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Abstract

In this paper, we study a fully-decentralized multi-agent policy evaluation problem, which is an important sub-problem in
cooperative multi-agent reinforcement learning, in the presence of up to f faulty agents. In particular, we focus on the so-called
Byzantine faulty model with model poisoning setting. In general, policy evaluation is to evaluate the value function of any given
policy. In cooperative multi-agent system, the system-wide rewards are usually modeled as the uniform average of rewards from all
agents. We investigate the multi-agent policy evaluation problem in the presence of Byzantine agents, particularly in the setting of
heterogeneous local rewards. Ideally, the goal of the agents is to evaluate the accumulated system-wide rewards, which are uniform
average of rewards of the normal agents for a given policy. It means that all agents agree upon common values (the consensus
part) and furthermore, the consensus values are the value functions (the convergence part). However, we prove that this goal is
not achievable. Instead, we consider a relaxed version of the problem, where the goal of the agents is to evaluate accumulated
system-wide reward, which is an appropriately weighted average reward of the normal agents. We further prove that there is
no correct algorithm that can guarantee that the total number of positive weights exceeds |N | − f , where |N | is the number of
normal agents. Towards the end, we propose a Byzantine-tolerant decentralized temporal difference algorithm that can guarantee
asymptotic consensus under scalar function approximation. We then empirically test the effective of the proposed algorithm.

Index Terms

Multi-agent policy evaluation, Byzantine attack, Temporal difference learning

I. INTRODUCTION

Reinforcement learning (RL) [34] is a powerful paradigm in learning sequential decision-making. The success of RL both
in theory [1], [19], [29], [33], [35], [36], [44] and practice [14], [26], [28], [42] has sparked the interest in the realm of
multi-agent reinforcement learning (MARL) [20], [46], [47]. MARL [27], [47] is a multi-agent setting, a natural extension of
single-agent RL, where agents interact within a common environment. The state dynamics and individual rewards are affected
by both the global state and joint actions. Based on the system objective, there are in general two main categories of MARL
problems, cooperative [47] and competitive [27] settings. Based on the assumption of the system infrastructure, there are
also two categories, centralized setting and fully decentralized setting respectively. More specifically, in a fully-decentralized
multi-agent setting, agents are only able to share information with each other through a communication network instead of a
central server. In contrast, in a server-present centralized system, the server can collect and aggregate local information and
disseminate appropriate information to agents (see an excellent survey [46] of MARL topics for further details). The focus of
this paper is the cooperative and decentralized setting as in [47], where all agents work together to maximize a common goal.

Similar to the single-agent RL setting, a complete MARL algorithm searches for a certain optimal policy π∗ that can
maximize accumulated system-wide average reward, i.e.,

π∗ = argmax
π

E
[ ∞∑

t=0

γt
n∑

i=1

1

n
rit+1

]
,

where n is the number of agents in the system, γ is a discount factor with 0 < γ < 1 and the expectation is subject to
the usual caveats about appropriate expectations existing in steady-state. We note that in a cooperative multi-agent system,
the system-wide reward is typically modeled as the uniform average of all agents. An important subproblem is to study the
multi-agent policy evaluation for a given policy π, as this can be incorporated into the actor-critic framework as the critic step.
The goal of all agents, in this subproblem, is to learn the value functions defined as:

V (s) = E
[ ∞∑

t=0

γt
n∑

i=1

1

n
ri(st, at)|s0 = s

]
,
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for all states s ∈ S . This implies that 1) all agents need to reach consensus and 2) the consensus values are the value functions
defined above. The multi-agent policy evaluation problem has been studied extensively in fault-free setting [7]–[9], [16], [47].

We study a fully decentralized multi-agent policy evaluation problem in the presence of Byzantine agents. In addition,
we consider a multi-agent system where up to f > 0 agents are Byzantine. Specifically, we explore the model poisoning
faulty setting described in [6], [11], [32], where Byzantine agents could send arbitrary or carefully crafted information to their
neighboring agents. In a fully decentralized system, it is typical for agents to share certain system parameters in order to achieve
consensus as described above. However, Byzantine agents have the ability to modify these local parameters to arbitrary values,
thereby disrupting the algorithm. Furthermore, it is important to highlight that in a fully decentralized system, a Byzantine
agent can transmit inconsistent information to its neighbors. This means that a Byzantine agent can send different values to
different neighbors. This presents a significant challenge compared to the centralized server-based setting, where a Byzantine
agent can only send a single piece of information to the server. The existing literature in multi-agent reinforcement learning
(MARL) lacks a comprehensive study on robust designs, particularly in heterogeneous settings that consider these challenges.

In this work, we investigate the multi-agent policy evaluation problem in the presence of Byzantine agents for any given
policy π. Ideally, the goal of the agents is to evaluate the accumulated uniform average reward of the normal agents. Specifically,
let N denotes the set of normal agents in the system, the decentralized multi-agent policy evaluation is to characterize the
following value at any states s for the given policy π:

V (s) = E
[ ∞∑

t=0

γt
∑
i∈N

1

|N |
ri(st, at)|s0 = s

]
. (1)

However, we will prove later in Theorem 1 that evaluating Eq. (1) cannot be achieved. Thus, we consider a relaxed version of
the multi-agent policy evaluation problem. In this relaxed problem, the goal of the agents is to evaluate accumulated weighted
average reward, which can be written as:

V (s) = E
[ ∞∑

t=0

γt
∑
i∈N

αir
i(st, at)|s0 = s

]
, (2)

where αi ≥ 0 for all i ∈ N and
∑

i∈N αi = 1. We further prove that for the case f > 0, there is no correct algorithm that
can evaluate Eq. (2) with

∑
i∈N 1{αi > 0} > |N | − f , where |N | and f are number of normal and the maximum number

of Byzantine agents. In other words, achieving more than |N | − f positive weights in the relaxed problem is impossible in
general. In the end, we propose a Byzantine-tolerant decentralized temporal difference (BDTD) algorithm under linear scalar
function approximation that can guarantee that all normal agents reach consensus.

