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Abstract

Datacenter network hotspots, defined as links with persis-
tently high utilization, can lead to performance bottlenecks.
In this work, we study hotspots in Google’s datacenter net-
works. We find that these hotspots occur most frequently
at ToR switches and can persist for hours. They are caused
mainly by bandwidth demand-supply imbalance, largely due
to high demand from network-intensive services, or demand
exceeding available bandwidth when compute/storage up-
grades outpace ToR bandwidth upgrades. Compounding this
issue is bandwidth-independent task/data placement by data-
center compute and storage schedulers. We quantify the per-
formance impact of hotspots, and find that they can degrade
the end-to-end latency of some distributed applications by
over 2x relative to low utilization levels. Finally, we describe
simple improvements we deployed. In our cluster scheduler,
adding hotspot-aware task placement reduced the number
of hot ToRs by 90%; in our distributed file system, adding
hotspot-aware data placement reduced p95 network latency
by more than 50%. While congestion control, load balancing,
and traffic engineering can efficiently utilize paths for a fixed
placement, we find hotspot-aware placement — placing tasks
and data under ToRs with higher available bandwidth — is
crucial for achieving consistently good performance.

1 Introduction

Distributed cloud applications and services rely on high-
bandwidth networks to provide high-throughput, low-latency
data transfers. Ideally, the datacenter network provides appli-
cations with the illusion of an unconstrained network — one
in which applications receive high throughput independent
of the placement of their components across the network.
Techniques such as topology design [41] and/or topology and
traffic engineering [32] can support this ideal.

In practice, however, the datacenter network is not uncon-
strained at all places and all times. In our study of production
networks (§2), there exist network hotspots — links with
persistently high utilization — both within the datacenter in-
terconnect and at top-of-the-rack (ToR) switches (§3). At
Google, most hotspots occur at ToR switches and can persist
for tens of minutes to hours. ToRs are split between compute
hosts managed by Borg [45] and storage hosts. A dominant

fraction of traffic in our clusters' can be attributed to our dis-
tributed storage stack. This includes the Colossus distributed
file system [17], the RamStore, an in-memory store similar
to RamCloud [29], QuerySys, an internal query processing
system similar to [5, 27, 36, 44], and Bigtable [18]. Colossus
places chunks on storage racks, and QuerySys worker tasks
(§4.2) access these over the network.

Datacenter network planning balances ToR bandwidth sup-
ply with anticipated compute and storage traffic demand. Due
to the high cost of non-blocking bandwidth provisioning,
statistical multiplexing is employed, resulting in an oversub-
scription ratio — the ratio of ToR downlink to uplink band-
width. This ratio, set at deployment, typically remains fixed
throughout a ToR’s multi-year lifespan, based on initial work-
load forecasts. Consequently, hotspots emerge from two pri-
mary, interconnected causes (§3). The first is rack bandwidth
demand-supply imbalance: an imbalance between bandwidth
demand from compute or storage provisioned on a rack, and
the provisioned ToR bandwidth supply. This imbalance may
occur under specific extreme traffic patterns, such as large
incasts, due to the inherent oversubscription ratio. Alterna-
tively, it can arise unexpectedly from deviations in either
demand or supply compared to initial provisioning forecasts.
Demand-side changes might stem over time from inorganic
increased bandwidth demands of network-intensive work-
loads or other workload efficiency improvements. Supply-
side changes could be triggered by incremental upgrades that
increase compute or storage capacity without corresponding
ToR uplink upgrades, or by planned/unplanned ToR uplink
outages that reduce available bandwidth temporarily. The
second reason is bandwidth-independent task/data placement
by datacenter compute or storage schedulers assuming an
unconstrained network. Datacenter scheduling is primarily
focused on host resources, like compute and storage, that
can be evaluated independently for each scheduling deci-
sion (because the network was designed to typically not be
a bottleneck). Scheduling for network load is a much harder
problem, since a hotspot is a property of a set of hosts and
not attributable to any individual host. Further, characterizing
the bursty communication demands of a distributed job is
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challenging relative to the per-task CPU and memory require-
ments. Hence, for simplicity, our initial job schedulers did
not consider network requirements in scheduling decisions.
This could in turn lead to situations where the tasks or storage
chunks on a rack had sufficient traffic demand to exceed the
provisioned ToR bandwidth supply.

Highly utilized ToRs can degrade the performance of our
distributed storage systems (§3.4). For instance, Colossus
hard disk drive (HDD) write latencies are inflated by 2x
relative to an unloaded ToR even at 40% ToR utilization.
Higher levels of the storage stack are also sensitive to ToR
hotspots; for example, query latencies in QuerySys are inflated
by 1.5 at utilizations ranging from 75-95%. It is surprising
that these systems are so sensitive to ToR utilization. They
access high-latency storage devices like HDDs and can incur
significant compute latency when, for example, aggregating
query results. Clearly, the increased network latency due to
high ToR utilization starts to dominate these other latency
components at some utilization level.

Application impact from ToR hotspots cannot be avoided
with traditional network performance techniques like con-
gestion control and traffic engineering, since these solutions
cannot provide more ToR bandwidth. Hotspots can, in theory,
be addressed by maintaining ToR resource-balance at every
instant but is hard and expensive to do in practice (§3.3). It
is much easier to replace a few failed disks on a rack with
new higher-capacity disks (resulting in an imbalance) than
it is to upgrade ToR capacity to restore balance. Instead, we
have to change the input traffic matrix by placing work in a
hotspot-aware manner.

In this paper, we modified compute and storage schedulers
(Borg and Colossus) to account for resource-imbalance and
ToR utilization when making task and storage chunk place-
ments. This is challenging because the scheduler and file
system are complex software systems that simultaneously bal-
ance a range of competing objectives: ensuring performance
for applications with diverse workloads, high utilization, load
balance, failure tolerance, and so on.

Despite this, for two reasons, we were able to introduce
relatively simple modifications to the scheduler and the file
system to mitigate the latency impact of high ToR utilization.
First, end-to-end application-perceived query performance is
only sensitive to ToR utilization above 75% or so. Second,
across our fleet, the average ToR utilization is low, so many
ToRs are well below 75% utilization. Our hotspot-aware
task placement (§5) on Borg proactively places tasks on low
utilization ToRs, and reactively migrates them away from
hotspot ToRs. Similarly, our hotspot-aware chunk placement
biases storage chunk placement away from those imbalanced
racks with less capacity.

These mechanisms reduced the number of hotspot ToRs
by 90% in our network without regressing scheduler and file
system objectives. Furthermore, they significantly reduce
storage access and query latency. We reduced Colossus p95

network latency by 50-80% and p95 total latency by 30-60%.
Similarly, QuerySys shuffle flush and materialize benchmarks
achieve latency reductions of 13% and 9%, respectively.

This paper makes three key contributions:

1. We demonstrate that ToR hotspots remain an un-
solved but critical problem, originating from rack band-
width demand-supply imbalance in dynamic network envi-
ronments with evolving workloads, incrementally increasing
compute/storage resources, and ToR uplink bandwidth prone
to planned/unplanned outages. The ToR <+ aggregation block
cross-section is the most common location for hotspots inside
our datacenters, and these hotspots can persist for extended
durations, ranging from minutes to days. (§3).

