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ABSTRACT

In actor-critic framework for fully decentralized multi-agent re-
inforcement learning (MARL), one of the key components is the
MARL policy evaluation (PE) problem, where a set of N agents work
cooperatively to evaluate the value function of the global states
for a given policy through communicating with their neighbors.
In MARL-PE, a critical challenge is how to lower the sample and
communication complexities, which are defined as the number of
training samples and communication rounds needed to converge
to some e-stationary point. To lower communication complexity in
MARL-PE, a “natural” idea is to perform multiple local TD-update
steps between each consecutive rounds of communication to reduce
the communication frequency. However, the validity of the local
TD-update approach remains unclear due to the potential “agent-
drift” phenomenon resulting from heterogeneous rewards across
agents in general. This leads to an interesting open question: Can
the local TD-update approach entail low sample and communication
complexities? In this paper, we make the first attempt to answer
this fundamental question. We focus on the setting of MARL-PE
with average reward, which is motivated by many multi-agent
network optimization problems. Our theoretical and experimen-
tal results confirm that allowing multiple local TD-update steps is
indeed an effective approach in lowering the sample and commu-
nication complexities of MARL-PE compared to consensus-based
MARL-PE algorithms. Specifically, the local TD-update steps be-
tween two consecutive communication rounds can be as large as
O(l/el/2 log (1/€)) in order to converge to an e-stationary point of
MARL-PE. Moreover, we show theoretically that in order to reach
the optimal sample complexity, the communication complexity of
local TD-update approach is O(l/el/2 log (1/¢€)).
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1 INTRODUCTION

1) Background and Motivation: With the recent success of rein-
forcement learning (RL) techniques in the dynamic decision-making
process [26], MARL, a natural extension of RL to multi-agent sys-
tems, has also received increasing attention. Compared to tradi-
tional RL, the richness of multi-agent systems has given rise to
far more diverse problem settings in MARL, including cooperative,
competitive, and mixed MARL (see [34] for an excellent survey).
In this paper, we are interested in fully decentralized cooperative
MARL, which has found a wide range of applications in the field
of networked large-scale systems, such as power networks [3, 22],
autonomous driving [23, 33], wireless network [31] and so on. A
defining feature of fully decentralized cooperative MARL is that all
agents in the system collaborate to learn a joint policy to maximize
long-term system-wide total rewards through communicating with
each other. However, due to the decentralized nature (i.e., lack of a
centralized infrastructure) of fully decentralized cooperative MARL,
the collaboration between the agents can only rely on some speical
algorithmic designs to induce a “consensus” that can be reached by
all agents.

In a consensus-based actor-critic framework, one of the key
components is the MARL policy evaluation (PE) problem, where a
set of N agents work cooperatively to evaluate the value function
of the global states for a given joint policy. Just as the PE problem
in single-agent RL, temporal difference (TD) learning [25] has been
the prevailing method for MARL-PE thanks to its simplicity and
effectiveness. Simply speaking, the key idea of TD learning is to
learn the value function by using the Bellman equation to bootstrap
from the current estimated value function.

However, as mentioned earlier, the decentralized nature of the
MARL-PE problem necessitates communication among agents for
TD learning. Hence, a critical challenge in consensus-based MARL-
PE is how to lower the sample and communication complexities,
which are defined as the required number of training samples and
rounds of communications between neighboring agents to converge
to an e-stationary point of the MARL-PE problem.

To lower communication complexity for solving MARL-PE prob-
lems, a “natural” idea is to use an “infrequent communication”
approach where we perform multiple local TD-update steps be-
tween each consecutive rounds of communication to reduce the
communication frequency. However, the validity of the “local TD-
update” approach remains unclear due to the potential “agent-drift”
phenomenon resulted from heterogeneous rewards across agents
(more on this soon). This leads to two interesting open questions:



1) Can the local TD-update approach achieve low sample and
communication complexities for solving MARL-PE?

2) Ifthe answerto 1) is “yes,” how does the local TD-steps approach
perform in comparison to other approaches?

In this paper, we make the first attempt to answer the above open
questions. However, unlike conventional MARL research that adopts
discounted reward, in this paper, we are particularly interested in
the cooperative MARL setting with average reward [7, 20, 28, 29, 35].
The average reward setting of MARL-PE is motivated by and highly
relevant for many multi-agent and network optimization problems
that care about “average performances” (e.g., average throughput,
average latency, and average energy consumption in multi-hop
wireless networks).

2) Technical Challenges: Answering Questions 1) and 2) above
is highly non-trivial due to several technical challenges in the con-
vergence analysis of the local TD-update approach. Notably, it is
easy to see that the structure of TD learning in consensus-based
cooperative MARL resembles that of decentralized stochastic gra-
dient descent (DSGD) method in consensus-based decentralized
optimization[13, 17, 18]. Thus, it is tempting to believe that one can
borrow convergence analysis techniques of DSGD and apply them
in TD learning. However, despite such similarities, there also exist
significant differences between TD learning in MARL and DSGD.

o Structural Differences: First, we note that TD learning is not a
true gradient-based method since TD error is not a gradient es-
timator of any static objective function which is well-defined
in a consensus-based decentralized optimization problem. Also,
in decentralized optimization, the gradient terms are often as-
sumed to be bounded. However, when using approximation for
value function in TD learning, TD-errors can not be assumed to
be bounded without further assuming that the approximation
parameters lie in some compact set.

