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Abstract

Datacenter network hotspots, defined as links with persis-

tently high utilization, can lead to performance bottlenecks.

In this work, we study hotspots in Google’s datacenter net-

works. We find that these hotspots occur most frequently

at ToR switches and can persist for hours. They are caused

mainly by bandwidth demand-supply imbalance, largely due

to high demand from network-intensive services, or demand

exceeding available bandwidth when compute/storage up-

grades outpace ToR bandwidth upgrades. Compounding this

issue is bandwidth-independent task/data placement by data-

center compute and storage schedulers. We quantify the per-

formance impact of hotspots, and find that they can degrade

the end-to-end latency of some distributed applications by

over 2× relative to low utilization levels. Finally, we describe

simple improvements we deployed. In our cluster scheduler,

adding hotspot-aware task placement reduced the number

of hot ToRs by 90%; in our distributed file system, adding

hotspot-aware data placement reduced p95 network latency

by more than 50%. While congestion control, load balancing,

and traffic engineering can efficiently utilize paths for a fixed

placement, we find hotspot-aware placement – placing tasks

and data under ToRs with higher available bandwidth – is

crucial for achieving consistently good performance.

1 Introduction

Distributed cloud applications and services rely on high-

bandwidth networks to provide high-throughput, low-latency

data transfers. Ideally, the datacenter network provides appli-

cations with the illusion of an unconstrained network — one

in which applications receive high throughput independent

of the placement of their components across the network.

Techniques such as topology design [41] and/or topology and

traffic engineering [32] can support this ideal.

In practice, however, the datacenter network is not uncon-

strained at all places and all times. In our study of production

networks (§2), there exist network hotspots — links with

persistently high utilization — both within the datacenter in-

terconnect and at top-of-the-rack (ToR) switches (§3). At

Google, most hotspots occur at ToR switches and can persist

for tens of minutes to hours. ToRs are split between compute

hosts managed by Borg [45] and storage hosts. A dominant

fraction of traffic in our clusters1 can be attributed to our dis-

tributed storage stack. This includes the Colossus distributed

file system [17], the RamStore, an in-memory store similar

to RamCloud [29], QuerySys, an internal query processing

system similar to [5, 27, 36, 44], and Bigtable [18]. Colossus

places chunks on storage racks, and QuerySys worker tasks

(§4.2) access these over the network.

Datacenter network planning balances ToR bandwidth sup-

ply with anticipated compute and storage traffic demand. Due

to the high cost of non-blocking bandwidth provisioning,

statistical multiplexing is employed, resulting in an oversub-

scription ratio – the ratio of ToR downlink to uplink band-

width. This ratio, set at deployment, typically remains fixed

throughout a ToR’s multi-year lifespan, based on initial work-

load forecasts. Consequently, hotspots emerge from two pri-

mary, interconnected causes (§3). The first is rack bandwidth

demand-supply imbalance: an imbalance between bandwidth

demand from compute or storage provisioned on a rack, and

the provisioned ToR bandwidth supply. This imbalance may

occur under specific extreme traffic patterns, such as large

incasts, due to the inherent oversubscription ratio. Alterna-

tively, it can arise unexpectedly from deviations in either

demand or supply compared to initial provisioning forecasts.

Demand-side changes might stem over time from inorganic

increased bandwidth demands of network-intensive work-

loads or other workload efficiency improvements. Supply-

side changes could be triggered by incremental upgrades that

increase compute or storage capacity without corresponding

ToR uplink upgrades, or by planned/unplanned ToR uplink

outages that reduce available bandwidth temporarily. The

second reason is bandwidth-independent task/data placement

by datacenter compute or storage schedulers assuming an

unconstrained network. Datacenter scheduling is primarily

focused on host resources, like compute and storage, that

can be evaluated independently for each scheduling deci-

sion (because the network was designed to typically not be

a bottleneck). Scheduling for network load is a much harder

problem, since a hotspot is a property of a set of hosts and

not attributable to any individual host. Further, characterizing

the bursty communication demands of a distributed job is

1In this paper, our scope is traditional compute and storage, excluding

ML clusters.



challenging relative to the per-task CPU and memory require-

ments. Hence, for simplicity, our initial job schedulers did

not consider network requirements in scheduling decisions.

This could in turn lead to situations where the tasks or storage

chunks on a rack had sufficient traffic demand to exceed the

provisioned ToR bandwidth supply.

Highly utilized ToRs can degrade the performance of our

distributed storage systems (§3.4). For instance, Colossus

hard disk drive (HDD) write latencies are inflated by 2×

relative to an unloaded ToR even at 40% ToR utilization.

Higher levels of the storage stack are also sensitive to ToR

hotspots; for example, query latencies in QuerySys are inflated

by 1.5× at utilizations ranging from 75–95%. It is surprising

that these systems are so sensitive to ToR utilization. They

access high-latency storage devices like HDDs and can incur

significant compute latency when, for example, aggregating

query results. Clearly, the increased network latency due to

high ToR utilization starts to dominate these other latency

components at some utilization level.

Application impact from ToR hotspots cannot be avoided

with traditional network performance techniques like con-

gestion control and traffic engineering, since these solutions

cannot provide more ToR bandwidth. Hotspots can, in theory,

be addressed by maintaining ToR resource-balance at every

instant but is hard and expensive to do in practice (§3.3). It

is much easier to replace a few failed disks on a rack with

new higher-capacity disks (resulting in an imbalance) than

it is to upgrade ToR capacity to restore balance. Instead, we

have to change the input traffic matrix by placing work in a

hotspot-aware manner.

In this paper, we modified compute and storage schedulers

(Borg and Colossus) to account for resource-imbalance and

ToR utilization when making task and storage chunk place-

ments. This is challenging because the scheduler and file

system are complex software systems that simultaneously bal-

ance a range of competing objectives: ensuring performance

for applications with diverse workloads, high utilization, load

balance, failure tolerance, and so on.

Despite this, for two reasons, we were able to introduce

relatively simple modifications to the scheduler and the file

system to mitigate the latency impact of high ToR utilization.

First, end-to-end application-perceived query performance is

only sensitive to ToR utilization above 75% or so. Second,

across our fleet, the average ToR utilization is low, so many

ToRs are well below 75% utilization. Our hotspot-aware

task placement (§5) on Borg proactively places tasks on low

utilization ToRs, and reactively migrates them away from

hotspot ToRs. Similarly, our hotspot-aware chunk placement

biases storage chunk placement away from those imbalanced

racks with less capacity.

These mechanisms reduced the number of hotspot ToRs

by 90% in our network without regressing scheduler and file

system objectives. Furthermore, they significantly reduce

storage access and query latency. We reduced Colossus p95

network latency by 50–80% and p95 total latency by 30–60%.

Similarly, QuerySys shuffle flush and materialize benchmarks

achieve latency reductions of 13% and 9%, respectively.

This paper makes three key contributions:

1. We demonstrate that ToR hotspots remain an un-

solved but critical problem, originating from rack band-

width demand-supply imbalance in dynamic network envi-

ronments with evolving workloads, incrementally increasing

compute/storage resources, and ToR uplink bandwidth prone

to planned/unplanned outages. The ToR ↔ aggregation block

cross-section is the most common location for hotspots inside

our datacenters, and these hotspots can persist for extended

durations, ranging from minutes to days. (§3).