2. We show that these hotspots can significantly impact
application performance, even for operations dependent on
disk or compute latency. Specifically, ToR hotspots can dou-
ble the latency of both simple storage read/write operations
and complex application operations (§4).

3. We find that simple augmentations to existing compute
and storage schedulers to better balance network load in a
best-effort manner significantly reduce ToR hotspots and their
impact on application latency without the added complexity
of treating the network as a fully managed resource (§5).

2 Background
2.1 Datacenter Network

Clos topology. Google’s datacenter network is based on a
hierarchical design (Figure 1) that uses Clos topologies to pro-
vide high-bandwidth interconnectivity between servers [41].
The lowest level of the network consists of servers mounted on
racks. A top-of-rack (ToR) switch connects to all the servers
within the rack. Each ToR switch connects to an aggregation
switch. A group of interconnected aggregation switches forms
an aggregation block. In turn, aggregation blocks connect to
the datacenter network interconnect (DCNI). The DCNI pro-
vides links that directly connect different aggregation blocks
or indirectly connect them through spine blocks [32, 41]. The
DCNI connects to a fabric border router (FBR) that provides
connectivity to other datacenters or WAN.

Rack types. To simplify procurement, deployment, and sub-
sequent lifecycle management, Google’s datacenters contain
different types of racks. A Disk rack contains only storage
appliances, servers dedicated to I/O using hard disk drives
(HDDs) or solid-state drives (SSDs). Optimized for high-
capacity storage, they store and serve data for Google’s entire
suite of user-facing services, as well as analytics, backup, and
archival applications. A Compute rack contains compute re-
sources, such as servers, with minimal local storage. Finally,
a Mixed rack contains both compute and storage resources.

2.2 The Storage Stack

Several storage systems provide Google’s applications with
a range of interfaces to storage hardware. These systems
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Figure 1: The typical topology of a datacenter net-

work deployed at Google. Google.

collectively constitute the storage stack (Figure 2).

At the lowest level, D provides access to chunks of data
residing on a single server, but it does not have an API to
access user-level files or provide reliability guarantees.

Colossus [17], a distributed file system, is a successor to,
and shares some architectural heritage with, the Google File
System [16]. It breaks files up into encoded units called
stripes. Each stripe has a particular encoding, perhaps repli-
cated or erasure-coded, and is comprised of chunks, which it
stores on D. Colossus transparently manages chunk replica-
tion and/or encoding, scalably updates filesystem metadata,
and ensures adherence to consistency semantics during con-
current writes and appends. Clients access Colossus through
a client library which obtains metadata from Colossus and
directly accesses chunks, or parts of chunks, from D servers.

RamStore, a distributed in-memory file system (similar to
[29]) built upon memory hosts, is primarily used to stage data
during a shuffle [10]. Database grouping and join operations
frequently use this form of collective communication, and an
in-memory file system enables fast shuffles.

At the top of the stack, QuerySys, an internal query pro-
cessing system similar to [5, 27, 36, 44], provides a query
interface to distributed storage. QuerySys stores persistent
data in Colossus, and uses RamStore to stage intermediate
data during query execution. Multiple such systems with vary-
ing APIs and features exist, including Bigtable [18], another
database service built on the same infrastructure.

3 Hotspot Characterization

In this section, we characterize the prevalence and duration of
network hotspots in Google’s network, discuss their causes,
and present examples of their impact. We begin by defining
hotspots and describing our methodology.

3.1 Methodology and Metrics

To characterize hotspots, we use telemetry data from switches,
which provides the average utilization of each network link
over S-minute intervals. A link is a hotspot in an interval if
its utilization during that interval is higher than 75%. Since a
hotspot might occur on either of the two directions of a given
link, we treat each direction separately in our characterization.

We choose a 75% threshold for two reasons. First,
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Figure 3: The percentage of hot links at
different cross-sections of the network,
normalized by the percentage at the ToR
< aggregation block layer.

we [32, 41, 50] and others [14, 39, 47] maintain a 25% capac-
ity headroom to minimize application impact during mainte-
nance, upgrade, and failure mitigation. For this reason, we use
a 75% threshold to determine a hotspot. Second, applications
we study in this paper exhibit significant latency increases
when network utilization exceeds this threshold (§4.1).

3.2 Prevalence

Figure 3 shows the percentage of hot links (i.e., the hotspot
rate) across three types of network links in different cross-
sections: host <+ ToR, ToR <> aggregation block, and links
within the DCNI, aggregated from the link utilization data
over a month across the entire fleet.

ToR uplinks have the highest hotspot rate. As we have
observed that ToR <> aggregation block links are ~10x more
likely to be hot than host <+ ToR links and ~2x more than
DCNI links, ToR > aggregation block hotspots have the
highest traffic impact and are the main focus of this paper.
Moreover, ToR hotspots are evenly divided across upstream
and downstream directions (results omitted for brevity), so
solutions cannot focus on a specific traffic direction. In what
follows, the term hotspot always refers to a ToR uplink (i.e.,
ToR < aggregation block) hotspot in either direction unless
otherwise stated.

ToR hotspots span a large range of durations. Figure 4
shows the distribution of the duration for all ToR hotspots
in a month. Here, the duration of a hotspot is defined as
the total length of successive 5-minute time intervals during
which the ToR uplink is consistently hot. About a third of the
hotspots last less than 1 hour, while nearly 40% of them last
1-12 hours. Other timescales show non-trivial persistence as
well; for example, about 13% of hotspots last between 1 day
and 2 weeks. This wide range of persistence suggests that a
variety of approaches might be necessary to address hotspots:
reactive job migration at smaller time scales (minutes), proac-
tive placement of data and network-intensive long-running
jobs at medium timescales (hours), and capacity planning and
re-provisioning at longer timescales (days or longer).
Storage traffic accounts for most ToR hotspots. Figure 5
shows the distribution of hotspots across different types of
racks in the same month. Mixed racks, which contain both
storage and compute (§2), account for nearly 50% of hotspots,
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and Disk racks for nearly 40%. Thus, between them, racks
with storage devices account for about 90% of hotspots.

To understand which type contributes more to hotspots
on Mixed racks, we first calculate the share of the capacity
provisioned for storage and compute for a given rack based
on the configured CPU and disks on the rack. Then, we at-
tribute a hotspot on a Mixed rack to storage (compute) if the
average throughput of storage (compute) traffic divided by
the corresponding provisioned capacity is larger than 75%.
From Figure 6, both compute and storage jobs contribute sig-
nificantly to hotspots on Mixed racks; nearly 45% of hotspot
traffic on a Mixed rack can be attributed to storage.

Taken together with Figure 5, this data suggests that storage
traffic contributes significantly to hotspots. Prior work [49]
also observes that storage read/write traffic constitutes 75%
of the application traffic in Google’s datacenters.