The contributions of this paper are threefolds:
• First, we prove in Theorem 1 that evaluating the exact value functions defined by the uniform average reward of the
agents in the presence of Byzantine is impossible. In other words, there is no correct algorithm that can achieve the value
functions where system-wide rewards are modeled as the uniform average rewards of all normal agents in the presence of
Byzantine agents. We further relax the problem to consider solving value function where system-wide rewards are modeled
as appropriately weighted average rewards of the normal agents.

• Second, we further prove in Theorem 2 that there is no correct algorithm that can guarantee the number of positive weights
exceeds |N | − f for the aforementioned relaxed problem.

• Last but not least, we propose a decentralized multi-agent policy evaluation algorithm with linear scalar function approximation,
so that all normal agents can reach consensus.

II. RELATED WORK

A. Fault-free policy evaluation

Policy evaluation, which aims to evaluate how good a given policy is, is an important sub-problem in designing a complete
RL algorithm, which can be incorporated into the actor-critic framework as the critic step. Temporal difference (TD) learning
[33] is a simple yet effective learning algorithm first proposed in the single-agent setting to evaluate a given policy. The
convergence theory in TD learning has been developed first in asymptotic regime [36], [37] and then in finite-time horizon [2],
[29], [44].

The multi-agent policy evaluation, based on distributed TD learning, has been recently studied [8], [9], [41]. Various aspects
of fully-decentralized MARL algorithms have been studied. Notably, the sample and communication efficiencies of actor-critic
algorithms have been investigated in [7], [15], [16], [23].

B. Distributed Learning with Byzantine Agents

Byzantine agents with local model poisoning attack is a common modeling for robust design of distributed algorithm design.
A large body of papers [3], [6], [11], [12], [18], [21], [22], [43], [45] in the literature have adopted it as a common failure
model in federated learning problem, where a server is involved to facilitate the collaborative learning process within the
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supervised setting. In robust algorithm design, one feature that is different from fault-free counterpart is to design robust filtering
mechanism. For instance, in the Krum aggregation rule, as described by [3], the server receives local models from agents and
selects one received local model that has the smallest distance to its subset of neighbors as the output. In [4], a key system
assumption is that the server holds a trusted dataset. The server maintains a server model based on the current global model and
its trusted dataset. Upon receiving one local model from any agent, the server considers this received local model as benign if
it is positive related to the server model. Recently work in [5], [10] studied the effect of Byzantine agents in the so-called
federated reinforcement learning (FRL) framework, where a central server is assumed to be present. However, we note that
FRL and MARL differ significantly in that FRL is a multiple independent identical learner and the action from one agent
does not affect the outcomes of other agents. In contrast, the global state transition and local rewards are dependent upon joint
actions in MARL. In [5], the results are further extended the results to the offline setting. The closest related work [41] studied
the policy value evaluation in the presence of Byzantine agents for a given policy. However, the analysis implicitly assumes
the setting of homogeneous rewards, i.e. the rewards for all agents are the same. In our work, we consider a more general
heterogeneous reward setting. The offline competitive MARL has been studied in [40], where the data poisoning fault model is
considered. Specifically, the rewards in the offline data are adversarially changed so that the new Nash equilibrium learned
from the poisoned data is significantly different from the Nash equilibrium learned from the original data.

There are a series of works [30]–[32] on decentralized optimization problems where the local objective functions are
heterogeneous and convex. An important subproblem in both our work and work in decentralized optimization [30]–[32] is
decentralized consensus, meaning all agents are required to agree with each other. Existing work in [38], [39] have focused on
these fundamental problems and proposed f -trimmed-mean-based algorithms. A recent paper [13] has investigated on the topic
of Byzantine-robust decentralized federated learning.

III. BYZANTINE POLICY EVALUATION IN MULTI-AGENT REINFORCEMENT LEARNING

Throughout this paper, ∥ · ∥ denotes the ℓ2-norm for vectors and the ℓ2-induced norm for matrices. | · | denotes cardinality of
a set/multi-set or the absolute value of a scalar. (·)T denotes the transpose for a matrix or a vector.

1) System model: Consider a multi-agent system with n agents, including up to f agents to be Byzantine agents. We denote
the set of Byzantine agents as F . Note that the actual number of Byzantine agents in the system can be smaller than f . We
consider the scenario that all n agents are connected through a complete graph, where each edge serves as a communication
channel that allows agents to send information to their neighbors. Later, we will show that our impossibility results hold even
for this most ideal setting.

Definition 1 (Networked Multi-Agent MDP). Let the communication network be a complete graph. A networked multi-agent
MDP is defined by following tuple (S, {Ai}ni=1, P, {ri}ni=1, γ), where S is the global state space observed by all agents, Ai is
the action set for agent i, P : S ×A× S → [0, 1] is a global state transition kernel, ri : S ×A is the local reward function for
agent i, and γ ∈ (0, 1) is the discount factor. Let A =

∏
i∈N Ai be the joint action set of all agents.

In this paper, we assume that the global state space S is finite. We also assume that at any given time t ≥ 0, all agents
can observe the current global state st. ri(s, a) is individual agent i’s reward given global state s and joint action a. For
simplicity of the presentation, we assume that the rewards are deterministic. Even in this simple setting, we will show that
our impossibility results hold, let alone for more general stochastic reward settings. We consider policies that are stationary.
In our MARL system, each agent chooses its action following its local policy πi that is conditioned on the current global
state s, i.e., πi(ai|s) is the probability for agent i to choose an action ai ∈ Ai. Then, the joint policy π : S × A → [0, 1]
can be written as π(a|s) =

∏
i∈N πi(ai|s). For any given policy π, the global value function for all s ∈ S is defined as

follows: V (s) = Es∼dπ,a∼π(·|s)[
∑∞

t=0
γt

N

∑
i∈N ri(st, at)|s0 = s], where dπ(·) is the steady state distribution induced by π.

The existence of such distribution is guaranteed by the Assumption 1.

Definition 2 (Byzantine Networked Multi-Agent MDP). A Byzantine networked multi-agent MDP is a networked multi-agent
MDP as defined in Definition 1 with up to f Byzantine agents, who may send arbitrary information when sharing to the
neighboring agents.

We note that in the modelling of the Byzantine agents, the agents still strictly follow the sampling policies and receives true
data from the environment. However, the Byzantine behavior appears in the communication process with neighboring agents
when sending value function information. One can see such modelling in Algorithm 1.