o Markovian Noise in TD Learning: In RL/MARL problems, there
exists an underlying Markovian dynamic process across time
steps, where the state distribution may differ at different time
steps. By contrast, in decentralized optimization, it is often safe
to assume that the data at each agent are independently dis-
tributed. Thus, it is not possible to directly apply convergence
analysis techniques of decentralized optimization in TD learning
for MARL-PE. The coupling and dependence among samples
renders the convergence analysis of TD learning in MARL far
more challenging.

o “Agent-Drift” Phenomenon: Due to heterogeneity nature of the
rewards across agents, executing multiple local TD-update steps
would inevitably pull the value functions toward the direction
of local value functions rather than the global value function,
leading to the “agent-drift” phenomenon. Hence, it is unclear
under such "tug of war" whether local TD-update steps help or
hurt the convergence of TD learning in MARL-PE. Because of
the agent-drift effect, the number of local TD update steps has
to be chosen judiciously to mitigate the potentially large diver-
gence of the value functions among agents between consecutive
communication rounds.

3) Main Results and Contribution: The main contribution of
this paper is that we overcome the above challenges in analyzing

the upper bounds of the sample and communication complexities
for the local TD-update approach in cooperative fully decentralized
MARL-PE. By doing so, we shed light on the effect of local TD-
update steps in the consensus-based TD learning in MARL-PE with
average reward. We summarize our main results in this paper as
follows:

o Both theoretically and empirically, we show that allowing multi-
ple local TD-update steps is indeed a valid approach that can sig-
nificantly lower communication complexities of MARL-PE com-
pared to vanilla consensus-based decentralized TD learning algo-
rithms [5, 6, 35]. Specifically, we show that under the condition
of achieving O(1/elog?(1/¢)) sample complexity (which differs
from the state-of-the-art sample complexity only by a log factor),
the local TD-update approach can allow up to O(1/€/? log(1/€))
local TD-update steps and the communication complexity upper
bound is O(1/e!/? log(1/€)). Compared to vanilla algorithms,
this improves the communication complexity by a factor of
O(1/€'/?).

o In comparison with another notable batching approach, we show
that the local TD-update approach not only matches the commu-
nication complexity of the batching approach, but also achieves a
better sample complexity than that of the batching approach [7]
by a factor of O(1/ /2y in average reward setting. Our extensive
empirical results also verify the performance of the local TD-
update approach and confirm our theoretical results compared
to the vanilla TD learning and batching approaches with both
synthetic and real-world datasets.

The rest of the paper is organized as follows. In Section 2, we
review the literature to put our work in comparative perspectives.
In Section 3, we present the system model and formulation of the
MARL-PE problem in the average reward setting. In Section 4, we
introduce the decentralized TD learning algorithm with multiple
local TD-update steps for MARL-PE. In Section 5, we provide the
theoretical convergence analysis for the decentralized TD learning
algorithm with multiple local TD-update steps. In addition, we pro-
vide comparisons of both sample and communication complexities
of the proposed local TD-update approach with other methods.
Section 6 presents numerical results and Section 7 concludes this
paper. Due to space limitation, some proof details and additional
experiments are relegated to the supplementary material .

2 RELATED WORK

In this section, we provide an overview on two lines of research
that are related to this work: i) multi-agent reinforcement learning
policy evaluation; and ii) single-agent RL policy evaluation.

1) Multi-agent reinforcement learning policy evaluation:
To our knowledge, the work in [35] proposed the first fully decen-
tralized multi-agent actor-critic algorithm using TD learning in
the critic step, which solves the PE problem in average reward set-
ting. However, the convergence results for both its critic and actor
steps are asymptotic. Finite-time analysis of MARL-PE problem
using distributed TD learning algorithm has been first studied in
[5] under the i.i.d. sampling assumption, and later the work in [6]
generalized the result to Markovian sampling assumption only in



discounted reward settings. In [14], a compressed algorithm is pro-
posed where, instead of sending a vector, only a single entry is sent
during communication. However, their communication complexity
(i.e., the number of communication rounds) remains the same as
sample complexity and the convergence is only asymptotic. In [2],
a lazy communication algorithm is proposed assuming a central
controller, which is different from the fully decentralized setting
that we consider in this paper.

It is worth noting that many of the above existing distributed TD
learning algorithms [5, 6, 35] for MARL-PE perform frequent consen-
sus rounds (i.e., one round of communication per local TD update)
to share the value functions among neighbors. Specifically, in these
algorithms, agents share the value functions to their neighbors in
every sampling step, which causes the communication complexity
to be the same as the sample complexity. In this paper, we consider
an infrequent communication framework that allows the agents
to do multiple local TD-update steps and communicate with the
neighbors once every K(> 1) rounds. In [4, 7], complete actor-
critic algorithms have been proposed and the batching approach
has been used in the critic step, which corresponds to MARL-PE,
in discounted and average reward respectively. In this batching ap-
proach [7], consensus is performed in every M = O(1/¢€) samples,
which in return only requires O( 1/61/2 log(1/€)) communication
complexity. Detailed discussions on the comparison of the local TD
approach and batching approach is provided in Section 5.3.

We also remark that there exists another class of approaches
[11, 16, 21, 30, 36] that solve the MARL-PE problem by formu-
lating MARL-PE into optimizing projected Bellman error or its
variants, where the proposed algorithms require frequent commu-
nications. This class of algorithms do not use the on-policy TD
learning approach as we do in our paper. In [9], the paper optimizes
communication in order to comply with the bandwidth restriction
and minimize the collision between pair-wise channels. However,
this work adopts centralized learning and distributed execution
paradigm, where in our paper, the learning process is fully decen-
tralized.

