performance
issues in RTC applications, given cross-layer trace data, which net-
work operators can provide on a continuous, near real-time basis.
The Domino tool models a graph of many (often overlapping) causal
relationships across all layers and applies a search algorithm to
traces of network events and application performance metrics to
find individual paths through this graph (i.e., causal chains) that
lead to the most likely root cause of performance issues. Domino
exposes a simple configuration API that allows adding new causal
relationships through a simple text configuration file. Domino en-
ables network operators, application developers, and researchers to
understand and address performance issues in RTC applications in
modern cellular networks. The high-level architecture of Domino is
depicted in Fig. 1. We make Domino and our high-rate 5G datasets
available to the community [35, 36].

2 Motivation: 5G Considered Harmful
Video-conferencing applications (VCAs) are particularly sensitive
to network conditions: frequent short-term fluctuations in available
capacity and latency can severely degrade Quality of Experience
(QoE) for users [37]. This degradation typically manifests in one or
more of the following ways: First, rapidly changing network delay
can lead the congestion controller to misinterpret the network state,
causing it to either over- or under-utilize the available bandwidth.
Second, in the presence of a short jitter buffer, the application may
not be able to smooth out the network jitter, leading to frame-
rate drops, audio stuttering or distortion, and even video freezes.
Third, a long jitter buffer may lead to smooth and uninterrupted
playback at the cost of increased end-to-end latency, which hinders
interactivity [11, 12, 18]. This delay is often referred to as mouth-
to-ear delay.

2.1 WebRTC Cellular Performance
Tomotivate our work, we present an experiment where we compare
the performance of a WebRTC video-conferencing session over a
commercial 5G cellular network and a wired connection. Both
sessions were conducted in series. One client is in our lab, while the
other client runs on a public cloud server approximately 150 miles
from our campus. Details about the experimental setup (which we
use for all our experiments) can be found in Section 3.
5G’s end-to-end delay impact. Fig. 2 shows the one-way network
packet delay for both the uplink and downlink of the WebRTC ses-
sion over 5G and a wired connection. We observe that 5G network
delay dominates the wired network delay, and also exhibits high
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Fig. 2— 5G v.wired network one-way packet delay: 5G inflates
median delay by 1-2 orders of magnitude.
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impacts interactivity (see thresholds indicated).
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Fig. 4— WebRTC concealed audio samples and freezes: cellu-
lar v. wired network.

variance, with 99th percentile delays of 352 and 381 ms for the
uplink and downlink, respectively, which has a direct impact on
the size of the jitter buffer at the receiver [11]. Fig. 3 shows the
jitter-buffer delay (the time a video frame or audio sample is held
in the jitter buffer before being released for playback) for both up-
link and downlink. The sum of the packet one-way delay plus the
jitter-buffer delay represents a lower bound on the mouth-to-ear
delay, a critical QoE metric. Like network delay, this delay is signifi-
cantly higher for 5G network than for wired. The ITU-T states that
mouth-to-ear delays of more than 150 ms can impact interactivity
(orange area) and that delays of more than 400 ms are considered
unacceptable (red area) [18].
5G’s impact on playback quality. WebRTC provides detailed
metrics about the playback quality of media streams. Among them
are the time of a video stream in a frozen state, as well as the number
of concealed audio samples that were not played back but instead
replaced by a synthetically-generated sample [2]. Fig. 4 shows the
fraction of concealed audio samples and the total freeze duration for
both the uplink and downlink of the WebRTC session over 5G and
a wired connection. During the five-minute experiment, approxi-
mately 12% of audio samples were concealed, and the video stream
was frozen for a total of six seconds, while the wired experiment
showed few concealed audio samples and no video freezes.
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Fig. 5— Campus Zoom Dataset: network jitter.
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Fig. 6— Campus Zoom Dataset: packet loss rate.

Taken together, 5G networks significantly impact both the experi-
enced delay and the playback quality of VCAs.

2.2 Campus-Wide Zoom Network Metrics
To demonstrate that 5G performance degradation is pervasive and
not limited to the previous experiment, we analyze Zoom qual-
ity of service (QoS) metrics from all meetings conducted on our
campus over a time period of one week in February 2023. Zoom
is among the most widely used video-conferencing applications
and is the preferred application on our campus. Zoom enterprise
customers can access various QoS metrics of all meetings that in-
volved at least one participant who was signed into Zoom using an
account associated with the institution. Our metrics report through
which type of access network (wired, Wi-Fi, or cellular) the par-
ticipant was connected to Zoom [39] and the network conditions
each participant experiences at one-minute intervals. The dataset
comprises 409 days of Wi-Fi, 86 days of wired, and 165 hours of
cellular network data.

Comparing meeting quality metrics from this data set can be
misleading as, for example, Zoom often reduces frame rate and
resolution when participants use Zoom’s gallery view mode [24].
Figure 5 shows the network jitter per access network type (Wired,
Wi-Fi, or cellular). Note that cellular here refers to any cellular
generation (i.e., 3G, 4G, or 5G). Inbound refers to the statistics
received by clients (i.e., downlink) while outbound refers to the send
side (i.e., uplink). We observe that jitter is consistently higher for
cellular networks than for wired and Wi-Fi networks. We plot the
packet loss rate in Fig. 6: the cellular network shows a significantly
higher packet loss rate than the wired or Wi-Fi networks.

In summary, cellular networks consistently show higher network
jitter and packet loss than wired and Wi-Fi networks.

3 Longitudinal 5G WebRTC Performance
Motivated by the challenges 5G networks pose to VCA perfor-
mance, this section longitudinally measures VCA quality degrada-
tion through a comprehensive experimental study. We begin by
outlining our experimental setup and data collection from multi-
ple operational 5G cells. Following this, we characterize multiple
performance issues that we measured in WebRTC.
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Fig. 7— Experimental setup for two-party WebRTC measure-
ments conducted over T-Mobile commercial cells (bottom)
and private 5G cells (top).

T-Mobile TDD T-Mobile FDD Amarisoft Mosolabs

360p 1.7% 93.8% 1.6% 54.2% 35.5% 95.5% 0.3% 93.3%
540p 94.5% 3.3% 94.2% 43.0% 53.0% 1.5% 95.5% 3.7%
720p 2.1% 1.7% 2.2% 1.6% 9.9% 1.8% 2.2% 1.7%
1080p 1.7% 1.2% 2.0% 1.2% 1.6% 1.2% 2.0% 1.3%

Table 2— Video resolution distribution of UL (blue) and DL
(red) streams stratified by 5G cell type.

Experimental setup. To systematically study the impact of 5G
network dynamics on VCA quality, we conduct a series of experi-
ments on two-party meetings, as depicted in Fig. 7. Each experiment
consists of a 30-minute WebRTC call with one client connected to a
5G network and the other to a wired network; all host clocks were
synchronized using NTP for accurate temporal data correlation. We
perform 14 such calls, distributed across four distinct 5G cells: two
commercial T-Mobile 5G networks and two private 5G networks
(Amarisoft [3] and Mososlabs [25]): These on-premise private net-
works were deployed using a software-defined radio (Amarisoft)
and an integrated hardware base station (Mososlabs), with client
devices accessing the cells via specifically provisioned SIM cards.
Table 1 summarizes the specification of each.