2) Technical assumptions: We now state the following assumptions for the decentralized multi-agent MDP described above.

Assumption 1. For any policy π, the induced Markov chain {st}t≥0 is irreducible and aperiodic.

Assumption 2. The reward rit+1 is uniformly bounded by a constant rmax > 0, ∀i ∈ [n] and t ≥ 0.

Assumption 3. Each agent i’s value function is parameterized by linear functions, i.e., V (s;w) = ϕ(s)w, where ϕ(s) ∈ Rd is
a feature vector for state s ∈ S . The feature matrix Φ ∈ R|S|×d is a full-rank matrix. The feature vectors ϕ(s) are uniformly
bounded for any s ∈ S . Without loss of generality, we assume that ∥ϕ(s)∥ ≤ 1.
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Assumption 4. The total number of agents n and the maximum number of Byzantine agents f has the following inequality
n ≥ 3f + 1.

Assumption 1 guarantees that there exists a stationary distribution dπ(·) over S for the Markov chain induced by the given
policy π. Assumption 2 is common in the RL literature (see, e.g., [8], [44], [47]) and easy to be satisfied in many practical
MDP models with finite state and action spaces. Assumption 3 on features is standard and has been widely adopted in the
literature, e.g., [29], [36], [47], for linear function approximations. Assumption 4 is a standard assumption in decentralized
Byzantine consensus problem as in [38].

IV. GENERAL RESULTS IN BYZANTINE FAULTY MULTI-AGENT POLICY EVALUATION

In this section, we start with the scope of the problems that we consider to facilitate the later discussions on our impossibility
results. First, we introduce the Byzantine-free multi-agent policy evaluation problem [7], [8], [16], [47]. Note that the stochastic
convergence we are referring to in this paper is expected mean-squared convergence as in Byzantine-free setting [7], [8], [16],
[29]. 1) Byzantine-free multi-agent policy evaluation problem:

Problem 1. In decentralized TD learning, if all agents function normally, is there a correct distributed TD learning algorithm
converges to a TD fixed point that satisfies: w∗ = Es∼dπ(·),a∼π(·|s)[ϕ(s)

∑n
i=1

1
nr

i(s, a)]?

Note that the above convergence requires that each normal agent i satisfy limt→∞ E[∥wi
t − w∗∥2] = 0. This implies two

important details. First, it signifies that all agents’ parameters achieve consensus, meaning that they will all have the same
values. Second, in addition to reaching a consensus, the agreed-upon value is w∗, which is referred to as the TD-fixed point.
We further note that from the perspective of the actor-critic framework in decentralized MARL, consensus on certain global
information like value function is essential in computing local policy gradients [7], [16], [47].

2) Byzantine faulty multi-agent policy evaluation problems: With the presence of Byzantine agents, since we consider
model poisoning Byzantine attack, it is clearly impossible to guarantee Byzantine agents to converge to the aforementioned
Byzantine-free TD-fixed point w∗, defined in Problem 1. A natural goal is to consider if there exist correct algorithms such that
the parameters converge to the fixed point corresponding to normal agents, which is formally stated as follows.

Problem 2. When f > 0, is there a correct TD learning algorithm that allows the agents to converge to

w∗
N = Es∼dπ(·),a∼π(·|s)[ϕ(s)

∑
i∈N

1

|N |
ri(s, a)],

where N denotes the set of normal agents?

The fixed point w∗
N proposed corresponds to modelling the system rewards as the uniform average of all normal agents.

However, as we will prove in Theorem 1, it is impossible to reach the TD-fixed point defined in Problem 2. Thus, we further
relax the problem to consider a TD fixed point that is an appropriately weighted average of all normal agents.

Problem 3. When f > 0, is there a correct TD learning algorithm that allows the agents to converge to

w∗
α = Es∼dπ(·),a∼π(·|s)[ϕ(s)

∑
i∈N

αir
i(s, a)],

where the weights αi satisfies:
∑

i∈N αi = 1, αi ≥ 0, ∀i ∈ N?

The fixed point w∗
α proposed corresponds to modelling the system rewards as a non-uniform weighted average of all normal

agents. In Theorem 2, we will answer this question formally. In general, there is no correct algorithm that can guarantee the
number of positive weights exceeds |N |− f . In other words, in some multi-agent policy evaluation problems, achieving |N |− f
number of positive weights is the best an algorithm can do. Toward this end, we introduce a (ν, ξ)-admissible problem.

Problem 4. ((ν, ξ)-admissible problem) When f > 0, for given pair of ν ∈ N+ and ξ > 0, is there a correct TD learning
algorithm that allows the agents to converge to

w∗
ν,ξ = Es∼dπ(·),a∼π(·|s)[ϕ(s)

∑
i∈N

αir
i(s, a)]. (3)

where the weights αi satisfies
∑

i∈N αi = 1, αi ≥ 0, ∀i ∈ N ,
∑

i∈N 1(αi ≥ ξ) ≥ ν?

Problem 4 is to learn the value functions with at least ν positive weights, which are bounded away from zero by at least ξ.
It is easy to see that when ξ = 0 and ν = 1, Problem 4 reduces to Problem 3.

3) Main theoretical results: The following theorems state that, in the presence of Byzantine agents, no algorithm ensures
that the normal agents’ parameters converge to a fixed point in Problem 2.

Theorem 1. When f > 0, Problem 2 is not solvable.
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Algorithm 1: Byzantine Agent’s Behavior.

Input : initial state s0, given policy π, state features ϕ, step-size ηk, initial parameters {wi
0}i∈V .

1 for k = 0, 1, · · · do
2 for all i ∈ F do
3 Execute action aik ∼ πi(·|sk);
4 Observe the state sk+1 and reward rik+1;
5 end
6 Send ∗ to neighbors1and receive values from neighbors;
7 end

Theorem 2. For any ξ > 0, Problem 4 is not solvable for any ν > |N | − f .

Theorem 2 says that a (|N | − f, ξ) admissible solution is the best one can achieve for some ξ > 0.
We remark that even though the proofs for above two theorems are inspired by [32], there are two significant differences in

the proofs and implications. First, our proof is convergence for stochastic terms whereas in [32], the proof is for deterministic
terms. Secondly, the impossibility results hold for general multi-agent policy evaluation problem, including tabular case and
linear approximations, whereas in [32], the impossibility result is just for scalar case.