2) Single-agent reinforcement learning policy evaluation:
For single-agent RL, policy evaluation problems have been exten-
sively studied in terms of asymptotic convergence [27-29] for both
discounted and average reward settings, later finite-time conver-
gence under i.i.d. sampling assumption [10] and under Markov-
ian sampling assumption using different techniques [1, 24] in dis-
counted reward setting. Further, using batching TD learning [32]
yields state-of-the-art sample complexity O(1/elog(1/¢)) in the
discounted reward setting. For average reward setting, [19] yields
a sample complexity of O(1/€?log>(1/€)), where the sample com-
plexity is worse than that in our multi-agent setting. To the best
of our knowledge, the sample complexity of O((1/€) log?(1/€)) in
[24] is the state-of-the-art sample complexity for the single agent
average-reward RL policy evaluation problem. However, there is
no notion of “communication with other agents” due to the single-
agent nature. Thus, results in this area, though related, are not
directly comparable to our work in terms of communication com-
plexity.

3 DISTRIBUTED POLICY EVALUATION IN
MULTI-AGENT REINFORCEMENT
LEARNING

Throughout this paper, || - || denotes the #2-norm for vectors and the
£p-induced norm for matrices. || - || denotes the Frobenius norm
for matrices. (-)7 denotes the transpose for a matrix or a vector.

3.1 System Model

Consider a multi-agent system with N agents, denoted by N =
{1,---, N}, operating in a networked environment. Let & be the
edge set for a given network G = (N, &). To formulate our MARL
problem and facilitate our subsequent discussions, we first de-
fine the notion of networked multi-agent Markov decision process
(MDP) in the average reward setting as follows.

Definition 1 (Networked Multi-Agent MDP). Let G = (N, E) be
a communication network that connects N agents. A networked
multi-agent MDP is defined by following five-tuple:

(S AAYiens P AT Yien: 6),

where S is the global state space, A’ is the action set for agent i. Let
A = [1;e 5 A be the joint action set of all agents. P : SXAXS —
[0, 1] is the global state transition function and r : S x A is the
local reward function for agent i.

In this paper, we assume that the global state space S is finite.
We also assume that at time step ¢ > 0, all agents can observe the
current global state s;. However, each agent can only observe its
own reward r;' +1 1-€, agents do not observe or share rewards with
other agents. Each agent i € N receives a deterministic reward
ri(s, a) given the global state s and joint action a .

In our MARL system, each agent chooses its action following
its local policy 7' that is conditioned on the current global state
s, i.e., ' (als) is the probability for agent i to choose an action
a' € Al Then, the joint policy 7 : S X A — [0, 1] can be written
as 7(als) = [Ty 7' (alls).

The global long-term average reward for a given joint policy x
in average reward setting is defined as follows:

1 T-1 1 )
Jr = fim, ?E(Z N 2 )

t=0 ieN
= >, d(s) ) wlals) - 7(s,a), (1)
seS a€A

where d(-) is the steady state distribution, which is guaranteed to
exist due to the Assumption 1 below, and 7(s, a) = ﬁ DieN ri(s, a).
In other words, in the average reward setting, J; evaluates the
performance of the given policy 7 at steady state as given in (1).

3.2 Technical Assumptions
We now state the following assumptions for the MARL system
described above.

Assumption 1. For the given policy &, we assume the induced
Markov chain {s;};>¢ is irreducible and aperiodic.

!For simplicity of the presentation, we assume that the rewards are deterministic. For
more general stochastic rewards, the results are straightforward.



Assumption 2. The reward r}' is uniformly bounded by a constant
rmax > 0 forany i € Nandt > 0.

Assumption 3. Let A be a consensus weight matrix for a given
communication network G. There exists a positive constant > 0
such that A € RN*N js doubly stochastic and A;; > n, Vi € N.

Moreover, A;; > 1 if i, j are connected, otherwise A;; = 0.

Assumption 4. The global value function is parameterized by
linear functions, i.e., V(s;w) = ¢(s) T w where

$(s) = [$1(s), -+, Pn(s)] " € R"

is the feature vector associated with the state s € S. We typically
assume the dimension of the vector is smaller than the cardinality of
the state space, i.e. n < |S|. The feature vectors ¢(s) are uniformly
bounded for any s € S. Without loss of generality, we assume that
ll¢(s)|l < 1. Furthermore, the feature matrix ® € RISIXn i5 fql1
column rank. Also, for any u € R", ®u # 1, where 1 is an all-one
vector.

Assumption 1 guarantees that there exists a unique stationary
distribution over S for the induced Markov chain by the given
policy 7. In other words, it guarantees that the steady state distri-
bution d(-) induced by the policy 7 is well defined. Assumption 2
is common in the RL literature (see, e.g., [5, 32, 35]) and easy to be
satisfied in many practical MDP models with finite state and action
spaces. Assumption 3 is standard in the distributed multi-agent
optimization literature [17]. This assumption says that non-zero
entries of the weight matrix A needs to be lower bounded by a
positive value 7. Note that this characterization of the weight ma-
trix is a rich representation, as for the same graph/topology G, the
weights can vary, which correspond to different consensus effects.
Assumption 4 on features is standard and has been widely adopted
in the literature, e.g., [7, 19, 24, 28, 35]. The goal of this assumption
is to approximate the value function as follows:

V(s) = V(ssw) = ¢(s) Tw

where ¢(s) is the aforementioned feature vector associated with
state s € S.