To minimize variability across experiments due to video content
and, subsequently, video bitrate, we inject a prerecorded video via
a virtual camera device at both clients for all calls. While this ap-
proach ensures a consistent video source in terms of content, it
is important to note that the WebRTC stack still performs media
encoding in real time. Similarly, packetization, target-rate compu-
tation, and rate adaptation of the video stream work the same way
as if a webcam was connected, ultimately exposing the dynamic
behavior of the encoder to network conditions. For measurements
on commercial cells (Fig. 7 lower), the wired client was hosted on a
Google Cloud Platform (GCP) [15] server. In the private cell coun-
terpart (Fig. 7 upper), the wired client ran on a local server in the
same subnet as the private 5G core.

To precisely capture event chains, we collect high-rate informa-
tion (Table 1) across layers 2 to 7:

(1) 5G Protocol Stack. We use NR-Scope [33] to gather measure-
ments from the 5G PHY/MAC layers in sub-millisecond resolu-
tion, including traffic-scheduling information and retransmis-
sion events. Crucially, NR-Scope provides cellular infrastructure-
level visibility by revealing the traffic for all active users con-
nected to the same cell, not just our measurement client. In the
private-cell measurements, we also collect base station (gNB)
logs which provide insights into Radio Link Control (RLC) layer
buffer status and retransmissions, and the Radio Resource Con-
trol (RRC) layer state.

(2) Network Layer.We collect packet traces at both clients. In the
private cells, we added an additional capture point within the
5G core to more accurately isolate RAN delay.

(3) Application Layer. We use a custom WebRTC client built on
top of libwebrtc [16] and written in C++. This custom client
allows us to gather WebRTC performance and quality statistics
very frequently (every 50 ms as opposed to every second in
the JavaScript API). These statistics include frame rate, resolu-
tion, freeze statistics, and jitter-buffer delay, among others [2].
Moreover, we collect internal state from WebRTC’s congestion-
control algorithm (i.e., GCC), including delay variation, per-
ceived network state, target bitrate, and pushback rate. To the
best of our knowledge, this is the first work to instrument
WebRTC to this level, which gives us detailed insight into the
exact behavior of GCC in challenging network conditions.

Experimental results. Our analysis of WebRTC performance
across the four distinct 5G cellular environments includes met-
rics for both uplink (UL, blue curves) and downlink (DL, red curves)
in Fig. 8. Our analysis of one-way packet delay (Fig. 8a-d) reveals
that UL streams consistently exhibit higher median delays than
their DL counterparts across all four cells. This general trend is pri-
marily attributed to the overhead of 5G UL scheduling mechanisms
(§5.2.1). A notable deviation from this pattern is observed in the
T-Mobile 15 MHz FDD cell (Fig. 8b), where the DL stream displays
a significantly longer delay tail than the UL. This indicates a higher
incidence of severe delay anomalies especially in the DL direction,
a phenomenon we associate with the characteristics of this heav-
ily utilized commercial cell. Prevalent asymmetric traffic patterns,
where users generate significantly more DL cross traffic, contrast-
ing with our more symmetric WebRTC workload, contribute to this
long-tail delay distribution (§5.1.2).

These frequent DL cross-traffic events in the T-Mobile 15 MHz
FDD cell also significantly influence GCC’s estimate of achiev-
able bitrates. As illustrated in Fig. 8f, the DL bitrate for this cell is
considerably lower than its UL counterpart. This differs from the
other three cells, where DL bitrates generally exceed UL bitrates
(Fig. 8e,g,h). Separately, the Amarisoft cell exhibits a markedly lower
UL bitrate compared to its DL counterpart (Fig. 8g). This substantial
gap primarily results from persistent poor UL channel conditions,
coupled with the cell’s conservative UL MCS selection strategy
(§5.1.1). Video resolution, presented in Table 2, reveals UL streams
generally maintain higher resolutions than their DL counterparts.

Turning to frame rates, DL streams typically achieve higher
frame rates than UL streams across all cells (Fig. 8i-l). Finally, exam-
ining jitter buffer delay CDFs (Fig. 8m-p), median values typically
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Fig. 8— WebRTC performance metrics across four 5G cells: (a)-(d) one-way delay between two WebRTC clients, (e)-(h) target
bitrate, (i)-(l) frame rate at the receiver side, (m)-(p) jitter-buffer delay at the receiver side.

Fig. 9— Manually summarized causality graph of WebRTC quality degradations, illustrating six root causes (yellow blocks)
across different layers of the 5G protocol stack and three consequences (red blocks) at the WebRTC application layer.

range between 200 to 250 ms across most streams. However, reflect-
ing the previously discussed network challenges, the DL stream in
the T-Mobile 15 MHz FDD cell and the UL stream in the Amarisoft
cell exhibits relatively higher jitter-buffer delays. These increases
stem from the impact of DL cross traffic in the former case and
persistent poor UL channel conditions in the latter. Furthermore,
we hypothesize that the gap between video and audio streams in
Fig. 8o occurs as a result of Amarisoft’s scheduler handling larger
data chunks (here video) differently and more efficiently.

4 Domino: Tracing VCA QoE Impairments
Given these VCA consequences, we now describe Domino, an
extensible tool designed for automated detection and statistical
analysis of causal chains that lead to degradation of VCA quality.

These chains traverse a user-reconfigurable directed acyclic graph
through cross-layer data from each root cause to each consequence.

4.1 WebRTC Anomaly Causation Overview
By analyzing our comprehensive cross-layer measurements, we
have traced each WebRTC quality degradation to specific root
causes within the 5G protocol stack. Given GCC’s sensitivity to
network delay, our causal analysis, illustrated in Fig. 9, focuses on
six principal 5G causes (yellow blocks) that induce delay increases
(purple blocks) and three consequences in WebRTC (red blocks)
stemming from such delay.

Two major factors affecting physical-layer capacity are channel
condition dynamics (§5.1.1) and 5G cross traffic (§5.1.2). Both can
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Text Input
1 dl_rlc_retx --> forward_delay_up --> local_jitter_buffer_drain

2 dl_harq_retx --> forward_delay_up --> local_jitter_buffer_drain

local_jitter_buffer_drain

forward_delay_up

dl_rlc_retx dl_harq_retx

Text Parser

Causal Tree

Python Code
1 def backward_trace(features):

2 chains = []; causes = consequences = set()

3 if (local_jitter_buffer_drain):

4 consequences.add(local_jitter_buffer_drain) #

consequence

5 if (forward_delay_up):

6 if (dl_rlc_retx):

7 chains.append (1) #Chain 1

8 causes.add(dl_rlc_retx) #cause

9 if (dl_harq_retx):

10 chains.append (2) #Chain 2

11 causes.add(dl_harq_retx) #cause

12 return [consequences , causes , chains]

Fig. 11— Domino generates Python code from text input; the code is
translated to human-readable pseudo-code here.
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Fig. 12— Domino’s performance of detecting cross traffic and channel degradation as the causes for different consequences
across cells.

lead to a drop in the achievable physical-layer data rate, subse-
quently causing 5G RLC layer buffer build-up and thus increased
one-way delay.