2. We show that these hotspots can significantly impact

application performance, even for operations dependent on

disk or compute latency. Specifically, ToR hotspots can dou-

ble the latency of both simple storage read/write operations

and complex application operations (§4).

3. We find that simple augmentations to existing compute

and storage schedulers to better balance network load in a

best-effort manner significantly reduce ToR hotspots and their

impact on application latency without the added complexity

of treating the network as a fully managed resource (§5).

2 Background

2.1 Datacenter Network

Clos topology. Google’s datacenter network is based on a

hierarchical design (Figure 1) that uses Clos topologies to pro-

vide high-bandwidth interconnectivity between servers [41].

The lowest level of the network consists of servers mounted on

racks. A top-of-rack (ToR) switch connects to all the servers

within the rack. Each ToR switch connects to an aggregation

switch. A group of interconnected aggregation switches forms

an aggregation block. In turn, aggregation blocks connect to

the datacenter network interconnect (DCNI). The DCNI pro-

vides links that directly connect different aggregation blocks

or indirectly connect them through spine blocks [32, 41]. The

DCNI connects to a fabric border router (FBR) that provides

connectivity to other datacenters or WAN.

Rack types. To simplify procurement, deployment, and sub-

sequent lifecycle management, Google’s datacenters contain

different types of racks. A Disk rack contains only storage

appliances, servers dedicated to I/O using hard disk drives

(HDDs) or solid-state drives (SSDs). Optimized for high-

capacity storage, they store and serve data for Google’s entire

suite of user-facing services, as well as analytics, backup, and

archival applications. A Compute rack contains compute re-

sources, such as servers, with minimal local storage. Finally,

a Mixed rack contains both compute and storage resources.

2.2 The Storage Stack

Several storage systems provide Google’s applications with

a range of interfaces to storage hardware. These systems
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collectively constitute the storage stack (Figure 2).

At the lowest level, D provides access to chunks of data

residing on a single server, but it does not have an API to

access user-level files or provide reliability guarantees.

Colossus [17], a distributed file system, is a successor to,

and shares some architectural heritage with, the Google File

System [16]. It breaks files up into encoded units called

stripes. Each stripe has a particular encoding, perhaps repli-

cated or erasure-coded, and is comprised of chunks, which it

stores on D. Colossus transparently manages chunk replica-

tion and/or encoding, scalably updates filesystem metadata,

and ensures adherence to consistency semantics during con-

current writes and appends. Clients access Colossus through

a client library which obtains metadata from Colossus and

directly accesses chunks, or parts of chunks, from D servers.

RamStore, a distributed in-memory file system (similar to

[29]) built upon memory hosts, is primarily used to stage data

during a shuffle [10]. Database grouping and join operations

frequently use this form of collective communication, and an

in-memory file system enables fast shuffles.

At the top of the stack, QuerySys, an internal query pro-

cessing system similar to [5, 27, 36, 44], provides a query

interface to distributed storage. QuerySys stores persistent

data in Colossus, and uses RamStore to stage intermediate

data during query execution. Multiple such systems with vary-

ing APIs and features exist, including Bigtable [18], another

database service built on the same infrastructure.

3 Hotspot Characterization

In this section, we characterize the prevalence and duration of

network hotspots in Google’s network, discuss their causes,

and present examples of their impact. We begin by defining

hotspots and describing our methodology.

3.1 Methodology and Metrics

To characterize hotspots, we use telemetry data from switches,

which provides the average utilization of each network link

over 5-minute intervals. A link is a hotspot in an interval if

its utilization during that interval is higher than 75%. Since a

hotspot might occur on either of the two directions of a given

link, we treat each direction separately in our characterization.

We choose a 75% threshold for two reasons. First,

we [32, 41, 50] and others [14, 39, 47] maintain a 25% capac-

ity headroom to minimize application impact during mainte-

nance, upgrade, and failure mitigation. For this reason, we use

a 75% threshold to determine a hotspot. Second, applications

we study in this paper exhibit significant latency increases

when network utilization exceeds this threshold (§4.1).

3.2 Prevalence

Figure 3 shows the percentage of hot links (i.e., the hotspot

rate) across three types of network links in different cross-

sections: host ↔ ToR, ToR ↔ aggregation block, and links

within the DCNI, aggregated from the link utilization data

over a month across the entire fleet.

ToR uplinks have the highest hotspot rate. As we have

observed that ToR ↔ aggregation block links are ∼10x more

likely to be hot than host ↔ ToR links and ∼2x more than

DCNI links, ToR ↔ aggregation block hotspots have the

highest traffic impact and are the main focus of this paper.

Moreover, ToR hotspots are evenly divided across upstream

and downstream directions (results omitted for brevity), so

solutions cannot focus on a specific traffic direction. In what

follows, the term hotspot always refers to a ToR uplink (i.e.,

ToR ↔ aggregation block) hotspot in either direction unless

otherwise stated.

ToR hotspots span a large range of durations. Figure 4

shows the distribution of the duration for all ToR hotspots

in a month. Here, the duration of a hotspot is defined as

the total length of successive 5-minute time intervals during

which the ToR uplink is consistently hot. About a third of the

hotspots last less than 1 hour, while nearly 40% of them last

1–12 hours. Other timescales show non-trivial persistence as

well; for example, about 13% of hotspots last between 1 day

and 2 weeks. This wide range of persistence suggests that a

variety of approaches might be necessary to address hotspots:

reactive job migration at smaller time scales (minutes), proac-

tive placement of data and network-intensive long-running

jobs at medium timescales (hours), and capacity planning and

re-provisioning at longer timescales (days or longer).

Storage traffic accounts for most ToR hotspots. Figure 5

shows the distribution of hotspots across different types of

racks in the same month. Mixed racks, which contain both

storage and compute (§2), account for nearly 50% of hotspots,
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and Disk racks for nearly 40%. Thus, between them, racks

with storage devices account for about 90% of hotspots.

To understand which type contributes more to hotspots

on Mixed racks, we first calculate the share of the capacity

provisioned for storage and compute for a given rack based

on the configured CPU and disks on the rack. Then, we at-

tribute a hotspot on a Mixed rack to storage (compute) if the

average throughput of storage (compute) traffic divided by

the corresponding provisioned capacity is larger than 75%.

From Figure 6, both compute and storage jobs contribute sig-

nificantly to hotspots on Mixed racks; nearly 45% of hotspot

traffic on a Mixed rack can be attributed to storage.

Taken together with Figure 5, this data suggests that storage

traffic contributes significantly to hotspots. Prior work [49]

also observes that storage read/write traffic constitutes 75%

of the application traffic in Google’s datacenters.

3.3 What Causes ToR Hotspots

ToR hotspots occur in our network because of a combination

of two factors: bandwidth demand-supply imbalance on racks,

and bandwidth-independent task/data placement by cluster

schedulers and distributed storage systems.