4 DECENTRALIZED TD LEARNING WITH
LOCAL TD-UPDATE STEPS FOR MARL-PE

In this section, we introduce the decentralized TD learning algo-
rithm with local TD-update steps (i.e., infrequent communication),
which is illustrated in Algorithm 1 2. Given a joint policy 7, the
goal of the MARL-PE in the decentralized setting is that the agents
collaborate in a consensus manner to characterize the global value
function. Specifically, each agent i maintains a value function ap-
proximation parameter w’ locally, which estimates the global value
function as follows:

Vis;wh) = ¢(s)Twh.
The local TD-update algorithm for MARL-PE contains two loops.
The outer loop is the communication rounds, where consensus

update (Line 12 in Algorithm 1) is performed for L rounds in total.
The inner loop is local TD-update steps (Line 10 in Algorithm 1),

ZFor simplicity, we present TD(0) in our paper, the algorithm and theoretical results
can be generalized to TD(A) straightforwardly.

which are executed K times in between consecutive communication
rounds. Locally, each agent performs local TD-updates within each
communication round [ € {0,---,L — 1} as follows:

Wll,k.'.l = Wll,k +B- 611,1( : ¢(sl,k)a (2)

where f > 0 is the constant step size and 5; ¢ is the local TD error,
which is defined as follows

Ol = Tiger — Mg + SCGLer) W) = (L)W s

and ,u; i tracks the local average reward, which is updated as follows

Hlerr = (L= By g+ Bri ey ®)

We remark that Eq. (3) is the key difference between the average
reward setting and the conventional discounted reward setting in
MARL-PE. In the discounted reward setting, there is no yi—terms.
The use of the y'-term is to keep track of the local average reward
for agent i. Surprisingly, we will show later that consensus and
finite-time convergence results on w' parameters can be obtained
without performing consensus on these yi* terms. We also note that
each execution of Eq. (2) is considered performing one local TD
learning step. Within each inner loop, this local TD update step is
performed K times.

Due to the privacy of the reward signals in the fully decentral-
ized setting, the agents are unable to access the rewards of any
other agents, let alone the average rewards. Therefore, commu-
nication/sharing of the value function approximation parameters
among the neighbors is necessary [4, 5, 7, 35]. This step is often
referred to as consensus update, which is defined as follows:

Wit = Z AUW;,K’ @
JEN;
where N; denotes the set of neighbors for agent i. In other words,
after performing K local TD-update steps, each agent shares its
parameter with the neighbors, receives the ones from the neighbors,
and then updates its own parameter in a weighted aggregation as
shown in Eq. (4).

We note that in our algorithm, the infrequent communication
is achieved by agents communicating with neighbors periodically
with the period being K. We also note that when K = 1, our al-
gorithm reduces to the vanilla distributed TD learning algorithm
[5, 6, 35]. Therefore, the vanilla distributed TD learning can be
viewed as a special case of our proposed algorithm.

5 CONVERGENCE ANALYSIS OF THE LOCAL
TD-UPDATE APPROACH FOR MARL-PE

In this section, we present the convergence results for Algorithm 1,

which further imply both the sample and communication complexi-

ties of the local TD-update approach for MARL-PE. To characterize

the convergence, we define the following quantities:

¥ = B[($(") - $(5)4T ()] and
bi= ZEISG)(Y, (s~ o) ©

ieN
where J is defined in Eq. (1). The expectations in Eq. (5) are taken
over the steady state distribution induced by the given joint policy,
which is guaranteed to exist due to Assumption 1, stationary action



Algorithm 1: Decentralized TD Learning with periodic
local TD-update steps

Input :Initial state sp, 7 = {ﬂ'i|i € N}, feature map ¢,
initial parameters {w(l),o, y6,0|i € N}, step size f3,
communication round number L, local step
number K

1 forl=0,---,L—1do

2 s;0 =sj—1.x (Whenl=0and k =0, s;x = so);
3 fork=0,---,K—1do
4 for alli € N do in parallel
5 Execute action a;!k ~ 7t (-Is k)
6 Observe the state s ;. and reward rll PvH
. ,
7 Update 5l,k —
. : T T i
rll’k_'_l - Hll,k + ¢(sl,l'<+1) Wll,k - ¢(5.l,k) Wll,k’
1 1 .
8 Update 1y Brypy + (1= By
9 Local TD-update Step:
i i i .
Wiker < Wikt B0 Pls1k):
10 end
11 end
12 for alli € N do in parallel
i ;o J .
13 ‘ Consensus Update: W0 € Yjen; AGLJ) - W
14 end
15 end

Output:{w£0|i e N}

policy a ~ n(:|s) and state transition probability s’ ~ P(-|s, a).
Furthermore, we define

w* = -9~ 1p, (6)
where the invertibility is due to ¥ being negative definite [7, 19, 28].

Consequently, Vs, Vk > 7(f), we define mixing time 7(f) as the
time index k that satisfies the following relationship:

¥~ E[($(sk1) = d(sk))p T (5)lso = s]Il < B, ™
where the expectation is taken over appropriate distributions. We
note that under the Assumption 1, by [12, Theorem 4.9], the Markov
chain mixes at a geometric rate, which implies 7(f) = O(log %)

5.1 Supporting Lemmas

Before presenting our main theorem, we introduce two useful lem-
mas. Our strategy of convergence analysis is to divide the conver-
gence error into two parts. They are the consensus error, which
is defined as the agent’s parameters deviation from the average
parameter, and convergence error of the average parameter to the
solution of the ODE in Eq. (6).