5G protocol timing and reliability mechanisms (§5.2) introduce
further delay inflation. These mechanisms give rise to three distinct
causes: UL scheduling delay (§5.2.1), H-ARQ retransmission (ReTX)
delay (§5.2.2), and RLC ReTX delay (§5.2.3). Additionally, we identify
RRC state transition delays (§5.3) as another significant source of
delay inflations.

These six 5G-induced causes can trigger three primary conse-
quences at the WebRTC application layer. Jitter buffer draining
(§6.1) leads to receiver-side video-playback stalls and audio pauses.
GCC estimated target bitrate reduction (§6.2) and GCC pushback
rate (§6.3) are both WebRTC sender-side mechanisms to proac-
tively lower the outbound video quality and send rate. All three
significantly impair QoE.

4.2 Domino Methodology
Domino operates in twomain stages: a real-timemeasurement stage
followed by an offline diagnosis stage. Themeasurement component
(depicted in Fig. 7) is fully automated and collect cross-layer logs
once an experiment begins. After data collection is complete, the
diagnosis component analyzes these logs to detect causal chains of
performance degradation.

Event detection. The diagnosis process begins by analyzing the

collected time-series data from all layers. Domino applies a slid-
ing window to the time-synchronized logs. Within each window,
Domino determines whether one or more events from the causality
graph (Fig. 9) have occurred by evaluating the data against a series
of predefined event conditions 1.

For each window, Domino generates a 36-dimension feature
vector that serves as the basis for causal-chain detection. After
processing each window, Domino moves the window edge forward
by a step length Δ𝑡 = 0.1 s throughout the vectorized data, and
re-runs the event and further causal-chain detection within the
new window.

We evaluate the performance of Domino based on its capability
and accuracy of tracing a VCA performance degradation (i.e., a
consequence) back to its root cause. Since logs from the different
layers have different temporal resolution (e.g., 5G capacity traces vs.
WebRTC performance statistics), the window size mentioned above
plays a critical role in Domino’s performance and is also evaluated
here. For all window sizes, we compute what we call the Cause-
Detection Ratio (CDR), which is the conditional probability that a
specific cause is detected within a window given that a consequence
is also present:

CDR =
𝑁 (cause ∩ consequence)

𝑁 (consequence) . (1)

We present the resulting analysis in Figure 12. Domino’s CDRs for

1See Appendix C for the complete list of event conditions.
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Poor Channel Cross Traffic UL Scheduling HARQ ReTX RLC ReTX RRC State Unknown

Jitter Buffer Drains 3.5% 22% 28% 0% 24% 22% 45% 22% N/A 11% 0% 0% 0% 22%
Target Bitrate ↓ 7.9% 42% 32% 0% 16% 43% 43% 12% N/A 0.42% 0.80% 0% 0.27% 2.5%
Pushback Rate ↓ 9.6% 30% 23% 0% 20% 32% 39% 37% N/A 0.30% 5.0% 0% 0.89% 0.30%

Table 3— Conditional probability of causes given the consequence under commercial cells (blue), and private cells (red), where
rows represent the consequences and columns represent the causes.

Client Types WebRTC Client NR-Scope Client
CPU Usage 17.87% 24.29%

Memory Usage 1.2 GB 5.93 GB
Table 4— Domino’s customizedWebRTC client and NR-Scope
clients’ CPU and memory usage.

different causes are different for each consequence, and result in at
least 0.75 for the consequences concerning dropping pushback rates
and dropping target bitrates. For the jitter-buffer drain consequence,
CDR is between 0.25 and 0.5 depending on the cause. Based on
this analysis, we also choose the window size for cross-layer data
correlation, which we set at five seconds.
Runtime Performance.We characterized the runtime overhead
of both Domino components on a testbed machine equipped with
an Intel Core i7-13700K CPU and 64 GB of RAM running Ubuntu.
The CPU and memory overhead of the real-time measurement
component is detailed in Table 4. The offline diagnosis component
is highly efficient, requiring just 3.81 s of user CPU time to analyze
a 10-minute VCA trace and 4.34 s for a 30-minute trace.

4.3 Domino Causal Chain Detection
Based on the manually summarized causal relationships depicted in
Fig. 9, we define 24 potential causal chains by tracing all paths from
the six 5G root causes to the three WebRTC consequences. This
total is derived as follows: 12 chains are formed by the six causes
leading to the first two consequences ( 1○ Jitter buffer drains and
2○ Target bitrate drops), both of which are triggered by forward-
path delay. 12 additional chains lead to the third consequence ( 3○
Pushback rate drops), as it can be triggered by a delay increase in
either the forward (media) path or the reverse (RTCP) path.
Event and chain statistics. We present the absolute (uncondi-
tional) occurrence frequency of individual 5G causes and WebRTC
consequences in Fig. 10, distinguishing between commercial (blue)
and private (red) 5G cells. Complementing this, Table 3 provides the
conditional probability of each identified 5G cause being associated
with a specific WebRTC consequence event2. Table 3 reveals that
UL scheduling delays and HARQ ReTXs are quite prevalent across
both commercial and private 5G networks. However, it is notewor-
thy that while these two mechanisms frequently inflate one-way
delay, they are often not the primary contributor to severe quality
degradation. Our findings also indicate that our private 5G testbeds
experience poor channel conditions more frequently, largely due
to persistent UL channel issues in the Amarisoft cell. Unlike in our
private testbed, in commercial cells, we cannot detect RLC events,
including RLC retransmissions, and, as a result, this information is
not included in these measurements. Furthermore, disruptive RRC
2’N/A’ in Fig. 10 and Table 3 denotes the events that were not measurable in the given
setup.

state transitions during active sessions were uniquely observed in
the T-Mobile 15 MHz FDD cell.

Regarding consequence occurrence frequency (Fig. 10, bottom
subplot), jitter buffer draining events are less frequent than GCC-
initiated bitrate reductions or drops in GCC’s pushback rate. We
attribute this to GCC’s proactive rate-control mechanisms, which
react to network congestion by reducing sending rates, thereby
preemptively preventing the jitter buffer from draining.

Extensibility of Domino. A key design principle of Domino is its
extensibility, facilitating adaptation to new causal chain detection
tasks. As illustrated in Fig. 11, Domino generates Python detection
code directly from a user’s textual causal chain definition. Domino
parses the text input, mapping its constituent elements (causes, in-
termediate events, consequences) to corresponding feature vector
entries. Then, it constructs an internal graph representation of the
specified causal chains, and finally this structured representation is
used to automatically generate executable Python code that identi-
fies and reports instances of the defined causal chain, including its
cause, intermediate nodes, and consequence.

This extensibility allows network designers to readily incorpo-
rate other data features, such as other metrics from NR-Scope [33]
or additional WebRTC statistics, and implement detection for novel
causal chains simply by providing new text-based definitions. We
believe Domino’s approach can also be effectively generalized to
other anomaly detection tasks that benefit from structured causal
chain analysis.