Rack bandwidth demand-supply imbalance. Datacenter

network planning involves balancing ToR bandwidth supply

with anticipated traffic demand. For compute racks, band-

width provisioning targets a specific bandwidth per normal-

ized compute unit. For storage racks, link capacity is provi-

sioned based on HDD capacity on the rack.

Over time, as datacenter ecosystems evolve, demand and

supply can diverge from targets, resulting in bandwidth

demand-supply imbalance. On a compute rack, new network-

intensive applications with unprecedented network demands,

efficiency improvements in existing applications, or server

hardware refreshes can increase bandwidth demand beyond

design targets and result in compute bandwidth demand-

supply imbalance. On a storage rack, increases in installed

storage capacity, or incremental replacement of existing or

failed disks with faster ones, can increase storage supply

without increasing bandwidth supply proportionally, likewise

increasing bandwidth demand beyond design targets and re-

sulting in storage bandwidth demand-supply imbalance.

These imbalances can persist for days, weeks, or months

until network operators restore balance. We argue that these

imbalances are inherent to cost-effective datacenter manage-

ment. It is easier to upgrade or replace a few servers or disks

on a rack, but harder to upgrade ToR capacity, since the latter

requires taking all ToR-hosted compute and storage offline,

and may require aggregation block upgrades as well.

Bandwidth-independent task and data placement. By

themselves, rack resource imbalances do not necessarily

cause ToR hotspots. ToR hotspots arise, additionally, because

our cluster scheduler and our distributed file system make

bandwidth-independent task/data placement decisions. This

was a deliberate choice. At the scale of our datacenters, de-

signing bandwidth-aware cluster scheduling and file systems

while also satisfying performance, reliability, and utilization

objectives was (and is) considered extremely hard. We have

instead attempted to provide the illusion of an unconstrained

network to these systems (§1).

As a result of bandwidth-independent task/data placement,

these systems can create ToR hotspots. Consider our cluster

scheduler, Borg, which schedules, on compute racks, worker

tasks belonging to storage systems like QuerySys, RamStore

and Bigtable. Making bandwidth-independent task placement

decisions, Borg can schedule a large number of these network-

intensive workers on a single rack, resulting in significant

traffic demand and triggering a hotspot. Figure 7 shows

the distribution of bandwidth per compute unit across all

the jobs on our fleet. The distribution is wide, with some

network-intensive jobs using more than 10× the median value.

Figure 8 plots ToR utilization as a function of the ratio of

the number of all network-intensive tasks, including those

from QuerySys, RamStore and Bigtable, per unit network

bandwidth for each rack. There is a clear correlation between

utilization and the number of these tasks per bandwidth unit.

Bandwidth-independent data placement in a distributed

file system can place a large number of storage chunks on

racks. When applications access these chunks concurrently,

bandwidth demand can approach or exceed supply, and ToR

hotspots can arise. Figure 9 quantifies the storage bandwidth

demand-supply imbalance in our network; the normalized

amount of link capacity divided by HDD capacity for Disk

racks across our fleet exhibits a more than 2× difference

between the smallest and largest values.

3.4 Hotspot Incidents

Network hotspots can cause significant production incidents,

including SLO (service-level-objective) violations, user expe-
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rience degradation, and can require extensive troubleshooting

effort. This section details several hotspot-related incidents.

Unintended capacity reduction causes ToR hotspots. Tem-

porary hotspots can occur from reduced ToR uplink capacity

during maintenance or failures. In a specific instance, a soft-

ware rollout issue during network maintenance caused a 50%

uplink capacity reduction on multiple ToRs. Unaware of this

reduced capacity, Borg scheduled too many network-intensive

jobs, including crucial batch jobs for Ads analysis, based only

on compute resources. This demand-supply mismatch re-

sulted in a 2–3x increase in task completion time.

Unintended network imbalances from scheduling con-

straints. While serving their intended purpose, Borg schedul-

ing constraints can inadvertently create network imbalances.

For instance, an I/O-intensive service implemented a cus-

tom constraint to avoid scheduling workers on machines with

D servers, aiming to reduce network congestion. However,

this constraint unintentionally excluded the majority of avail-

able machines, concentrating a large number of these same

workers onto the remaining servers. This concentrated load

resulted in persistent ToR hotspots and a 1.5x increase in

read latency. This incident underscores the need for a more

comprehensive approach to mitigating network hotspots.

Colossus degraded reads exacerbate ToR hotspots. Dur-

ing reads, a Colossus client initially attempts to read data

directly from the disks storing the required chunk(s). If one

or more of these are temporarily unavailable (due to over-

load on the disk, CPU, or network), and the file is erasure-

encoded, the client performs a degraded read: retrieving the

other chunks in the erasure-coded stripe and reconstructing

the unavailable chunk. However, this mechanism is ineffec-

tive when the client resides on a ToR hotspot — it increases

network demand on an already congested link. For example,

in one incident, ToR congestion caused by incast traffic to

Bigtable led to high Colossus read latencies. The resulting

degraded reads significantly exacerbated ToR congestion.

Storage ToR hotspots cause high-level applications pain.

There are many applications that are built on top of storage

services. Therefore, hotspots impacting storage services ulti-

mately translate into impact on users. For example, YouTube

relies on storage services (e.g., Bigtable) to store, retrieve and

display watch history. In one incident, a ToR hotspot led to in-

creased packet losses and slowed reads from an SSD-backed

Bigtable partition. As a result, Bigtable replication latency of

user data doubled, resulting in stale or missing watch histories

for some users, impacting user satisfaction.

4 Impact of Hotspots on Storage Systems

In this section, we present measurements of the impact of

hotspots on the performance of our distributed storage sys-

tems. Because ToR hotspots occur predominantly on racks

with storage elements, they impact the performance of access

to distributed storage. In our infrastructure, applications ac-

cess distributed storage via queries to a distributed database

(QuerySys), or by performing reads/writes on a distributed

file system (Colossus). In this section, we study how ToR

utilization affects the latency of QuerySys query completion

and Colossus file reads and writes.

4.1 Approach and Methodology

At a high level, to understand the impact of ToR utilization on

storage access, we associate the latency of a storage operation

(a file system read/write, or a database query) with the ToR

utilization observed during the operation.

Latency. We use extensive logs to measure the latency of

each storage operation, relying on production workloads for

measurements of file system accesses and common bench-

marks for database queries. These systems are instrumented

to break down the time spent on the server versus on the net-

work. The total operation time is measured from initiation

to response, including network latency, which encompasses

the time for underlying Remote Procedure Calls (RPCs) to

traverse the network (including ToR switches).

Utilization. Each file system read or write, and each query,

produces a latency sample. To understand how these latency

measurements depend on ToR utilization, we associate each

latency sample with a ToR utilization value. We do this as

follows. A file system read/write, or a database query involves

many ToR uplinks and downlinks, since these operations may

involve multiple servers. We associate each latency sample

with the maximum utilization of all ToR links involved in

a storage operation, since that lies on the critical path of
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Figure 10: The data flow for an aggregation query in QuerySys.

an operation’s completion. We obtain network utilization

from a network telemetry system which reports the average

throughput of each ToR during each 30 second window. For

each latency sample, we use the average utilization during the

time window containing the operation.