We also remark that the impossibility results holds for general graph, not just limited to complete graph, in decentralized
multi-agent settings as well where the proof will be the same. The reason that we assumed a complete graph in the beginning
is to design the algorithm in Section V.

V. BYZANTINE-TOLERANT DECENTRALIZED TEMPORAL DIFFERENCE LEARNING

In this section, we provide a Byzantine-tolerant decentralized TD (BDTD) learning algorithm for normal agents to solve
MARL policy evaluation in the sense of Theorem 2. In order to derive such an algorithm, we further assume in Assumption 3,
the dimension d = 1, i.e. the features are reduced to scalar features.

1) Behavior of Byzantine agents: The behaviors of Byzantine agents are described in Algorithm 1. The parameters sent by
the Byzantine agents can be arbitrary (denoted as ∗). We note that Byzantine agents can only poison the local models of their
own, which are the information to be exchanged with their neighbors. This is referred to as local model poisoning [11]. We do
not consider the data poisoning models, where Byzantine agents may change the data which may include local policies and
local actions (global state as a result).

On the other hand, in a decentralized multi-agent setting, a Byzantine agent can send inconsistent parameters to its neighbors,
which means that a Byzantine agent can send one parameter to one neighbor and a distinct parameter to another neighboring
agent. There is a more restricted Byzantine model called Byzantine broadcast model [30], where a Byzantine agent sends the
same parameter to neighboring agents. Here, in our work, we focus on the more general setting where Byzantine agents may
send inconsistent parameters.

2) f -Trimmed mean subroutine: We will define f -trimmed mean, which is a subroutine we used for parameters.

Definition 3 (f -Trimmed Mean [45]). For any multi-set2 {x1, · · · , xn}, where xi ∈ R for all i, sort the n values in ascending
order (break the tie uniformly random), then remove the largest f and smallest f , respectively. For the remaining n− 2f values,
return the average value.

3) Policy evaluation for normal agents: Algorithm 2 describes the decentralized multi-agent policy evaluation algorithm for
normal agents. For any given policy π, the algorithm learns the value function parameters using decentralized TD learning.3

We note that for normal agents i ∈ N , it is only required to know its own local policy πi.
In Line-2, if a value is not received from neighbors, set the value to be some default value; If a value is beyond the projection

ball, n← n− 1, f ← f − 1 and remove the corresponding agent. In Line 9, we have used projected TD learning, a variant of
TD learning introduced in [2]. A choice for such radius R in our scalar case is R = 2rmax

ϕmin(1−γ)3/2
, where ϕmin := mins∈S |ϕ(s)|

(see [2, Lemma 7] for vector case). This projection step is mainly for theoretical analysis for bounding TD error terms. In
practice, such a projection step may be dropped. The step sizes ηt used in Line 8 of Algorithm 2 are diminishing. The step
sizes are known to all agents as priori and satisfy the standard conditions:

∑∞
t=1 ηt =∞ and

∑∞
t=1 η

2
t <∞. A typical step

size choice is ηt =
1
t for t ≥ 0.

4) Main theoretical results for Algorithm 2 Let w̄t =
1

|N |
∑

i∈N wi
t, i.e. the average of the parameters of normal agents at

iteration t ≥ 0. Then, we have the following consensus result that states parameters of all normal agents will converge to the
average asymptotically.

1The arbitrary value * can be different to neighbors.
2A multi-set allows the elements in it to be the same.
3For simplicity, we used TD(0) instead of TD(λ). The extension to TD(λ) where λ ∈ (0, 1] is straightforward.
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Algorithm 2: Byzantine-Tolerant Decentralized TD (BDTD) Learning for Normal Agents.
Input : initial state s0, given policy π, state features ϕ, step-size ηk

1 for k = 0, 1, · · · do
2 Send parameter wi

k to neighbors and receive values from neighbors;
3 Consensus Update: w̃i

k ← f -Trimmed Mean;
4 for all i ∈ N do
5 Execute action aik ∼ πi(·|sk);
6 Observe the state sk+1 and reward rik+1;
7 Update δik ← rik+1 + γϕT (sk+1)w

i
k − ϕT (sk)w

i
k;

8 end
9 Projected TD Step: wi

k+1 ← Π2,R(w̃
i
k + ηkδ

i
k · ϕ(sk));

10 end
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Fig. 1: Mean squared Bellman error (MSBE) of different methods under different attacks.
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Fig. 2: Consensus error (CE) of different methods under different attacks.

Theorem 3. The sequences generated in normal agents by Algorithm 2 will achieve consensus, i.e. for any i ∈ N , we have
limt→∞ |wi

t − w̄t| = 0.

Theorem 3 ensures that even starting with different initial parameters, in the heterogeneous reward setting and, more
importantly, inconsistent Byzantine faulty model, the parameters among normal agents will eventually reach an agreement.
However, the average parameter w̄t itself may not have a limit depending on the heterogeneity of the problem.

VI. EVALUATION

A. Experimental Setup

1) Parameter Settings: We consider a cooperative navigation task known as Simple Spread, derived from the Multi-Particle
Environment (MPE) [24]. The task involves 10 agents aiming to collectively cover all landmarks. There are two malicious
agents among them. The agents receive rewards based on the proximity between the closest agent and each landmark. Collisions
between agents result in negative rewards. Each agent selects actions from the action space A ={no action, move left, move
right, move down, move up} using a uniformly random policy. The objective is to train all agents to identify and cover their
respective landmarks while avoiding collisions. The malicious agents, on the other hand, attempt to deceive the other agents by
providing arbitrary information. The feature dimension is 40, encompassing the agents’ self-positions, relative positions of
landmarks, and relative positions of other agents. The step-size is set to 0.1. We run our experiments on Intel(R) Core(TM)
i9-12900K CPU. We repeat each experiment 10 times, and report the average results. Since the variances of results are small,
we omit them here.
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2) Compared Methods: We compare our BDTD algorithm with the following aggregation baselines.
• FedAvg [25]: Every agent, upon receiving parameters from its neighboring agents, calculates the weighted mean of the
received parameters.