5 5G Causes of VCA Quality Degradation
We now analyze the mechanisms underlying the causal chains
presented in the previous section, analyzing how events in the 5G
stack cause capacity and latency fluctuations at higher layers that
impact VCA quality. In §6 we will make the connection to VCA
quality consequences.

5.1 5G Radio Resource Variability
5G New Radio manages radio resources using a time-frequency
grid (Fig. 16a). The fundamental unit of resource allocation is the
Physical Resource Block (PRB). The radio resources allocated to one
User Equipment (UE) over one time slot constitute a Transport Block
(TB). The Transport Block Size (TBS) depends on the number of allo-
cated PRBs and the wireless physical-layer bit rate. This bit rate is
primarily determined by the Modulation and Coding Scheme (MCS),
which is selected based on the UE’s wireless channel conditions.
The achievable TBS for a UE can be highly variable, influenced by
fluctuations in channel quality (due to mobility, fading, or interfer-
ence) and cross traffic.

5.1.1 Impact of Channel Condition Dynamics. Dynamic and poor
channel quality necessitate the use of a lower and more robust
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Fig. 13— 5G channel condition dynamics cause RLC buffer
build-up and delay increase.

MCS, which directly reduces the TBS for a given number of PRBs.
This happens frequently in 5G networks, especially in urban en-
vironments with high interference and fading. Fig. 13 illustrates
this phenomenon using an uplink data transmission trace captured
from the Amarisoft cell (Table 1). The top two subplots display
the time series of allocated PRBs and the selected MCS for the UE.
Starting from time 0.6 s (marked by 1○ in Fig. 13), the MCS drops to
very low values. Notably, during this period, the allocated PRBs also
decrease, even in the absence of cross traffic. This occurs because
the base station’s scheduler assigns fewer PRBs to a UE with poor
channel conditions to improve transmission reliability and resource
efficiency.

The combined reduction in both MCS and allocated PRBs leads
to a significant drop in the effective TBS. The third subplot shows
the PHY/APP layer rate mismatch, calculated as the application’s
sending rate minus the estimated physical layer capacity (TBS con-
verted to rate). During the low-MCS period (highlighted in red),
the rate mismatch frequently becomes positive, indicating that the
application is attempting to send data faster than the available phys-
ical layer capacity. This forces data to queue at the UE’s RLC buffer.
The fourth subplot confirms this, showing a corresponding increase
in the RLC buffer size ( 2○). As shown in the fifth subplot, this queue
buildup directly results in increased packet one-way-delay ( 3○),
reaching values as high as 380 ms during this event. Subsequently,
as the channel conditions improve (highlighted in green), the MCS
and PRB allocation recover ( 4○). The rate mismatch becomes nega-
tive, signifying that the physical-layer capacity now exceeds the
application’s sending rate. This allows the accumulated buffer to
drain, and the packet delay gradually decreases ( 5○), returning to
around 30 ms.

5.1.2 Impact of cross traffic. In cellular networks, the number of
PRBs allocated to a specific UE is dependent on the demand from
both itself and other UEs (i.e., cross traffic). When cross traffic
increases, fewer PRBs are available for the test UE, impacting its
achievable data rate.

Fig. 14 demonstrates this effect using a downlink trace from the
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T-Mobile 15 MHz TDD cell (Table 1). The first subplot shows the
time series of PRBs allocated to our test UE and to other UEs. The
presence of significant cross traffic, indicated by the yellow bars,
commences at around time 0.8 s (marked by 1○). During this period,
the number of PRBs assigned to our test UE decreases substantially,
leading to an immediate reduction in its physical-layer capacity
(TBS). The second subplot displays the rate mismatch: as TBS drops
due to cross traffic, the application’s sending rate exceeds available
capacity, resulting in a positive rate mismatch and causing data to
buffer at the UE, increasing latency ( 2○).

Using logs from our instrumented WebRTC client, we also ana-
lyze the response of GCC. The fourth subplot shows GCC’s network
state estimation, while the fifth subplot displays its target sending
bit rate. Approximately 0.8 s after the cross traffic begins, GCC
detects an "overuse" state and reacts by reducing its target bit rate
via multiplicative decrease ( 3○). However, because the sending rate
reduction is not instantaneous and initially remains above the con-
strained physical layer capacity, latency continues to increase, up
to ≈ 250 ms. GCC continues to lower its sending rate until around
time 2.5 s when the application rate falls below the available 5G
capacity. At this point, the UE’s buffer begins to drain, and latency
gradually decreases back towards the 30 ms level ( 4○).

5.2 5G Protocol Timing and Reliability
Beyond the radio-resource variability discussed previously, the
inherent operational timing and reliability mechanisms within the
5G protocols themselves also contribute significantly to packet
delay and jitter. This section analyzes key protocol aspects, starting
with uplink scheduling and followed by error-recovery mechanisms
(HARQ, RLC retransmissions), illustrating their impact on VCA
performance with examples from our measurements.

5.2.1 Uplink Scheduling. As observed in our longitudinal experi-
ments (§3), 5G often exhibits higher latency in the uplink compared
to the downlink. This stems fundamentally from the uplink sched-
uling mechanism: Unlike in the downlink where the base station
controls data transmission directly, for the uplink, the base station
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Fig. 15— Time series examples of WebRTC over 5G traces, combining transport-layer packet information with PHY-layer TBs.
Dashed lines indicate the mapping between each packet and the corresponding TB that carries it.
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typically does not have a priori knowledge of when or how much
data a UE needs to send. Consequently, 5G employs a request-grant
procedure for uplink resource allocation.

Time Division Duplexing (TDD) shares time slots between down-
link and uplink, while Frequency Division Duplexing (FDD) uses
separate frequency bands for simultaneous downlink and uplink
transmission. The standard mechanism [1] to enable uplink trans-
mission, illustrated conceptually in Fig. 16a (TDD) and Fig. 16b
(FDD) operates as follows: When new data arrives in the UE’s
transmission buffer, the UE sends a Buffer Status Report (BSR) to
the base station during the next available BSR opportunity, where
the BSR indicates the amount of queued data. Upon receiving and
processing the BSR, the base station allocates uplink resources
(PRBs and MCS) to the UE via an uplink-grant message. The UE
can then use these granted resources for transmission. However,
a non-negligible scheduling delay exists between the UE sending
the BSR and receiving/utilizing the corresponding grant [31]. In
our measurements across the four 5G cells, this delay ranged from
approximately 5 ms to 25 ms.

To analyze the practical impact of this scheduling delay on VCA
traffic, Fig. 15 presents time-series traces from three distinct cells:
a T-Mobile 15 MHz FDD cell, a T-Mobile 100 MHz TDD cell, and
an Amarisoft cell. The upper portion of each figure visualizes indi-
vidual packets as horizontal lines; the line’s start and end points
mark the sender’s transmission time and receiver’s reception time,
respectively, thus the line length represents the one-way delay. The
lower portion shows the corresponding physical-layer TBS over
time.