Metrics. To understand and quantify how storage access la-

tency is affected by utilization, we divide utilization values

into buckets in increments of 5%. For each bucket, we com-

pute the p95 latency of the samples within that bucket. We

define the p95 latency inflation at a given utilization bucket as

the ratio of the p95 latency in that bucket to the p95 latency of

the lowest utilization bucket for which we have data. Latency

inflation characterizes how storage access latency is affected

by increasing ToR utilization.

We use a tail measure (p95) because tail performance is

critical for many of our applications. We have also measured

median latency inflation (defined similarly). This shows qual-

itatively similar results, so we omit this for brevity.

To understand how ToR utilization inflates storage access

latency, we define Load-tolerance: the utilization at which

p95 (or median) latency inflation is τ . In this paper, we

consider two values of τ , 1.5 and 2. At τ = 2, the storage

access latency is double that at the lowest utilization which

we consider unacceptable. For simplicity, we currently define

unacceptable latency based on this fixed threshold. In future

work (§6), we plan to define it based on application latency

SLOs, which directly characterize the sensitivity of storage

access to utilization.

4.2 Database Queries

A significant component of the offered load in our datacenters

is traffic from queries of a distributed database, QuerySys.

Query execution consists of a series of stages, and each stage

runs multiple workers in parallel. Each worker (running on

compute racks) processes a partition by reading data initially

from a distributed file system, Colossus (or, in later stages,

from an in-memory file system RamStore), performing some

computation, and writing data to RamStore. Figure 10 depicts

this for an aggregation query which produces statistics across

one or more columns in a large relational table.

As discussed in §3, imbalanced infrastructure upgrades or

network-intensive workloads can result in a network/compute

imbalance that can increase ToR utilization and, in turn, af-

fect query completion times. When infrastructure used for

databases is upgraded such that compute on a rack increases

(e.g., because servers are upgraded) without a correspond-

ing increase in ToR capacity, ToR utilization can increase.

Database workload network-intensiveness can grow in sev-

eral ways: e.g., the rate of queries can increase, queries can

become more complex, and queries can process larger tables;

any of these factors can require more workers. More workers

concurrently accessing distributed storage from a rack can

increase ToR utilization.

In this section, we seek to quantify how the end-to-end

query completion time, as well as the latency of each read or

write operation, is affected by ToR utilization. When a query

is issued, its completion time is affected by the concurrent

workload (other queries and other application traffic) using

the network. Some queries may traverse highly utilized ToRs.

This gives us an opportunity to study how database queries

are affected by ToR utilization.

Methodology. While most database queries execute in

stages (e.g., Figure 10), they differ widely in terms of the

number of stages they use, the number of workers they em-

ploy, and the tables they access. We cannot thus assess ToR

utilization impact on a single query, because each query may

be affected to different extents at different utilization levels.

We use seven benchmark queries that our QuerySys team

runs periodically to assess performance. These benchmarks

include canonical queries (aggregations, materializations,

etc.) that reflect real-world usage patterns, as well as industry

standard benchmarks (e.g., TPC-H and TPC-DS [46]), and

thus capture the shape and semantics of most common queries

against QuerySys. The breakdown of latency at each worker

and each stage is logged for these benchmarks. This enables

us to understand and quantify the extent to which network,

compute, and storage affect end-to-end performance.

The rest of this section presents the impact of ToR utiliza-

tion on these benchmarks.

Aggregation is the most common query in QuerySys: com-

puting aggregates (e.g., sum, count, average) from one or

more columns in a large relational table. To scale to large

tables, QuerySys employs multiple workers each of which

processes distinct partitions of the table. This query executes

in two stages (Figure 10). Both stages involve networked

storage access and computation.

In this query, networked storage (Colossus) access account

for approximately 30% of the query’s total time. The time

difference between Colossus reads and the query total time is

primarily computation time, representing roughly 50% of the

query’s total time.

Figure 11 shows the p95 latency inflation and the varying

Load-tolerance of these operations for τ = 1.5: The Load-

tolerance of the end-to-end query latency can be quite high

(85%). For this query, the component which accounts for half

the overall query latency, the computation time, is largely
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Figure 11: The query latency inflation vs.

ToR utilization for the aggregation query.
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(a) The query latency inflation vs. ToR utilization.
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(b) The CPU ratio of a query vs. the latency inflation

at utilization 75%.

Figure 12: The query latency inflation of different QuerySys benchmarks.

independent of network hotspots, resulting in a higher Load-

tolerance. The other components of the storage stack have

a lower and widely varying Load-tolerance: shuffle writes

at 40%, shuffle reads at 52%, and Colossus reads at 72%.

Shuffle read/write have lower Load-tolerance because they

don’t involve compute and storage operation on the RamStore

hosts. Colossus read is slightly higher because it involves

storage but minimal compute.

Figure 12a shows p95 latency inflation and Table 1 shows

Load-tolerance of the other queries in the benchmark. Shuffle

flush is most sensitive to ToR utilization, primarily because it

triggers an intensive data-flush from RamStore memory hosts

to Colossus when the host runs out of memory to complete the

write. This operation increases the share of network transfer

time in the total query time, resulting in the lowest 1.5× Load-

tolerance among all benchmarks (70%). Materialize writes

results through Colossus; its Load-tolerance of 75% is similar

to that of shuffle flush and Colossus reads during aggregation.

The remaining benchmark queries are less network-intensive,

so have a Load-tolerance of 90–95%.

The impact of computation. Queries access storage, but

also process the retrieved data (e.g., aggregate the data). This

processing time affects the tolerance of a query to hotspots.

To illustrate this, we defined Hotspot-inflation: the latency

inflation at the hotspot threshold (75% utilization, §3). We

explored Hotspot-inflation for different queries as a function

of query compute ratio — the ratio of the sum of the process-

ing time for the 10 slowest workers2 within each stage by the

sum of their worker time (aggregated across all stages).

Figure 12b depicts the relationship between these two quan-

tities. To understand this figure, it helps to understand that

different samples from a single benchmark query may exhibit

different compute ratios (because storage operations and net-

working take different amounts of time). The figure groups

samples by compute ratio, and plots the Hotspot-inflation for

each group. Thus, for example, samples of the shuffle flush

benchmark which have a compute ratio of 0.1 have a Hotspot-

inflation of about 2.25. The figure demonstrates a clear nega-

tive dependence between compute ratio and Hotspot-inflation.

This explains why higher compute ratios result in higher Load-

2Currently, our telemetry system tracks processing times only for the 10

slowest workers.

Load-

tolerance

(1.5×)

Load-

tolerance

(2×)

Hotspot-

inflation

(75%)

Shuffle Flush 70 90 1.67

Materialize 75 – 1.55

Aggregation 85 – 1.38

TPC-DS 100G q17 90 – 1.35

TPC-H 100G q02 90 – 1.34

Shuffle 95 – 1.29

Streaming 95 95 1.37

Table 1: Load-tolerance and Hotspot-inflation of different

QuerySys benchmarks.

tolerances. In other words, the more compute-bound a query

is, the less sensitive it is to network hotspots.