• Krum [3]: In the Krum aggregation rule, each agent produces a single parameter that minimizes the sum of distances to
its subset of neighbors, and the size of the subset is n− f , where n is the total number of agents and f is the maximum
number of Byzantine agents.

• Coordinate-wise median (Median) [45]: In every dimension, each agent calculates the coordinate-wise median of all the
parameters it receives.

• FLTrust [4]: When an agent receives a parameter from its neighboring agent, it first calculates the cosine similarity between
its own parameter and the received parameter. If the cosine similarity is positive, the agent then normalizes the received
parameter to have the same magnitude as its own parameter. After that, the agent computes the weighted average of all the
normalized parameters sent by its neighbors.

• SCCLIP [18]: The SCCLIP method mitigates the influence of Byzantine agents through the use of the clip operation. In
this approach, when an agent receives parameters from its neighboring agents, it employs its own parameter as the reference
point to limit or clip the received parameters.
3) Poisoning Attacks: We consider the following poisoning attack schemes in our experiments.

• Gaussian attack [3]: In a Gaussian attack, each Byzantine agent samples a vector from a Gaussian distribution with a mean
of zero and a standard deviation of one, then sends it to its neighboring agent.

• Krum attack [11]: In the Krum attack, Byzantine agents manipulate their parameters to degrade the Krum method’s
performance.

• Trim attack [11]: In the Trim attack, the attacker carefully manipulates the parameters of Byzantine agents in a way that
causes a significant deviation between the aggregated parameter before and after the attack.
4) Evaluation Metrics: We consider the following two evaluation metrics: i) mean squared Bellman error (MSBE)

and ii) consensus error (CE). Given parameters {wi
k}i∈N and samples (sk, sk+1), the empirical squared Bellman error

(SBE) of the κ-th sample is defined as SBE(
{
wi

k

}
i∈N , sκ, sκ+1) :=

1
|N |
∑

i∈N
(
r̄κ + γϕ(sκ+1)

Twi
κ − ϕ(sκ)

Twi
κ

)2
, where

r̄κ = 1
N
∑

i∈N riκ. Then, MSBE up to the k-th sample is defined as the average of SBEs over the history, which is computed as
MSBE := 1

k

∑k
κ=1 SBE(

{
wi

κ

}
i∈N , sκ, sκ+1). The consensus error is computed as CE = 1

|N |
∑

i∈N ∥wi
k − w̄k∥2. The smaller

the MSBE and CE, the better the defense.

B. Experimental Results

Figures 1 and 2 show the MSBE and CE of different methods under different attacks. “FedAvg w/o attacks” means that there
are no Byzantine agents in the system. We observe from Figures 1 and 2 that our proposed BDTD overall achieves the best
performance across various attack scenarios. Even under the strong Trim attack, our proposed BDTD ’s MSBE is comparable
to that of FedAvg without any attacks. In contrast, existing Byzantine-robust aggregation rules, e.g., Krum and SCCLIP, are
susceptible to poisoning attacks. For instance, FLTrust is vulnerable to both the Gaussian and Krum attacks. Under the Gaussian
attack, the final MSBE of FLTrust is 0.801. Similarly, under the Krum attack, although MSBE of FLTrust is low, CE is large,
indicating a lack of consensus among the normal agents when using the FLTrust aggregation rule. The Krum aggregation rule
is susceptible to all three considered attacks. Specifically, under three poisoning attacks, the CE of Krum remains small, but the
MSBE becomes large. This suggests that when normal agents employ the Krum aggregation rule, they tend to reach a poor
consensus.

VII. PROOFS FOR THEOREMS IN SECTION IV

Let [n] := {1, · · · , n}, i.e. the set of all agents.

A. Proof of Theorem 1

Proof. Assume that f > 0. Inspired by [32], the theorem is proved by contradiction.
Suppose that there exists a correct algorithm A that solves Problem 2. Define the rewards of the n agents as follows for all

state-action pair (s, a) ∈ S ×A to be ri(s, a) = i for all i ∈ [N ].
Consider the following two executions that in the first one, agent 1 is the Byzantine agent and the rest are normal agents

whereas in the second one, agent n is the Byzantine agent and the rest are normal agents. In both executions, Byzantine
agent behaves correctly as the correct algorithm, this is reasonable as Byzantine agents can behave arbitrarily. As a result, for
execution 1, algorithm A outputs the result wi,1

t for each agent i and given t such that, we have

wi,1
t

L2

−−→ 1

n− 1

∑
i∈{2,··· ,n}

Es∼dπ(·),a∼π(·|s)[iϕ(s)]
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=

∑
i∈{2,··· ,n} i

n− 1
Es∼dπ(·)[ϕ(s)]

=
n(n+ 1)− 2

2(n− 1)
Es∼dπ(·)[ϕ(s)] ≜ w∗,1 (4)

where L2 denote expected mean-square convergence. More specifically,

lim
t→∞

E∥wi,1
t − w∗,1∥2 = 0.

Similarly, for execution 2, we have

wi,2
t

L2

−−→ 1

n− 1

∑
i∈{1,··· ,n−1}

Es∼dπ(·),a∼π(·|s)[iϕ(s)]

=

∑
i∈{1,··· ,n−1} i

n− 1
Es∼dπ(·)[ϕ(s)]

=
n

2
Es∼dπ(·)[ϕ(s)] ≜ w∗,2. (5)

Note that
w∗,1 − w∗,2 = Es∼dπ(·)[ϕ(s)].

By the assumption of linear independence of feature vectors ϕ(·), by Assumption 3, and the fact that dπ(·) is a distribution, we
know that there exists an entry in vector Es∼dπ(·)[ϕ(s)] is on-zero. As a result, w∗,1 ̸= w∗,2.

However, for any agent i ∈ {2, · · · , n− 1} perspective, they can’t distinguish the above 2 executions, as a result, they must
output the same results for both executions. However, this contradicts with the assumption that both executions would converge
to distinct fixed points shown in (4) and (5) respectively. Therefore, there’s no correct algorithm exists for Problem 2 and the
proof is complete.