First, we define the average of the parameters to be wy; =
ﬁ DlieN Wli,k for any communication round [ € {0,---,L — 1}
and local step k € {0,--- ,K — 1} and similarly fij ; = % Zfil ”Ii,k'
Then, we define the consensus error for agent i as:

Qll,k = Wll’k - Wik ®)

and the matrix formis Q. = [Qllk, e ,Q%c] e RN,

We provide an upper bound for the consensus error generated
by Algorithm 1 in the following lemma.
LEMMA 1. Suppose that Assumptions 2—4 hold. For the consensus

N-1
error generated by Algorithm 1, if fK < min{%, ']—N_l)} it then

4(1-n
holds that
KzﬁK
1Qcoll < x1p"lIQooll + T, ©)
2 —(N-1)
where k1 = ZN(H”—), Ky = 8(1+ 17_(N_1))N%rmaX and p ==

1—pN-T
(1 +4BK)(1 — yN=1). By the condition on BK, we have 0 < p < 1.

The first term in Lemma 1 shows that even if the parameters are
not set to be the same initially, the effect of the initial consensus
error will vanish exponentially fast as the round of communication
L goes to infinity. The second term is linear with respect to K,
which resembles the constant term in optimization using stochastic
gradient descent (SGD) with constant step-sizes. This product term
dictates the consensus error and the error level that the algorithm
converges to, see discussion on Figure 2b for more details. Next, we
provide a lemma that characterizes the convergence of the average
parameter w; . to the TD fixed point defined in Eq. (6).

LEMMA 2. Suppose Assumptions 1-4 hold. For the w-parameters
generated by Algorithm 1, we have following result for the average of
the w-parameters:

E[llwe,0 —w]

<ea (1= et RETD) ((llwo — w2+ (oo = Jr)?

+ )5 (), (10)

where c1,cg,c3 > 0 are constants that are independent of step-size
B, local TD-update step K and communication round L; and () =
O(log %) is the mixing time. The specified expressions of the constants

c1, ¢2, and c3 can be found in supplementary material.

The average parameter wy o = ﬁ DieN WLO corresponds to the
updates after K X L samples and L communication rounds. Lemma
2 shows that wy o converges to solution of the ODE with the rate
given by the right-hand-side (RHS) of Eq. (10).

5.2 Main Results
Now, we state the main convergence result of Algorithm 1:

THEOREM 1. Suppose that Assumptions 1-4 hold. For the given
policy, consider the output parameters {w; (|i € N} generated by

N-—
Algorithm 1. If K < min{%, 4(1’7_’7—1\;_1)}, it then follows that:

N
i 2
E[Z llwh o = wl

i=1

K2 fK 2
1-p

< 2n(K1PL||Qo,0|| +

+2N (CZ(l — el YL (w00 — WP + (oo — Jn)?

+ )2 4 csr(B)) (1)

where K1, k2,c1,¢2,¢3 > 0,0 < p < 1 are constants, and woy =
% Zie N Wo oo 0,0 = % ZieN Hpo and Qo is the initial consensus



error defined in Eq. (8). Furthermore, by letting
B=0(elog (1/€)), K=0(1/€"%log(1/€)), L=0(1/€'/? log(1/¢)),

we have E[Z£1 ||w£0 — w*||2] = O(e). The sample complexity

is KL = O(1/elog?(1/€)) and the communication complexity is
L=0(1/eY%1log(1/e)).

Note that due to the use of a double-loop structure in Algorithm
1, the parameter WIZ;,O of agent i corresponds to the result after K X L
samples. We remark that to the best of our knowledge, the state-
of-the-art sample complexity for the average reward RL in single
agent setting is O((1/€) log?(1/€)) [24]. The sample complexity
of our algorithm in decentralized multi-agent setting, matches this
sample complexity in the single-agent setting.

5.3 Discussion

In this section, we provide a comparison of the proposed local
TD-update step approach with vanilla and batching approaches in
terms of both sample and communication complexities.

1) Sample complexity in comparison with single agent
setting: The sample complexity of our algorithm matches the state-
of-the-art sample complexity in the single-agent setting. Also, com-
pared to the single-agent discounted reward policy evaluation [32]
(a batching method) and its multi-agent counterpart [4], the sam-
ple complexity of local TD-update only differs by a log factor. We
note that, in [4, 7, 32], the algorithms are complete actor-critic
algorithms. Thus, we only compare our results with their policy
evaluation counterparts(i.e., critic steps).

2) Communication and sample complexity in comparison
with vanilla approach: In the local TD-update algorithm, between
consecutive communication rounds, the number of local TD-update
steps for each agent can be K = o(1/€'/? log(1/€)). This improved
the communication complexity of vanilla distributed TD algorithms
[5,6,35] by afactor of K = O(l/el/2 log(1/€)). The communication
complexity of the local TD-update is L = O(l/el/2 log(1/€)). In
terms of sample complexity, both approaches require a sample
complexity of O(1/elog?(1/€)). This is because as we set local step
K =1 of local TD approach, it reduces to the vanilla approach.