VCAs typically generate data in bursts, where multiple packets

constituting a single video frame are sent at once (see clustered
transmit times in Fig. 15). Due to the size of these bursts and the
limited TBS per grant, transmitting a full video frame often requires
multiple consecutive Transport Blocks (TBs). As seen in Fig. 15b,
the packets within a burst arrive spread out over time at the receiver.
This intra-frame arrival-time variation is called delay spread [37]
(indicated by yellow arrows in Fig. 15) and directly contributes to
jitter.

Across the three cells, we observe different patterns of delay
spread. In the T-Mobile 100 MHz TDD cell (Fig. 15a), the high band-
width allows more packets to fit into a single TB, making the effect
of delay spread less pronounced. The T-Mobile 15 MHz FDD cell
(Fig. 15b) features frequent uplink-transmission opportunities with
inherently smaller gaps between them due to its FDD pattern. How-
ever, its lower bandwidth (15 MHz) results in smaller TBS. This, in
turn, necessitates transmitting more than 10 TBs per frame, leading
to a large delay spread. Finally, in the Amarisoft cell (Fig. 15c), the
uplink channel conditions are poor, leading to smaller TBS and
uplink capacity. This forces the WebRTC sender to adapt to a lower
bitrate (fewer packets per burst), but the effect persist.

To mitigate the UL scheduling delay, some 5G cells utilize proac-
tive uplink grants. Our Mosolabs private 5G cell employs this strat-
egy, as shown in Fig. 17. Proactive grants (blue bars) pre-allocate
small amounts of resources before a BSR is received. These allow
the first few packets of a burst to be sent earlier, reducing their la-
tency (by approx. 10 ms in our trace). Once the BSR-triggered grant
(green bars) arrives, the remaining buffered packets are transmitted.

While proactive scheduling reduces first-packet latency, it has
drawbacks for bursty VCA traffic. First, it provides little benefit
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to the last packet’s latency in a burst, thus barely improving the
overall frame-level delay. Second, it can be inefficient; proactive
grants may go unused if no data is ready (wasted bandwidth, visible
as unfilled blue bars in Fig. 17). Third, it can lead to over-granting:
the BSR reflects the buffer status when sent, but by the time the
BSR-requested grant is usable, some data has already been deliv-
ered via proactive grants. This means the requested grant might be
larger than necessary, potentially resulting in unused and wasted
capacity within that grant (e.g., unfilled green bars in Fig. 17). De-
spite variations in configuration (FDD/TDD, bandwidth, proactive
grants), the fundamental uplink scheduling process consistently
introduced UL scheduling delay and delay spread for VCA traffic
across all four 5G cells we measured.

5.2.2 HARQ Retransmissions. To combat the inherent susceptibil-
ity to errors of wireless networks, at the MAC layer, 5G employs
Hybrid Automatic Repeat reQuest (HARQ). When the receiver fails
to decode a TB, it signals a negative acknowledgment (NACK) back
to the sender, prompting a HARQ retransmission of the same TB.
While crucial for reliability, each HARQ retransmission attempt
introduces additional delay for the packets within that TB.

Fig. 18 provides a time-series trace from our Amarisoft cell il-
lustrating this process. TBs that initially failed decoding are high-
lighted in red, while subsequent successful HARQ retransmissions
of those TBs are marked in purple. For packets carried in such
retransmitted TBs, their one-way delay (the length of the horizon-
tal packet lines) increases. As indicated by the yellow arrows in
Fig. 18, each HARQ retransmission cycle under this cell adds 10 ms
to the packet delay. If a retransmitted TB also fails, further HARQ
attempts may occur (up to a configured limit), cumulatively increas-
ing latency in multiples of this 10 ms delay and impacting overall
latency.

HARQ retransmissions are relatively common, especially under
challenging channel conditions (e.g., high interference, deep fades,
or UE mobility) or when the network employs aggressive MCS
selection (prioritizing rate over robustness). Such events happen
across all four measured cells in both downlink and uplink. In
typical WebRTC sessions under our experimental setup, we observe
hundreds of HARQ retransmissions per minute, although the exact
frequency is highly dependent on the cell’s specific physical layer
rate control algorithm and the radio environment.

5.2.3 RLC Retransmissions. The 5G MAC layer imposes a config-
urable upper limit on the number of HARQ retransmissions for a
single TB. In our Amarisoft cell’s configuration, for instance, this
limit was set to four attempts. If a TB remains undecodable af-
ter exhausting the four HARQ retries, the MAC layer abandons
the transmission. Recovery responsibility then falls to the Radio
Link Control (RLC) layer, situated above the MAC layer in the 5G
protocol stack.

RLC retransmissions, however, incur substantially higher latency
penalties. Fig. 19 shows a trace segment from the Amarisoft cell
capturing an RLC retransmission event. Here, the initial failed TB
(denoted as red bar) carries a specific packet (represented by the
horizontal green line). The subsequent four HARQ retransmissions
(denoted as purple bars) also failed. Consequently, the RLC layer
initiated its own retransmission. The packet was finally delivered
successfully via an RLC-retransmitted TB (denoted as green bar)
that arrived approximately 105 ms after the initial failed transmis-
sion attempt, resulting in a delay inflation of 105 ms for this packet
(indicated by the yellow arrow in Fig. 19). The precise delay in-
curred by RLC depends on various factors, including RLC protocol
timers and base station configurations. Furthermore, RLC enforces
in-order delivery of data segments to higher layers. This mandate
creates a Head-of-Line (HoL) blocking problem when RLC retrans-
missions occur. As illustrated in Fig. 16c, packet 1 requires RLC
retransmission, subsequent packets (2–41 in the example) that were
successfully received at the MAC layer are held in the base station’s
RLC buffer. Once packet 1 arrives via RLC retransmission, the en-
tire sequence of buffered packets (1–41) is released upwards nearly
simultaneously. This HoL blocking explains the pattern observed
in Fig. 19, where a large cluster of packets exhibit almost identical
reception times (right edges of the lines), despite being transmitted
over the air in different TBs earlier.

While RLC retransmissions induce significant latency spikes and
HoL blocking, they are considerably less frequent than HARQ re-
tries. In our Amarisoft cell measurements during WebRTC sessions,
we typically observe only 2-3 RLC retransmission events per ten
minutes.

5.3 RRC State Transitions
Beyond the performance variations caused by radio resource dy-
namics and standard protocol timing/retransmissions, we observe
a distinct and highly disruptive event during measurements on
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Fig. 20— RRC state transitions halt PHY-layer transmissions,
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the T-Mobile 15 MHz FDD cell: unexpected Radio Resource Con-
trol (RRC) state transitions. Specifically, the UE undergoes RRC
Release and subsequent RRC connection establishment while ac-
tively transmitting WebRTC traffic. This behavior deviates from
the standard expectation that a UE remains in the RRC Connected
state as long as active data transfer persists. While the precise trig-
gers are unknown without access to gNB logs, potential causes
include aggressive network inactivity timers, specific connection
management policies, or transient Radio Link Failures.

