2406.10416v4 [cs.CR] 13 Jul 2024

arxiv

Byzantine-Robust Decentralized Federated Learning

Minghong Fang*

University of Louisville

Prashant Khanduri
Wayne State University

Yuchen Liu
North Carolina State University

ABSTRACT

Federated learning (FL) enables multiple clients to collaboratively
train machine learning models without revealing their private train-
ing data. In conventional FL, the system follows the server-assisted
architecture (server-assisted FL), where the training process is
coordinated by a central server. However, the server-assisted FL
framework suffers from poor scalability due to a communication
bottleneck at the server, and trust dependency issues. To address
challenges, decentralized federated learning (DFL) architecture has
been proposed to allow clients to train models collaboratively in
a serverless and peer-to-peer manner. However, due to its fully
decentralized nature, DFL is highly vulnerable to poisoning attacks,
where malicious clients could manipulate the system by sending
carefully-crafted local models to their neighboring clients. To date,
only a limited number of Byzantine-robust DFL methods have been
proposed, most of which are either communication-inefficient or
remain vulnerable to advanced poisoning attacks. In this paper,
we propose a new algorithm called BALANCE (Byzantine-robust
averaging through local similarity in decentralization) to defend
against poisoning attacks in DFL. In BALANCE, each client lever-
ages its own local model as a similarity reference to determine if the
received model is malicious or benign. We establish the theoretical
convergence guarantee for BALANCE under poisoning attacks in
both strongly convex and non-convex settings. Furthermore, the
convergence rate of BALANCE under poisoning attacks matches
those of the state-of-the-art counterparts in Byzantine-free settings.
Extensive experiments also demonstrate that BALANCE outper-
forms existing DFL methods and effectively defends against poi-
soning attacks.

CCS CONCEPTS

« Security and privacy — Systems security.
KEYWORDS

Decentralized Federated Learning, Poisoning Attacks, Byzantine

Robustness

“Corresponding author

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0636-3/24/10.
https://doi.org/10.1145/3658644.3670307

Zifan Zhang
North Carolina State University
Jia Liu
The Ohio State University

Hairi
University of Wisconsin-Whitewater

Songtao Lu
IBM Thomas J. Watson Research
Center

Neil Gong
Duke University

d AN
Oy D O/
il iy

(a) Server-assisted FL (b) DFL
Figure 1: Server-assisted FL vs. DFL.

ACM Reference Format:

Minghong Fang, Zifan Zhang, Hairi, Prashant Khanduri, Jia Liu, Song-
tao Lu, Yuchen Liu, and Neil Gong. 2024. Byzantine-Robust Decentral-
ized Federated Learning. In Proceedings of the 2024 ACM SIGSAC Con-
ference on Computer and Communications Security (CCS "24), October 14—
18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 18 pages.
https://doi.org/10.1145/3658644.3670307

1 INTRODUCTION

Federated learning (FL) [35] has recently emerged as a powerful dis-
tributed learning paradigm that leverages multiple clients to train
machine learning models collaboratively without sharing their raw
training data. FL naturally follows the server-based distributed ar-
chitecture, also known as server-assisted federated learning (server-
assisted FL) [25, 35], where the training process is orchestrated
by a server. However, despite its simplicity, the server-assisted FL
framework suffers from three key limitations due to the reliance of
a central server. The first limitation is that the server is vulnerable
to the single-point-of-failure risk, which renders the server a clear
target for cyber-attacks or the server itself could experience crashes
or other system failures [13, 21, 22]. The second limitation of the
server-assisted FL framework is that its single-level tree topology
implies a communication bottleneck at the server (the root node)
as the number of clients increases [13, 31, 45]. This communica-
tion bottleneck significantly worsens the scalability of large-scale
distributed training over a server-based architecture. The third
limitation is that server-assisted FL suffers from trust dependency
issues: all participating clients have to trust the server, which has
the potential to influence clients’ models arbitrarily [17, 44, 45].
The limitations of these existing server-assisted FL systems have
motivated researchers to pursue a fully-decentralized FL design,
also known as decentralized federated learning (DFL) [4, 13, 14, 23,

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3658644.3670307
https://doi.org/10.1145/3658644.3670307

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

28, 33, 45, 58]. In DFL, clients exchange information in a peer-to-
peer fashion, without the assistance of a server. Clients in DFL
follow the same process of training their local models as in server-
assisted FL. However, in this fully-decentralized setting, each client
only needs to send its updated model to its neighboring clients
and perform local aggregation of the received models. Fig. 1 shows
the difference between server-assisted FL and DFL. Thanks to its
salient features, DFL has found a wide range of applications, such
as healthcare services [34, 42, 47] and autonomous driving [4, 41].

Although DFL provides many benefits, a significant barrier to
its widespread adoption is the susceptibility of DFL models to poi-
soning attacks. Malicious clients in FL could arbitrarily manipu-
late the system via poisoning their local training data (aka data
poisoning attacks) [5, 38, 50] or local models (aka model poison-
ing attacks) [2, 3, 15, 30, 48, 53] to degrade the learning perfor-
mance. To address this challenge, a number of Byzantine-robust
FL algorithms have been proposed with varying degrees of suc-
cess (e.g., [6, 8, 12, 18, 27, 37, 52, 56, 59]). However, almost all of
these existing defenses are based on the server-assisted FL design.
To defend against poisoning attacks in DFL systems, the straight-
forward approach is to adapt the existing defenses designed for
server-assisted FL to DFL setting. However, our later experiments
show that directly applying these server-based defenses to DFL
leads to unsatisfactory performance since they are not designed for
DFL architecture.

We note, however, that designing Byzantine-robust DFL algo-
rithms is highly non-trivial. One of the main challenges is that,
unlike server-assisted FL where the server maintains a single global
model; in DFL, each client not only performs model training, but
also acts as a “parameter server” to aggregate the received mod-
els. At the end of the training process, each client in DFL holds
its own final trained model. The second challenge is that in DFL,
clients connect to each other randomly, and different clients may
have varying numbers of malicious neighbors. Furthermore, in DFL,
clients interact exclusively with their topological neighbors. As a
result, each client only has a “partial view” of the entire system.
The above challenges make it difficult to guarantee that all benign
clients in DFL obtain accurate final models, both theoretically and
empirically. Recently, a few Byzantine-robust DFL methods have
been proposed [14, 21, 22]. However, these DFL methods suffer
from the following limitations: First, some approaches lack commu-
nication efficiency. For instance, in LEARN [14], each client needs
to exchange information with its neighboring clients multiple times
during each training round, resulting in a significant communica-
tion overhead. Second, certain defenses cannot provide theoretical
guarantees that all benign clients will obtain accurate final models
through the collaborative learning process. Moreover, even when
such guarantees are provided, these methods need to assume that
each benign client has knowledge of its malicious ratio (fraction of
neighbors that are malicious). Third, as our experimental results
will demonstrate, existing DFL methods are inherently vulnerable
to poisoning attacks.

Our work: In this paper, we aim to bridge this gap. We propose
a novel method called BALANCE (Byzantine-robust averaging
through local similarity in decentralization) to defend against poi-
soning attacks in DFL. Our proposed BALANCE method is based on

Minghong Fang et al.

the observation that the attacker could manipulate the directions
or magnitudes of local models on malicious clients in order to effec-
tively corrupt the FL system. In our proposed method, each client
uses its own local model as a similarity reference to assess whether
the model it received is malicious or benign. The high-level idea of
BALANCE is that if the received model is close to the client’s own
model in both direction and magnitude, it is considered benign;
otherwise, the received model will be ignored. We provide theo-
retical guarantees of BALANCE under poisoning attacks in both
strongly convex and non-convex settings. Specifically, in the case
of a strongly convex population loss, we theoretically prove that
for our BALANCE method, the final model learned by each benign
client converges to the neighborhood of the global minimum. In
the non-convex setting, we theoretically demonstrate that the final
model of each benign client could converge to a neighborhood
of a stationary point. Additionally, the convergence rates of our
proposed method in both strongly convex and non-convex settings
align with the optimal convergence rate observed in Byzantine-free
strongly convex and non-convex optimizations, respectively. No-
tably, our theoretical guarantees are established without relying on
the stringent and often unrealistic assumptions commonly made in
existing DFL methods. These include the need for the communica-
tion graph to be complete and the requirement for each client to
know the percentage of their neighbors who are malicious.

We extensively evaluate our proposed method on 5 datasets from
different domains, 9 poisoning attacks (including attacks specif-
ically developed for server-assisted FL and those customized for
DFL architectures), 12 communication graphs, along with 8 state-
of-the-art FL baselines. Furthermore, we explore various practical
settings in DFL, including but not limited to, clients having highly
non-independent and identically distributed training data (e.g., each
client possessing data from merely three classes), clients employing
different robust aggregation rules to combine the received models,
clients starting with different initial models, various fractions of
edges between malicious and benign clients, and time-varying com-
munication graphs (e.g., clients may disconnect from the protocol
due to Internet issues). We summarize our main contributions in
this paper as follows:

e We propose BALANCE, a novel approach to defend against poi-
soning attacks in DFL. In contrast to existing DFL defenses, our
BALANCE algorithm achieves the same communication complex-
ity as that of the state-of-the-art server-assisted FL algorithms.

e We theoretically establish the convergence rate performance of
BALANCE under poisoning attacks in both strongly convex and
non-convex settings. We note that the convergence rate per-
formance of BALANCE under strongly convex and non-convex
settings match the optimal convergence rates in Byzantine-free
strongly convex and non-convex optimizations, respectively.

o Our extensive experiments on different benchmark datasets, var-
ious poisoning attacks and practical DFL settings demonstrate
and verify the efficacy of our proposed BALANCE method.

2 PRELIMINARIES AND RELATED WORK

Notations: Throughout this paper, matrices and vectors are de-
noted by boldface letters. We use ||-|| for £>-norm. For any given set
V, we use |'V| denote its cardinality.

Byzantine-Robust Decentralized Federated Learning

2.1 Decentralized Federated Learning (DFL)

Typically, in federated learning (FL), the training procedure can be
formulated as an empirical risk minimization (ERM) problem. The
aim is to learn a model w* that minimizes the optimization problem
expressed as follows:

w* = argmin F(w) = ﬁ Z fw,), (1)

weo leD

where © c RY is the parameter space, d corresponds to the dimen-
sion of model parameter; F(-) denotes the population risk function;
D denotes the entire training dataset; f(w, {) represents the em-
pirical loss function, which is computed using weight parameter w
and a training sample {.

In this paper, we try to solve the FL problem in (1) in a fully de-
centralized manner, without requiring assistance from a centralized
server. Specifically, consider a DFL system with a set of clients V.
We let |'V| denote the number of clients in the system. The net-
work topology of this DFL system is defined by an undirected and
unweighted communication graph G = (V, &), where & denotes
the set of edges between clients, and self-loops are not allowed.
Communication is only possible between two clients if there is an
edge connecting them. Each individual client, denoted as i € V,
has its own private training dataset D;. Collectively, we denote
the joint global training dataset as D = |J;c«y D;. Every client i
maintains a model w; that is based on its local training data and
information (e.g., model parameter in this paper) gathered from
its neighboring clients. Specifically, in each training round t, each
client conducts the following two steps:

Step I (Local model training and exchanging): Client i € V
1
performs local training to get an intermediate model wipr ?, and sub-

t+3
sequently sendsw; ? to its neighboring client j € N;, where N; is
the set of neighbors of client i, not including the client i itself. At the

. Lo . . . t+1
same time, client i also receives the intermediate local model w j+2
from its neighboring client j. Lines 5-7 in Algorithm 2 summarize
Step I. The local training of clients is shown in Algorithm 1.

Step II (Local model aggregation): Upon receiving all intermedi-
ate local models from its neighbors, each client i € V aggregates
and then updates its model as follows (Line 9 in Algorithm 2):

1 1
witl = w2 + (1-) AGG{w} 7, j € Ni}, @)

where « is a trade-off parameter, a larger « indicates trust more in

the client’s own intermediate local model, while a smaller value of
a means put more weight on the aggregated neighboring models;

1
AGG{th.JrE, Jj € N} denotes that the client i employs a certain
aggregation rule, represented by AGG, to combine the local models
received from its neighboring clients. The aggregation rule AGG
can be FedAvg [35] or Median [56].

1
In [45], clients update their local models asw!*! = AGG{w;Jrz JJ€E

7V\i }, with)/V\, = N; U {i}. Our experiments later reveal that even in
non-adversarial settings, such aggregation leads to high error rates
in final models using existing Byzantine-robust methods.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 1 LocalTraining(w, D,).

Output: w.
1: for each local iteration do
2: Sample a mini-batch of training data from D to compute stochastic
gradient g(w).
3: we— w-—ng(w).
4: end for

Algorithm 2 Training procedure of DFL.

Input: Set of clients V; local training data D;, i € V; training rounds T;
learning rate n; communication graph G; parameter «; aggregation
rule AGG.

Output: Local models wiT,i eV.

1: Initialize w?,i e V.

2: fort=0,1,---,T—1do

3: for each client i € V in parallel do

4 // Step I: Local model training and exchanging.