Different queries have different Hotspot-inflation at the

same compute ratio because they may, for example, use dif-

ferent storage operations. For example, when the CPU ratio

is 0.8, materialize prober has more Hotspot-inflation than

streaming prober because the former incurs Colossus writes

while the latter incurs Colossus reads. For Colossus, writes

are more sensitive to ToR hotspots than reads (§4.3).

Summary. In Table 1, we compare the Load-tolerance and

Hotspot-inflation across queries. Most queries also have high

Load-tolerance; many did not reach 2× inflation. For these,

their high Load-tolerance comes from the significant time

spent on compute — ranging from 10% to 90% (Figure 12b).

This discussion implies that for some QuerySys bench-

marks substantial tail latency reductions can be had by re-

ducing the occurrence of ToR hotspots. §5 discusses hotspot-

aware placement mechanisms we use to achieve that.

4.3 File Access

In a distributed file system like Colossus, files are split into

chunks, with each chunk replicated across multiple servers.

Consider a rack with servers that host chunks. If these servers

are upgraded to add more storage I/O capacity (e.g.,new stor-

age hardware that increases the storage read/write rate), but

the ToR’s capacity is not correspondingly upgraded, a net-

work/storage imbalance can result. This imbalance can result

in a ToR hotspot, which can, in turn, affect the latency of reads

and writes to the file system. In this section, we (a) study

how Colossus read/write latency is impacted by ToR hotspots

and by ToR utilization, and (b) quantify the prevalence of

network/storage imbalance across our fleet.

Methodology. We collect the total latency of datacenter

HDD chunk read and write requests on racks with HDD stor-



age (§2.1) with chunk sizes between 100KB and 1MB from

the Dapper tracing system [40] from production workloads

over one day.

HDD reads. Figure 13a shows the p95 latency inflation

(ratio against latency at lowest utilization, §4.1) for network

and total latency. Both network and total latency increases

with ToR utilization. At the 75% hotspot threshold, network

latency is inflated by 4×, but Colossus HDD reads have a

Hotspot-inflation (the inflation at the hotspot-threshold of

75%, §4.1) of only 1.5×. This is because only the network

portion of the Colossus read time is inflated. In all but the last

utilization bucket, network accounts for less than 20% of the

total HDD read latency; in the last utilization bucket, network

doesn’t contribute more than 40%. Load-tolerance (§4.1) is

another way to depict the impact of ToR utilization on storage

access latency. For Colossus reads, the 2× Load-tolerance is

95%; this means that read latency is less than 2× for all ToR

utilizations lower than 95%.

HDD writes. Colossus HDD writes show a qualitatively dif-

ferent behavior than HDD reads because Colossus employs

write-back caching on D servers (§2.2): writes are cached

in battery protected server-side memory and later flushed

to persistent storage. Thus Colossus HDD write latency is

dominated by network latency, and hence is impacted signif-

icantly by increases in network latency as a result of high

ToR utilization. Network contributes to 30–40% for low uti-

lization buckets and more than 50% for higher utilization

buckets (>75%). By contrast, though Colossus caches reads,

read cache hit rates are low, because our workloads mostly

access large files sequentially, resulting in little read locality.

Hence similar behavior is not observed on reads.

Writes are very sensitive to ToR utilization. As Figure 13b

shows, their 2× Load-tolerance is a mere 50%, so, even in

a lightly loaded network, write latency can be twice the la-

tency when compared to an unloaded network. Their Hotspot-

inflation is around 4; writes to a rack with a ToR hotspot can

be 4 times slower than writes to a rack with an unloaded ToR.

While HDD write operations are impacted more than reads

due to the amount of storage access, the network portion

of the latency is similarly affected in both operations. The

network latency components include round-trip delay (RTT),

serialization delays, and congestion control shaping traffic

to fill the ToR link capacity. Measurements of RTT and

packet losses (not shown here) remain consistently low across

utilizations as expected from our deployments of congestion

control and load balancing techniques [22, 25]. The shape

of the network latency curve reflects the workload’s inherent

burstiness relative to the available capacity.

The impact of imbalanced infrastructure. Having charac-

terized the impact of network utilization on reads and writes,

we now show how network/storage imbalance impacts file

reads and writes in Figure 14. To derive this figure, we clas-

sified each rack in a datacenter into one of three categories

based on its level of resource balance: High-Uplink if its

installed ToR uplink capacity exceeds provisioning guideline

relative to installed storage, Medium-Uplink if the capacity

matches the guideline, and Low-Uplink if the capacity is

lower than the guideline. Figure 14 shows the fraction of

storage reads and writes to each type of rack across different

ToR utilizations, across all of our datacenters. The figure

dramatically illustrates the impact of network/storage imbal-

ance. Storage requests that experience low ToR utilization

access High-Uplink ToRs (in green). Conversely, storage re-

quests that experience extremely high ToR utilization almost

exclusively access Low-Uplink ToRs (in red).

5 Hotspot-Aware Placement

As discussed in §3, ToR hotspots occur as a result of an in-

terplay between network supply and demand for compute

and storage resources. As such they cannot be resolved by

in-network mechanisms e.g., in switches or host networking

stacks. Therefore, we integrate hotspot awareness into our

cluster scheduler and distributed file system. We’ve specifi-

cally developed two hotspot-aware placement strategies:

1. ToR-utilization aware task placement and migration

(UTP) takes ToR utilization into account when placing tasks

(such as query workers §4) on servers, or migrating tasks

away from them, thereby improving the balance between

network demand-supply for compute resources.

2. ToR-capacity aware chunk placement (CCP) takes the

imbalance between ToR capacity and rack storage capacity

into account when making storage chunk placement decisions.

Thereby improving the balance between network demand-

supply for storage resources.

As we describe below, the design of these hotspot-aware

placement strategies is informed by the measurements pre-

sented in §3 and §4. Moreover, neither of these placement

decisions is trivial, since each needs to balance complex,

competing objectives. At the same time, avoiding hotspots

is important, since doing so can potentially improve network

utilization and applications’ perceived latency.

5.1 Task Placement and Migration

We modified the Borg cluster scheduler to bias task placement

away from, and reactively migrate tasks from, ToR hotspots.

Before describing this technique, abbreviated UTP, we briefly

describe Borg; see [9, 45] for details.

Background. Borg selects the server on which to place each

task (e.g., worker) in a job. It utilizes historical measurements

to estimate task resource requirements, and uses this to select

suitable servers. When an estimate is inaccurate or workload

changes, Borg can reactively migrate affected tasks to im-

prove job performance, but task migration must be careful to

avoid impacting availability SLOs offered to service owners.

In practice, a cluster scheduler must (a) scale to clusters

with a large number of servers and (b) satisfy many other,

often competing, objectives. It must: balance load between

servers, prevent over-subscription to resources such as CPU
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(b) HDD write.

Figure 13: The total latency and the network latency inflation (i.e.,

p95 latency values normalized against the latency at the lowest

utilization).
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Figure 14: The distribution of chunk read and write request by

uplink categories (High-, Medium- and Low-Uplink) for ToRs at a

given level of utilization.

or memory, over-commit resources to take advantage of sta-

tistical multiplexing, spread tasks of a job across racks to

minimize the likelihood of correlated failure, enable memory

access locality, and pack jobs into as few servers as possible.