3.3 What Causes ToR Hotspots

ToR hotspots occur in our network because of a combination
of two factors: bandwidth demand-supply imbalance on racks,
and bandwidth-independent task/data placement by cluster
schedulers and distributed storage systems.

Rack bandwidth demand-supply imbalance. Datacenter
network planning involves balancing ToR bandwidth supply
with anticipated traffic demand. For compute racks, band-
width provisioning targets a specific bandwidth per normal-
ized compute unit. For storage racks, link capacity is provi-
sioned based on HDD capacity on the rack.

Over time, as datacenter ecosystems evolve, demand and
supply can diverge from targets, resulting in bandwidth
demand-supply imbalance. On a compute rack, new network-
intensive applications with unprecedented network demands,
efficiency improvements in existing applications, or server
hardware refreshes can increase bandwidth demand beyond
design targets and result in compute bandwidth demand-
supply imbalance. On a storage rack, increases in installed
storage capacity, or incremental replacement of existing or
failed disks with faster ones, can increase storage supply
without increasing bandwidth supply proportionally, likewise
increasing bandwidth demand beyond design targets and re-
sulting in storage bandwidth demand-supply imbalance.

These imbalances can persist for days, weeks, or months
until network operators restore balance. We argue that these
imbalances are inherent to cost-effective datacenter manage-
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Figure 6: The attribution of hotspots to dif-
ferent workloads on Mixed racks.

ment. It is easier to upgrade or replace a few servers or disks
on a rack, but harder to upgrade ToR capacity, since the latter
requires taking all ToR-hosted compute and storage offline,
and may require aggregation block upgrades as well.
Bandwidth-independent task and data placement. By
themselves, rack resource imbalances do not necessarily
cause ToR hotspots. ToR hotspots arise, additionally, because
our cluster scheduler and our distributed file system make
bandwidth-independent task/data placement decisions. This
was a deliberate choice. At the scale of our datacenters, de-
signing bandwidth-aware cluster scheduling and file systems
while also satisfying performance, reliability, and utilization
objectives was (and is) considered extremely hard. We have
instead attempted to provide the illusion of an unconstrained
network to these systems (§1).

As a result of bandwidth-independent task/data placement,
these systems can create ToR hotspots. Consider our cluster
scheduler, Borg, which schedules, on compute racks, worker
tasks belonging to storage systems like QuerySys, RamStore
and Bigtable. Making bandwidth-independent task placement
decisions, Borg can schedule a large number of these network-
intensive workers on a single rack, resulting in significant
traffic demand and triggering a hotspot. Figure 7 shows
the distribution of bandwidth per compute unit across all
the jobs on our fleet. The distribution is wide, with some
network-intensive jobs using more than 10x the median value.
Figure 8 plots ToR utilization as a function of the ratio of
the number of all network-intensive tasks, including those
from QuerySys, RamStore and Bigtable, per unit network
bandwidth for each rack. There is a clear correlation between
utilization and the number of these tasks per bandwidth unit.

Bandwidth-independent data placement in a distributed
file system can place a large number of storage chunks on
racks. When applications access these chunks concurrently,
bandwidth demand can approach or exceed supply, and ToR
hotspots can arise. Figure 9 quantifies the storage bandwidth
demand-supply imbalance in our network; the normalized
amount of link capacity divided by HDD capacity for Disk
racks across our fleet exhibits a more than 2x difference
between the smallest and largest values.

3.4 Hotspot Incidents

Network hotspots can cause significant production incidents,
including SLO (service-level-objective) violations, user expe-
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higher number of network-intensive tasks run hotter.

rience degradation, and can require extensive troubleshooting
effort. This section details several hotspot-related incidents.

Unintended capacity reduction causes ToR hotspots. Tem-
porary hotspots can occur from reduced ToR uplink capacity
during maintenance or failures. In a specific instance, a soft-
ware rollout issue during network maintenance caused a 50%
uplink capacity reduction on multiple ToRs. Unaware of this
reduced capacity, Borg scheduled too many network-intensive
jobs, including crucial batch jobs for Ads analysis, based only
on compute resources. This demand-supply mismatch re-
sulted in a 2-3x increase in task completion time.
Unintended network imbalances from scheduling con-
straints. While serving their intended purpose, Borg schedul-
ing constraints can inadvertently create network imbalances.
For instance, an I/O-intensive service implemented a cus-
tom constraint to avoid scheduling workers on machines with
D servers, aiming to reduce network congestion. However,
this constraint unintentionally excluded the majority of avail-
able machines, concentrating a large number of these same
workers onto the remaining servers. This concentrated load
resulted in persistent ToR hotspots and a 1.5x increase in
read latency. This incident underscores the need for a more
comprehensive approach to mitigating network hotspots.
Colossus degraded reads exacerbate ToR hotspots. Dur-
ing reads, a Colossus client initially attempts to read data
directly from the disks storing the required chunk(s). If one
or more of these are temporarily unavailable (due to over-
load on the disk, CPU, or network), and the file is erasure-
encoded, the client performs a degraded read: retrieving the
other chunks in the erasure-coded stripe and reconstructing
the unavailable chunk. However, this mechanism is ineffec-
tive when the client resides on a ToR hotspot — it increases
network demand on an already congested link. For example,
in one incident, ToR congestion caused by incast traffic to
Bigtable led to high Colossus read latencies. The resulting
degraded reads significantly exacerbated ToR congestion.
Storage ToR hotspots cause high-level applications pain.
There are many applications that are built on top of storage
services. Therefore, hotspots impacting storage services ulti-
mately translate into impact on users. For example, YouTube
relies on storage services (e.g., Bigtable) to store, retrieve and

display watch history. In one incident, a ToR hotspot led to in-
creased packet losses and slowed reads from an SSD-backed
Bigtable partition. As a result, Bigtable replication latency of
user data doubled, resulting in stale or missing watch histories
for some users, impacting user satisfaction.

4 TImpact of Hotspots on Storage Systems

In this section, we present measurements of the impact of
hotspots on the performance of our distributed storage sys-
tems. Because ToR hotspots occur predominantly on racks
with storage elements, they impact the performance of access
to distributed storage. In our infrastructure, applications ac-
cess distributed storage via queries to a distributed database
(QuerySys), or by performing reads/writes on a distributed
file system (Colossus). In this section, we study how ToR
utilization affects the latency of QuerySys query completion
and Colossus file reads and writes.

4.1 Approach and Methodology

At a high level, to understand the impact of ToR utilization on
storage access, we associate the latency of a storage operation
(a file system read/write, or a database query) with the ToR
utilization observed during the operation.

Latency. We use extensive logs to measure the latency of
each storage operation, relying on production workloads for
measurements of file system accesses and common bench-
marks for database queries. These systems are instrumented
to break down the time spent on the server versus on the net-
work. The total operation time is measured from initiation
to response, including network latency, which encompasses
the time for underlying Remote Procedure Calls (RPCs) to
traverse the network (including ToR switches).