1
5: win = LocalTraining(w!, D;, n).
1
6: Send w:+2 to all neighboring clients j € N;.
1
7: Receive w2 from all neighboring clients j € N;.
8: // Step II: Local model aggregation.
1 1

9 witl = aw, 7 + (1- a)AGG{w, %, j € Ni}.
10: end for
11: end for

2.2 Poisoning Attacks to FL

FL is vulnerable to both data poisoning attacks [5, 38, 50] and
model poisoning attacks [2, 3, 6, 9, 15, 19, 20, 49, 53, 57, 60]. In data
poisoning attacks, malicious clients poison their training data. For
instance, in a label flipping attack [50], the attacker flips the labels
of local training data in malicious clients while leaving the features
unchanged. Malicious clients can also manipulate their local models
directly, which are known as model poisoning attacks [2, 6, 15,
20, 49]. Depending on the attacker’s objective, model poisoning
attacks can be categorized as either untargeted attacks [6, 15, 49]
or targeted attacks [2, 20, 55]. In untargeted attacks, the attacker
manipulates the FL system in a way that the final learned model will
make incorrect predictions on a significant number of test examples
without distinction. Conversely, in targeted attacks, the attacker
seeks to influence the predictions of the final learned model on
the specific inputs. A recent study [45] demonstrates that DFL is
vulnerable to privacy attacks, this topic is out of the scope of this

paper.

2.3 Byzantine-robust DFL Aggregation Rules

Since FL is vulnerable to poisoning attacks, many Byzantine-robust
aggregation mechanisms for FL have been developed [6, 8, 10—
12, 16, 18, 24, 27, 36, 39, 43, 54, 56]. However, most of them are
based on the server-assisted FL design. Recently, a few Byzantine-
robust FL methods have been proposed to tackle this challenge in
DFL setting [14, 21, 22]. For instance, in the UBAR [21] method,
each client first selects a group of neighboring clients that has
the smallest sum of distances to its own local model, then further
excludes information from neighbors that would result in a larger
loss. LEARN [14] is another type of Byzantine-robust aggregation

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 1: “Convex guarantee” and “Non-convex guarantee”
mean the method provides theoretical performance guar-
antees under strongly convex and non-convex settings, re-
spectively; “No know. about ¢;” means benign client i has
no knowledge about c¢; (malicious ratio of client i); “No com-
plete graph assum.” means the approach does not require the
assumption that the communication graph G must be a com-
plete graph.; “No extra comm. cost” means the method does
not incur extra communication cost compared to FedAvg.
Convex [Non-convex|No know.|No complete| No extra
guarantee| guarantee | about c¢; |graph assum.|comm. cost

Method

UBAR [21] | X X X X 7
LEARN [14]] X v X X X
SCCLIP [22]] X v v v v

BALANCE | v v v v

protocol designed for DFL. Clients in LEARN share both local model
updates and local models with their neighboring clients in each
training round. Specifically, each client first exchanges local model
update with neighboring clients for [log, t] times, and then shares
its local model one time, where t is the current training round.
The trimmed mean aggregation rule is used by clients to combine
the received local model updates and models. In the SCCLIP [22]
aggregation rule, each client clips all received local models from
neighboring clients to make sure the norm of a clipped received
local model is no larger than that of the client’s own model.

However, there are several inherent limitations in existing DFL
defenses. First, UBAR cannot theoretically guarantee that every
benign client could learn an accurate model. Second, although some
methods offer theoretical guarantees for benign clients, they as-
sume that each benign client i has knowledge of its malicious ratio
ci, which is computed as number of malicious neighbors divided
by the total number of neighbors of client i. That is to say, in these
methods, it is assumed that each benign client knows the number
of neighbors that are malicious. Third, the LEARN method addi-
tionally presupposes that the underlying communication graph G
must be a complete (fully connected) graph. Notably, the LEARN
method incurs a large communication cost, as during each train-
ing round, clients need to exchange information with their peers
several times. Contrary to existing DFL defenses, our proposed
BALANCE method addresses the above limitations. We compare
our proposed BALANCE with existing Byzantine-robust DFL meth-
ods, and summarize the comparison in Table 1. It is important to
note that in Table 1, we do not compare our method with server-
assisted FL methods such as Krum and Median. This is because the
theoretical results of server-assisted FL methods cannot be straight-
forwardly transferred to the DFL framework, owing to significant
variations in their architectures and operational procedures. DFL
necessitates distinct theoretical frameworks and analyses tailored
to its specific features and obstacles. Determining how to adapt the
theoretical results of server-assisted FL methods to the DFL context
is a challenging task and falls outside the scope of this paper.

3 PROBLEM STATEMENT

Threat Model: Similar to prior works [15, 21, 22, 48, 49], we assume
that the attacker controls some malicious clients, those malicious

Minghong Fang et al.

—> Benign model —>» Malicious model

t+4
w 2

3

t+4
wy

Figure 2: Illustration of our proposed BALANCE method.

clients could either poison their local training data or directly ma-
nipulate the local models that are sent to their neighboring clients.
Note that each malicious client could only send malicious local
models to its neighbors. Additionally, a malicious client could dis-
tribute different local models to different neighboring clients. We
also remark that following [21, 22, 45], the attacker cannot change
the communication graph G between clients. However, clients may
disconnect from the DFL protocol in each training round because
of Internet-related issues.

Attacker’s Knowledge: In terms of attacker’s knowledge, follow-
ing [8, 21, 22], we consider the worst-case attack scenario where the
attacker has full-knowledge about the FL system, which includes
local training data, the aggregation rule and trade-off parameter
«a utilized by all clients, as well as the communication graph G.
Note that in both non-adversarial and adversarial scenarios, each
client knows the local models of its neighbors since local models
are exchanged in DFL.

Defender’s Knowledge and Goal: The proposed defense has no
knowledge about the attacker’s strategy nor the communication
graph G, but is expected to be capable of withstanding power-
ful adaptive attacks. It is important to note that in the proposed
defense, each benign client is unaware of the total number of mali-
cious clients in the system nor the number of neighboring clients
that are malicious. We aim to develop a reliable and resilient DFL
approach that meets the following three key goals. 1) Competitive
learning performance: the proposed defense scheme for DFL should
be effective in non-adversarial settings. Specifically, when there
are no malicious clients, the model learned by each benign client
using our proposed algorithm should attain comparable test error
rate performance to that of averaging-based aggregation, which
achieves state-of-the-art performance in non-adversarial settings;
2) Byzantine robustness: the proposed DFL method should demon-
strate both theoretical and empirical resilience against Byzantine
attacks; and 3) Communication and computation efficiency: the
proposed algorithm should not result in any additional communi-
cation or computation costs when compared to FedAvg [35] in the
absence of attacks.

4 THE BALANCE ALGORITHM

As summarized in Table 1, existing DFL methods either would
incur a large communication cost, or make strong assumption that
each benign client needs to know its malicious ratio. However, this
assumption does not hold in practical scenarios, as in DFL, different
clients connect to a different number of malicious clients. Moreover,
ensuring that every benign client can learn an accurate final model
by exchanging information with other clients presents a significant

Byzantine-Robust Decentralized Federated Learning

challenge. In this section, we aim to design a simple yet effective
DFL method to achieve three goals defined in Section 3.

As shown in [15, 48], the attacker could launch model poisoning
attacks on FL either by manipulating the directions or magnitudes
of the local models on malicious clients. In our proposed BALANCE,
if the received intermediate model differs significantly from the
client’s own intermediate model, it is assumed to be potentially
malicious and is ignored. Specifically, at training round ¢, when

1
. t+3 . .
client i € V receives a intermediate model w; * from its neigh-

. o t+;
boring client j € Nj, it uses its own intermediate model w; ? asa
P . . t+1
similarity reference to check whether the received model w f ?is
.) 3 t+3 . .
malicious or benign. If w ;0 s close to w, %, both in terms of di-
.

rection and magnitude, then client i will consider w ; Casa benign

e +3 o
model; otherwise client i will disregard w f 2. Additionally, as the
t+y t+3
model approaches convergence, w; becomes more closer tow; *.

1
*3

Based on the above insights, client i will only accept w]t if the
following condition holds:
t+1 t+1 t+1
lw; * —w; “ll <y -exp(=k-A())[lw; *|, ®)

where the parameter y > 0 sets an upper limit for accepting a
model as benign. The value of k > 0 determines the rate at which
the exponential function decreases; a larger k results in a faster
decay, while a smaller k leads to a slower decay. The function A(t)
is a monotonically increasing and non-negative function associated
with the training round index ¢, meaning it becomes larger as t
increases. When y and k are fixed, the term y - exp(—k - A(¢))
decreases as t increases. Various methods exist for choosing A(t).
For instance, a straightforward approach is to define it as A(t) = %

where T is the total number of training rounds.
Fig. 2 shows the high-level idea of proposed BALANCE defense.
t+3 t+1 o+l i

. t+ . .
InFig. 2,w, *,w, *,w, %, andw, * are four intermediate models

1
. . . . Loty . .
sent from neighboring clients of client i; w;, * is client i’s own

. . . . t+1 t+1
intermediate model. Client i will accept w, ? and w, * because

t+1 t+ t+
they are close tow, . However, modelsw, * andw, ° are flagged
1 t+1
as malicious since w; * deviates significantly fromw, ? in terms
. t+y . . t+y
of magnitude, andw, * considerably differs from w; * in terms of

direction.

During training round ¢, we define the set Sl.t C Nj as the collec-
tion of neighboring clients of client i whose intermediate models
satisfy Eq. (3). Client i then aggregates the received intermediate
models from its neighboring clients by computing the average of

1
all accepted models as |S_1f| Yje st w;+2 . Finally, client i could up-
date its model by combining its own intermediate model with the
aggregated intermediate model in the following manner:
1 b+ _ 1 t+3
w; =oaw, *+(1 a)_|3it| Zjesi’wj . 4)

Algorithm 3 shows the pseudocode of our proposed BALANCE al-

gorithm. During the training round ¢, each client executes Lines

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Algorithm 3 BALANCE.

Input: Set of clients V; local training data D;, i € V; training rounds T;
learning rate n; communication graph G; parameters «, y, k and A(t).
Output: Local models wiT,i e V.
1: Initialize w), i € V.

2: fort=0,1,---,T —1do
3: for each client i € V in parallel do
4 // Step I: Local model training and exchanging.
1
5: w:+2 = LocalTraining(w, D;,).
1

6: Send w:+2 to all neighboring clients j € N;.

1
7: Receive w2 from all neighboring clients j € N;.
8: // Step II: Local model aggregation.
9: Slt =0.
10: for each client j € N; do
11: if Eq. (3) satisfies then
12: St=8HU{j}.
13: end if
14: end for . .

t+1 sl
15: witl = qw, 2+(1—a)@zjgsit w; 2
16: end for
17: end for

4-15 of Algorithm 3 in parallel. Specifically, for client i € V, it first
performs local model training and exchanging (Lines 5-7). Note that
the LocalTraining procedure is shown in Algorithm 1. If client i is a
malicious client, it can choose to send arbitrary or carefully-crafted
intermediate models to its neighboring clients at Line 6. After that,
client i accepts intermediate models that satisfy Eq. (3) and further
updates its local model (Lines 9-15).

Complexity analysis: In our proposed BALANCE method, at
training round ¢, client i € YV computes the distance between
1
2

. . . t+ . . .
its own intermediate model w; * and the received intermediate

1
modelw’ " ? from a neighboring client j € ;. Since the dimension
of local model is d, and client i has |N;| neighboring clients, the
computational complexity of each client in our method is O (d|N;|)
at each training round.

5 THEORETICAL PERFORMANCE ANALYSIS

In this section, we present the convergence performance guarantee
of our proposed BALANCE. We let B C V be the set of benign
clients. Let G be the subgraph induced by benign clients. In a
convex setting, we denote the global minimum as w*; while in a
non-convex setting, w* represents a stationary point (a point which
has zero gradient). Before introducing the theoretical results, we
first present some technical assumptions that are standard in the
literature [14, 22, 24, 31, 56].

AssUMPTION 1. The population risk F(w) is u-strongly convex, ie.,
for allwy,wy € ©, one has that:

F(w) + (VE(wr).wy = wi1) + S lhwz = will” < Flws).

AssuMPTION 2. The population risk F(w) is L-smooth, i.e., for all
wi, w2 € ©, we have that:

IVE(w1) = VEw2) || < L |lwy —wel|.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

AssuMPTION 3. The stochastic gradient g(w;) computed by a be-
nign client i € B is an unbiased estimator of the true gradient, and
g(w;) has bounded variance, where B is the set of benign clients. That
is, Vi € B, one has that:

E[gwi)] = VF(wi), E[llgwi) - VFwi)l]* < 6°.

ASSUMPTION 4. For any benign client i € B, the model w; and
|IVF(w;)|| are bounded. That is, Vi € B, we have |lw;|| < ¢, and
IVEwi)ll < p.

ASSUMPTION 5. Gp is connected.

With the above assumptions, we provide the theoretical findings
of our BALANCE both in strongly convex and non-convex settings.
In the strongly convex setting, we have the following result.

THEOREM 1 (THE STRONGLY CONVEX SETTING). Suppose Assump-
tions 1-5 hold, clients select intermediate models according to Eq. (3).
Let the learning rate and y be chosen as such thatn < min{ﬁ, ;lz}

andy < ﬁ. The value of k - A(t) is larger than 0. After T
training rounds, for any benign client i € B, it holds that:
E[Fw]) = Fw)] < (1=)T [Fw}) = Fw')]

2Lps% 2 1-
L Ano” yoy(a))
H Hn

where w? is client i’s initial model.

Proor. The proof is relegated to Appendix A. O

Theorem 1 says that by choosing an appropriate learning rate n
and y, for any benign client, the final learned model converges to
the neighborhood of the global minimum. More importantly, the
linear convergence rate is the same as the optimal convergence rate
in Byzantine-free strongly convex optimization algorithm. In other
words, Byzantine attacks do not hurt the convergence rate of our
proposed method. Note that in this paper, we only consider standard
gradient descent, without using the higher-order information or
relying on accelerated methods.