Borg addresses the first challenge by choosing a random

sample of placement candidates from amongst servers in

the cluster, rather than considering all servers. It addresses

the second challenge by assigning a vector of scores to each

server based on multiple objectives. Borg prioritizes server se-

lection objectives, with lower-ranked objectives taking prece-

dence. For instance, if load balancing is deemed more critical

than bin packing, Borg may choose a server that optimizes

load distribution even if it leads to suboptimal bin packing

efficiency.

Requirements. Before we designed and implemented UTP,

Borg made bandwidth-independent task placement deci-

sions — its decisions did not take network utilization into

account. Its primary task — to find a set of servers to satisfy

application requirements and potentially competing infras-

tructure constraints — was complex enough that no attempt

was made to add network as a resource to Borg earlier, since

that would require imposing constraints on group of servers

beneath each ToR rather than individual servers. Given that

hotspots can degrade performance, and that Borg is a mature

infrastructure, we imposed two requirements on UTP: (a) it

should be designed as a minimal change to Borg (i.e., not re-

quiring network as a full-fledged new resource type), and (b)

it should not adversely impact any existing cluster objective.

Design. To make minimal changes to the scheduler, ideally

we should minimally modify an existing objective so that it

does not regress any other existing objective. This is hard to

do for ToR utilization. Borg can easily determine if placing a

task on a server would over-run the server’s CPU resources;

this depends only on the resources currently committed by

the server to other tasks. It is harder to determine how placing

a task on a server would impact the server’s ToR utilization,

since that depends on other servers on the rack (that may

or may not be in the randomly chosen candidate set) and

how their workload changes. Reasoning about this impact

correctly would require Borg to consider a large number of

servers, which can impact scaling.

Proactive UTP placement. Fortunately, UTP required a

relatively simple change to Borg for the following reason: at

any given instant, there are relatively few ToR hotspots in each

cluster, since the average ToR utilization in our datacenters is

low. Given this, UTP tweaks a low-priority objective in Borg,

that of ensuring load-balance across servers: it prefers servers

that would balance ToR-utilization across the cluster more

evenly. Specifically, UTP achieves this by assigning a score

to each candidate machine that reflects the ToR utilization for

that machine should the task get placed on that machine. In

computing this score, we take into account instantaneous ToR

utilization as well as peak task demand.

This methodology works well even on a random sample of

servers; given the low average ToR utilization, there are likely

to be many servers in the sample with low ToR utilization,

so in most of the cases Borg can satisfy other cluster-level

objectives while finding a suitable candidate server which

also improves better balancing of ToR utilization.

Reactive UTP migration. Even with ToR-utilization aware

task placement (UTP), ToR hotspots can develop. This is be-

cause the placement decision is based on historical estimates,

which can be incorrect as the usage pattern of a workload

changes, or may not be available for new workloads. To

address this, UTP migrates tasks away from ToR hotspots.

Borg already supports the infrastructure to orchestrate this

for other dimensions (e.g., cpu, memory bandwidth, etc) and

we extended it toward network. To this end, UTP must make

two decisions: (a) how to determine if a ToR is a hotspot, (b)

which task(s) to migrate and when.

UTP employs a 75% utilization threshold to identify

hotspots. This aligns with the load tolerance of common

workloads, including those discussed in §4.2 and Colossus

reads up to 1MB. It also adheres to the fleet-wide requirement

of reserving 25% capacity for in-place upgrades and expan-

sions. It then greedily finds the latency-tolerant tasks with the

largest network bandwidth usage on a rack to migrate. This

ensures the fewest possible migrations and avoids migrating

latency-sensitive tasks when possible. Finally, UTP migrates

tasks only if availability budgets would permit.

Results. Figure 15 shows the efficacy of UTP in addressing

ToR hotspots after its fleetwide rollout. Specifically, it shows

that the number of hot ToRs was reduced by 90% after de-

ploying these features in the scheduler. The remaining hot



0 5 10 15 20 25 30 35 40
Day

0

1

2

N
or

m
al

iz
ed

 %
% of Hot Outbound Compute ToRs Enabling Period

Figure 15: The fleet-wide percentage of compute ToRs hot in the

outbound direction before and after deploying UTP, normalized

by the average value before the deployment.
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Figure 16: The change of the p98 outbound utilization of com-

pute ToRs as well as the average cell level utilization, defined as

the total egress throughput from compute ToRs divided by their

total uplink capacity, after UTP was enabled in a pilot cluster.

ToRs are likely due to cases where higher-priority objectives

in task placement would prefer a hot ToR rather than cold

ToRs. As expected, given the low average ToR utilization in

our datacenters, such cases are not common. Future work can

consider ways to improve scoring and the relative order of

objectives to further reduce the occurrence of hot ToRs.

Figure 16 shows a time series of the evolution of the p98

outbound utilization of Compute ToRs during the pilot of

UTP in one of our clusters before the fleetwide rollout. It also

depicts a timeseries of the average cell level utilization in the

cluster (§5.2) during that same window. UTP reduces the tail

of the ToR utilization to below the hotspot threshold (75%)

after the deployment of UTP. This benefits comes despite

a higher average utilization due to an unrelated workload

change after UTP was enabled.

In theory, UTP could have been purely reactive: it could

have omitted ToR-aware initial placement, and merely in-

voked task migration when a hotspot was detected. Figure 17

shows that a purely reactive design can increase task migra-

tions by nearly 2×, relative to our design. Moreover, with a

purely reactive approach, network-intensive jobs are 7× more

likely to be scheduled on hot ToRs (Figure 18).

UTP enables significant reductions (up to 13%) in p95

latency across many of our QuerySys benchmarks (Figure 19).

The shuffle flush and materialize benefit the most from UTP

because they are the most sensitive to ToR utilization with

the lowest Load-tolerance (Figure 12a). On the other hand,

the improvement on the TPC-H benchmark is not significant,

which is expected because the workload is not sensitive to

ToR utilization.

As discussed in section §3.4, ToR hotspots were a recur-

Metric Change

Percentage of hot ToRs −44.6%

p98th utilization −18.5%

Average utilization 10.9%

Table 2: The change of the median value of the metrics reported

in Figure 15 and Figure 16 in a 5-day window before and after

UTP was enabled. We also used the Student’s t-test on the met-

rics samples in the two periods to confirm that the change was

statistically significant.
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Figure 17: The number of task migration events in a day due to

UTP before and after the disabling of the proactive UTP place-

ment, normalized by the average value before.

ring cause of service incidents. Enabling UTP resulted in a

70% reduction in the monthly occurrence of such incidents.

The remaining incidents post-UTP were primarily attributed

to either resolved bugs within UTP or occurred in specific

clusters where UTP had not yet been deployed.

Lastly, as discussed earlier, a key constraint that we needed

to satisfy in the design of UTP was to not adversely impact any

existing cluster objective. We didn’t observe any regression

in key Borg objective after the rollout of UTP. Corresponding

graphs are omitted for brevity.