Utilization. Each file system read or write, and each query,
produces a latency sample. To understand how these latency
measurements depend on ToR utilization, we associate each
latency sample with a ToR utilization value. We do this as
follows. A file system read/write, or a database query involves
many ToR uplinks and downlinks, since these operations may
involve multiple servers. We associate each latency sample
with the maximum utilization of all ToR links involved in
a storage operation, since that lies on the critical path of
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an operation’s completion. We obtain network utilization
from a network telemetry system which reports the average
throughput of each ToR during each 30 second window. For
each latency sample, we use the average utilization during the
time window containing the operation.

Metrics. To understand and quantify how storage access la-
tency is affected by utilization, we divide utilization values
into buckets in increments of 5%. For each bucket, we com-
pute the p95 latency of the samples within that bucket. We
define the p95 latency inflation at a given utilization bucket as
the ratio of the p95 latency in that bucket to the p95 latency of
the lowest utilization bucket for which we have data. Latency
inflation characterizes how storage access latency is affected
by increasing ToR utilization.

We use a tail measure (p95) because tail performance is
critical for many of our applications. We have also measured
median latency inflation (defined similarly). This shows qual-
itatively similar results, so we omit this for brevity.

To understand how ToR utilization inflates storage access
latency, we define Load-tolerance: the utilization at which
p95 (or median) latency inflation is 7. In this paper, we
consider two values of 7, 1.5 and 2. At 7 = 2, the storage
access latency is double that at the lowest utilization which
we consider unacceptable. For simplicity, we currently define
unacceptable latency based on this fixed threshold. In future
work (§6), we plan to define it based on application latency
SLOs, which directly characterize the sensitivity of storage
access to utilization.

4.2 Database Queries

A significant component of the offered load in our datacenters
is traffic from queries of a distributed database, QuerySys.
Query execution consists of a series of stages, and each stage
runs multiple workers in parallel. Each worker (running on
compute racks) processes a partition by reading data initially
from a distributed file system, Colossus (or, in later stages,
from an in-memory file system RamStore), performing some
computation, and writing data to RamStore. Figure 10 depicts
this for an aggregation query which produces statistics across
one or more columns in a large relational table.

As discussed in §3, imbalanced infrastructure upgrades or
network-intensive workloads can result in a network/compute

imbalance that can increase ToR utilization and, in turn, af-
fect query completion times. When infrastructure used for
databases is upgraded such that compute on a rack increases
(e.g., because servers are upgraded) without a correspond-
ing increase in ToR capacity, ToR utilization can increase.
Database workload network-intensiveness can grow in sev-
eral ways: e.g., the rate of queries can increase, queries can
become more complex, and queries can process larger tables;
any of these factors can require more workers. More workers
concurrently accessing distributed storage from a rack can
increase ToR utilization.

In this section, we seek to quantify how the end-to-end

query completion time, as well as the latency of each read or
write operation, is affected by ToR utilization. When a query
is issued, its completion time is affected by the concurrent
workload (other queries and other application traffic) using
the network. Some queries may traverse highly utilized ToRs.
This gives us an opportunity to study how database queries
are affected by ToR utilization.
Methodology. While most database queries execute in
stages (e.g., Figure 10), they differ widely in terms of the
number of stages they use, the number of workers they em-
ploy, and the tables they access. We cannot thus assess ToR
utilization impact on a single query, because each query may
be affected to different extents at different utilization levels.

We use seven benchmark queries that our QuerySys team
runs periodically to assess performance. These benchmarks
include canonical queries (aggregations, materializations,
etc.) that reflect real-world usage patterns, as well as industry
standard benchmarks (e.g., TPC-H and TPC-DS [46]), and
thus capture the shape and semantics of most common queries
against QuerySys. The breakdown of latency at each worker
and each stage is logged for these benchmarks. This enables
us to understand and quantify the extent to which network,
compute, and storage affect end-to-end performance.

The rest of this section presents the impact of ToR utiliza-
tion on these benchmarks.

Aggregation is the most common query in QuerySys: com-
puting aggregates (e.g., sum, count, average) from one or
more columns in a large relational table. To scale to large
tables, QuerySys employs multiple workers each of which
processes distinct partitions of the table. This query executes
in two stages (Figure 10). Both stages involve networked
storage access and computation.

In this query, networked storage (Colossus) access account
for approximately 30% of the query’s total time. The time
difference between Colossus reads and the query total time is
primarily computation time, representing roughly 50% of the
query’s total time.

Figure 11 shows the p95 latency inflation and the varying
Load-tolerance of these operations for 7 = 1.5: The Load-
tolerance of the end-to-end query latency can be quite high
(85%). For this query, the component which accounts for half
the overall query latency, the computation time, is largely
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Figure 12: The query latency inflation of different QuerySys benchmarks.

independent of network hotspots, resulting in a higher Load-
tolerance. The other components of the storage stack have
a lower and widely varying Load-tolerance: shuffle writes
at 40%, shuffle reads at 52%, and Colossus reads at 72%.
Shuffle read/write have lower Load-tolerance because they
don’t involve compute and storage operation on the RamStore
hosts. Colossus read is slightly higher because it involves
storage but minimal compute.

Figure 12a shows p95 latency inflation and Table 1 shows
Load-tolerance of the other queries in the benchmark. Shuffle
flush is most sensitive to ToR utilization, primarily because it
triggers an intensive data-flush from RamStore memory hosts
to Colossus when the host runs out of memory to complete the
write. This operation increases the share of network transfer
time in the total query time, resulting in the lowest 1.5 x Load-
tolerance among all benchmarks (70%). Materialize writes
results through Colossus; its Load-tolerance of 75% is similar
to that of shuffle flush and Colossus reads during aggregation.
The remaining benchmark queries are less network-intensive,
so have a Load-tolerance of 90-95%.

The impact of computation. Queries access storage, but
also process the retrieved data (e.g., aggregate the data). This
processing time affects the tolerance of a query to hotspots.
To illustrate this, we defined Hotspot-inflation: the latency
inflation at the hotspot threshold (75% utilization, §3). We
explored Hotspot-inflation for different queries as a function
of query compute ratio — the ratio of the sum of the process-
ing time for the 10 slowest workers> within each stage by the
sum of their worker time (aggregated across all stages).
Figure 12b depicts the relationship between these two quan-
tities. To understand this figure, it helps to understand that
different samples from a single benchmark query may exhibit
different compute ratios (because storage operations and net-
working take different amounts of time). The figure groups
samples by compute ratio, and plots the Hotspot-inflation for
each group. Thus, for example, samples of the shuffle flush
benchmark which have a compute ratio of 0.1 have a Hotspot-
inflation of about 2.25. The figure demonstrates a clear nega-
tive dependence between compute ratio and Hotspot-inflation.
This explains why higher compute ratios result in higher Load-

2Currently, our telemetry system tracks processing times only for the 10
slowest workers.

Load- Load- Hotspot-
tolerance tolerance inflation
(1.5%) 2x) (75%)

Shuffle Flush 70 90 1.67
Materialize 75 - 1.55
Aggregation 85 - 1.38
TPC-DS 100G q17 90 - 1.35
TPC-H 100G q02 90 - 1.34
Shuffle 95 - 1.29
Str i 95 95 1.37

=)

Table 1: Load-tolerance and Hotspot-inflation of different
QuerySys benchmarks.

tolerances. In other words, the more compute-bound a query
is, the less sensitive it is to network hotspots.