In the non-convex setting, we have the following result.

THEOREM 2 (THE NON-CONVEX SETTING). Under Assumptions 2-
5, clients select intermediate models according to Eq. (3). Select n
gl 1 p L
and y such that n < min{gz, I_l} andy < wi—a)- In addition,
k- A(t) > 0. After T training rounds, the following holds for any
benign clienti € B:

T-1 0 5
1 2[F(w;) — F(w")] ypY(1-a)
= E[IVFW))|?] €« —F——— +4Lpé% + 22—
T; [IVEG]) 1] ot 7 ,
Proor. The proof is relegated to Appendix B. O

Theorem 2 shows that by selecting suitable parameters, the final
model of each benign client could converge to the neighborhood of
a stationary point. The sub-linear convergence rate aligns with the
optimal convergence rate in a Byzantine-free non-convex optimiza-
tion algorithm. In other words, poisoning attacks do not impact the
convergence rate of our BALANCE in the non-convex setting.

Minghong Fang et al.

REMARK. Assumption 3 states that the training data among clients
are independent and identically distributed (IID), but this is not re-
quired for our experiments. In Assumption 5, it is posited that the
subgraph Gg, which is formed by benign clients, remains connected
after eliminating all malicious clients and their corresponding edges.
This assumption is critical, as it prevents the scenario where a benign
client is exclusively surrounded by malicious neighbors. Our BAL-
ANCE does not require benign clients to be aware of the architecture
of communication graph G. Additionally, in our theoretical analysis,
there is no necessity for G to have a particular architecture, such as
the requirement for it to be a complete graph, as assumed in [14].

REmARK. For a strongly-convex (or convex) objective, our Theo-
rem 1 guarantees the convergence to a global optimal solution. For
a non-convex objective, since guaranteeing convergence to a global
optimal is NP-Hard [40], guaranteeing convergence to a stationary
point (local optimal) is the best one can hope for in the non-convex
case. The convergence rates of our BALANCE method in both strongly
convex and non-convex scenarios match the best-known convergence
rates of their Byzantine-free counterparts. We also note that using
our proposed BALANCE does not require knowing the precise values
of certain parameters introduced in assumptions, such as 6, /, and
p. Clients only need to check whether Eq. (3) is met while filtering
out malicious local models. Since y - exp(—k - A(t)) is always upper
bounded by y, Theorem 1 and Theorem 2 rely on the condition that
the value of y is bounded.

6 EXPERIMENTS
6.1 Experimental Setup

6.1.1 Datasets and Poisoning Attacks. In our experiment, we assess
our method and various baselines across multiple datasets, includ-
ing a synthetic dataset and four real-world datasets: MNIST [29],
Fashion-MNIST [51], Human Activity Recognition (HAR) [1], and
CelebA [32]. Notably, HAR, sourced from 30 smartphone users
(each representing a client), exemplifies a real-world FL dataset.
Details on the creation of the synthetic dataset and specifics of the
other four datasets are available in Appendix D.1.

We first consider seven poisoning attacks, including two data poi-
soning attacks (Label flipping (LF) attack [50], Feature attack) and
five model poisoning attacks (Gaussian (Gauss) attack [6], Krum
attack [15], Trim attack [15], Backdoor attack [2, 20], and Adaptive
(Adapt) attack [48]). Note that Backdoor attack is a targeted attack
model, where the attacker aims to craft the system such that the fi-
nal trained model makes incorrect predictions on inputs selected by
the attacker. Adapt attack is the most powerful attack, where the at-
tacker has full knowledge of the system, including all benign clients’
local models and the proposed aggregation rule BALANCE used by
clients. The attacker in Adapt attack introduces minor perturbation
to the benign local models to create malicious models. The detailed
description of seven poisoning attacks is shown in Appendix D.2.
Additionally, we evaluate two other attacks in Section 7: “a little is
enough” (LIE) attack [3], and the Dissensus attack [22], a new form
of attack specifically designed for DFL systems.

6.1.2 Comparison DFL Methods. We evaluate the effectiveness of
our proposed BALANCE by comparing it with the following eight

Byzantine-Robust Decentralized Federated Learning

methods. Note that FedAvg [35], Krum [6], Trimmed Mean (Trim-
mean) [56], Median [56], and FLTrust [8] were originally designed
for server-assisted FL, which are adapted to the DFL setting.

FedAvg [35]: In the FedAvg method, a client collects local models
from its neighbor clients, then takes the weighted average of all
collected models.

Krum [6]: When client i € V gets |N;| local models from neigh-
bors, it chooses the model closest in Euclidean distance to its
[Nil = TcilNill — 2 nearest models. Here, N; is client i’s neigh-
bor set, with ¢; and [c;|N;|] denoting the proportion and count of
malicious neighbors, respectively.

Trimmed Mean (Trim-mean) [56]: Once client i € V receives
[Ni| local models from its neighbors, it first removes the largest
and smallest [¢;|Nj|] elements for each dimension, then computes
the average of the rest.

Median [56]: In the Median rule, each client i computes the coordinate-

wise median of all collected | N;| local models.

FLTrust [8]: In FLTrust, client i calculates the cosine similarity

1 1
2 2

. t+ . N I+
between its local model w; ? and a neighbor’s model w ; * upon

. e - t+y . Lty
receipt. If this similarity is positive, w; ? is normalized to w; 2

1
with the same magnitude as wl.t+2 , followed by client i averaging
all normalized models received from neighbors.

UBAR [21]: The UBAR aggregation rule employs a two-stage pro-
cess to filter out any potentially malicious information. Specifically,
during training round ¢, client i first identifies a subset of neighbors
N}, which consists of those with the smallest sum of distance to

1
wl.HE, where N7 C Nj, INS| = [Ni| = [ci|Nil]. In the second stage,
client i narrows down the subset even further by selecting a new
subset N/ from N7, which only includes neighbors whose loss
values are smaller than its own loss. Finally, client i averages the
local models from N}

LEARN [14]: In LEARN, clients exchange both local model updates
and local models with their neighboring clients, and utilize Trim-
mean aggregation rule to combine the received local model updates
and local models. Specifically, during training round ¢, client i
aggregates local model updates from its neighboring clients for
[log, t] times, then exchanges local models with its neighbors once.

Self-Centered Clipping (SCCLIP) [22]: In the SCCLIP aggrega-
tion rule, each client clips all received local models from its neighbor
clients based on its own local model.

6.1.3 Evaluation Metrics. For the synthetic dataset, we employ
maximum mean squared error (Max.MSE) as the evaluation crite-
rion, as we train a linear regression model on this synthetic dataset.
For the four real-world datasets, we use maximum testing error
rate (Max.TER) and maximum attack success rate (Max.ASR) as
the evaluation metrics, as these datasets are used for training clas-
sification models. For all three evaluation metrics, smaller values
indicate stronger defense capabilities.

Maximum mean squared error (Max.MSE): In the linear regres-
sion model, we first calculate the mean squared error (MSE) for
each benign client’s final local model. The MSE is computed as
MSE = L 3™t (y; _ 4,)2 where y; is the actual value, ; denotes

Rpest =1

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

the predicted value, and niest is the number of testing examples.
We then assess a DFL method’s robustness on the synthetic dataset
by selecting the maximum MSE among all benign clients.

Maximum testing error rate (Max.TER) [21]: Following [21],
we compute the testing error rate of the final local model on each
benign client, and use the maximum testing error rate among all
benign clients to measure the robustness of a DFL method.

Maximum attack success rate (Max.ASR): We compute the
attack success rate of the final local model on each benign client,
and report the maximum attack success rate among all benign
clients. The attack success rate is the fraction of targeted testing
examples classified as the attacker-chosen targeted label.

6.1.4 Non-IID Setting. Training data in FL are typically Non-IID
(not independently and identically distributed) across clients. In
our paper, we consider the IID setting for synthetic dataset, and
Non-IID setting for four real-world datasets. We use the way in [15]
to simulate the Non-IID setting for MNIST, Fashion-MNIST datasets.
In this approach, for a dataset containing z classes, clients are first
divided into z random groups. A training example labeled h is
allocated to clients in group h with a specific probability p, and
to those in different groups with a probability of L_Tfl) Within the
same group, the training examples are evenly distributed among the
clients. An increase in p results in a greater level of Non-IID. In our
experiment, we set p = 0.8, indicating a substantial imbalance in the
distribution of labels among clients. For example, 80% of the training
data for a client is concentrated in a single class. In Section 7,
we explore a more extreme Non-IID scenario where each client’s
training data is limited to just a few classes (e.g., three). The HAR
dataset’s training data are inherently heterogeneous, eliminating
the need for Non-IID simulation. Similarly, the CelebA dataset,
processed as per [7], already exhibits Non-IID characteristics, so
additional Non-IID simulation is unnecessary.

6.1.5 Parameter Setting. We assume that there are a total of 20
clients for synthetic, MNIST, Fashion-MNIST, and CelebA datasets.
Note that each smartphone user can be seen as a client in the HAR
dataset, thus there are 30 clients in total for that dataset. By default,
we assume that 20% of clients are malicious. In our experiments,
we train a linear regression model on the synthetic dataset. Note
that the population risk of the linear regression model satisfies
Assumption 1 and Assumption 2. We use a convolutional neural
network (CNN) to train the MNIST, Fashion-MNIST, and CelebA
datasets. The architecture of CNN is shown in Table 7 in Appendix.
For the HAR dataset, we train a logistic regression classifier. We
train 300, 2,000, 2,000, 1,000 and 1,500 rounds for synthetic, MNIST,
Fashion-MNIST, HAR and CelebA datasets, respectively. The learn-
ing rates are respectively set to 6 X 10_4, 3X 10_4, 6 X 10_3, 3x1073
and 5 x 1077 for five datasets. For all datasets, we set @ = 0.5,
y=03k=1A(1) = 4.

By default, we assume that all clients use the same initial local
model, parameters a, y, k, A(t), and aggregation rule AGG. We will
also explore the settings where clients have different initial local
models, @, and AGG. Aligned with existing work [45], we consider
regular graph as the default communication graph, where each node
has an equal number of neighboring nodes. We use regular-(n, v) to
denote a regular graph with n nodes, where each node is connected

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

to v neighbors. By default, we use a regular-(20, 10) graph for the
synthetic, MNIST, Fashion-MNIST, and CelebA datasets. The HAR
dataset inherently consists of 30 clients, so we consider a regular-
(30, 15) graph structure for HAR. Fig. 9a and Fig. 9b in Appendix
show the topologies of regular-(20, 10) and regular-(30, 15) graphs,
respectively. Note that in Fig. 9, each node represents a client. The
nodes highlighted in red indicate malicious clients, while the nodes
highlighted in blue represent benign clients. By default, we assume
that the communication graph G is static, i.e., the edges between
clients will not change over time. We will also explore the time-
varying communication graph setting, where each client has certain
possibility of not sharing information with its neighboring clients
in each round. We perform experiments on four NVIDIA Tesla
V100 GPUs, repeating each experiment 10 times and averaging the
results. Default results are reported for the MNIST dataset using a
regular-(20, 10) graph, with 4 out of 20 clients being malicious.

Table 2: Results of different DFL methods. The results of
Backdoor are presented as “Max.TER / Max.ASR”.

(a) MNIST dataset.
[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt]
FedAvg 0.10 0.10 0.90 0.90 0.91 0.91 0.90 / 1.00 0.90
Krum 0.10 0.12 0.90 0.10 0.10 0.15 0.15/0.01 0.14
Trim-mean 0.11 0.12 0.49 0.11 0.82 0.81 0.83/0.72 0.87
Median 0.14 0.14 0.45 0.15 0.52 0.63 0.66 / 0.01 0.66
FLTrust 0.10 0.11 0.90 0.13 0.10 0.88 0.10/0.73 0.10
UBAR 0.14 0.14 0.90 0.14 0.14 0.14 0.15/0.01 0.14
LEARN 0.10 0.10 0.30 0.12 0.18 0.57 0.12/0.03 0.44
SCCLIP 0.10 0.10 0.10 0.11 0.91 0.91 0.10/0.01 0.91
BALANCE 0.10 0.10 0.11 0.10 0.10 0.11 0.11/0.01 0.11

(b) Fashion-MNIST dataset.

Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt
FedAvg 0.16 0.21 0.90 0.90 0.90 0.90 0.90 / 1.00 0.90

Krum 0.26 0.27 0.90 0.40 0.37 0.48 0.28/0.03 0.42
Trim-mean 0.25 0.27 0.90 0.27 0.77 0.87 0.90 / 1.00 0.76
Median 0.26 0.26 0.90 0.28 0.54 0.74 0.90/ 1.00 0.69
FLTrust 0.19 0.20 0.19 0.90 0.25 0.90 0.19/0.99 0.90
UBAR 0.21 0.23 0.90 0.21 0.22 0.22 0.24/0.03 0.23
LEARN 0.23 0.26 0.47 0.23 0.34 0.37 0.23/0.90 0.51
SCCLIP 0.20 0.25 0.90 0.33 0.89 0.89 0.90 / 1.00 0.52
BALANCE 0.16 0.17 0.17 0.16 0.17 0.17 0.17 / 0.02 0.17
(c) HAR dataset.
[Method [No [LF [Feature [Gauss [Krum | Trim [Backdoor [Adapt]

FedAvg 0.04 0.04 0.45 0.98 0.32 0.38 0.82/1.00 0.99
Krum 0.10 0.10 0.10 0.10 0.10 0.10 0.10/0.01 0.10
Trim-mean 0.05 0.06 0.06 0.06 0.09 0.17 0.08 /0.01 0.09
Median 0.06 0.06 0.08 0.06 0.07 0.17 0.07 /0.01 0.08
FLTrust 0.04 0.04 0.08 0.07 0.04 0.31 0.04/0.47 0.05
UBAR 0.06 0.06 0.06 0.06 0.06 0.12 0.08 / 0.03 0.06
LEARN 0.04 0.04 0.04 0.04 0.06 0.13 0.05/0.04 0.06
SCCLIP 0.05 0.05 0.13 0.07 0.27 0.32 0.06 / 0.02 0.12
BALANCE 0.04 0.05 0.04 0.05 0.04 0.05 0.04/0.01 0.05

(d) CelebA dataset.