Fig. 20 presents a data trace capturing such events. The first
two subplots display the allocated PRBs and selected MCS over
time. During the periods highlighted in red, both lack data points,
indicating a complete cessation of PHY-layer transmissions. The
third subplot confirms the underlying cause by showing a change
in the Radio Network Temporary Identifier (RNTI). The RNTI is a
MAC layer identifier assigned to a UE specifically when it is in the
RRC Connected state; a change in RNTI signifies that the UE has
transitioned out of and back into the RRC Connected state. This
entire transition process, as measured in our traces, resulted in an
interruption period of approximately 300 ms during which the UE
could neither send nor receive data. Critically, the application layer
(WebRTC) is unaware of this temporary network disconnection.
The fourth subplot, showing rate mismatches, indicates that the
application continues to generate and send data throughout the in-
terruption periods highlighted in red. Consequently, packets buffer
extensively at the UE, causing one-way delay to surge dramatically
(up to 400 ms), as shown in the fifth subplot.

This phenomenon of RRC transitions during active data trans-
fer was unique to the T-Mobile 15 MHz FDD cell. Furthermore,
its occurrence on this network was intermittent; sometimes the
connection remained stable for hours, while at other times, these
transitions occurred frequently, up to 3-4 times per minute.

6 Consequences of 5G Network Variability
This section outlines the consequences for VCA QoE, covering both
the direct impact on media transmission and the indirect impact
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Fig. 21— Rapid packet delay surges drain the jitter buffer,
causing frame rate drops and video freezes.

through congestion-control decisions.

6.1 Impact on Media Reception
Sudden delay increases and jitter as often caused by the cellular
network, directly affect the playout quality of audio and video in
video conferencing. VCAs use an adaptive jitter buffer to mitigate
delay variance by temporarily buffering incoming video frames or
audio samples before playback. To balance smooth media playback
with low latency, the jitter buffer dynamically adjusts its size: it ex-
pands during poor network conditions and contracts when latency
is stable [11].

Consequently, severe and rapid network delay fluctuations as
seen in §5 increase the jitter buffer length leading to smooth play-
back but long end-to-end delay, which also compromises QoE. How-
ever, severe and rapid network delay fluctuations, as identified in
§5, can overwhelm the adaptive capabilities of the jitter buffer.
Fig. 21 illustrates such a scenario using a trace from the T-Mobile
15MHz FDD cell. Subplot 1 shows the one-way delay progressively
increasing, reaching ≈280 ms (marked by 1○). During this period,
the network delay exceeds the jitter buffer’s capability to compen-
sate. The jitter buffer drains 2○ and the video freezes 3○/ 4○. The
situation begins to improve at time ≈2.8 s (indicated by the gray
vertical line), when the packet delay sharply decreases to ≈20 ms.
Following network recovery, the jitter buffer starts to rebuild (green
highlighted area in subplot 2), and the video freeze ends. Neverthe-
less, the frame rate remains below 30 while the jitter buffer fills up
again. Full recovery to the target frame rate of 30 fps (subplot 4)
was achieved at time 4.6 s.

6.2 Impact on GCC Target-Rate Control
Beyond affecting actual media delivery, the performance variability
in 5G networks impacts the rate (and consequently media quality) at
which VCAs send. WebRTC uses GCC [7] to estimate link capacity
and send rate based on network delay measurements. We now
describe how 5G-induced delay fluctuations directly impact GCC’s
rate estimation, leading to lower-than-necessary send rates, hurting
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session quality.
Mechanism. GCC’s sender-side rate control logic uses two main
components: the delay-based estimator and the loss-based estima-
tor. The delay-based estimator analyzes the one-way delay gradient
as reported from receivers via RTCP. GCC applies a trendline fil-
ter to these readings to detect congestion build-up, ideally before
significant packet loss occurs. This mechanism together with the
loss-based estimator is used to estimate the available link capac-
ity and compute a target send rate [16]. This rate is then further
adjusted in a second step by the pushback controller (§6.3).
Tracing Target-Rate Drops. Fig. 22 illustrates the reaction of
GCC’s delay-based estimator to sudden delay increases induced
by the 5G network. The figure highlights two distinct delay in-
crease events and GCC’s reactions. Subplot 1 displays the one-way
packet delay, with the first highlighted region showing a surge to
≈440 ms 1○. Subplot 2 presents the delay slope, a critical signal
for congestion detection, obtained from GCC’s internal state using
our instrumented WebRTC client. A positive slope signifies increas-
ing delay (potential congestion), while a negative slope suggests
decreasing delay. GCC compares this slope against an adaptive
threshold (gray dashed line in subplot 2) to classify the network
state as "overuse," "underuse," or "normal" (subplot 3). During the
first event, the positive delay slope leads GCC to detect an "overuse"
state 3○. Consequently, GCC sharply reduces its target rate via mul-
tiplicative decrease 4○. This, in turn, causes a drop in the outbound
video frame rate 5○. Shortly thereafter, as the network delay be-
gins to decrease, an "underuse" state is detected. In this state, GCC
aims to stabilize the queue by maintaining the bitrate. Once the
delay stabilizes and the state transitions to "normal," GCC resumes
probing available bandwidth through additive increase of its target
rate. The second delay event depicted in Fig. 22 triggers a similar
cycle of detection and reaction, with a further bitrate reduction in
this instance, leading to a decrease in video resolution from 720p to
540p. We also observe a noticeable delay between the onset of the
network delay increase (subplot 1) and GCC’s state change (subplot

3). This delay stems from the reliance on periodic RTCP feedback.

Slow Rate Recovery. 5G-induced delay can be short-lived at the
network layer, for example, when caused by transient cross traf-
fic or temporary signal degradation. Crucially, many 5G-induced
delay events—potentially caused by transient cross traffic or tempo-
rary signal degradation (affecting TBS, as discussed in §5)—can be
short-lived at the network layer. For instance, radio resources might
recover quickly once competing traffic diminishes or the UE moves
to a location with a clearer signal path. The application-level recov-
ery by GCC, however, is often considerably slower. After an overuse
event, GCC’s default mechanism for probing available bandwidth
uses cautious additive rate increase. Our measurements indicate
that this additive increase phase can take over 30 seconds to restore
the target bitrate to its pre-congestion level. The gap between rapid
network-level recovery and slower application-level adaptation can
lead to inefficient utilization of available radio resources and can
prolong periods of degraded performance.

GCC Acknowledged Bit Rate Estimator.. GCC incorporates a
complementary mechanism known as the acknowledged bitrate
estimator, which can facilitate faster recovery under certain condi-
tions. This estimator calculates a bitrate based on the timestamps
and sizes of packets acknowledged by the receiver, effectively mea-
suring the actual throughput recently achieved. If a delay-based
overuse event is short-lived while the acknowledged bitrate esti-
mator concurrently reports sustained high throughput, WebRTC
may prioritize this direct throughput measurement for rate con-
trol, effectively bypassing a prolonged slow additive increase and
rapidly restoring send rate. In our experiments, we observed in-
stances where this fast recovery mechanism successfully restored
GCC’s target bitrate to pre-congestion levels within ≈2 seconds,
thereby minimizing the impact of short-lived overuse events. How-
ever, analysis with our anomaly detector (§4.3) reveals that such
fast recovery occurs in only 1% of the detected anomalies. For the
majority of events, GCC defaults to the slower additive increase
process for recovery.