Different queries have different Hotspot-inflation at the
same compute ratio because they may, for example, use dif-
ferent storage operations. For example, when the CPU ratio
is 0.8, materialize prober has more Hotspot-inflation than
streaming prober because the former incurs Colossus writes
while the latter incurs Colossus reads. For Colossus, writes
are more sensitive to ToR hotspots than reads (§4.3).
Summary. In Table 1, we compare the Load-tolerance and
Hotspot-inflation across queries. Most queries also have high
Load-tolerance; many did not reach 2 x inflation. For these,
their high Load-tolerance comes from the significant time
spent on compute — ranging from 10% to 90% (Figure 12b).

This discussion implies that for some QuerySys bench-
marks substantial tail latency reductions can be had by re-
ducing the occurrence of ToR hotspots. §5 discusses hotspot-
aware placement mechanisms we use to achieve that.

4.3 File Access

In a distributed file system like Colossus, files are split into
chunks, with each chunk replicated across multiple servers.
Consider a rack with servers that host chunks. If these servers
are upgraded to add more storage I/O capacity (e.g.,new stor-
age hardware that increases the storage read/write rate), but
the ToR’s capacity is not correspondingly upgraded, a net-
work/storage imbalance can result. This imbalance can result
in a ToR hotspot, which can, in turn, affect the latency of reads
and writes to the file system. In this section, we (a) study
how Colossus read/write latency is impacted by ToR hotspots
and by ToR utilization, and (b) quantify the prevalence of
network/storage imbalance across our fleet.

Methodology. We collect the total latency of datacenter
HDD chunk read and write requests on racks with HDD stor-



age (§2.1) with chunk sizes between 100KB and 1MB from
the Dapper tracing system [40] from production workloads
over one day.

HDD reads. Figure 13a shows the p95 latency inflation
(ratio against latency at lowest utilization, §4.1) for network
and total latency. Both network and total latency increases
with ToR utilization. At the 75% hotspot threshold, network
latency is inflated by 4 x, but Colossus HDD reads have a
Hotspot-inflation (the inflation at the hotspot-threshold of
75%, §4.1) of only 1.5x. This is because only the network
portion of the Colossus read time is inflated. In all but the last
utilization bucket, network accounts for less than 20% of the
total HDD read latency; in the last utilization bucket, network
doesn’t contribute more than 40%. Load-tolerance (§4.1) is
another way to depict the impact of ToR utilization on storage
access latency. For Colossus reads, the 2 x Load-tolerance is
95%; this means that read latency is less than 2 x for all ToR
utilizations lower than 95%.

HDD writes. Colossus HDD writes show a qualitatively dif-
ferent behavior than HDD reads because Colossus employs
write-back caching on D servers (§2.2): writes are cached
in battery protected server-side memory and later flushed
to persistent storage. Thus Colossus HDD write latency is
dominated by network latency, and hence is impacted signif-
icantly by increases in network latency as a result of high
ToR utilization. Network contributes to 30—40% for low uti-
lization buckets and more than 50% for higher utilization
buckets (>75%). By contrast, though Colossus caches reads,
read cache hit rates are low, because our workloads mostly
access large files sequentially, resulting in little read locality.
Hence similar behavior is not observed on reads.

Writes are very sensitive to ToR utilization. As Figure 13b
shows, their 2x Load-tolerance is a mere 50%, so, even in
a lightly loaded network, write latency can be twice the la-
tency when compared to an unloaded network. Their Hotspot-
inflation is around 4; writes to a rack with a ToR hotspot can
be 4 times slower than writes to a rack with an unloaded ToR.

While HDD write operations are impacted more than reads
due to the amount of storage access, the network portion
of the latency is similarly affected in both operations. The
network latency components include round-trip delay (RTT),
serialization delays, and congestion control shaping traffic
to fill the ToR link capacity. Measurements of RTT and
packet losses (not shown here) remain consistently low across
utilizations as expected from our deployments of congestion
control and load balancing techniques [22, 25]. The shape
of the network latency curve reflects the workload’s inherent
burstiness relative to the available capacity.

The impact of imbalanced infrastructure. Having charac-
terized the impact of network utilization on reads and writes,
we now show how network/storage imbalance impacts file
reads and writes in Figure 14. To derive this figure, we clas-
sified each rack in a datacenter into one of three categories
based on its level of resource balance: High-Uplink if its

installed ToR uplink capacity exceeds provisioning guideline
relative to installed storage, Medium-Uplink if the capacity
matches the guideline, and Low-Uplink if the capacity is
lower than the guideline. Figure 14 shows the fraction of
storage reads and writes to each type of rack across different
ToR utilizations, across all of our datacenters. The figure
dramatically illustrates the impact of network/storage imbal-
ance. Storage requests that experience low ToR utilization
access High-Uplink ToRs (in green). Conversely, storage re-
quests that experience extremely high ToR utilization almost
exclusively access Low-Uplink ToRs (in red).

5 Hotspot-Aware Placement

As discussed in §3, ToR hotspots occur as a result of an in-
terplay between network supply and demand for compute
and storage resources. As such they cannot be resolved by
in-network mechanisms e.g., in switches or host networking
stacks. Therefore, we integrate hotspot awareness into our
cluster scheduler and distributed file system. We’ve specifi-
cally developed two hotspot-aware placement strategies:

1. ToR-utilization aware task placement and migration
(UTP) takes ToR utilization into account when placing tasks
(such as query workers §4) on servers, or migrating tasks
away from them, thereby improving the balance between
network demand-supply for compute resources.

2. ToR-capacity aware chunk placement (CCP) takes the
imbalance between ToR capacity and rack storage capacity
into account when making storage chunk placement decisions.
Thereby improving the balance between network demand-
supply for storage resources.

As we describe below, the design of these hotspot-aware
placement strategies is informed by the measurements pre-
sented in §3 and §4. Moreover, neither of these placement
decisions is trivial, since each needs to balance complex,
competing objectives. At the same time, avoiding hotspots
is important, since doing so can potentially improve network
utilization and applications’ perceived latency.

5.1 Task Placement and Migration

We modified the Borg cluster scheduler to bias task placement
away from, and reactively migrate tasks from, ToR hotspots.
Before describing this technique, abbreviated UTP, we briefly
describe Borg; see [9, 45] for details.
Background. Borg selects the server on which to place each
task (e.g., worker) in a job. It utilizes historical measurements
to estimate task resource requirements, and uses this to select
suitable servers. When an estimate is inaccurate or workload
changes, Borg can reactively migrate affected tasks to im-
prove job performance, but task migration must be careful to
avoid impacting availability SLOs offered to service owners.
In practice, a cluster scheduler must (a) scale to clusters
with a large number of servers and (b) satisfy many other,
often competing, objectives. It must: balance load between
servers, prevent over-subscription to resources such as CPU
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Figure 13: The total latency and the network latency inflation (i.e.,
p95 latency values normalized against the latency at the lowest
utilization).

or memory, over-commit resources to take advantage of sta-
tistical multiplexing, spread tasks of a job across racks to
minimize the likelihood of correlated failure, enable memory
access locality, and pack jobs into as few servers as possible.