B. Proof of Theorem 2

Proof. Recall that we assume n > 3f + 1 and denote the actual number of Byzantine agents in the system as q, i.e. q = |F|.
Let the rewards for any state-action pair (s, a) ∈ S ×A and agent i ∈ [n] to be

ri(s, a) = i, for 1 ≤ i ≤ f and n− q + 1 ≤ i ≤ n

ri(s, a) = f + 1, for f + 1 ≤ i ≤ n− q.

For any correct algorithm, consider the following two cases, where in both cases, Byzantine agents follow the correct algorithm.
• Case 1: In this case, agents n− q + 1 ≤ i ≤ n are Byzantine agents. The output of the correct algorithm converges to

w∗
α ∈ [1, f + 1]Es∼dπ(·),a∼π(·|s)[ϕ(s)].

• Case 2: In this case, agents 1 ≤ i ≤ f are Byzantine agents. The output of the correct algorithm converges to

w∗
α ∈ [f + 1, n]Es∼dπ(·),a∼π(·|s)[ϕ(s)].

As for any normal agent i ∈ {f + 1, · · · , n − q} can’t distinguish the above two cases, they must converge to an identical
value in both cases. So, w∗

α must be (f + 1)Es∼dπ(·),a∼(·|s)[ϕ(s)]. In other words,

w∗
α = (f + 1)Es∼dπ(·),a∼(·|s)[ϕ(s)]

=

n−q∑
i=1

αir
iEs∼dπ(·),a∼π(·|s)[ϕ(s)],

where the second equality is due to the definition of Case 1, which is equivalent to

w∗
α =

n−q∑
i=1

αir
i = f + 1. (6)

The above equivalency is again because feature vectors are linearly independent. By the reward setting given above, we further
have, for (6),

f∑
i=1

αii+ (f + 1)

n−q∑
i=f+1

αi = f + 1,



9

which is equivalent to
f∑

i=1

αii = (f + 1)(1−
n−q∑

i=f+1

αi) = (f + 1)

f∑
i=1

αi (7)

which is only possible when αi = 0 for all 1 ≤ i ≤ f . As a result, there could be at most |N | − f can be positive in Case 1
regardless of ξ. And ν can’t be larger than |N | − f and the proof is complete.

VIII. CONCLUSION

In this paper, we studied fully decentralized multi-agent policy evaluation problem in the presence of Byzantine agents. We
first established the impossibility of designing a correct algorithm that obtains value functions where the system-wide rewards
are represented as the uniform average rewards of all normal agents. We then proceeded to relax the problem by considering
the situation where the system-wide rewards are represented as appropriately weighted average rewards of the normal agents.
Subsequently, we demonstrated that there is no correct algorithm capable of ensuring that the number of positive weights
surpasses |N | − f for the aforementioned relaxed problem. Lastly, we proposed a decentralized multi-agent policy evaluation
algorithm, which guarantees consensus among all normal agents.
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APPENDIX

A. Consensus Derivation for Theorem 3

We note that the consensus update requires a new construction of a consensus matrix that is solely based on normal agents.
That is because the dynamics of Byzantine agents are hard to predict and analyze even if it’s possible. As a result, using
Byzantine agents’ parameters to characterize a normal agent’s dynamic is not an approach to go. Fortunately, for the class of
trim-mean based algorithms, it is possible to characterize a normal agent’s behavior solely based on the normal neighbors of
the agent’s.

Definition 4 (Reduced graph [38]). For a given graph G(V , E) and F ⊂ V , a graph G(N , EN ) is said to be a reduced graph, if:
(i) N = V − F , and (ii) EN is obtained by first removing from E all the links incident on the nodes in F , and then removing
up to f other incoming links at each node in i ∈ N .

Note that for complete graph that we consider in this work and a given F , multiple reduced graph G may exist. Let RF be
the set of all possible reduced graphs G(N , EN ). And further let τ = |RF |, which is a finite number.

Since the underlying communication network is a complete graph and n ≥ 3f +1, by [31], [38], we know that the parameter
update can be expressed with a transition matrix. In the following discussion, for any H ∈ RF , we use H to denote the
connectivity matrix. That is, if there’s a directed link from node i to j, then H(i, j) = 1 and otherwise H(i, j) = 0. For
diagonal elements, we set H(i, i) = 1 for all i ∈ N . Moreover there exists a constant β > 0 such that the following lemma
holds.

Lemma 1 (From [38]). For any t ≥ 0, there exists a graph H[t] ∈ RF such that βH[t] ≤ At.

For the detailed expression of β, see [38]. A lower bound for β is 1
2f(f+1) , i.e. 1

2f(f+1) ≤ β. Recall the definition of reduced
graph in Definition 4 and that τ is the cardinality of the set of reduced graph.

Lemma 2. In the product below of H(t) matrices for consecutive τ |N | iterations, at least one column is non-zero.
k+τ |N |−1∏

t=k

H[t].

Proof. Since the above product contains τ |N | matrices, at least one matrix, say H∗, appeared at least N times. In addition,
since all diagonal elements of H matrices are 1, so they are commute. Based on these observations, the claim in the lemma
holds.

Let us define a sequence of matrices Q(t) such that each of these matrices is a product of τN of At matrices. Specifically,

Q(t) =

t+τ |N |−1∏
k=t

At.
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In addition, define metrics to measure the similarity among the rows of a row stochastic matrix X as follows

δ(X) : = max
j

max
i1,i2
|Xi1,j −Xi2,j |

λ(X) : = 1−min
i1,i2

∑
j

min{Xi1,j , Xi2,j}.

There exists the following inequality between the defined quantities above.

Lemma 3. For any m square row stochastic matrices X(1), X(2), · · · , X(m),

δ(X(1)X(2) · · ·X(m)) ≤
m∏
i=1

λ(X(i)).

The proof of Lemma 3 is provided in [17]. An important observation for λ(X) is that if there exists a non-zero column for
X , say all elements a bounded above from 0 by at least ξ > 0, then λ(X) ≥ 1− ξ. In addition, let X̄ = 1

N 11X , we introduce
the following lemma for the ℓ2 distance between X and 1X̄ in terms of δ(X).