6.3 Impact on GCC Pushback-Rate Control
On top of the target bit rate (§6.2), the actual media send rate
can be further constrained based on the amount of outstanding,
unacknowledged bytes. We call the controller responsible for this
final part of the send-rate calculation the pushback rate controller.
This rate is ultimately provided to the video encoder and pacer [16].

Mechanism. The GCC pushback controller takes both target rate
and congestion window information into account, and outputs a
pushback rate (as shown in Fig. 24). GCC maintains a congestion
window and tracks the volume of outstanding bytes. Under stable
conditions with timely acknowledgments, the pushback rate aligns
with the target bit rate. However, if outstanding bytes accumulate
and exceed the congestion window limit, the pushback controller
reduces the pushback rate. This reduction aims to prevent further
network queuing and allow the volume of outstanding bytes to
decrease as ACKs arrive, consequently impacting video frame rate
or resolution.

Tracing Pushback-Rate Drops. The efficacy of this pushback
rate control loop depends on the timely flow of media packets from
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Fig. 24— GCC combines bandwidth estimation and conges-
tion window size to compute the pushback rate.

sender to receiver and RTCP feedback from receiver to sender. A
significant delay increase in either the forward (media) path or the
reverse (RTCP feedback) path can cause the number of outstanding
bytes to accumulate, potentially triggering the pushback rate drops.
For instance, the substantial media packet delay increase (≈440 ms)
shown in subplot 1 of Fig. 22 not only affects the bandwidth estima-
tor but also contributes to the accumulation of outstanding bytes.
This causes the pushback rate to diverge from the target bitrate
estimated by the bandwidth controller, as illustrated in subplot 4 of
that figure.

A clearer illustration of the pushback controller’s distinct impact
is presented in the data trace in Fig. 23. The forward media packet
delay ( 1○ in subplot 1) remains stable throughout the observation
period. Consequently, GCC’s bandwidth estimator perceives no
congestion, and the target bitrate (blue curve in subplot 4) remains
stable and high. However, 2○ in subplot 2 reveals a significant in-
crease in the delay of RTCP packets (reverse path), reaching over
300 ms in the highlighted red regions. This inflation of RTCP delay
directly causes the number of outstanding bytes to accumulate (blue
curve in subplot 3), eventually exceeding the congestion window
limit ( 3○). As a direct result of breaching this limit, the pushback
controller intervenes, sharply reducing the pushback rate ( 4○ in
subplot 4) despite the stable target bitrate. This reduction in the

effective sending rate leads to a corresponding drop in the transmit-
ted video frame rate ( 5○ in subplot 5). This example underscores
how 5G-induced delays, even if confined to the feedback path, can
trigger significant performance degradation at the application level
through mechanisms like the pushback controller.

7 Related Work
Video-Conferencing Measurement Studies. The seminal work
on the measurement of video conferencing applications (VCAs) by
Baset et. al. [4] provided first insights into the operation of Skype.
Since, studies have focused on the behavior and provided quality of
VCAs in different environments [6, 9, 10, 23, 30, 32]. Others have
focused on specific applications, analyzing their protocols, media
formats, and congestion control [21, 24, 27]. A close related work by
Yi et al. presents a first analysis of the behavior of Zoom in 5G [37].
In contrast, our work goes much further by identifying exact causal
relationships between cellular network events and their impact on
VCAs through a detailed analysis of the internals of both the RAN
and WebRTC.
Cellular-network measurement tools/studies. There is a wide
range of cellular-network measurement tools [20, 22, 33]. While
tools like MobileInsight [22] focus on exposing the internal state
and logic of cellular protocols, Domino provides a cross-layer frame-
work to explicitly map these low-level network events to their ul-
timate impact on application quality through causal analysis. We
leverage NR-Scope [33] to capture low-level cellular events and
correlate them with the performance of VCAs. Based on such RAN
telemetry, systems have been developed to improve various aspects
of applications, mostly focusing on congestion control [34]. Simi-
larly, Ramadan et al. propose mechanisms to make video streaming
applications 5G-aware, using adaptive content bursting and dy-
namic radio switching to overcome network variability [28]. Other
works have studied the impact of cellular networks on a wide range
of applications [13, 14, 19, 26, 31]. Finally, cross-layer measurements
have been used to study the impact of 5G on the performance of
video streaming in [19]. Our work differs in that it focuses on RTC
applications and provides a much more fine-grained analysis of
the causal relationships between cellular network events and their
impact on the application layer.

8 Conclusion
In this work, we present the first in-depth, cross-layer analysis of
the performance of RTC applications in 5G. We identify a series
of causal relationships between cellular-network events and their
impact on RTC applications, which we model as a graph. Domino is
a diagnosis tool that uses this graph to enable researchers, network
operators, and application developers to understand and address
performance issues in RTC applications in 5G cellular networks.
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The Zoom API data used in this study was anonymized with a
one-way hash. All data exports were inspected and sanitized by a
network operator to remove all personal data before being accessed
by researchers. This study has been conducted with necessary
approvals from our institution, including its Institutional Review
Board (IRB).

B Statistics of all Causal Chains
Here we list the causality chain happening ratio when a conse-
quence happens in the WebRTC application in Table 5. We only
count one when a consequence is caused by multiple causes in the
5G network, which is why the total number in the table doesn’t
add up to 100 %.

C Complete Event Detection Conditions
Here we list all the event detection conditions discussed in Fig. 9 in
Table 6. For the application events (1 to 10 in Table 6), we extract the
features from both local and remote clients. For the bi-directional
5G network events (13 to 18), we extract the features from both UL
and DL 5G resource allocation logs from NR-Scope [33] or gNB log.
Adding them all up, there are 2 × 10 + 6 × 2 + 4 = 36 dimensions
in the feature vector. In this project, we set the event detection
thresholds based on the traces analysis and our knowledge of the
5G network. We leave automating the feature selection through
machine learning as future work. Here we provide the detailed
calculation of each of them.
Inbound/Outbound frame rate ↓ (1, 2): We first compare the
maximum and minimum frame rates with the thresholds, then we
determine that the frame rate drop event happens if the minimum
frame rate happens after the maximum frame rate. In the traces,
the frame rate drop is severe; thus, we use a narrow gap between
the minimum and maximum thresholds.

max(frame_rate) > 27, and min(frame_rate) < 25, and
arg max

𝑖

frame_rate < arg min
𝑗

frame_rate.

Outbound resolution ↓ (3): Since the resolution drops from one
step to another (e.g. 540P to 360P), as long as there is a resolution
drop, we set the resolution drop to be true for this window.

∃𝑖 ∈ [0,𝑊 − 1], resolution[𝑖 + 1] < resolution[𝑖] .

Jitter buffer drain ↓ (4): If there is a point where the jitter buffer
delay is 0 milliseconds.

∃𝑖 ∈ [0,𝑊 ], jitter_buffer_delay[𝑖] = 0𝑚𝑠.

Target bitrate ↓ (5): Normally, the target bitrate stays the same or
increases as the GCC probes up when nothing bad happens. As long
as there is a target bitrate drop, it means something bad happens.

∃𝑖 ∈ [0,𝑊 ], target_bitrate[𝑖 + 1] < target_bitrate[𝑖] .