Borg addresses the first challenge by choosing a random
sample of placement candidates from amongst servers in
the cluster, rather than considering all servers. It addresses
the second challenge by assigning a vector of scores to each
server based on multiple objectives. Borg prioritizes server se-
lection objectives, with lower-ranked objectives taking prece-
dence. For instance, if load balancing is deemed more critical
than bin packing, Borg may choose a server that optimizes
load distribution even if it leads to suboptimal bin packing
efficiency.

Requirements. Before we designed and implemented UTP,
Borg made bandwidth-independent task placement deci-
sions — its decisions did not take network utilization into
account. Its primary task — to find a set of servers to satisfy
application requirements and potentially competing infras-
tructure constraints — was complex enough that no attempt
was made to add network as a resource to Borg earlier, since
that would require imposing constraints on group of servers
beneath each ToR rather than individual servers. Given that
hotspots can degrade performance, and that Borg is a mature
infrastructure, we imposed two requirements on UTP: (a) it
should be designed as a minimal change to Borg (i.e., not re-
quiring network as a full-fledged new resource type), and (b)
it should not adversely impact any existing cluster objective.

Design. To make minimal changes to the scheduler, ideally
we should minimally modify an existing objective so that it
does not regress any other existing objective. This is hard to
do for ToR utilization. Borg can easily determine if placing a
task on a server would over-run the server’s CPU resources;
this depends only on the resources currently committed by
the server to other tasks. It is harder to determine how placing
a task on a server would impact the server’s ToR utilization,
since that depends on other servers on the rack (that may
or may not be in the randomly chosen candidate set) and
how their workload changes. Reasoning about this impact
correctly would require Borg to consider a large number of
servers, which can impact scaling.

Proactive UTP placement. Fortunately, UTP required a
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Figure 14: The distribution of chunk read and write request by
uplink categories (High-, Medium- and Low-Uplink) for ToRs at a
given level of utilization.

relatively simple change to Borg for the following reason: at
any given instant, there are relatively few ToR hotspots in each
cluster, since the average ToR utilization in our datacenters is
low. Given this, UTP tweaks a low-priority objective in Borg,
that of ensuring load-balance across servers: it prefers servers
that would balance ToR-utilization across the cluster more
evenly. Specifically, UTP achieves this by assigning a score
to each candidate machine that reflects the ToR utilization for
that machine should the task get placed on that machine. In
computing this score, we take into account instantaneous ToR
utilization as well as peak task demand.

This methodology works well even on a random sample of
servers; given the low average ToR utilization, there are likely
to be many servers in the sample with low ToR utilization,
so in most of the cases Borg can satisfy other cluster-level
objectives while finding a suitable candidate server which
also improves better balancing of ToR utilization.

Reactive UTP migration. Even with ToR-utilization aware
task placement (UTP), ToR hotspots can develop. This is be-
cause the placement decision is based on historical estimates,
which can be incorrect as the usage pattern of a workload
changes, or may not be available for new workloads. To
address this, UTP migrates tasks away from ToR hotspots.
Borg already supports the infrastructure to orchestrate this
for other dimensions (e.g., cpu, memory bandwidth, etc) and
we extended it toward network. To this end, UTP must make
two decisions: (a) how to determine if a ToR is a hotspot, (b)
which task(s) to migrate and when.

UTP employs a 75% utilization threshold to identify
hotspots. This aligns with the load tolerance of common
workloads, including those discussed in §4.2 and Colossus
reads up to IMB. It also adheres to the fleet-wide requirement
of reserving 25% capacity for in-place upgrades and expan-
sions. It then greedily finds the latency-tolerant tasks with the
largest network bandwidth usage on a rack to migrate. This
ensures the fewest possible migrations and avoids migrating
latency-sensitive tasks when possible. Finally, UTP migrates
tasks only if availability budgets would permit.

Results. Figure 15 shows the efficacy of UTP in addressing
ToR hotspots after its fleetwide rollout. Specifically, it shows
that the number of hot ToRs was reduced by 90% after de-
ploying these features in the scheduler. The remaining hot
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Figure 15: The fleet-wide percentage of compute ToRs hot in the
outbound direction before and after deploying UTP, normalized
by the average value before the deployment.
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Figure 16: The change of the p98 outbound utilization of com-
pute ToRs as well as the average cell level utilization, defined as
the total egress throughput from compute ToRs divided by their
total uplink capacity, after UTP was enabled in a pilot cluster.

ToRs are likely due to cases where higher-priority objectives
in task placement would prefer a hot ToR rather than cold
ToRs. As expected, given the low average ToR utilization in
our datacenters, such cases are not common. Future work can
consider ways to improve scoring and the relative order of
objectives to further reduce the occurrence of hot ToRs.

Figure 16 shows a time series of the evolution of the p98
outbound utilization of Compute ToRs during the pilot of
UTP in one of our clusters before the fleetwide rollout. It also
depicts a timeseries of the average cell level utilization in the
cluster (§5.2) during that same window. UTP reduces the tail
of the ToR utilization to below the hotspot threshold (75%)
after the deployment of UTP. This benefits comes despite
a higher average utilization due to an unrelated workload
change after UTP was enabled.

In theory, UTP could have been purely reactive: it could
have omitted ToR-aware initial placement, and merely in-
voked task migration when a hotspot was detected. Figure 17
shows that a purely reactive design can increase task migra-
tions by nearly 2, relative to our design. Moreover, with a
purely reactive approach, network-intensive jobs are 7 x more
likely to be scheduled on hot ToRs (Figure 18).

UTP enables significant reductions (up to 13%) in p95
latency across many of our QuerySys benchmarks (Figure 19).
The shuffle flush and materialize benefit the most from UTP
because they are the most sensitive to ToR utilization with
the lowest Load-tolerance (Figure 12a). On the other hand,
the improvement on the TPC-H benchmark is not significant,
which is expected because the workload is not sensitive to
ToR utilization.

As discussed in section §3.4, ToR hotspots were a recur-

Metric Change

Percentage of hot ToRs ~ —44.6%
p98th utilization —18.5%
Average utilization 10.9%

Table 2: The change of the median value of the metrics reported
in Figure 15 and Figure 16 in a 5-day window before and after
UTP was enabled. We also used the Student’s ¢-test on the met-
rics samples in the two periods to confirm that the change was
statistically significant.
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Figure 17: The number of task migration events in a day due to
UTP before and after the disabling of the proactive UTP place-
ment, normalized by the average value before.

ring cause of service incidents. Enabling UTP resulted in a
70% reduction in the monthly occurrence of such incidents.
The remaining incidents post-UTP were primarily attributed
to either resolved bugs within UTP or occurred in specific
clusters where UTP had not yet been deployed.