3) Communication and sample complexities in compari-
son with batching approach: It is worth noting that “batching”
[7] is another natural TD learning approach that can achieve in-
frequent communication among agents via locally updating value
function parameters using a batch of M(> 1) samples, then per-
forming consensus. Specifically, instead of repeatedly updating w’
for each sample locally as in Line 10 in Algorithm 1, at each commu-
nication round [ € {0,-- -, L — 1}, the batching approach performs
the following update:

M-1

» 1 o

Wy = W+ u Z SE’T(W;) ~d(s10),
=0

which is followed by a consensus update same as Line 12 in Algo-
rithm 1 for {ﬁ/ll}fi 1- The full algorithm description of the batching
approach can be found in [7, Algorithm 1]. The key difference

Table 1: Comparison of sample and communication complex-
ities.

Approaches | Sample Complexity | Communication Complexity
Vanilla O(1/elog?(1/€)) O(1/elog?(1/€))
Batching | O(1/€/%log(1/€)) 0(1/e % 1og(1/€))
Local TD O(1/elog?(1/€)) 0(1/61/2 log(1/€))

between batching and local TD-update approaches is that the w-
parameters are updated repeatedly with each sample in local TD-
update, whereas in batching, the w-parameters are updated only
once through a batch of samples.

Under the average reward setting, the local TD-update approach
achieves the same communication complexity. However, the lo-
cal TD-update approach outperforms the batching approach in
terms of sample complexity. Specifically, the sample complexity
upper bound of the local TD-update approach is O(1/elog?(1/€)).
In contrast, the sample complexity of the batching approach is
o(1/e32 log(1/€)), which is worse than that of the local TD-update
approach by a factor of O(1/€!/2 /log(1/€)).

To conclude the comparisons, we list the sample and communi-
cation complexities of different approaches in Table 1.

6 EXPERIMENTAL RESULTS

In this section, we conduct numerical experiments to compare our
proposed algorithm, TD learning with local steps, with vanilla TD
learning [5, 6, 35] and the batch TD learning [4, 7] in both synthetic
settings as in [35] and cooperative navigation tasks as in [15].

6.1 Performance with Synthetic Experiments

1) Synthetic Experiment Setup: We consider the same setting as
in Section 6.1 of [35]. There are N = 20 agents, each of which has a
binary-valued action space, i.e., Al = {0,1} for all i € N. There are
|S| = 10 states. The entries in the transition matrix are uniformly
sampled from the interval [0, 1] and normalized to be stochastic. For
each agent i and global state action pair (s, a), the reward (s, a) is
sampled uniformly from [0, 4] and the instantaneous rewards {r;}
are sampled uniformly within the set [ri(s, a) — 0.5, r (s, a) + 0.5].
The policy considered in the simulation is 7% (-|s) = 0.5 foralli € N,
s € S. The entries of feature matrix ® are sampled uniformly at
random from [0, 1] with feature dimension n = 5 and ensured to be
full rank and satisfy Assumption 4. In addition, we set each feature
vector to be of unit length. The network topology is chosen as a
ring network with diagonal elements being 0.4 and off-diagonal
elements being 0.3. The simulation results are averaged over 10
trials. We choose the step sizes for our algorithm to be 0.005, vanilla
TD to be 0.1, and batch TD to be 0.1. We note that these step sizes
are chosen to be best for the corresponding algorithms.

The objective error is defined as the normalized version of con-
vergence term (LHS of Eq. (11)), i.e., the sample mean errors divided



by the number of agents N and the dimension number n:
Objective Error
N -
SN, — w2
nN
We remark that due to the fact that the transition matrix is

not dependent on joint action, the steady state distribution can be
computed and so is the value of w*, whose definition is in Eq. (6).
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Figure 1: Convergence with respect to the number of com-
munication rounds and samples.

2) Convergence Performance: In Fig. 1, the y-axis is the nor-
malized convergence error of the LHS of Eq. (11) and the x-axes are
the numbers of communication rounds in Figure 1a,1b and sample
numbers in Figs. 1c and 1d. For fair comparisons between the local
TD-update and batching approaches, we keep the local TD-update
step number and batch size to be the same for the majority of the
comparisons except for Fig. 2a, where we compare the results for
various local TD-update step numbers and batch sizes.

In Fig. 1a, we illustrate the convergence results with respect
to the communication rounds for all three algorithms, where the
local TD-update step K = 50 for the local TD-update approach
and the batch size is 50 for batch algorithm. Under such a setting,
both local TD-update and batched TD algorithms perform consen-
sus communication every 50 samples. We can see that within 200
communication rounds, both local TD-update and batching algo-
rithms converge to a very similar error level, yet the vanilla TD
algorithm does not converge even after 400 rounds of communi-
cation. Between local TD-update and batching, both algorithms
perform similarly, which means similar communication rounds to
converge. In Fig. 1b, when local TD-update step K = 100 and the
batch size is 100, the local TD-update approach requires the least
amount of communication rounds to converge compared to the
batching approach. On the other hand, local TD-update again per-
forms significantly better compared to vanilla TD. In Fig. 1d and 1c,
we illustrate the corresponding convergence results with respect

IS
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Figure 2: Convergence comparisons with different settings
of (K, L) and the impact of local TD-update steps K on con-
vergence performance.

to the number of samples. We can see that vanilla TD eventually
converges but requires consensus operation at every sample. Fig. 1
verifies the theoretical analysis that allowing local TD-update steps
does reduce the number of communication rounds compared to
vanilla TD. In addition, the communication rounds of local TD-
update algorithm is similar in the setting of Fig. 1a and significantly
better in the setting of Fig. 1b.