[Method [No [LF [Feature | Gauss | Krum | Trim | Backdoor | Adapt |
FedAvg 0.10 0.16 0.48 0.48 0.53 0.53 0.48 /0.01 0.48
Krum 0.18 0.26 0.48 0.30 0.31 0.18 0.20/0.26 0.18
Trim-mean 0.12 0.24 0.35 0.15 0.15 0.26 0.22/0.09 0.19
Median 0.13 0.17 0.31 0.15 0.15 0.26 0.21/0.15 0.19
FLTrust 0.10 0.14 0.10 0.11 0.11 0.53 0.12/ 0.06 0.10
UBAR 0.12 0.13 0.48 0.13 0.12 0.14 0.14/0.13 0.13
LEARN 0.31 0.41 0.37 0.35 0.51 0.53 0.32/0.09 0.53
SCCLIP 0.10 0.17 0.14 0.12 0.43 0.53 0.48 / 0.01 0.53
BALANCE 0.10 0.12 0.11 0.11 0.11 0.11 0.12/0.02 0.13

Minghong Fang et al.

6.2 Experimental Results

Our proposed BALANCE is effective: We first demonstrate the ef-
fectiveness of our proposed BALANCE on synthetic dataset, where
the population risk is both p-strongly and L-smooth, i.e., satisfy-
ing Assumption 1 and Assumption 2. Table 8 in Appendix shows
the results of different methods under different attacks on syn-
thetic dataset. Each row corresponds to a different DFL method.
“No” means all clients are benign. We exclude Backdoor attacks for
the synthetic dataset as there are no specific Backdoor attacks for
regression models. From Table 8, we observe that our proposed
method outperforms baselines in both non-adversarial and adver-
sarial scenarios, the Max.MSEs of our method are comparable to
those of FedAvg without attacks.

Next, we show the performance of our method on four real-
world datasets, where the trained models are highly non-convex,
results are shown in Table 2. The results for the Backdoor attack are
given as“Max TER / Max.ASR”. We note that DFL method achieves
comparable performance to its server-assisted counterpart. For
instance, when FedAvg aggregation rule is used and all clients are
benign, the test error of the final global model is 0.09 in server-
assisted FL. We also remark that in DFL, clients could not obtain
accurate final models when they independently train their models
without exchanging information with other clients. On MNIST
dataset, the Max. TER is 0.29 when clients solely train models locally.

First, we observe that when there is no attack, i.e., all clients are
benign, our proposed BALANCE achieves similar Max.TER as that
of FedAvg under no attack. This means that our method achieves
the “competitive learning performance” goal mentioned in Section 3.
For instance, on the CelebA dataset, both our proposed method
and FedAvg under no attack exhibit a Max.TER of 0.10. However,
the Max.TER of LEARN is 0.31, see Table 2d. Next, we find that
our proposed BALANCE is resilient to different types of poisoning
attacks, including data poisoning and model poisoning attacks, and
performs better than existing methods. For instance, on the MNIST
dataset, Trim-mean’s Max.TER increases from 0.11 to 0.81 under
the Trim attack. In contrast, our method maintains a small corre-
sponding Max.TER of 0.11. We observe similar results on the other
three real-world datasets, indicating that our BALANCE achieves
the “Byzantine robustness” goal. We remark that BALANCE either
matches or outperforms all existing methods known to converge to
(global) optimal points. This shows BALANCE does not get stuck
at non- or local-optimal points. We also note that the Adapt attack
demonstrates the most effective attack performance when target-
ing our proposed method, whereas it may perform worse when
attacking other methods. The reason is that the Adapt attack is
specifically designed for our method.

Fig. 3 shows the testing error rate of each benign client, when
clients utilize Fed Avg without any attacks, and when they use Trim-
mean aggregation rule and our proposed BALANCE under Trim
attack. We observe that under Trim attack, the testing error rate
of each benign client’s final learned model escalates substantially
when the clients adopt the Trim-mean aggregation rule to merge
the local models from neighboring clients. However, our proposed
method guarantees that each benign client will obtain a final model
that is almost as accurate as FedAvg without any attacks.

Byzantine-Robust Decentralized Federated Learning

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

v 1.0
- .
© @A FedAvg w/o attacks fw®® Trim-mean B BALANCE
= 08 [™Y ™Y
S <44 o reey el
‘WY Wy ww ™

£ 0.67 e e — o we 5
(0] WY Wy Wy ww reey e
0.4 — v e s e sy e
c : WY [<4-4 WY Wy Wy o - ww reey e ww
— [<4~4 WY <44 L Yy o Y =44 reey ww reey ww ey ww e
[} ww WY W =41 oW Wy =04 WY -4 -4 reey ww =4 W ey ww YW
= 0.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benign client index
Figure 3: Testing error of each benign client of FedAvg without any attacks, Trim-mean aggregation rule and our proposed

method under Trim attack.

le5

I
N

o
©

o
w

Communication cost (MB)
o
o

o
o

N
/1’2(2/,544,

x =
7;7 A"@g/ 7‘00 <€q

7} NS sC
Q/S ™ SO’/ 772/84 Q%‘W

(a) Communication cost. (b) Computation cost.
Figure 4: Communication and computation costs of different
methods.

----- FedAvg w/o attacks ~ ==++ LF ++-+ Feature —— Gauss
Krum =+ Trim —— Backdoor —— Adapt
1.0 1.0
« 0.8 x 0.8
£ 0.6 F 0.6
50.4 504
Y — | 202 _—
0.0 0.0
0.05 0.1 0.3 0.5 1 2 3 4
Y K
(a) Max.TER (b) Max.TER

Figure 5: Impact of y and «.

Fig. 4 shows the communication and computation costs of var-
ious methods when we train the FL system for 2,000 rounds on
the MNIST dataset, where regular-(20, 10) communication graph is
used. More specifically, for a given FL method, the communication
cost refers to the size of data (local model or local model update) that
each client sends to its neighboring clients over 2,000 rounds, while
the computation cost indicates the time that each client requires
to aggregate the received local models (updates) over 2,000 rounds.
As seen in Fig. 4, our BALANCE demonstrates both communication
and computation efficiency. Conversely, other methods lead to high
communication and computation costs. For example, in each train-
ing round of the LEARN method, each client must first exchange
local model updates with its neighboring clients for [log, t] rounds,
and then exchanges local model once. This information exchange
process incurs significant communication and computation costs.

From Table 2 and Table 8, we also observe that the application
of server-assisted FL methods to DFL results in suboptimal perfor-
mance. Specifically, FLTrust is particularly prone to Trim attack
on the MNIST dataset. This vulnerability arises from FLTrust’s
underlying assumption that the server’s root dataset mirrors the
distribution of the clients’ overall training data, an assumption that
often does not hold in practical FL scenarios. Moreover, the training

data of clients in DFL are highly heterogeneous. As a result, when
a client employs FLTrust for aggregation, it tends to incorrectly
classify many benign neighboring clients as malicious.

Table 9 in Appendix presents consensus errors [22, 26, 31] for
various methods. Consensus error measures the average squared
difference between each benign client’s final model and all be-
nign clients’ average model. The details of this metric is shown in
Section D.3 in Appendix. Our method shows low values in this met-
ric. We also remark that consensus error alone cannot determine
whether the final learned model is accurate or not. A small consen-
sus error may also imply that all benign clients have reached a poor
consensus, meaning that all benign clients have learned similar
but inaccurate models. Thus we omit the consensus error metric
in subsequent experiments. Note that we also do not consider the
average testing error rate (Avg.TER) of benign clients, since low
Avg.TER can sometimes mask high errors in individual clients.

Impact of y and «: Fig. 5 shows the results of our proposed BAL-
ANCE under various poisoning attacks with different values of y
and k. We observe that the Max.TER of BALANCE is large when
y and «k are too large. The reason is that for our method, a client
would falsely reject local models shared by benign neighboring
clients when « is too large, as a large x leads to a rapid decrease
in y exp(—k - A(t)). The local models from malicious neighboring
clients may get accepted if y is too large.

Impact of fraction of malicious clients: Fig. 6 shows the results
of different methods under different attacks on MNIST dataset
and regular-(20, 10) communication graph, when the fraction of
malicious clients varies from 0% to 80%, and the total number clients
is set to 20. We observe that our proposed DFL approach is the
only method that can withstand 50% of malicious clients, while
existing Byzantine-robust methods lead to significant Max. TERs
even when only a small proportion of clients are malicious. For
example, UBAR aggregation rule is susceptible to poisoning attacks
when only 10% of clients are malicious, as seen in the case of the
Feature attack strategy, where the maximum testing error rate rises
to 0.90. Furthermore, our proposed approach can withstand even
the most powerful Adapt attack when 80% of clients are malicious.

Impact of degree of Non-IID: Fig. 7 displays the results of differ-
ent methods under poisoning attacks with varying degrees of Non-
IID. We observe that our proposed method outperforms existing
DFL methods with all considered Non-IID scenarios. For example,
when the degree of Non-IID is relatively low, such as 0.5, the Trim
attack on the Median aggregation rule leads to a Max.TER of 0.32.
However, for our proposed method, the Max.TERs of all benign

CCS *24, October 14-18, 2024, Salt Lake City, UT, USA

Minghong Fang et al.

--++- FedAvg w/o attacks --+-- FedAvg -+ Krum —— Trim-mean Median --«-+ FLTrust =—+— UBAR =—=— LEARN -—-- SCCLIP —-- BALANCE
1.0 — 1.0 1.0 Lo

x 0.8 x 0.8 R 0.8 ¥ x 0.8

E o6 / / £ o6 / ¢ / E0.6] / E o6l / /| / ;

=02 Ty ETy T 02 Rl el it it ik al = 02§ TR TR =02 S O akd al
0.00 10 20 30 40 50 60 70 80 0'00 10 20 30 40 50 60 70 80 0'00 10 20 30 40 50 60 70 80 0'00 10 20 30 40 50 60 70 80

Frac. of malicious clients (%) Frac. of malicious clients (%) Frac. of malicious clients (%) Frac. of malicious clients (%)
(a) LF (b) Feature (c) Gauss (d) Krum
1.0 Ty 1.0 1.0 —

o gosp g 08 / : @ 0.8 4/"’7

F o6 <06/ 1 7 =06

5 50457 5 0.4p7 f ; 5 047/

g5 ot A R VAV AL £ oL/

= 0.2 = 0.2 3 = 0.2 = 0.2 :

TR T THe T TS TR T : T
0.00 10 20 30 40 50 60 70 80 0'00 10 20 30 40 50 60 70 80 0.00 10 20 30 40 50 60 70 80 0'00 10 20 30 40 50 60 70 80
Frac. of malicious clients (%) Frac. of malicious clients (%) Frac. of malicious clients (%) Frac. of malicious clients (%)
(e) Trim (f) Backdoor (g) Backdoor Adapt
Figure 6: Impact of fraction of malicious clients.
-+++- FedAvg w/o attacks --+-- FedAvg -++:+ Krum —— Trim-mean Median --«++ FLTrust =—— UBAR —=— LEARN -—-- SCCLIP —-- BALANCE
1.0 1.0 I e | SYPTTIR SoPws spve v | STToT =TTt eyyes sy

@ 0.8 @08]‘ x 0.8 @08 ‘

~ 0.6 ~ 0.6 ~ 0.6 ~ 0.6 ~ 7]

% 0.4 5 0.4 5 0.4 % 0.4 =t

© [0} (© (©

202 Soole————" | 202 |
0.0 Oofalmxhl=:hi—+“ i 0.0 0.0 a1 THLd 1 e v v

05 06 07 08 0.9 05 06 07 08 09 ‘05 06 07 08 09 05 06 07 08 09
Degree of Non-IID Degree of Non-IID Degree of Non-IID Degree of Non-IID
(a) LF (b) Feature (c) Gauss (d) Krum
1.0 1.0 1.0 1.0
gy sy sepyuys syyueyys R U | SUSo S S sy R | 179 T = = =]
€08 r ‘t‘" %08 e & 0.8 | xos8 r T" ‘
Ho.6 — Hos i Qo6 /\\ A Eospr —
% 0.4p="" %04 X 0.4 \ %041~
X —
= 0.2 e — = Tt = 0.2 =y =02 S = 0.2 — T
0.4 = 0.0 - 0.0 0.0
5 06 07 08 09 05 06 07 08 09 05 06 07 08 09 05 06 07 08 09
Degree of Non-IID Degree of Non-IID Degree of Non-IID Degree of Non-IID
(e) Trim (f) Backdoor (g) Backdoor h) Adapt
Figure 7: Impact of degree of Non-IID.
--+-+ FedAvg w/o attacks --+-- FedAvg --+-- Krum —— Trim-mean Median --«-+ FLTrust =—— UBAR —=— LEARN —:- SCCLIP —-- BALANCE
1.0 I 1.0 I Lo 0 ey sy ey

@ 0.8 ‘ @08 t @ 0.8 @ 0.87— !