Lemma 4. For any X ∈ Rn×n, we have

∥X − 1X̄∥ ≤ nδ(X) (8)

Proof. By definition of δ(X), we know that any two entries from the same column deviate from each other at most δ(X). Let
x̄i be the i-th element of vector X̄ . Also, we have

|Xi,j − X̄j | = |Xi,j −
1

n

n∑
k=1

Xk,j | = |
1

n

n∑
i=1

(Xi,j −Xk,j)|

≤ 1

n

n∑
i=1

|Xi,j −Xk,j |

≤ δ(X).

For ℓ2 norm, we have

∥X − 1X̄∥ =
√∑

i,j

(Xij − X̄j)2 ≤
√
N2(δ(X))2 ≤ nδ(X).

Lemma 5. For any t, matrix Q(t) is a row stochastic matrix with λ(Q(t)) ≤ 1− ρ, where ρ := 1
βτN > 0 is a strictly positive

number.

Proof. Since Q(t) is product of a series of row stochastic matrices At, the product Q(t) is a row stochastic matrix. From
Lemma 1, we have

βH[t] ≤ At.

As a result, we further have

βτ |N |
t+τ |N |−1∏

k=t

H[t] ≤
t+τ |N |−1∏

k=t

At = Q(t). (9)

By Lemma 2, there exists a column for the LHS of Eq. (9), where all elements are strictly positive, more specifically, not
smaller than ρ. As a result, we have λ(Q(t)) ≥ 1− ρ. In addition, this inequality holds for all t ≥ 0.

B. Proof of Theorem 3

Proof. For simplicity, we use notation ϕk := ϕ(sk). For the parameter iterative update, we have

wi
k+1

=
∑
j∈N

Ak(i, j) · wj
k + ηk(r

i
k+1 + γϕk+1w

i
k − ϕkw

i
k)ϕk

=
∑
j∈N

Ak(i, j) · wj
k + ηkϕk(γϕk+1 − ϕk)w

i
k + ηkr

i
k+1ϕk. (10)
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Then, we consider the dynamics of the vector wk := (w1
k, · · · , w

|N |
k )T and we have

wk+1

= Akwk + ηkwkϕk(γϕk+1 − ϕk) + ηkrk+1ϕk

=
k∏

l=0

Alw0 +
k∑

l=0

ηlbl

k∏
n=l+1

Anwl +
k∑

l=0

ηl

k∏
n=l+1

AnCl (11)

where rk = (r1k, · · · , r
|N |
k )T , in addition we defined bl = ϕl(γϕl+1 − ϕl) and Cl = rl+1ϕl.

For bl and Cl, by Assumptions 2 and 3,we have

|bl| ≤ 2, ∥Cl∥ ≤ rmax.

The dynamics of (11) for k-th iteration is

wk =
k−1∏
l=0

Alw0 +
k−1∑
l=0

ηlbl

k−1∏
n=l+1

Anwl +
k−1∑
l=0

ηl

k−1∏
n=l+1

AnCl.

Let w̄k = 1
N

∑
i∈N wi

k. Then, for the average dynamic, we have

w̄k = pT0,k−1w0 +
k−1∑
l=0

ηlblp
T
l+1,k−1wl +

k−1∑
l=0

ηlp
T
l+1,k−1Cl. (12)

where pl,k is defined as

pk,t =
1

N
1T

t∏
l=k

Al.

Then, by Lemma 5, we have

δ(
t∏

l=k

Al) ≤
t∏

l=k

λ(Al)

≤
⌊ t−k
τ|N| ⌋∏
l=k

λ(Ql)

≤ (1− ρ)
⌊ t−k
τ|N| ⌋. (13)

Recall that ρ = βτ |N |. For ℓ2 norm, by Lemma 4, we have

∥
t∏

l=k

Al − 1pTk,l∥ ≤ |N |δ(
t∏

l=k

Al)

≤ |N |(1− ρ)
⌊ t−k
τ|N| ⌋

≤ |N |ζt−k, (14)

where ζ is defined as ζ = (1− ρ)
⌊ 1
τ|N| ⌋.

For consensus error, we have

∥wk − w̄k1∥

=

∥∥∥∥∥
k−1∏
l=0

Alw0 +
k−1∑
l=0

ηlbl

k−1∏
n=l+1

Anwl +
k−1∑
l=0

ηl

k−1∏
n=l+1

AnCl − 1 · pT0,k−1w0 −
k−1∑
l=0

ηlbl1 · pTl+1,k−1wl −
k−1∑
l=0

ηl1 · pTl+1,k−1Cl

∥∥∥∥∥
=

∥∥∥∥∥
(

k−1∏
l=0

Al − 1 · pT0,k−1

)
w0 +

k−1∑
l=0

ηlbl

(
k−1∏

n=l+1

An − 1 · pTl+1,k−1

)
wl +

k−1∑
l=0

ηl

(
k−1∏

n=l+1

An − 1 · pTl+1,k−1

)
Cl

∥∥∥∥∥
≤

∥∥∥∥∥
(

k−1∏
l=0

Al − 1 · pT0,k−1

)
w0

∥∥∥∥∥+
∥∥∥∥∥
k−1∑
l=0

ηlbl

(
k−1∏

n=l+1

An − 1 · pTl+1,k−1

)
wl

∥∥∥∥∥+
∥∥∥∥∥
k−1∑
l=0

ηl

(
k−1∏

n=l+1

An − 1 · pTl+1,k−1

)
Cl

∥∥∥∥∥
≤

∥∥∥∥∥
k−1∏
l=0

Al − 1 · pT0,k−1

∥∥∥∥∥︸ ︷︷ ︸
term (a)

·∥w0∥+
k−1∑
l=0

ηl ∥
k−1∏

n=l+1

An − 1 · pTl+1,k−1∥︸ ︷︷ ︸
term (b)

·∥wl∥ · |bl|
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+
k−1∑
l=0

ηl ∥
k−1∏

n=l+1

An − 1 · pTl+1,k−1∥︸ ︷︷ ︸
term (b)

·∥Cl∥. (15)

By Lemma 4 and Eq. (14), we have bounds on term (a) and (b) respectively as follows∥∥∥∥∥
k−1∏
l=0

Al − 1 · pT0,k−1

∥∥∥∥∥ ≤ |N | · ζk−1

∥∥∥∥∥
k−1∏

n=l+1

An − 1 · pTl+1,k−1

∥∥∥∥∥ ≤ |N | · ζk−l−2. (16)

Recall that the step size is ηl =
1
l , as a result, we have

lim
k→∞

k−1∑
l=0

ηlξ
k−l−2 = 0.