Lastly, as discussed earlier, a key constraint that we needed
to satisfy in the design of UTP was to not adversely impact any
existing cluster objective. We didn’t observe any regression
in key Borg objective after the rollout of UTP. Corresponding
graphs are omitted for brevity.

5.2 Storage Chunk Placement

ToR-capacity aware chunk placement (CCP) addresses im-
balanced infrastructure upgrades by steering Colossus chunk
placement away from racks whose storage capacity has grown
out of balance with provisioned ToR bandwidth.
Background. Distributed file systems use heuristics to de-
termine where to place new file chunks. These heuristics are
designed to achieve several, often competing, objectives to
determine the most appropriate storage servers at which to
replicate these chunks. These objectives are similar to that
of task placement: spreading for reliability, load balancing,
access locality, and so on.

Design. As with UTP, CCP was designed to ensure minimal
changes to the existing Colossus distributed file system. These
changes were similar in principle to those for UTP, so we omit
the details for brevity but describe the key idea underlying
the approach.

In §4.3, we showed that storage requests to High-Uplink
ToRs experience low ToR utilization. Conversely, storage re-
quests that experience extremely high ToR utilization almost
exclusively access Low-Uplink ToRs. Based on this observa-
tion, CCP prioritizes High-Uplink ToRs over Medium-Uplink
and Low-Uplink ToRs for new chunk placement.

Results. We now discuss latency reduction resulting from



—— % Violation ——- Proactive UTP Disabled

©

o
|

Normalized %
S

N
|

Day
Figure 18: The percent of job scheduling events where a network-
intensive job is scheduled on a hot ToR before and after the
disabling of the proactive UTP placement, normalized by the
average value before.

Metric Change
Number of task migration events —41.0%
Percentage of scheduling violations —74.1%

Table 3: The change of the median value of various metrics
reported in Figure 17 and Figure 18 in a 5-day window with ToR
utilization-aware placement enabled against in a 5-day window
without the feature. We also used the Student’s ¢-test on the
metrics samples in the two periods to confirm that the change was
statistically significant.

this approach, using measurements from a 15-day pilot in
one of our clusters. Figure 20 shows the relative reduction
in Colossus p95 total storage access and network latency in
the pilot cluster. As CCP biases storage accesses towards
high-capacity ToRs, p95 network latency reduces by 50-80%
and p95 total latency reduces by 30-60%.

6 Future Directions

Automation techniques for hotspot mitigation. Hotspot
mitigation in our storage systems required significant manual
intervention, leveraging service owner knowledge of applica-
tion metrics, dependencies, and request prioritization within
the application. To scale mitigation to more applications,
automation techniques must be developed. Future work can
explore declarative methods for service owners to define appli-
cation characteristics, dependencies, and constraints, enabling
automated backend systems to identify and implement mit-
igation opportunities. Alternatively, more robust profiling
techniques can extract network communication requirements
from live deployments and map them to a range of system
deployment conditions.

Service Level Objectives (SLOs). Our current placement
strategy, which is hotspot-aware but best-effort, cannot guar-
antee performance under every network and workload condi-
tion. To ensure consistent performance, we must define SLOs
and implement mechanisms to guarantee them. This neces-
sitates substantial scheduler enhancements, moving beyond
simple load spreading to include strict network constraint
enforcement, thereby mitigating SLO risks.

Network fault tolerance for ML. The distinct characteris-
tics of Machine Learning (ML) workloads, such as single
points of failure and sensitivity to worker performance, ne-
cessitate novel network fault tolerance strategies. Placement
and rescheduling techniques discussed in this paper can be
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Figure 19: The relative improvement of the p95 query latency
for each of the seven QuerySys benchmarks studied in Section 4.2
in a 5-day window before and after UTP was enabled in the pilot
cluster.
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Figure 20: The reduction of the p95 Colossus and network la-
tency of HDD reads in a pilot cluster with CCP enabled, compared
with those at the time when the cluster is in the same bucket of
total read throughput but with CCP disabled.
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adapted for ML workloads to minimize the impact of faulty
network components, such as NICs and ToRs. This is particu-
larly crucial for jobs that rely on synchronous communication
between numerous accelerators.

Network-awareness across layers. While we tackled per-
sistent network hotspots with infrastructure-level network
awareness, shorter-lived hotspots (seconds to few minutes)
can make use of application-level load balancing. Application
control further allows for customized hotspot handling based
on request sensitivity and required quality of service. Fu-
ture investigations can focus on determining optimal hotspot
resolution timescales for various mitigation strategies (proac-
tive/reactive) and layers (infrastructure/application), and de-
veloping coordinated decision-making frameworks.

Connecting placement and provisioning. Future work can
explore the interplay between hotspot-aware placement and
resource (re-)provisioning. While hotspot-aware placement
can extend the lifespan of network infrastructure and allow
for more conservative uplink:downlink oversubscription to
deliver network efficiency, capacity planners need tools to
determine when and where to upgrade network, storage, and
compute resources to address capacity mismatches. A key
area for future research is determining the optimal utilization
target for provisioning and identifying utilization values to
inform changes in job and data placement, enabling safely
operating network at higher utilization while meeting applica-
tion SLOs.



7 Related Work

Reducing network congestion. To reduce datacenter con-
gestion, the literature explored various solutions, including
congestion control [3, 4, 19, 25, 26, 28, 31, 51], network load
balancing [1, 2, 8, 21, 22], and traffic engineering [7, 35].
These solutions mitigate packet drops and queuing delays by
distributing traffic over time (congestion control) or across dif-
ferent paths (load balancing and traffic engineering), but they
are bounded by bandwidth limits in ToR hotspots in which
all the uplinks of a ToR are persistently hot. By contrast,
hotspot-aware scheduling makes more bandwidth available,
by modifying the traffic matrix.

Datacenter scheduling. Datacenter job scheduling can in-
fluence traffic patterns, but it traditionally prioritizes local
resources like compute, memory and storage, assuming the
network isn’t a bottleneck. Various research has explored
incorporating network attributes like latency, bandwidth,
and reliability into storage systems to make them network-
aware [0, 15, 42, 43]. Several storage systems attempt to
mitigate network congestion. For instance, Sinbad [12] dy-
namically adjusts replica placement based on real-time link
utilization to address imbalances. However, it is restricted to
replicated file encodings and requires live network data, un-
like our ToR-capacity aware chunk placement (CCP), which is
encoding-agnostic and relies on simpler, static ToR uplink in-
formation. NetHint [11] proposes an interactive cloud tenant-
provider mechanism to optimize application performance by
identifying network hotspots. Yet, this approach necessitates
application-level network awareness and is confined to single-
tenant environments, contrasting with our infrastructure-level,
multi-tenant hotspot management. Furthermore, systems like
Diktyo [37] and Kubernetes [13] optimize service placement
for latency by considering network bandwidth and topology,
primarily focusing on microservice environments.

High-Performance Computing (HPC) and Machine Learn-
ing (ML) have long incorporated network awareness into
job scheduling, as exemplified by CASSINI [34] and Cor-
ral [20]. This paper demonstrates that network awareness is
equally critical for traditional compute and storage services,
especially in mitigating application tail latency.