~ 0.6f - [= 0.6~ ~ 0.6 ~ 0.6 i .

é 041 ‘ ,;; 0.4~ § 0.4 ,Ei; 0.4 ! —
0.2 7] 0.2 - 0.2 - 0.2 ﬁ
00 H L} T 00 ._.—-—'*‘-l_lhlm# 00 - * T 00 HH N T s o " L

0.1 03 05 0.7 0.9 0.1 03 05 0.7 09 0.1 03 05 07 09 0.1 03 05 0.7 09
a a a a
(b) Feature (c) Gauss (d) Krum
1.0 | T . 1.0 1.0 [e
& 0.8["\‘f x 0.8 e x 0.8 ‘ s t
Eoeh Q06 /\. Eos _—
%04 - X0.4 \ %04 >
= =T T = g-g - mH= = = g.(z) = g-(z) T TR *‘“‘%
'%.1 03 05 07 09 0.1 03 05 07 09 0.1 03 05 07 09 0.1 03 05 07 09
a a a a
(e) Trim (f) Backdoor (g) Backdoor (h) Adapt

Figure 8: Impact of a.

clients are not significantly high, even with highly heterogeneous
training data across all clients.

Impact of a: According to Eq. (2), in DFL, each client utilizes a
parameter called & to balance the combination of its local model
and those of its neighboring clients. A higher value of « indicates
greater trust in the client’s own local model, while a smaller value
of a results in more weight placed on the aggregated neighboring
models. Note that by default, we assume that all clients use the
same «a. Fig. 8 shows the results of different methods under vari-
ous poisoning attacks, when we vary the value of @, where other
parameters are set to their default settings. We can observe that
in a particular DFL method, when the poisoning attack is weak,
clients can achieve greater model accuracy by setting a smaller

value of the trade-off parameter . This means that clients can
benefit more by collaborating with others and giving more weight
to the models received from their neighboring clients. For example,
for our proposed BALANCE under Gauss attack, the Max.TERs are
0.05 and 0.10 when « is set to 0.1 and 0.9, respectively. However,
when the attack is strong, a smaller value of & may result in a larger
Max.TER. This is because benign clients may receive malicious
models from their neighboring clients, and if the DFL method is
not robust, giving more weight to the neighboring models through
a smaller may lead to a larger Max.TER. For example, under Trim
attack, when o = 0.1, the Max.TER of the Trim-mean method is
0.80, while when « is set to 0.9, the Max.TER is 0.43. Note that in
the extreme case where o = 1, which means each client trains its

Byzantine-Robust Decentralized Federated Learning

own local model independently without sharing information with
others. In our experiment, we find that the Max.TER is 0.29 when
each client only uses its own local training data to train the model.

The paper [45] employs a model aggregation technique where

1 —
each client aggregates its model as wi“r1 = AGG{w]t.+2,j e Ni},

where N; = N; U {i}, N is the set of neighbors of client i (not
including client i itself). Our proposed method is compared to ex-
isting DFL methods using this aggregation setting, and the results
are shown in Table 10 in Appendix. We observe that our proposed
method is also robust against various poisoning attacks and outper-
forms baseline methods under this setting. We also observe that if
clients aggregate their models using the setting suggested in [45],
the Max.TERs of existing defenses without attacks are very large.
For instance, the Max.TERs of Krum and UBAR are respectively 0.18
and 0.25 when all clients are benign, however, the corresponding
Max.TERs are 0.10 and 0.14 (see the results in Table 2a), respectively
when clients perform aggregation based on Eq. (2).

Clients use different « or different aggregation rules: By de-
fault, in our experiments, clients use the same « and follow the
same aggregation rule to combine their local models with their
neighboring clients’ models. In this section, we first investigate the
scenario where different clients use different a values. In our exper-
iments, each client randomly samples its @ value from the interval
[0, 1]. We consider two cases: Case I and Case II. In Case I, each
client randomly samples its « value from the interval [0, 1] before
the training process begins, and then o remains fixed for that client
throughout the training process. In Case II, each client randomly
samples its & value from the interval [0, 1] in each training round,
i.e., a changes during training for each client. Note that in Case
I and Case II, all clients still use the same aggregation rule. The
results for Case I are shown in Table 11 in Appendix, the results
for Case II are shown in Table 12 in Appendix. Comparing Table 2a
and Table 11, we observe that having different clients use different
values of & cannot reduce the impact of poisoning attacks. More-
over, when all clients are benign, the Max.TERs of DFL methods
including our BALANCE are large compared to the scenario when
clients using the same a. Our proposed BALANCE achieves similar
Max.TERs under different attacks compared to the FedAvg method
without any attacks. However, existing defenses are still vulnerable
to poisoning attacks.

We then study the scenario where different clients use differ-
ent aggregation rules to combine the received neighboring clients’
models. We also investigate two cases, namely Case III and Case IV.
In both cases, we randomly assign one existing Byzantine-robust
aggregation rule from set H ={Krum, Trim-mean, Median, FLTrust,
UBAR, SCCLIP} to each client. Note that the set H excludes FedAvg,
LEARN, and our proposed method. This is because FedAvg is not
robust; LEARN method requires exchanging both local model up-
dates and local models between clients, while other methods only
need to exchange local models; and our proposed method is already
robust and does not require being used with other aggregation
rules. Specifically, in Case III, each client i € V' randomly selects
one aggregation rule from the set H before the training process. In
Case IV, in each training round, client i randomly selects one robust
Byzantine-robust aggregation rule from the set . The results are
shown in Table 13 in Appendix. Compare Table 2a and Table 13, we

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 3: Results of different DFL methods with time-varying
communication graph.

[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt]

FedAvg 0.10 0.15 0.90 0.90 0.91 0.90 0.90/1.00 0.90
Krum 0.13 0.15 0.90 0.90 0.15 0.14 0.90 / 1.00 0.90
Trim-mean 0.27 0.27 0.90 0.90 0.91 0.91 0.90 / 1.00 0.90
Median 0.24 0.28 0.90 0.90 0.91 0.91 0.90 / 1.00 0.90
FLTrust 0.11 0.16 0.90 0.89 0.89 0.89 0.89/0.09 0.89
UBAR 0.15 0.17 0.90 0.90 0.15 0.19 0.15/0.01 0.90
LEARN 0.19 0.19 0.38 0.90 0.91 0.91 0.90 / 1.00 0.90
SCCLIP 0.11 0.16 0.34 0.15 0.91 0.91 0.23/0.02 0.64
BALANCE 0.11 0.12 0.12 0.12 0.11 0.12 0.11/0.01 0.12

observe that when different aggregation rules are used by clients,
they are more susceptible to poisoning attacks compared to the
scenario where all clients use the same aggregation rule.

Time-varying communication graph: By default, we consider
a static communication graph G, i.e., once established, G is fixed.
Here we consider a practical setting, where each client has a chance
of disconnecting from the protocol, such as Internet issues. When
a client disconnects from the protocol during a specific round, it
is unable to exchange information with its neighboring clients.
However, a disconnected client can continue training its model
locally, and it may reconnect to the protocol in the subsequent
round. We consider the default parameter settings, where there are
4 out of 20 clients are malicious, MNIST dataset and regular-(20, 10)
graph are used (client may disconnect from the protocol based on
the regular-(20, 10) graph). However, each client has 20% possibility
of disconnecting from the protocol. The results are shown in Table 3.
We observe that existing defenses are more vulnerable to poisoning
attacks, while BALANCE could still defend against various attacks.

Impact of the total number of clients: Fig. 10 in Appendix
shows the results of different methods on MNIST dataset when
the total number of clients is changed, while keeping the fraction
of malicious clients fixed at 20%. Note that we use regular-(10, 5),
regular-(20, 10), regular-(30, 15), regular-(40, 20) and regular-(50,
25) communication graphs when we have 10, 20, 30, 40 and 50
clients in total, respectively. The topologies of regular-(20, 10) and
regular-(30, 15) graphs are shown in Figs. 9a-9b. The topologies
of regular-(10, 5), regular-(40, 20) and regular-(50, 25) graphs are
illustrated in Figs. 9c-9e. We observe from Fig. 10 that our proposed
DFL approach is resilient to poisoning attacks for all the considered
total number of clients ranging from 10 to 50.

Different initial models or communication graphs: We as-
sume that all clients use the same initial local model by default. We
also explore the setting where different clients use different initial
local models, other parameters are set to their default settings. The
results are shown in Table 14 in Appendix. We observe that our pro-
posed method is robust against poisoning attacks and outperforms
baselines, even when clients use different initial models.

We also investigate other types of communication graphs, in-
cluding complete graph, Erdés—Rényi graph, small-world graph
and ring graph, the topologies of these four graphs are illustrated
in Figs. 9f-9i in Appendix. Note that for a complete graph, each
client is connected to the remaining clients; for a ring graph, clients
form a ring, and each client only has two neighbors. In all four
communication graphs, there are 20 clients in total, and 4 clients
are malicious. We maintain default settings for other parameters.
The results for four graphs are shown in Table 15 in Appendix. We

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 4: Results of different DFL methods, where each client
only has three classes of training data.

[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt]
FedAvg 0.10 0.18 0.90 0.91 0.91 0.90 0.90 / 1.00 0.91
Krum 0.46 0.49 0.91 0.49 0.57 0.52 0.47/0.16 0.46
Trim-mean 0.17 0.62 0.27 0.24 0.58 0.83 0.79/0.23 0.81
Median 0.56 0.89 0.56 0.88 0.64 0.70 0.56 / 0.04 0.58
FLTrust 0.10 0.18 0.91 0.22 0.18 0.90 0.20/0.27 0.14
UBAR 0.42 0.42 0.91 0.52 0.52 0.57 0.62/0.32 0.54
LEARN 0.10 0.15 0.10 0.15 0.20 0.61 0.16 / 0.09 0.58
SCCLIP 0.10 0.18 0.23 0.21 0.90 0.91 0.33/0.08 0.89
BALANCE 0.10 0.14 0.13 0.14 0.14 0.14 0.11/0.02 0.14

observe that our BALANCE can also achieve Byzantine-robustness
when other types of communication graphs are used.

Impact of fraction of edges between malicious and benign
clients: Malicious clients in a DFL system attempt to manipulate the
system by sharing harmful information, such as carefully crafted lo-
cal models, with their neighboring clients. The attack performance
is generally influenced by the Fraction of Edges between Malicious
and Benign clients (FEMB). In our paper, FEMB is calculated as the
ratio of the number of edges between malicious and benign clients
to the total number of edges in the communication graph. In our
experiments, we generate three random graphs to study the impact
of FEMB on the attack performance. For all three random graphs,
there are 20 nodes in total, each node represents one client, and 4
out of 20 clients are malicious. The FEMBs for the three graphs are
0.16, 0.22, and 0.32, respectively. The topologies of three graphs are
shown in Figs. 9j-91. All other parameters are kept at their default
values. The experimental results are shown in Table 16 in Appendix.
We observe that the attack performance generally increases with
an increase in FEMB.

7 DISCUSSION AND LIMITATIONS

More extreme Non-IID distribution: In our default Non-IID
setting, a client’s primary training data come from just one class,
with few examples from other classes. This section explores a more
extreme Non-IID scenario as described in [35]. Here, the distribution
of training data among clients is based solely on labels, and each
client having training data from only three classes. For instance,
Client 1 possesses training data only for labels 0-2, while Client 2
exclusively holds data for labels 3-5.

The results of various DFL methods under various attacks with
this more extreme Non-IID scenario are shown in Table 4. When
comparing Table 2a with Table 4, it becomes apparent that in this
Non-IID context, the Max.TER of current DFL methods is signifi-
cantly high, even in non-adversarial setting. For instance, with the
UBAR aggregation rule and all clients being benign, the Max.TER
reaches 0.42. In adversarial setting, our suggested BALANCE con-
tinues to effectively counter all the poisoning attacks considered,
achieving the largest Max.TER of just 0.14. Nonetheless, existing
DFL approaches show increased susceptibility to poisoning attacks.
To illustrate, the Max.TER of Median is 0.89 under LF attack.

More adaptive and decentralized attacks: In our prior exper-
iments, we show that our proposed BALANCE is robust against
data poisoning attacks (such as LF and Feature attacks) as well as
sophisticated adaptive attacks. For these data poisoning attacks,
attackers corrupt the local training data on malicious clients. While
the models trained on this poisoned data might appear benign, our
experiments reveal that such attacks are ineffectual against our

Minghong Fang et al.

Table 5: Results of different DFL methods under LIE and
Dissensus attacks.

[Method [No [LIE [Dissensus]
FedAvg | 0.10 | 0.13 0.91
Krum 0.10 0.10 0.15

Trim-mean 0.11 0.16 0.86
Median 0.14 0.18 0.87
FLTrust 0.10 0.10 0.12
UBAR 0.14 0.14 0.23
LEARN 0.10 0.10 0.69
SCCLIP 0.10 0.10 0.91
BALANCE 0.10 0.10 0.10
Table 6: Results of different variants of BALANCE.

[Variant | No [LF [Feature | Gauss | Krum | Trim | Backdoor [Adapt |
Variant I 0.10 0.11 0.12 0.11 0.11 0.11 0.11/0.01 0.14
Variant IT 0.10 0.10 0.13 0.16 0.11 0.18 0.11/0.01 0.16
BALANCE 0.10 0.10 0.11 0.10 0.10 0.11 0.11/0.01 0.11

BALANCE due to their limited impact. In the case of the adaptive
attacks we considered, the attacker, aware of our aggregation rule,
introduces subtle, strategic perturbation to the benign local models
in order to circumvent our defenses. Nonetheless, our experimental
results indicate that as attackers adapt their strategies to evade our
defense mechanism, the efficacy of their attacks diminishes.