5.2 Storage Chunk Placement

ToR-capacity aware chunk placement (CCP) addresses im-

balanced infrastructure upgrades by steering Colossus chunk

placement away from racks whose storage capacity has grown

out of balance with provisioned ToR bandwidth.

Background. Distributed file systems use heuristics to de-

termine where to place new file chunks. These heuristics are

designed to achieve several, often competing, objectives to

determine the most appropriate storage servers at which to

replicate these chunks. These objectives are similar to that

of task placement: spreading for reliability, load balancing,

access locality, and so on.

Design. As with UTP, CCP was designed to ensure minimal

changes to the existing Colossus distributed file system. These

changes were similar in principle to those for UTP, so we omit

the details for brevity but describe the key idea underlying

the approach.

In §4.3, we showed that storage requests to High-Uplink

ToRs experience low ToR utilization. Conversely, storage re-

quests that experience extremely high ToR utilization almost

exclusively access Low-Uplink ToRs. Based on this observa-

tion, CCP prioritizes High-Uplink ToRs over Medium-Uplink

and Low-Uplink ToRs for new chunk placement.

Results. We now discuss latency reduction resulting from



0 2 4 6 8 10 12 14Day
0
2
4
6
8

No
rm

aliz
ed

 %
% Violation Proactive UTP Disabled

Figure 18: The percent of job scheduling events where a network-

intensive job is scheduled on a hot ToR before and after the

disabling of the proactive UTP placement, normalized by the

average value before.

Metric Change

Number of task migration events −41.0%

Percentage of scheduling violations −74.1%

Table 3: The change of the median value of various metrics

reported in Figure 17 and Figure 18 in a 5-day window with ToR

utilization-aware placement enabled against in a 5-day window

without the feature. We also used the Student’s t-test on the

metrics samples in the two periods to confirm that the change was

statistically significant.

this approach, using measurements from a 15-day pilot in

one of our clusters. Figure 20 shows the relative reduction

in Colossus p95 total storage access and network latency in

the pilot cluster. As CCP biases storage accesses towards

high-capacity ToRs, p95 network latency reduces by 50–80%

and p95 total latency reduces by 30–60%.

6 Future Directions

Automation techniques for hotspot mitigation. Hotspot

mitigation in our storage systems required significant manual

intervention, leveraging service owner knowledge of applica-

tion metrics, dependencies, and request prioritization within

the application. To scale mitigation to more applications,

automation techniques must be developed. Future work can

explore declarative methods for service owners to define appli-

cation characteristics, dependencies, and constraints, enabling

automated backend systems to identify and implement mit-

igation opportunities. Alternatively, more robust profiling

techniques can extract network communication requirements

from live deployments and map them to a range of system

deployment conditions.

Service Level Objectives (SLOs). Our current placement

strategy, which is hotspot-aware but best-effort, cannot guar-

antee performance under every network and workload condi-

tion. To ensure consistent performance, we must define SLOs

and implement mechanisms to guarantee them. This neces-

sitates substantial scheduler enhancements, moving beyond

simple load spreading to include strict network constraint

enforcement, thereby mitigating SLO risks.

Network fault tolerance for ML. The distinct characteris-

tics of Machine Learning (ML) workloads, such as single

points of failure and sensitivity to worker performance, ne-

cessitate novel network fault tolerance strategies. Placement

and rescheduling techniques discussed in this paper can be

Shuffle
Flush

Materialize TPC-DS
100G q17

Aggregation Shuffle Streaming TPC-H
100G q02

Benchmarks

0

5

10

15

La
te

nc
y 

Re
du

ct
io

n 
(%

)

Figure 19: The relative improvement of the p95 query latency

for each of the seven QuerySys benchmarks studied in Section 4.2

in a 5-day window before and after UTP was enabled in the pilot

cluster.
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Figure 20: The reduction of the p95 Colossus and network la-

tency of HDD reads in a pilot cluster with CCP enabled, compared

with those at the time when the cluster is in the same bucket of

total read throughput but with CCP disabled.

adapted for ML workloads to minimize the impact of faulty

network components, such as NICs and ToRs. This is particu-

larly crucial for jobs that rely on synchronous communication

between numerous accelerators.

Network-awareness across layers. While we tackled per-

sistent network hotspots with infrastructure-level network

awareness, shorter-lived hotspots (seconds to few minutes)

can make use of application-level load balancing. Application

control further allows for customized hotspot handling based

on request sensitivity and required quality of service. Fu-

ture investigations can focus on determining optimal hotspot

resolution timescales for various mitigation strategies (proac-

tive/reactive) and layers (infrastructure/application), and de-

veloping coordinated decision-making frameworks.

Connecting placement and provisioning. Future work can

explore the interplay between hotspot-aware placement and

resource (re-)provisioning. While hotspot-aware placement

can extend the lifespan of network infrastructure and allow

for more conservative uplink:downlink oversubscription to

deliver network efficiency, capacity planners need tools to

determine when and where to upgrade network, storage, and

compute resources to address capacity mismatches. A key

area for future research is determining the optimal utilization

target for provisioning and identifying utilization values to

inform changes in job and data placement, enabling safely

operating network at higher utilization while meeting applica-

tion SLOs.



7 Related Work

Reducing network congestion. To reduce datacenter con-

gestion, the literature explored various solutions, including

congestion control [3, 4, 19, 25, 26, 28, 31, 51], network load

balancing [1, 2, 8, 21, 22], and traffic engineering [7, 35].

These solutions mitigate packet drops and queuing delays by

distributing traffic over time (congestion control) or across dif-

ferent paths (load balancing and traffic engineering), but they

are bounded by bandwidth limits in ToR hotspots in which

all the uplinks of a ToR are persistently hot. By contrast,

hotspot-aware scheduling makes more bandwidth available,

by modifying the traffic matrix.

Datacenter scheduling. Datacenter job scheduling can in-

fluence traffic patterns, but it traditionally prioritizes local

resources like compute, memory and storage, assuming the

network isn’t a bottleneck. Various research has explored

incorporating network attributes like latency, bandwidth,

and reliability into storage systems to make them network-

aware [6, 15, 42, 43]. Several storage systems attempt to

mitigate network congestion. For instance, Sinbad [12] dy-

namically adjusts replica placement based on real-time link

utilization to address imbalances. However, it is restricted to

replicated file encodings and requires live network data, un-

like our ToR-capacity aware chunk placement (CCP), which is

encoding-agnostic and relies on simpler, static ToR uplink in-

formation. NetHint [11] proposes an interactive cloud tenant-

provider mechanism to optimize application performance by

identifying network hotspots. Yet, this approach necessitates

application-level network awareness and is confined to single-

tenant environments, contrasting with our infrastructure-level,

multi-tenant hotspot management. Furthermore, systems like

Diktyo [37] and Kubernetes [13] optimize service placement

for latency by considering network bandwidth and topology,

primarily focusing on microservice environments.

High-Performance Computing (HPC) and Machine Learn-

ing (ML) have long incorporated network awareness into

job scheduling, as exemplified by CASSINI [34] and Cor-

ral [20]. This paper demonstrates that network awareness is

equally critical for traditional compute and storage services,

especially in mitigating application tail latency.