Then, consensus error in Eq. (15), we have

∥wk − w̄k1∥

≤|N | · ζk−1 · ∥w0∥+
k−1∑
l=0

ηl|N | · ζk−l−2 · ∥wl∥ · |bl|+
k−1∑
l=0

ηl|N | · ζk−l−2 · ∥Cl∥. (17)

Since we used projected TD learning, we have ∥wl∥ ≤
√
|N |R. For projection step, by Lemma 6, we have

∥Π2,R(wk)−Π2,R(wk)1∥ ≤ ∥wk − w̄k1∥ . (18)

As a result for the consensus error in Eq. (15), we have

lim
k→∞

∥wk − w̄k1∥ = 0

Here, we introduce a lemma that states the coordinate-wise projection operator has a contraction property.

Lemma 6. For the coordinate-wise projection operator Π2,R, we have

∥Π2,R(w)− 1Π2,R(w)∥ ≤ ∥w − 1w̄∥

Proof. For simplicity, we use Π instead of Π2,R. Let R+ be the index set {i|wi > R} and similarly R− =: {i|wi < −R}.
Furthermore, let ∆w+

i = wi −R for i ∈ R+ and ∆w−
i = −R− wi for i ∈ R−. We note that both ∆w+

i > 0 for i ∈ R+ and
∆w−

i > 0 for i ∈ R− by definition. Finally, ∆ = −
∑

i∈R+ w+
i +

∑
i∈R− w−

i .
Then, the change of average before and after projection is ∆

|N | . In other words, we have

w̄ +
∆

|N |
= Π2,R(w). (19)

For the square of consensus error after projection, we have

∥Π(w)− 1Π(w)∥2

=∥Π(w)− 1(w̄ +
∆

|N |
)∥2

=
∑

i∈N\(R+
⋃

R−)

(wi − w̄ − ∆

|N |
)2

︸ ︷︷ ︸
term (a)

+
∑
i∈R+

(wi −∆w+
i − w̄ − ∆

|N |
)2︸ ︷︷ ︸

term (b)

+
∑
i∈R−

(wi +∆w−
i − w̄ − ∆

|N |
)2︸ ︷︷ ︸

term (c)

For each of the term above, we have

term (a) =
∑

i∈N\(R+
⋃

R−)

(wi − w̄)2 − 2
∑

i∈N\(R+
⋃

R−)

(wi − w̄)
∆

|N |
+

∑
i∈N\(R+

⋃
R−)

∆2

|N |2
(20)

term (b) =
∑
i∈R+

(wi − w̄)2 − 2
∑
i∈R+

(wi − w̄)(∆w+
i +

∆

|N |
) +

∑
i∈R+

(∆w+
i +

∆

|N |
)2 (21)



14

term (c) =
∑
i∈R−

(wi − w̄)2 + 2
∑
i∈R−

(wi − w̄)(∆w−
i −

∆

|N |
) +

∑
i∈R−

(∆w−
i −

∆

|N |
)2 (22)

The first terms in the term (a), (b) and (c) are the original consensus error. We now add the cross terms in term (a), (b) and (c).
We have

− 2
∑

i∈N\(R+
⋃

R−)

(wi − w̄)
∆

|N |
− 2

∑
i∈R+

(wi − w̄)(∆w+
i +

∆

|N |
) + 2

∑
i∈R−

(wi − w̄)(∆w−
i −

∆

|N |
)

=− 2
∑
i∈R+

(wi − w̄)∆w+
i + 2

∑
i∈R−

(wi − w̄)∆w−
i . (23)

We note that both terms above are negative. Similarly, we add the squared terms, then we have∑
i∈N\(R+

⋃
R−)

∆2

|N |2
+
∑
i∈R+

(∆w+
i +

∆

|N |
)2 +

∑
i∈R−

(∆w−
i −

∆

|N |
)2

=
∆2

|N |
+ 2

∆

|N |
(
∑
i∈R+

∆w+
i −

∑
i∈R−

∆w−
i ) +

∑
i∈R+

(∆w+
i )

2 +
∑
i∈R−

(∆w−
i )

2

=− ∆2

|N |
+
∑
i∈R+

(∆w+
i )

2 +
∑
i∈R−

(∆w−
i )

2. (24)

As a result, we have

∥Π(w)− 1Π(w)∥2

=∥w − 1w̄∥2 − 2
∑
i∈R+

(wi − w̄)∆w+
i + 2

∑
i∈R−

(wi − w̄)∆w−
i −

∆2

|N |
+
∑
i∈R+

(∆w+
i )

2 +
∑
i∈R−

(∆w−
i )

2. (25)

We consider 3 cases: (1) −R ≤ w̄ ≤ R, (2) R < w̄ and (3) w̄ < −R.
For case (1), it’s easy to see that wi − w̄ ≥ ∆w+

i for i ∈ R+ and wi − w̄ ≤ −∆w−
i for i ∈ R−. As a result, the projection

is indeed contraction.
For case (2), which implies ∆ < 0, we have R < w̄ ≤ R− ∆

|N | . The RHS is because after projection, the average needs to
be smaller or equal to R. Then, we have∑

i∈R+

(wi − w̄)∆w+
i ≥

∑
i∈R+

(∆w+
i +

∆

|N |
)∆w+

i

=
∑
i∈R+

(∆w+
i )

2 +
∆

|N |
∑
i∈R+

∆w+
i (26)

And we also have ∑
i∈R−

(wi − w̄)∆w−
i ≤

∑
i∈R−

(wi −R)∆w−
i

=
∑
i∈R−

(wi +R− 2R)∆w−
i

=
∑
i∈R−

(−∆w−
i − 2R)∆w−

i

= −
∑
i∈R−

(∆w−
i )

2 − 2R
∑
i∈R−

∆w−
i . (27)

With the above two inequalities, we have the contraction. Similarly, it holds for case (3). Therefore, the proof is complete.
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