In addition, we compare local TD-update approach under differ-
ent number of local TD-update steps K and communication rounds
L with batching approach under different batch sizes M and com-
munication rounds L in Fig. 2a. In general, the local TD-update
approach converges faster than the batching approach, but with a
slightly larger objective error. As the number of local TD-update
steps increases, the convergence speed of the local TD-update ap-
proach converges also increases, but the objective error becomes
larger. This verifies the “agent-drift” phenomenon. In contrast, as
the batch size increases, the convergence speed becomes slower,
and the objective error continues to improve.

3) Impacts of the Number of Local TD-Updates: Next, we
further investigate the effect of the number of local TD-update
steps on the convergence of the local TD-update approaches and
the agent-drift phenomenon. In Fig. 2b, we vary the number of
local steps from K = 40 to K = 250. There are two interesting
observations from our experiments. First, the initial dropping of
objective error increases as the number of local TD-update steps
increases. For example, when K = 100 or larger, the curves drop
much more rapidly in the beginning compared to the curves with a
smaller K. Second, the objective error floor increases as the number
of local steps increases. For example, when K < 100, the objective
error floor is relatively low and stable. However, as K increases to
200 or 250, the objective error floor also increases with a larger
oscillation magnitude. This observation is consistent with our the-
oretical analysis in Lemma 1, where the second term on the RHS
of Eq. (9) is proportional to the product of step size f and local
TD-update step K. This term indicates that the objective error will
only converge to neighborhood of zero, whose size depends on K.
As a result, for a larger K-value, the objective error will oscillate
with a larger magnitude. This is similar to the constant error term in
the convergence of the dencentralized SGD method [17]. Also, the
agent-drift phenomenon worsens as the number of local TD-update
steps increases, which can be seen by the result of K > 200 in Fig. 2b.
To summarize, under a fixed step size, more local TD-update steps



Figure 3: A cooperative navigation task.

improve the initial convergence speed, but will eventually result in
a larger objective error floor.

6.2 Performance with Cooperative Navigation

As illustrated in Fig. 3, in the cooperative navigation task [15, 35],
the agents (blue circles) are trained to cover the landmarks (crosses).
Agents observe positions of all other agents and all landmarks and
collaboratively cover the landmarks while avoiding collisions. The
rewards for agents are defined through the proximity to the nearest
landmarks. Unlike the synthetic experiments, the fixed point of the
corresponding ODE as in Eq. (6) is difficult to compute. Thus, we
use the mean squared Bellman error(MSBE) as the performance
metric. Due to space limitation, we relegate some experimental
results to our online technical report [8], including discussions on
various network typologies, local TD-update steps, batch sizes, step
sizes, and consensus error metrics.

1) Experiment Setup and Performance Metrics: We consider
a cooperative navigation task that is adapted from one of the multi-
agent environments [15]. There are N = 9 agents in total, and the
goal is to cover 9 landmarks collaboratively. Each agent chooses
from the action space Al ={no action, move left, move right, move
down, move up} based on the given policy . The policy considered
in the simulation is 7 (-|s) = 0.2 for all actions and i € N, s €
S, i.e. uniformly random policy. The local rewards are given by
the distance between the agents and the nearest goal landmarks.
However, if the agents collide with each other, a penalty will incur.
The agents are trained to cover landmarks and reach the destination,
while avoiding to collide with other agents, and the entire learning
process is fully decentralized. The feature dimension here is n = 36,
which includes all agents’ self positions, landmark relative positions,
and other agent relative positions. We choose step sizes for the TD-
update and the vanilla TD approaches to be both 0.1. We note
that such step sizes are chosen for the best performance for the
corresponding algorithms.

As mentioned earlier, we adopt the mean squared Bellman er-
ror (MSBE) as our performance metric. Given w-parameters and
samples (g, k1), the empirical squared Bellman error (SBE) of the
k-th sample is defined as:

SBE ({w,’c}ﬁl  Sics sK+1)
1

::ﬁ
ieN

(¢(5K)Twri< + [ — T — ¢(SK+1)TW11;)2 s

where 7 = ﬁ Sien Tk and fie = ﬁ Sie A fi. Then, MSBE up to
the k-th sample is defined as the average of SBEs over the history,

which is as follows:

MSBE :=

k
Z SBE ({w,’c}f\il ) Sic» s,<+1) .
k=1
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Figure 4: Convergence in terms of the number of communi-
cation rounds and training samples.

2) Convergence Performance: In Fig. 4a and 4, we illustrate
the results of MSBEs with respect to the number of communication
rounds and training samples, where N = 9 agents are connected
through an Erdos-Renyi (ER) network. We set the number of lo-
cal TD-update steps and the batch size both to be 20 for the local
TD-update and batching approaches, respectively. Similar to the
synthetic experiments, all algorithms converge to similar levels
of MSBE as shown in Fig. 4. This again verifies our theoretical
analysis that allowing local TD-update steps and performing in-
frequent communications do not affect convergence. Moreover, in
this setting, the local TD-update algorithm converges much faster
in terms of the number of communication rounds. Specifically, in
Fig. 4a, the local TD-update algorithm requires roughly 250 rounds
of communication to converge, while both the batching and vanilla
TD algorithms perform similarly and require more than 500 rounds
of communication to converge.