In this section, we first explore a different type of adaptive at-
tack known as the “a little is enough” (LIE) attack [3]. The LIE
attack represents a general attack model where the attacker is not
required to be aware of the aggregation rule employed by other
clients. In executing a LIE attack, the attacker calculates the vari-
ance among benign models, and then introduces minimal changes
to these models, intended to circumvent the aggregation rule. Our
current experiments demonstrate that extending server-based at-
tacks to the DFL setting can be effective against prevailing DFL
methods. Additionally, we examine the Dissensus attack [22], a
newly devised attack model specifically tailored for DFL systems.
In the Dissensus attack, the attacker designs malicious local models
with the intention of disrupting consensus among benign clients.

Table 5 presents the results of various DFL methods under LIE
and Dissensus attacks. It is evident from the results that the LIE
attack does not significantly compromise existing DFL methods.
This could be attributed to the fact that the LIE attack is a more
generic attack model and is not specifically tailored for a fully
decentralized environment. In contrast, the Dissensus attack shows
a considerable ability to disrupt DFL methods, particularly in the
case of Trim-mean and Median. For instance, under the Dissensus
attack, the Max.TER for the Median method escalates to 0.87.

Different variants of BALANCE: In this part, we consider two
variants of our proposed BALANCE.

. N - t+3 o
e Variant I: In this variant, client i accepts w; ¢ when the condition

t+1 t+1 t+d
lw; * —w,; *Il < ylw; *[l holds true.
Il
e Variant II: Client i calculates q; = % for each neigh-
llw; 21l

bor j in its neighbor set N;. After computing the median of these

values from the |N;| neighbors, denoted as q,eq Where gped =
1

med{q1, q| n; |}, client i will accept w]t.+2 if g; < min{qmed, v}

The y is set to safeguard against the possibility of most neighbors

being malicious. The key idea of Variant II is that client i will

Byzantine-Robust Decentralized Federated Learning

accept client j’s local model if it is close to its own, based on a
comparison with the median of deviations from all neighbors.

Table 6 compares our BALANCE with two variants. Variant IT un-
derperforms due to its tendency to incorrectly reject many benign
local models. In contrast, Variant I shows performance comparable
t+1

1
to our BALANCE. Note that the distance between wl.t+z andw. °

will become smaller, as the DFL system approaches convergence,
leading Variant I to inadvertently accept some malicious models
in later training stages. Nevertheless, attacking the DFL system
becomes challenging as the model nears convergence. Additional
experiments support this claim, showing that the Max.TER of Me-
dian under Trim attack is 0.55 when attacks occur only in the first
half of training rounds (1-1,000 rounds out of 2,000 total), while it
is 0.38 when attacks only occur in the second half. When attacks
happen in all rounds, the Max.TER is 0.63. In our BALANCE, train-
ing the model for a sufficient number of rounds (a large T) can
significantly reduce the value of y - exp(—« - A(t)). By selecting a
smaller k, we can decelerate the decline of the exponential function.

8 CONCLUSION AND FUTURE WORK

In this work, we proposed a novel method called BALANCE to
defend against poisoning attacks in DFL. In our proposed method,
each client uses its local model as a reference point to check whether
the received neighboring client’s local model is malicious or benign.
We established the convergence performance of our method under
poisoning attacks in both strongly convex and non-convex settings,
and the convergence rate of our BALANCE matches those of the
state-of-the-art counterparts in Byzantine-free settings. Extensive
experiments across various settings demonstrated the efficacy of our
proposed method. Our future work includes designing an optimized
strategy to dynamically select aggregation rules and parameter o for
different clients to enhance the robustness of existing DFL methods.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments. This work
was supported by NSF grants CAREER CNS-2110259, CNS-2112471,
CNS-2312138, SaTC-2350075, No. 2131859, 2125977, 2112562, 1937786,
1937787, and ARO grant No. W911NF2110182.

REFERENCES

[1] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra Perez, and Jorge Luis
Reyes Ortiz. 2013. A public domain dataset for human activity recognition using
smartphones. In ESANN.

[2] Eugene Bagdasaryan, Andreas Veit, Yiging Hua, Deborah Estrin, and Vitaly
Shmatikov. 2020. How to backdoor federated learning. In AISTATS.

[3] Gilad Baruch, Moran Baruch, and Yoav Goldberg. 2019. A little is enough:
Circumventing defenses for distributed learning. In NeurIPS.

[4] Enrique Tomas Martinez Beltran, Mario Quiles Pérez, Pedro Miguel Sanchez
Sanchez, Sergio Lopez Bernal, Gérome Bovet, Manuel Gil Pérez, Grego-
rio Martinez Pérez, and Alberto Huertas Celdran. 2022. Decentralized Federated
Learning: Fundamentals, State-of-the-art, Frameworks, Trends, and Challenges.
In arXiv preprint arXiv:2211.08413.

[5] Battista Biggio, Blaine Nelson, and Pavel Laskov. 2012. Poisoning attacks against
support vector machines. In ICML.

[6] Peva Blanchard, El Mahdi El Mhamdi, Rachid Guerraoui, and Julien Stainer.
2017. Machine learning with adversaries: Byzantine tolerant gradient descent. In
NeurlIPS.

[7] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Kone¢ny,
H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. 2018. Leaf: A

benchmark for federated settings. arXiv preprint arXiv:1812.01097 (2018).
[8] Xiaoyu Cao, Minghong Fang, Jia Liu, and Neil Zhengiang Gong. 2021. Fltrust:

Byzantine-robust federated learning via trust bootstrapping. In NDSS.

[9]

(10]

(1]

[12

[14

(15]

[16

(17

=
&

[19

[20

[21

[22]

I
&

[24]

[25]

[26

[27

)
&

[29]

[30

[31

(32

[33

[34

[36

(37]

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Xiaoyu Cao and Neil Zhengiang Gong. 2022. Mpaf: Model poisoning attacks to
federated learning based on fake clients. In CVPR Workshops.

Xiaoyu Cao, Jinyuan Jia, Zaixi Zhang, and Neil Zhengiang Gong. 2023. Fedrecover:
Recovering from poisoning attacks in federated learning using historical infor-
mation. In IEEE Symposium on Security and Privacy.

Xiaoyu Cao, Zaixi Zhang, Jinyuan Jia, and Neil Zhengiang Gong. 2022. Flcert:
Provably secure federated learning against poisoning attacks. IEEE Transactions
on Information Forensics and Security.

Tianyue Chu, Alvaro Garcia-Recuero, Costas Iordanou, Georgios Smaragdakis,
and Nikolaos Laoutaris. 2023. Securing Federated Sensitive Topic Classification
against Poisoning Attacks. In NDSS.

Rong Dai, Li Shen, Fengxiang He, Xinmei Tian, and Dacheng Tao. 2022. Dispfl: To-
wards communication-efficient personalized federated learning via decentralized
sparse training. In ICML.

El Mahdi El-Mhamdi, Sadegh Farhadkhani, Rachid Guerraoui, Arsany Guirguis,
Lé-Nguyén Hoang, and Sébastien Rouault. 2021. Collaborative learning in the
jungle (decentralized, byzantine, heterogeneous, asynchronous and nonconvex
learning). In NeurIPS.

Minghong Fang, Xiaoyu Cao, Jinyuan Jia, and Neil Gong. 2020. Local model
poisoning attacks to Byzantine-robust federated learning. In USENIX Security
Symposium.

Minghong Fang, Jia Liu, Neil Zhengiang Gong, and Elizabeth S Bentley. 2022.
Aflguard: Byzantine-robust asynchronous federated learning. In ACSAC.

Liam Fowl, Jonas Geiping, Wojtek Czaja, Micah Goldblum, and Tom Goldstein.
2022. Robbing the fed: Directly obtaining private data in federated learning with
modified models. In ICLR.

Shuhao Fu, Chulin Xie, Bo Li, and Qifeng Chen. 2019. Attack-resistant federated
learning with residual-based reweighting. arXiv preprint arXiv:1912.11464 (2019).
Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. 2020. The Limitations of
Federated Learning in Sybil Settings. In RAID.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. 2017. Badnets: Identifying
vulnerabilities in the machine learning model supply chain. arXiv preprint
arXiv:1708.06733 (2017).

Shangwei Guo, Tianwei Zhang, Han Yu, Xiaofei Xie, Lei Ma, Tao Xiang, and
Yang Liu. 2021. Byzantine-resilient decentralized stochastic gradient descent. In
IEEE Transactions on Circuits and Systems for Video Technology.

Lie He, Sai Praneeth Karimireddy, and Martin Jaggi. 2023. Byzantine-robust
decentralized learning via self-centered clipping. arXiv preprint arXiv:2202.01545
(2023).

Shivam Kalra, Junfeng Wen, Jesse C Cresswell, Maksims Volkovs, and HR
Tizhoosh. 2023. Decentralized federated learning through proxy model sharing.
In Nature Communications.

Sai Praneeth Karimireddy, Lie He, and Martin Jaggi. 2022. Byzantine-robust
learning on heterogeneous datasets via bucketing. In ICLR.

Jakub Kone¢ny, H. Brendan McMahan, Felix X. Yu, Peter Richtarik,
Ananda Theertha Suresh, and Dave Bacon. 2016. Federated Learning: Strate-
gies for Improving Communication Efficiency. In NeurIPS Workshop on Private
Multi-Party Machine Learning.

Lingjing Kong, Tao Lin, Anastasia Koloskova, Martin Jaggi, and Sebastian Stich.
2021. Consensus control for decentralized deep learning. In ICML.

Kavita Kumari, Phillip Rieger, Hossein Fereidooni, Murtuza Jadliwala, and Ahmad-
Reza Sadeghi. 2023. BayBFed: Bayesian Backdoor Defense for Federated Learning.
In IEEE Symposium on Security and Privacy.

Anusha Lalitha, Shubhanshu Shekhar, Tara Javidi, and Farinaz Koushanfar. 2018.
Fully decentralized federated learning. In Third workshop on bayesian deep learn-
ing (NeurIPS).

Yann LeCun, Corinna Cortes, and CJ Burges. 1998. MNIST handwritten digit
database. Available: http://yann. lecun. com/exdb/mnist (1998).

Henger Li, Xiaolin Sun, and Zizhan Zheng. 2022. Learning to attack federated
learning: A model-based reinforcement learning attack framework. In NeurIPS.
Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
2017. Can decentralized algorithms outperform centralized algorithms? a case
study for decentralized parallel stochastic gradient descent. In NeurIPS.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep Learning
Face Attributes in the Wild. In ICCV.

Zhuqing Liu, Xin Zhang, Prashant Khanduri, Songtao Lu, and Jia Liu. 2023.
Prometheus: taming sample and communication complexities in constrained
decentralized stochastic bilevel learning. In ICML.

Songtao Lu, Yawen Zhang, and Yunlong Wang. 2020. Decentralized Federated
Learning for Electronic Health Records. In CISS.

H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agiiera y Arcas. 2017. Communication-Efficient Learning of Deep Net-
works from Decentralized Data. In AISTATS.

El Mahdi El Mhamdi, Rachid Guerraoui, and Sébastien Rouault. 2018. The Hidden
Vulnerability of Distributed Learning in Byzantium. In ICML.

Hamid Mozaffari, Virat Shejwalkar, and Amir Houmansadr. 2023. Every Vote
Counts: Ranking-Based Training of Federated Learning to Resist Poisoning At-
tacks. In USENIX Security Symposium.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

[38] Luis Mufioz-Gonzalez, Battista Biggio, Ambra Demontis, Andrea Paudice, Vasin
Wongrassamee, Emil C Lupu, and Fabio Roli. 2017. Towards poisoning of deep
learning algorithms with back-gradient optimization. In AlSec.

[39] Luis Mufioz-Gonzalez, Kenneth T Co, and Emil C Lupu. 2019. Byzantine-robust
federated machine learning through adaptive model averaging. arXiv preprint
arXiv:1909.05125 (2019).

[40] Yurii Nesterov et al. 2018. Lectures on convex optimization. Vol. 137. Springer.

[41] Anh Nguyen, Tuong Do, Minh Tran, Binh X Nguyen, Chien Duong, Tu Phan, Er-
man Tjiputra, and Quang D Tran. 2022. Deep federated learning for autonomous
driving. In IEEE Intelligent Vehicles Symposium.

[42] TV Nguyen, MA Dakka, SM Diakiw, MD VerMilyea, M Perugini, JMM Hall, and
D Perugini. [n.d.]. A novel decentralized federated learning approach to train on
globally distributed, poor quality, and protected private medical data. In Scientific
Reports.

[43] Xudong Pan, Mi Zhang, Duocai Wu, Qifan Xiao, Shouling Ji, and Min Yang. 2020.
Justinian’s gaavernor: Robust distributed learning with gradient aggregation
agent. In USENIX Security Symposium.

[44] Dario Pasquini, Danilo Francati, and Giuseppe Ateniese. 2022. Eluding secure

aggregation in federated learning via model inconsistency. In CCS.

Dario Pasquini, Mathilde Raynal, and Carmela Troncoso. 2023. On the (In)security

of Peer-to-Peer Decentralized Machine Learning. In IEEE Symposium on Security

and Privacy.

[46] Boris Teodorovich Polyak. 1963. Gradient methods for the minimisation of

functionals. In USSR Computational Mathematics and Mathematical Physics.

Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi

Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus Maier-

Hein, et al. 2020. The future of digital health with federated learning. In NP¥

digital medicine.

Virat Shejwalkar and Amir Houmansadr. 2021. Manipulating the Byzantine:

Optimizing Model Poisoning Attacks and Defenses for Federated Learning. In

NDSS.

Virat Shejwalkar, Amir Houmansadr, Peter Kairouz, and Daniel Ramage. 2022.

Back to the drawing board: A critical evaluation of poisoning attacks on produc-

tion federated learning. In IEEE Symposium on Security and Privacy.

[50] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. 2020. Data
poisoning attacks against federated learning systems. In ESORICS.

[51] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning Algorithms.
arXiv:cs.LG/cs.LG/1708.07747

[52] Chulin Xie, Minghao Chen, Pin-Yu Chen, and Bo Li. 2021. Crfl: Certifiably robust
federated learning against backdoor attacks. In ICML.

[53] Chulin Xie, Keli Huang, Pin-Yu Chen, and Bo Li. 2020. Dba: Distributed backdoor

attacks against federated learning. In ICLR.

Yichang Xu, Ming Yin, Minghong Fang, and Neil Zhenqiang Gong. 2024. Robust

Federated Learning Mitigates Client-side Training Data Distribution Inference

Attacks. In The Web Conference.

Gokberk Yar, Cristina Nita-Rotaru, and Alina Oprea. 2023. Backdoor Attacks in

Peer-to-Peer Federated Learning. arXiv preprint arXiv:2301.09732 (2023).

[56] Dong Yin, Yudong Chen, Kannan Ramchandran, and Peter Bartlett. 2018.
Byzantine-Robust Distributed Learning: Towards Optimal Statistical Rates. In
ICML.

[57] Ming Yin, Yichang Xu, Minghong Fang, and Neil Zhenqiang Gong. 2024. Poison-
ing Federated Recommender Systems with Fake Users. In The Web Conference.

[58] Xin Zhang, Minghong Fang, Zhuging Liu, Haibo Yang, Jia Liu, and Zhengyuan

Zhu. 2022. Net-fleet: Achieving linear convergence speedup for fully decentral-

ized federated learning with heterogeneous data. In MobiHoc.

Zaixi Zhang, Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. 2022. FLDetector:

Defending federated learning against model poisoning attacks via detecting

malicious clients. In KDD.

[60] Zifan Zhang, Minghong Fang, Jiayuan Huang, and Yuchen Liu. 2024. Poisoning
Attacks on Federated Learning-based Wireless Traffic Prediction. In IFIP/IEEE
Networking.

[45

[47

[48

[49

(54

[55

[59

A PROOF OF THEOREM 1

We denote by g(wl.t) the stochastic gradient that client i computed
based on the model wl.t, then we have that:
1
;=i ngw)),)
where 1 > 0 is the learning rate.

In the following proof, we ignore the superscript ¢ in S} for
simplicity. Thus we have that:

w

1t
Wi W

Minghong Fang et al.

1 3 t
+(1- a)AGG{w. ,J € Ni} -w;

1l
Z(2+wi 2)—wit

:[oz+(1—oz)]w;f |S| Zg(lt%)—wlt
JEOI

t+3 1-a t+3 t+3 ¢
=w, >+ w, 2 —w, ?)—w;
t+1
z
|S| Z(;)
t+1
= w2, (©)

JjES;

(b) t+1

; 2+(1—0()

= [w) —ngw}) —wi]

1-
¢
= - 5+
ng(w;) S
where (a) is because of Eq. (2); (b) is due to Eq. (4); (¢) is due to
Eq. (5).
According to Assumption 2, when the loss function is L-smooth,
one has that:

F(wit”) < F(wi') + (VF(wit),wi“'1 —w-')

1

L
+2|| t+1 t” . (7)
Combining Eq. (6) and Eq. (7), we obtain:
F(w?+1)
< Fwh) + (VF(w!), —ngw!) + ~ == S| = —w)
JES;
—Il—ng(f>+ S ™ LWt
]ES
)
< Fw)) - n<VF<w?>,g(w?>>
1
(FO). 5T D00) 4 Lnflg I
]ES
1
w1 D ®)
JES;

where (a) is because of Lemma 1 in Appendix C.
Taking expectation on both sides of Eq. (8), one obtains:

BIF*)]
B[Pt — nllVFD)?

+ (1= (VR0 5 Y Wi —wlh))
Hjes;

+Ln?|lg(w}) - vw) + VF(wf)2

+L1- 0Pl v -

JjESi
(b)
< E[F(w]) - '7||VF(W-t)||2 + 2L'IZHVI’:(M/?)HZ

+ (1= (V). 2 W)

1
+2LyP8% + L(1 -)? || Z O

Byzantine-Robust Decentralized Federated Learning

Table 7: The CNN architecture.

[Layer [Size]
Input 28 x28x1
Convolution + ReLU 3 x3x30
Max Pooling 2X2
Convolution + ReLU 3 X3 x50
Max Pooling 2x2
Fully Connected + ReLU 100
Softmax 10

E[F(w!) - (5 - 2Ln2)||VF<w?)||2 +2Ln°5*

(1= (VFGeh) g > 7 =)

eSl

t+y
+L(1-a)? ||@ Z(—w; 5P

E[F(w}) — (1 - 2Ln)||VF(w})||® + 2Ly} 5

+ (1= IV g Z_(wj-*% s

+L0- g Y o - R ©)

jeS;

where (a) is because of Assumption 3 that E[g(wl.t)] = VF(wl.t);
(b) is due to Lemma 1 in Appendix C, and Assumption 3 that
E[||g(wit) - VF(wl.t)H]2 < 8% (c) is because of Cauchy-Schwarz
inequality.

1 t+1 t+1
Next, we bound the term || =1 Z (wj -w;
1 . i

Iy &0

2 — 2 “’%
)l = |||S|Z(—w; Ol

JjESi JjES;i
1 (b)
|3|Z” 2”—|5|Z S v
]E i]GS

where (a) is due to Eq. (3) and y - exp(—« - A(t)) < y; (b) is because
of Assumption 4 that ||wl.t|| <.
Due to Assumption 4, then we have:

IVFwh)]| - ||ﬁ S ow i <pp. (o)
JES;

If y satisfiesy < Lv,b(l then we have Ly?y? (1-a)? < ypy(1—-

«), and we further have:
E[F(w;™)] < E[F(w}) = n(1 - 2Ln)|VF(w})||?
+2Ln*8% + 2ypyY(1 - a)]. (11)
If the learning rate 7 satisfies < ﬁ, one has that:
BIF(w}™)] < E[F(w)) = T VFw))|? +2Ln?s"

+2ypY(1-a)]. (12)

By Assumption 1, since F(-) is p-strongly convex, then one has

the following Polyak-Lojasiewicz (PL) inequality [46] || VF (wit)2 >
2u(F (wl.') — F(w*)). Therefore, we further have that:

E[F(w;™)] < E[F(w]) - un(F(w}) = F(w"))

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

+2Ln%8% + 2ypy (1 - a)]. (13)
Subtracting F(w*) on both sides, we get:

E[F(w;™") = Fw*)] < (1 - unp) E[F(w}) — F(w")]
+2Ln282 + 2ypy(1 - a)]. (14)

By choosing n
Telescoping over t =0, 1,...,T — 1, one has that:

E[F(w;™) = F(w")]

< lll then we can guarantee that 1 — up > 0.

T-1

> (=) aLp®s?
t=0

< (1= pup)T[Fw)) = Fw*)] +

T-1
+ > (=) 2ypy(1 - a)
t=0

= (1—)T [Fw?) — Fow)] + ZLZ‘SZ aey-a)

Hn

B PROOF OF THEOREM 2
According to Eq. (12), we have the following:

E[F(w!™)] < E[F(w!) -
+2ypy(1 - a)]. (15)
Rearranging the term, one obtains that:
L BLIVFwDIZ] < BIF(w)) - Fwf*)] + 2Lp*8°
+2ypyY(1-a)l. (16)

T — 1 and taking an average over

%HVF(WIF)HZ +2Lp28?

By telescoping over t =0, 1, ...,
T, then we get:

— 0y _ %
- Z [IVE(w t)|| M +4Lnd?
= nT

Ly -a)
n

C USEFUL TECHNICAL LEMMA

LEmMMA 1. Given a set of vectors x¢, X1, . . ., Xp—1 Withx; € R4 for
alli € {0,1,--- ,n— 1}, we have the following:

n-1 n-1
I xll® <n > il
i=0 i=0

D DATASETS AND POISONING ATTACKS
D.1 Datasets

Synthetic: To create synthetic data, we model the dependent vari-
able as y = (x,w") + ¢, with x as a feature vector, w* as the true
parameter (100-dimensional), and € as noise. We generate x and €
from a standard normal distribution N (0, 1), and w* from N (0, 25).
Our dataset comprises 10,000 instances, split into 8,000 for training
and 2,000 for testing.

MNIST [29]: This dataset has 10 classes, which contains 60,000
images for training and 10,000 images for testing.

>~]

(17)

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

(c) Regular-(10, 5) graph.

(g) Erdés-Rényi graph.

(h) Small-world graph. (i) Ring graph.

Minghong Fang et al.

(j) Graph with FEMB 0.16.
Figure 9: Different communication graphs.

(k) Graph with FEMB 0.22. (1) Graph with FEMB 0.32.

----- FedAvg w/o attacks --+-- FedAvg --+-+ Krum —— Trim-mean Median --«-+ FLTrust —— UBAR —— LEARN SCCLIP —-- BALANCE
10 ‘ 10 10 ____________________________ 10 | —— | S
& 081 & 08 T x 08 o 0.87= TL I
~ 0.6 06— ~ 0.6 = 0.6—<
%04 8 %040 2 %04 504 ‘
SO Ly R = i LA 1 N ~—
= 8(2) e — Sy = 8(2) .—._.+._.__+..,_I_._..* = gé e s L = gg TGy eTEL Lt eHT
10 20 30 40 50 710 20 30 40 50 10 20 30 40 50 710 20 30 40 50
Total number of clients Total number of clients Total number of clients Total number of clients
(a) LF (b) Feature (c) Gauss d) Krum
N e s e Lo P 1.0 1.0 PR PP wrry
o 0.8 2«08 ULy « 0.8 aco.taﬂ*%:_—"F\.~ i
wi [w I ‘ "]) w = 4 ‘
~ 0.6 ~ 0.6 = \W < 0.6 ~ 0.6 \ i I
% 0.4 ‘ ‘ o4 ‘ 504/ 5 04— =
D e e e— D = 0.2 = 0.2 = 0.2 ereuEL)
T 1] T TR v Fyriy
0.95— 0.0 0.0 — 0.0 haad :
0 20 30 40 50 10 20 30 40 50 10 20 30 40 50 10 20 30 40 50
Total number of clients Total number of clients Total number of clients Total number of clients
(e) Trim (f) Backdoor (g) Backdoor (h) Adapt

Figure 10: Impact of total number of clients.

Fashion-MNIST [51]: Each image in Fashion-MNIST belongs to
one of the 10 categories. The training data contains 60,000 images,
and the testing set contains 10,000 images.

Human Activity Recognition (HAR) [1]: The HAR dataset aims
to classify six human activities, collected from 30 smartphone users,
totaling 10,299 instances with 561 features each. Follow [8], we
randomly use 75% of each user’s data for training and 25% for
testing.

Large-scale CelebFaces Attributes (CelebA) [32]: CelebA is a
large-scale image dataset that identifies celebrity face attributes.
This data contains 200,288 images, which includes 177,480 images
for training and 22,808 images for testing. Each image has 40 anno-
tations of binary attributes. Following [7], we consider the binary
classification task for the CelebA dataset, which aims to predict
whether the person in the image is smiling or not.

D.2 Poisoning Attack Schemes

Label flipping (LF) attack [50]: In the synthetic data, the attacker
modifies malicious clients’ local training data by adding a bias of
5 to the dependent variable y. For MNIST, Fashion-MNIST, and
HAR datasets, training labels on malicious clients are changed from
class 3 to class 5, following [50]. In CelebA, labels are reversed on
malicious clients, switching 0 to 1 and vice versa.

Feature attack: The attacker modifies the features of local training
examples on malicious clients. Each feature of such examples is
replaced with a value drawn from a Gaussian distribution with a
mean of 0 and a variance of 1,000.

Gaussian (Gauss) attack [6]: Malicious clients send Gaussian
vectors, randomly drawn from a normal distribution with a mean
of 0 and a variance of 200, to their neighbors.

Krum attack [15]: The attacker carefully crafts the local models
on malicious clients in a way that causes the Krum rule to output
the model chosen by the attacker.

Trim attack [15]: The attacker in Trim attack manipulates the
local models on malicious clients such that the aggregated local
model after attack deviates significantly from the before-attack
aggregated one.

Backdoor attack [2, 20]: Malicious clients replicate their training
data, adding a backdoor trigger to each copy and assigning them a
target label chosen for the attack. They train their local models using
this augmented data and share the scaled models with neighbors.
The scaling factor equals the total number of clients. We use the
triggers suggested in [8] for the MNIST, Fashion-MNIST, and HAR
datasets. For the CelebA dataset, we set the first binary feature to 1.
Adaptive (Adapt) attack [48]: We consider the adaptive attack
proposed in [48]. We consider the worst-case attack setting, where

Byzantine-Robust Decentralized Federated Learning

the attacker is aware of the aggregation rule used by each client,
i.e., BALANCE in our paper, and the local models of benign clients.