Network capacity planning. Recent research has explored
leveraging application-specific information to enhance band-
width allocation: Saba [23], for example, uses ahead-of-time
profiling to distribute network bandwidth based on how sen-
sitive applications are to changes in bandwidth. Jupiter’s
networks [41] employ both traffic engineering and topology
engineering, which operate at different timescales. Traffic
engineering swiftly adapts to changes in topology and traffic,
whereas topology engineering is a slower, planned process
for implementing new network structures. However, capacity
planning alone cannot eliminate network hotspots due to the
fundamental causes discussed earlier (§3.3). Our work fo-
cuses on analyzing how sensitive applications are to network

hotspots, and how network-aware placement can reduce the
occurrence and duration of these hotspots.

Characterizing application performance. Prior research
has explored the impact of various factors on application per-
formance. Ousterhout et al. [30] proposed a methodology
for quantifying performance bottlenecks and used it to an-
alyze the Spark framework’s performance, concluding that
network optimizations can only reduce job completion time
by a median of at most 2%. Their conclusions are not in
contradiction to this paper because (1) the network utiliza-
tion in their datacenters is low and below 50%, so they do
not observe the effect of hotspots, and (2) workloads in our
datacenters are able to fully parallelize the execution, which
magnifies the impact of the worst straggler. Seemakhupt et
al. [38] analyzed latency bottlenecks in Remote Procedure
Calls (RPCs), identifying network performance issues using
passively-sampled RPCs [33] at Google. Zambre et al. [48]
broke down the time involved in small message communi-
cation into CPU, I/O, and network usage. More recently,
Kong et al. [24] modeled how NIC resource usage affects
RDMA performance. Our work complements these studies
by focusing on how ToR utilization influences performance,
ranging from basic storage operations to complex application
operations in QuerySys.

8 Conclusion

This paper demonstrates the need for hotspot-aware schedul-
ing to mitigate the impact of network hotspots on application
performance in datacenters. Traditional solutions like conges-
tion control and traffic engineering prove insufficient; instead,
directly managing workload placement is essential for rein-
ing in elevated tail latency. Our work reveals two surprising
findings: first, even disk- or compute-bound application op-
erations are vulnerable to elevated network utilization levels,
with ToR hotspots capable of doubling their latency. Second,
adding simple hotspot awareness to existing compute and stor-
age schedulers dramatically reduces application tail latency
and eliminates most ToR hotspots. This approach, while
simpler than incorporating network as a fully schedulable
resource, yields significant gains.

These results highlight the need for datacenter schedulers
to comprehensively consider network demand and supply. Fu-
ture research shall investigate holistic scheduling frameworks
accounting for network bandwidth, topology, and compute
and storage resources to pave the way for balanced datacenter
environments with predictable application performance.
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Appendix
A QuerySys Dataflow

Aggregation queries involve two stages (Figure 10), commu-
nicating via a shuffle primitive provided by RamStore. In
the first stage, workers read data from D servers using the
Colossus read API, perform parallel computations, and write
intermediate results to RamStore memory hosts. Second,
workers read these results, perform further computations, and
write final results to memory hosts.

This process involves many-to-many communication be-
tween workers, D servers, and memory hosts, making it diffi-
cult to correlate ToR utilization with operation latency (§4.2).
To simplify this analysis, we focus on the maximum ToR uti-
lization observed across all ToRs® involved in each worker’s
operation (Table 4). This approach allows us to capture the
impact of the worst hotspot on the operation’s performance.

B Impact of Chunk Sizes

Figure 21 shows how chunk sizes impact the Load-tolerance.
We look at 3 different operation size buckets: /0KB — I00KB,
100KB — IMB, and IMB—10MB, and measure the 2x Load-
tolerance for HDD reads and writes. A larger Op size de-
creases Load-tolerance, i.e., making it more sensitive to the
utilization. Thus, for example, reads of small chunks of 10-
100 KB can tolerate fully loaded ToRs with a latency inflation
of less than 2. For these small chunks, read access time is
dominated by disk read latency (disk seeking), and so should,
in general, offer worse performance than larger reads. In
contrast, large reads of a MB or more incur a latency inflation
of 2 even with a 50% ToR utilization, because they are bot-
tlenecked by the network. HDD write operations have a low
Load-tolerance even for small chunks, since writes do not

3Except for Colossus read operations we only consider the ToR utilization
of workers but not D servers due to telemetry limitations.
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Figure 23: The latency inflation of SSD and RamStore reads as a
function of ToR utilization.

wait for disk accesses, and hence are dominated by network
latency at any size.

C Impact of QoS

Typical cluster applications in public clouds, including
storage, classify their traffic into three priority classes:
performance-critical (PC) traffic is associated with user-
facing applications, non-critical (NC) traffic such as bulk
storage operations generally cares about sustained rate, and
best-effort (BE) traffic such as background analytics and
backup traffic has the lowest priority. PC, NC, and BE traffic
are mapped to high, medium, and low QoS classes respec-
tively [49].

We measure network utilization every 30 seconds at each
ToR for each quality of service (QoS) level. In our results
reported below, the utilization always refers to the weighted-
effective utilization of the given QoS class. The weighted-
effective utilization is defined by the utilization of each



Operation Description

Associated Network Utilization

Colossus Read Read data from Colossus to worker worker downlink
Shuffle Write Write output from a worker to RamStore MAX(worker uplink, RamStore memhost downlink)
Shuffle Read Read the result generated by the previous stage MAX(worker downlink, RamStore memhost uplink)

from RamStore to worker

Table 4: The time of individual QuerySys worker’s operation and the associated network utilization.

QoS and the weight ratio between QoSes. In practice, a
flow of higher QoS can still be impacted by traffics of a
lower QoS due to the weighted queues at the network de-
vices. The weighted-effective utilization is capturing this
subtlety with a weighted sum of all QoSes traffic occurs in
the given ToR for each interval. Lower QoS contributions
have smaller weight (< 1) and higher QoS traffic will have a
larger weight (> 1).

Figure 22 shows that both HDD read and write has
higher Load-tolerance when move from Non-critical (NC)
to Performance-critical (PC) QoS. This is because traffic of
the higher QoS observe less queuing time than that of the
lower QoS. This less queuing delay will behave as a higher
Load-tolerance.

D SSD and RamStore

SSD reads are much faster than HDD reads, and thus are more
sensitive to network utilization. As shown in Figure 23a, SSD
reads are more sensitive to high ToR utilization than HDDs.
The Hotspot-inflation for SSD read is about 2.5%, and the
2x Load-tolerance is about 55%. Thus, even when ToR
utilization is not high enough to be classified as a hotspot,
SSD read latency can be more than double the latency on an
unloaded network.

RamStore reads have lower latency than Colossus since it
stores the data in RAM. For this reason, RamStore is more sen-
sitive to higher utilization and hotspots than any of the storage
subsystems discussed so far. As shown in Figure 23b, Ram-
Store’s 2x Load-tolerance is 30%, and its Hotspot-inflation
is 3.
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