Network capacity planning. Recent research has explored

leveraging application-specific information to enhance band-

width allocation: Saba [23], for example, uses ahead-of-time

profiling to distribute network bandwidth based on how sen-

sitive applications are to changes in bandwidth. Jupiter’s

networks [41] employ both traffic engineering and topology

engineering, which operate at different timescales. Traffic

engineering swiftly adapts to changes in topology and traffic,

whereas topology engineering is a slower, planned process

for implementing new network structures. However, capacity

planning alone cannot eliminate network hotspots due to the

fundamental causes discussed earlier (§3.3). Our work fo-

cuses on analyzing how sensitive applications are to network

hotspots, and how network-aware placement can reduce the

occurrence and duration of these hotspots.

Characterizing application performance. Prior research

has explored the impact of various factors on application per-

formance. Ousterhout et al. [30] proposed a methodology

for quantifying performance bottlenecks and used it to an-

alyze the Spark framework’s performance, concluding that

network optimizations can only reduce job completion time

by a median of at most 2%. Their conclusions are not in

contradiction to this paper because (1) the network utiliza-

tion in their datacenters is low and below 50%, so they do

not observe the effect of hotspots, and (2) workloads in our

datacenters are able to fully parallelize the execution, which

magnifies the impact of the worst straggler. Seemakhupt et

al. [38] analyzed latency bottlenecks in Remote Procedure

Calls (RPCs), identifying network performance issues using

passively-sampled RPCs [33] at Google. Zambre et al. [48]

broke down the time involved in small message communi-

cation into CPU, I/O, and network usage. More recently,

Kong et al. [24] modeled how NIC resource usage affects

RDMA performance. Our work complements these studies

by focusing on how ToR utilization influences performance,

ranging from basic storage operations to complex application

operations in QuerySys.

8 Conclusion

This paper demonstrates the need for hotspot-aware schedul-

ing to mitigate the impact of network hotspots on application

performance in datacenters. Traditional solutions like conges-

tion control and traffic engineering prove insufficient; instead,

directly managing workload placement is essential for rein-

ing in elevated tail latency. Our work reveals two surprising

findings: first, even disk- or compute-bound application op-

erations are vulnerable to elevated network utilization levels,

with ToR hotspots capable of doubling their latency. Second,

adding simple hotspot awareness to existing compute and stor-

age schedulers dramatically reduces application tail latency

and eliminates most ToR hotspots. This approach, while

simpler than incorporating network as a fully schedulable

resource, yields significant gains.

These results highlight the need for datacenter schedulers

to comprehensively consider network demand and supply. Fu-

ture research shall investigate holistic scheduling frameworks

accounting for network bandwidth, topology, and compute

and storage resources to pave the way for balanced datacenter

environments with predictable application performance.
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Appendix

A QuerySys Dataflow

Aggregation queries involve two stages (Figure 10), commu-

nicating via a shuffle primitive provided by RamStore. In

the first stage, workers read data from D servers using the

Colossus read API, perform parallel computations, and write

intermediate results to RamStore memory hosts. Second,

workers read these results, perform further computations, and

write final results to memory hosts.

This process involves many-to-many communication be-

tween workers, D servers, and memory hosts, making it diffi-

cult to correlate ToR utilization with operation latency (§4.2).

To simplify this analysis, we focus on the maximum ToR uti-

lization observed across all ToRs3 involved in each worker’s

operation (Table 4). This approach allows us to capture the

impact of the worst hotspot on the operation’s performance.

B Impact of Chunk Sizes

Figure 21 shows how chunk sizes impact the Load-tolerance.

We look at 3 different operation size buckets: 10KB – 100KB,

100KB – 1MB, and 1MB–10MB, and measure the 2× Load-

tolerance for HDD reads and writes. A larger Op size de-

creases Load-tolerance, i.e., making it more sensitive to the

utilization. Thus, for example, reads of small chunks of 10-

100 KB can tolerate fully loaded ToRs with a latency inflation

of less than 2. For these small chunks, read access time is

dominated by disk read latency (disk seeking), and so should,

in general, offer worse performance than larger reads. In

contrast, large reads of a MB or more incur a latency inflation

of 2 even with a 50% ToR utilization, because they are bot-

tlenecked by the network. HDD write operations have a low

Load-tolerance even for small chunks, since writes do not

3Except for Colossus read operations we only consider the ToR utilization

of workers but not D servers due to telemetry limitations.
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Figure 21: The impact of chunk sizes on the Load-tolerance.
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Figure 22: In all Op sizes, moving from NC QoS to PC QoS

increases the Load-tolerance.
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Figure 23: The latency inflation of SSD and RamStore reads as a

function of ToR utilization.

wait for disk accesses, and hence are dominated by network

latency at any size.

C Impact of QoS

Typical cluster applications in public clouds, including

storage, classify their traffic into three priority classes:

performance-critical (PC) traffic is associated with user-

facing applications, non-critical (NC) traffic such as bulk

storage operations generally cares about sustained rate, and

best-effort (BE) traffic such as background analytics and

backup traffic has the lowest priority. PC, NC, and BE traffic

are mapped to high, medium, and low QoS classes respec-

tively [49].

We measure network utilization every 30 seconds at each

ToR for each quality of service (QoS) level. In our results

reported below, the utilization always refers to the weighted-

effective utilization of the given QoS class. The weighted-

effective utilization is defined by the utilization of each



Operation Description Associated Network Utilization

Colossus Read Read data from Colossus to worker worker downlink

Shuffle Write Write output from a worker to RamStore MAX(worker uplink, RamStore memhost downlink)

Shuffle Read Read the result generated by the previous stage

from RamStore to worker

MAX(worker downlink, RamStore memhost uplink)

Table 4: The time of individual QuerySys worker’s operation and the associated network utilization.

QoS and the weight ratio between QoSes. In practice, a

flow of higher QoS can still be impacted by traffics of a

lower QoS due to the weighted queues at the network de-

vices. The weighted-effective utilization is capturing this

subtlety with a weighted sum of all QoSes traffic occurs in

the given ToR for each interval. Lower QoS contributions

have smaller weight (< 1) and higher QoS traffic will have a

larger weight (> 1).

Figure 22 shows that both HDD read and write has

higher Load-tolerance when move from Non-critical (NC)

to Performance-critical (PC) QoS. This is because traffic of

the higher QoS observe less queuing time than that of the

lower QoS. This less queuing delay will behave as a higher

Load-tolerance.

D SSD and RamStore

SSD reads are much faster than HDD reads, and thus are more

sensitive to network utilization. As shown in Figure 23a, SSD

reads are more sensitive to high ToR utilization than HDDs.

The Hotspot-inflation for SSD read is about 2.5×, and the

2× Load-tolerance is about 55%. Thus, even when ToR

utilization is not high enough to be classified as a hotspot,

SSD read latency can be more than double the latency on an

unloaded network.

RamStore reads have lower latency than Colossus since it

stores the data in RAM. For this reason, RamStore is more sen-

sitive to higher utilization and hotspots than any of the storage

subsystems discussed so far. As shown in Figure 23b, Ram-

Store’s 2× Load-tolerance is 30%, and its Hotspot-inflation

is 3.
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