GCC overuse detected (6):Whenever there is an overuse entry
in the GCC logs within the window.

∃𝑖 ∈ [0,𝑊 ], gcc_netstate[𝑖] = ’overuse’.

Pushback rate ↓ (7): Normally, the pushback rate aligns with the
target bitrate and has an identical non-decreasing trend.

∃𝑖 ∈ [0,𝑊 − 1], pushback_rate[𝑖 + 1] < pushback_rate[𝑖] .

Congestion window full (8): The outstanding bytes are the in-
flight bytes, and the window occupancy is the ratio between the
outstanding bytes and the window size. We first calculate the con-
gestion window ratio by performing the element-wise division
between the outstanding bytes and the GCC congestion window.
Then, we check if there is a point where the window ratio exceeds
1 to determine whether the congestion window is full.

cwnd_ratio = outstanding_bytes/gcc_cwnd;
∃𝑖 ∈ [0,𝑊 ], cwnd_ratio[i] > 1.

Outstanding bytes ↑ (9):We use a different small window (indexed
by 𝑘) of 10 samples to calculate the average outstanding bytes and
detect whether there is an uptrend.

wind_bytes[𝑘] = 1
10

∑︁10(𝑘+1)
𝑖=10𝑘

outstanding_bytes[𝑖],

𝑘 = 0, ...,𝑊 /10 − 1,
∃𝑘 ∈ [0,𝑊 /10 − 1],wind_bytes[𝑘 + 1] > wind_bytes[𝑘] .

Pushback rate is unequal to target bitrate (10): We detect if
there is any sample where the target bitrate is unequal to the push-
back rate.

∃𝑖 ∈ [0,𝑊 ], target_bitrate[𝑖] ≠ pushback_rate[𝑖] .

Forward/reverse packet delay ↑ (11, 12): Similarly, we maintain
windows for the packet delay (indexed by 𝑘) and use the average
delay as the trend. Then we detect whether there is an uptrend in
the windowed packet delay and the maximum delay is higher than
80 ms.

wind_delay[k] = 1
10

∑︁10(𝑘+1)
𝑖=10𝑘

packet_delay[i],

∃𝑘 ∈ [0,𝑊 /10 − 1],wind_delay[k + 1] > wind_delay[k], and
∃𝑖 ∈ [0,𝑊 ], packet_delay[𝑖] > 80𝑚𝑠.

Allocated TBS ↓ (13): We determine the allocated TBS drop if the
min TBS drops to below 80 % of the max TBS.

0.8max(TBS) > min(TBS) .

App bitrate exceeds the allocated TBS (14): The amount of time
when the App’s bitrate exceeds the physical layer bitrate (calculated
from TBS) exceeds 10% of the total sliding window time (𝑊 ).

rate_diff = app_bitrate − tbs_bitrate,
sum(rate_diff > 0) > 0.1𝑊 .

5G cross traffic (15): When the number of PRBs for all traffic is
above 80% of the cell’s total PRBs, and other UE’s traffic exists.
5G channel degrades (16):We first group the MCS measurements
of our UE with a 50 millisecond window, for each group, we calcu-
late the median and 90th-percentile values. We maintain a counter
and set it to zero for each 5-second sliding window, and iterate over
each group. If the 90th percentile value is lower than 20 and the
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Poor Channel Cross Traffic UL Scheduling HARQ ReTX RLC ReTX RRC State RLC ReTX

Jitter Buffer Drains 30% (0%) 2.7% (0%) 2.4% (0.45%) 4.6% (0.45%) N/A (0.22%) 0% (0%) 0% (0.45%)
Target Bitrate ↓ 43% (0.90%) 40% (0.00%) 16% (14%) 56% (13%) N/A (0.45%) 0.81% (0%) 0.27% (34%)
Pushback Rate ↓ 56% (2.3%) 42% (0%) 34% (45%) 67% (57%) N/A (0.45%) 9.8% (0%) 1.4% (4.7%)

Table 5— Each causal chain’s ratio over all detected chains, numbers in the brackets are from the private 5G cells.

Events/Features Condition

1. Inbound frame rate ↓ Maximum inbound frame rate is higher than 27, while the minimum inbound frame rate is smaller than 25.
2. Outbound frame rate ↓ Maximum outbound frame rate is higher than 27, while the minimum outbound frame rate is smaller than 25.
3. Outbound resolution ↓ There is a downtrend in outbound resolution.
4. Jitter buffer drains The client’s jitter buffer drops to 0 milliseconds.
5. Target bitrate ↓ There is a downtrend in the client’s target bitrate.
6. GCC overuse detected There is an overuse entry in the GCC log.
7. Pushback rate ↓ There is a downtrend in the client’s pushback rate.
8. Congestion window full The client’s outstanding bytes are bigger than the client’s GCC congestion window bytes.
9. Outstanding bytes ↑ There is an uptrend in the client’s windowed outstanding bytes.
10. Pushback rate unequal to target bitrate If these two values are not equal to each other at any point.
11. Forward packet delay ↑ There is an uptrend in the windowed forward packet delay.
12. Reverse packet delay ↑ There is an uptrend in the windowed reverse packet delay.
13. Allocated TBS ↓ Minimum TBS is smaller than 80 percent of the maximum TBS in the window.
14. App bitrate exceeds the allocated TBS The percentage of time when App bitrate exceeds the allocated TBS is higher than 10 %.
15. 5G cross traffic When the number of PRBs for all traffic is above 80% of the cell’s total PRBs, and other UE’s traffic exists.

16. 5G channel degrades When the group MCS (with a 50ms window)’s 90th-percentile is smaller than 20, and
the medium value is smaller than 10, appears more than 10 times.

17. HARQ retransmission There are more than 20 instances of HARQ retransmission detected.
18. RLC retransmission The gNB’s log indicates RLC retransmission.
19. Uplink scheduling delay As long as the transmission uses the 5G uplink channel.
20. RRC state change The UE’s RNTI changes during the window.

Table 6— Event detection conditions used by Domino for feature extraction in the sliding window.

median value is lower than 10, we increase the counter by one. If
the counter exceeds 10, we treat this as the channel degradation.

wind_MCS[𝑘] = 1
10

∑︁(𝑘+1) ·50 ms
𝑖=𝑘 ·50 ms

MCS[i], 𝑘 ∈ [0,𝑊 /0.05 − 1],

if wind_MCS90𝑡ℎ < 20 and MCS50𝑡ℎ < 10, counter = counter + 1.
counter > 10.

HARQ retransmission (17): The HARQ retransmission happens
constantly, but only certain severe cases cause the performance
impairment. So Domino regards the HARQ retransmissions when

there are more than 10 HARQ retransmissions.∑︁𝑊

𝑖=𝑛
HARQ_retx[𝑖] > 10.

RLC retransmission (18): We determine the RLC retransmission
when the gNB log from Amarisoft shows an RLC retransmission
entry.
Uplink Scheduling (19): Whenever there is an uplink channel
transmission, we set this feature to be true.
RRC state change (20): We check our client’s RNTI and report
this feature when there is a change.
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