D.3 Consensus Error

To assess disagreement among benign clients during poisoning
attacks, we use the consensus error metric [22, 26, 31], which is
computed as |(—}3‘ DieB ||wlT —wT||%. Here, 8 is the set of benign

clients, wT is the average of their final local models, and sz is client
i’s final model after T training rounds in the DFL system.

Table 8: Maximum mean squared errors (Max.MSEs) of dif-
ferent DFL methods on synthetic dataset.

[Method [No [LF [Feature [Gauss [Krum [Trim [Adapt]

FedAvg 0.36 0.39 >100 >100 72.18 58.50 90.29
Krum 111 1.23 >100 1.19 1.18 1.18 1.19
Trim-mean 0.38 0.39 3.45 0.40 4.17 5.41 5.41
Median 0.39 0.40 2.37 0.42 1.22 3.93 3.93
FLTrust 0.41 0.46 >100 22.87 10.12 8.00 0.42
UBAR 0.40 0.40 >100 0.40 0.40 0.40 0.40
LEARN 0.42 0.42 0.42 0.64 5.36 17.78 1.60
SCCLIP 0.36 0.39 >100 0.42 5.63 5.12 4.83
BALANCE 0.36 0.36 0.36 0.36 0.36 0.36 0.36

Table 9: Consensus error of different DFL methods.

[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt]

FedAvg 0.01 0.01 >100 >100 >100 0.01 >100 >100
Krum 0.01 0.01 >100 0.01 0.01 0.01 0.01 0.01
Trim-mean 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01
Median 0.01 0.01 0.01 0.01 0.01 0.01 0.56 0.01
FLTrust 0.01 0.01 45.32 2.13 0.01 1.71 0.01 0.01
UBAR 0.01 0.01 >100 0.01 0.01 0.01 0.01 0.01
LEARN 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SCCLIP 0.01 0.01 0.02 0.01 0.01 0.01 >100 0.01
BALANCE 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 13: Results of different DFL methods in Case III and

Case IV.
[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt]
Case III 0.14 0.14 0.90 0.24 0.91 0.89 0.16 /0.01 0.90
Case IV 0.17 0.19 0.90 0.09 0.75 0.90 0.23/0.05 0.80

Table 14: Results of different DFL methods, where clients use
different initial local models.

[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt]

FedAvg 0.10 0.11 0.90 0.90 0.90 0.90 0.90 / 1.00 0.90
Krum 0.10 0.12 0.90 0.10 0.12 0.12 0.15/0.01 0.12
Trim-mean 0.11 0.14 0.44 0.11 0.84 0.70 0.91/0.01 0.59
Median 0.13 0.17 0.56 0.16 0.58 0.64 0.19/0.01 0.87
FLTrust 0.11 0.11 0.11 0.13 0.11 0.89 0.10 / 0.47 0.11
UBAR 0.14 0.15 0.91 0.14 0.14 0.14 0.14/0.01 0.16
LEARN 0.13 0.14 0.14 0.14 0.25 0.36 0.15/0.06 0.31
SCCLIP 0.10 0.10 0.10 0.11 0.91 0.91 0.13/0.01 0.91
BALANCE 0.10 0.10 0.10 0.10 0.10 0.10 0.10/0.01 0.11

Table 15: Results of different DFL methods on different com-
munication graphs.

(a) Complete graph.
[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt

FedAvg 0.10 0.10 0.90 0.90 0.91 0.91 0.90/1.00 0.90
Krum 0.14 0.14 0.90 0.15 0.15 0.15 0.14/0.01 0.15
Trim-mean 0.13 0.13 0.27 0.13 0.88 0.88 0.56 /0.58 0.88
Median 0.13 0.16 0.46 0.22 0.89 0.88 0.20/0.01 0.89
FLTrust 0.11 0.11 0.11 0.13 0.11 0.91 0.10 / 0.66 0.11
UBAR 0.16 0.15 0.91 0.17 0.17 0.17 0.19/0.01 0.17
LEARN 0.13 0.27 0.31 0.14 0.33 0.49 0.11/0.02 0.44
SCCLIP 0.10 0.10 0.17 0.11 0.91 0.91 0.11/0.01 0.91
BALANCE 0.10 0.10 0.10 0.10 0.10 0.10 0.10/ 0.01 0.10

(b) Erdés-Rényi graph.

[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt]
Table 10: Results of different DFL methods, where each client FedAvg | 010 | 0.10 | 090 0.91 090 | 087 | 090/1.00 | 090
. 1 P Krum 017 | 017 0.90 0.17 017 | 017 | 017/001 | 0.90
aggregates its model as w;™" = AGG{W}. 2 jeNiLNi=N; U Trim-mean | 0.14 | 0.16 | 027 014 | 032 | 042 | 014/001 | 045
. Median 017 | 022 0.43 0.24 030 | 065 | 017/001 | 040
{i}, Ni is the set of neighbors of client i (not including client FLTrust 0.10 | 0.10 0.11 0.11 009 | 090 | 010/004 | 0.10
iitself). LEARN | 010 | o1 | ot0 | os | o | 027 | oxosa0r | ouz
[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt] SCCLIP 0:10 0110 0:09 0:11 0:85 0:89 0110 / 0:01 0159
FedAvg 0.09 | 0.09 0.90 0.90 0.91 0.91 | 0.90/1.00 0.90 BALANCE | 0.10 | 0.10 0.10 0.10 0.10 0.10 | 0.10/0.01 0.10
Krum 018 | 0.18 0.13 0.18 022 | 018 | 018/001 | 018
Trim-mean | 0.17 | 0.49 0.17 0.17 089 | 089 | 090/1.00 | 089
Median 0.19 | 038 0.23 0.31 0.83 0.87 0.78 / 0.01 0.88 (c) Small-world graph.
FLTrust 011 | 011 0.11 0.11 011 | 090 | 011/090 | 012 i
UBAR 025 | 025 0.26 0.25 0.27 0.27 0.25/001 0.23 [Method [No [LF [Feature | Gauss | Krum | Trim | Backdoor [Adapt |
LEARN 0.10 | 0.15 0.11 0.10 0.35 0.55 | 0.10/0.19 0.81 FedAvg 0.10 | 0.10 0.90 0.90 0.91 0.91 | 0.90/1.00 0.90
scCLIP | 010 | 010 | 0.10 010 | 090 | 091 | 046/004 | 001 Krum 017 | 017 | 090 017 | 017 | 017 | 019/001 | 017
BALANCE 0.09 0.09 0.09 0.10 0.09 0.09 0.09/0.01 0.10 Trim-mean 0.15 0.43 0.63 0.17 0.71 0.87 0.32/0.01 0.80
Median 014 | 015 0.73 0.19 087 | 087 | 019/001 | 085
FLTrust 0.10 | 0.10 0.13 0.13 010 | 091 | 010/014 | o011
UBAR 014 | 014 0.90 0.14 014 | 014 | 018/001 | o014
. . LEARN 010 | 0.11 0.16 0.10 019 | 033 | 010/001 | 029
Table 11: Results of different DFL methods in Case I. sccrre | 010 | 010 | o010 010 | 090 | oe1 | 0107001 | 049
[Method [No | LF [Feature | Gauss | Krum | Trim | Backdoor | Adapt | BALANCE | 0.10 | 0.10 0.1 0.11 0.11 0.11 0.10/0.01 0.11
FedAvg 016 | 0.17 0.90 0.90 091 | 091 | 0.90/1.00 | 0.90
Krum 023 | 0.24 0.90 0.26 026 | 028 | 026/001 | 026 (d) Ri h
Trim-mean | 020 | 021 | 0.5 034 | 044 | 074 | 0237003 | 048 ng graph.
Median 0.22 | 023 0.23 0.22 0.56 0.60 0.24/0.02 0.33 [Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt
FLTrust 0.16 | 0.17 0.90 0.16 017 | 089 | 0.22/016 | 091
UBAR 020 | 0.20 0.90 0.20 021 | 022 | 023/003 | 022 F&fff 81(7) 8'1; g‘gg g'zg g'zg 8'2(1) g‘gg; i'gg g‘gg
LEARN 016 | 0.21 025 0.17 030 | 064 | 0167005) 038 Trim-mean | 0.19 | 021 0.90 0.90 090 | 090 | 0.90/1.00 | 0.90
SCCLIP 0.16 | 0.17 0.17 0.17 087 | 090 | 0167001 | 090 Modinn o0 | ona 090 090 090 | 09 | 090/100 | 09
BALANCE | 0.16 | 0.16 0.17 0.17 017 | 017 | 016/001 | 018 FLTroat on | om o1l 036 011 | 0% | 0117049 | o011
UBAR 013 | 013 0.90 0.13 013 | 013 | 0.27/001 | 090
Table 12: Results of different DFL methods in Case II. LEARN | 0.12 | 0.12 | 0.90 0:90 | 090 | 090 | 090/1.00 | 0.9
- SCCLIP 011 | 011 0.13 0.11 083 | 090 | 011/001 | 049
[Method [No [LF [Feature | Gauss | Krum [Trim [Backdoor [Adapt | BALANCE | 0.10 | 0.10 0.1 0.10 010 | 010 | 011/001 | 012
FedAvg 0.19 | 0.17 0.90 0.90 090 | 090 | 0.90/1.00 | 090
Krum 021 | 0.22 0.90 0.27 025 | 026 | 026/002 | 027
Trim-mean | 043 | 043 0.57 0.43 089 | 089 | 090/1.00 | 089
Median 039 | 0.40 0.46 0.44 079 | 077 | 053/005 | 077
FLTrust 0.19 | 0.19 0.90 0.24 021 | 091 | 019/086 | 090
UBAR 024 | 0.24 0.90 031 030 | 024 | 046/003 | 029
LEARN 032 | 035 032 0.32 075 | 089 | 033/004 | 087
SCCLIP 019 | 0.19 0.20 0.30 090 | 090 | 039/002 | 090
BALANCE | 0.19 | 0.19 0.20 0.20 021 | 022 | 020/001 | 022

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Table 16: Results of different DFL methods on graphs with

different FEMBs.
(a) Graph with FEMB 0.16.

[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt
FedAvg 0.10 0.10 0.90 0.90 0.90 0.91 0.90 / 1.00 0.90
Krum 0.17 0.17 0.90 0.17 0.18 0.17 0.17 / 0.01 0.19
Trim-mean 0.13 0.13 0.13 0.13 0.31 0.39 0.13/0.01 0.33
Median 0.14 0.15 0.20 0.15 0.43 0.41 0.14/0.01 0.43
FLTrust 0.10 0.10 0.11 0.11 0.11 0.91 0.10/0.01 0.10
UBAR 0.17 0.17 0.90 0.18 0.18 0.18 0.17/0.01 0.18
LEARN 0.10 0.10 0.10 0.10 0.14 0.28 0.10/0.01 0.10
SCCLIP 0.10 0.10 0.10 0.11 0.81 0.91 0.10/0.01 0.49
BALANCE 0.10 0.10 0.10 0.10 0.10 0.10 0.10/0.01 0.10

(b) Graph with FEMB 0.22.

[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt]
FedAvg 0.10 0.10 0.90 0.90 0.90 0.91 0.90 / 1.00 0.90
Krum 0.17 0.17 0.90 0.17 0.17 0.17 0.17 / 0.01 0.17
Trim-mean 0.13 0.13 0.13 0.13 0.19 0.55 0.17 / 0.01 0.51
Median 0.14 0.14 0.14 0.17 0.54 0.62 0.22/0.01 0.59
FLTrust 0.10 0.10 0.11 0.11 0.10 0.89 0.10/ 0.04 0.10
UBAR 0.16 0.16 0.90 0.17 0.18 0.18 0.18/0.01 0.16
LEARN 0.10 0.13 0.12 0.10 0.12 0.43 0.10/0.01 0.19
SCCLIP 0.10 0.10 0.10 0.10 0.89 0.90 0.10/0.01 0.43
BALANCE 0.10 0.10 0.11 0.10 0.10 0.11 0.10/0.01 0.11
(c) Graph with FEMB 0.32.
[Method [No [LF [Feature [Gauss [Krum [Trim [Backdoor [Adapt]

FedAvg 0.10 0.10 0.90 0.90 0.90 0.91 0.90 / 1.00 0.90
Krum 0.17 0.17 0.90 0.17 0.19 0.17 0.17/0.01 0.17
Trim-mean 0.12 0.13 0.19 0.13 0.86 0.87 0.59/0.60 0.88
Median 0.14 0.14 0.14 0.19 0.89 0.88 0.86 /0.01 0.89
FLTrust 0.10 0.10 0.12 0.12 0.10 0.91 0.10/0.01 0.11
UBAR 0.16 0.17 0.91 0.17 0.19 0.19 0.21/0.01 0.28
LEARN 0.13 0.13 0.25 0.13 0.19 0.43 0.13/0.01 0.39
SCCLIP 0.10 0.10 0.10 0.10 0.90 0.91 0.10/0.01 0.59
BALANCE 0.10 0.10 0.10 0.10 0.10 0.10 0.10/ 0.01 0.10

Minghong Fang et al.

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Decentralized Federated Learning (DFL)
	2.2 Poisoning Attacks to FL
	2.3 Byzantine-robust DFL Aggregation Rules

	3 Problem Statement
	4 The BALANCE Algorithm
	5 Theoretical Performance Analysis
	6 Experiments
	6.1 Experimental Setup
	6.2 Experimental Results

	7 Discussion and Limitations
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Useful Technical Lemma
	D Datasets and Poisoning Attacks
	D.1 Datasets
	D.2 Poisoning Attack Schemes
	D.3 Consensus Error