7 CONCLUSION

In this paper, we investigated the question of whether the local
TD-update approach can achieve low sample and communication
complexities for multi-agent reinforcement learning policy eval-
uation (MARL-PE) under the average reward setting and, if so,
how is the performance in comparison with other approaches un-
der the average reward setting. Our theoretical analysis and ex-
perimental results show that the local TD-update approach can
significantly lower the communication complexity compared to
the vanilla TD learning. In addition, our theoretical analysis also
shows that the number of local TD-update steps can be as large
as K = O(l/el/2 log(1/€)) to converge to an e-neighborhood of
the solution of the corresponding ODE for MARL-PE. Compared
with the batching approach for solving MARL-PE under average
reward, the local TD-update approach achieves the same communi-
cation complexity as that of the batching approach, while enjoying
a better sample complexity by a factor of O(1/€'/2) than that of
the batching approach. Our experimental results also verify our
theoretical findings in both synthetic and real-world data settings.



Algorithm 2: Single Agent TD(0) Learning in Average
Reward Setting

Input :Initial state sg, 7, feature map ¢, initial parameters
wo, lo, step size f5, traning iteration T
1 fort=0,---,T-1do
2 Execute action a; ~ 7(+|sy);
3 Observe the state s;4+1 and reward ry41;
4 | Update 8 < reeq — pr + $(sex)Twe — ¢(s0) Twys
5 Update pry1 < Previ + (1= B s
6 TD Step: wi41 «— Wi + B6; - P(st);
7 end
Output:wr

A  SINGLE-AGENT POLICY EVALUATION
CONVERGENCE UNDER THE AVERAGE
REWARD SETTING

In this section, we provide the finite-time convergence result for
single-agent RL in the average reward setting, as the update of
average parameter w in Lemma 2 is essentially a centralized single-
agent TD learning. The finite time convergence for a more general
form of stochastic approximation has been established in [24]. We
utilize such results by verifying the conditions in [24].

A.1 Single Agent RL in Average Reward Setting
We first describe the single agent TD(0) algorithm in the average
reward setting in Algorithm 2.

THEOREM 2. Suppose N = 1 and Assumptions 1-4 hold. For the
parameter generated by Algorithm 2, we have following results:

Bllwr - w'lI2] <e2(1 = 1) "B (llwo — w1 + (o — )
+ T2 4 ¢y r(B). (12)

where c1, ¢2, c3 > 0 are constants that are independent of step size f§
and iteration number T; and () = O(log %) is the mixing time.

Proor. To apply Theorem 7 in [24], we need to verify the three
conditions in [24, Section 2.1]. We have the following notations
Zt = (st,ar) and reqq = r(Z;). For TD(0) learning under the average
reward setting, we have

Hes1 = pr + B(ree1 — pe)s
wes1 = W + B(rees — e + T (Zes))we — §7 (Z)wi)(Z0).

Equivalently, the matrix form is
He
Wt

Hi+1 1 -1 0
= +ﬁ T
(Wt+1) (Wt) (—¢(Zt) A(Z)(p(Z141) — $(2Z1))

Tt+1
+p . (13)
(¢(Zt)rt+1)
So the corresponding ODE can be written as:
' -1 0 J
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where P” is the state transition matrix induced by the policy 7,
D* = diag(d(s1),---,d(ss))) and R := [R(s),s € 817, where
R(s) = 3, w(als)r (s, a). Now, using the notation in [24], we have

_ - -1 0
A=A= T T
-oTps1  oTDS(P™ - )@
and

Jr
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Xie = (Zs Zian) ",

5:

Jr

*

w

Next, by centering

) and defining, we have

-1 0
A(Xy) = s
X =1_52) 6(20(6Zun) - d(20)T
_ Tt+1 _ . ]7:
b(Xg) = ¢(Zt)rt+l) A(Xg) (W*)
b=o.

Note that A ]71 =b. Next, consider the following conditions:
w

e Condition 1: Note that
[IE[b(Xk|Xo = (Zo, Z1) = (20, 21))]]|
=l1 ) (P(Z = il(Z0, 21) = (20.21)) = d(D)

o ) [ 0 =),
p(r)| -6 SO, pEd() - $DNT | |w*
<l| Z(P(zk = il(Z0, Z1) = (20,21)) = d(D)]] - bmax,

where bmax = 2(rmax + Jr) + 2w*, where we used Assump-
tion 4 and

[|A — E[A(Xp)| X0 = (Zo, Z1) = (20, z1)]l
=|| Z(P(Zk = i[(Z0, Z1) = (20, 21)) — d(i))

-1 0
| (—¢<i> $()(Z; pT9() - ¢(i>)T) !
<l Y (P = 1170, 20) = (z0,20) - (DL

Since {Z.} is a finite state, aperiodic and irreducible Markov
chain, it has a geometric mixing rate, so Assumption 1 holds.

e Condition 2: By Assumption 4, max;cs |[|#(i)|]] < 1 < o0
and max;c sx.# (i) = rmax. it implies

0

_1A ) ) wrlll <4
=¢(i) () ($()) - (D)

AKX = 1]

Hence it is bounded. To normalize, we can set A(i) « #

and b(i) « @ to ensure the ||A|| < 1.



e Condition 3: By the standard assumptions on the feature
vectors in [28], we have that (1) ® is full rank; (2) for every
v € R™, ®v # 1. This ensures that real parts of all eigenvalues
of A are strictly negative.

As a result, by directly applying Theorem 7 of [24], we have
Elllwr = w*lI* + lur = Jxl*]
<a(1 = e1f)T TP (Wllwo — w12 + (o — J)?
+ ) car(p),

from which the result in Eq. (12) follows. O

A.2 Details of the Constants c;, ¢y, and c3 in
Lemma 2

The average parameter is signaled by the average of the rewards, i.e.

Fri = ﬁ DieN rl"! . during both the local TD-update and consensus

steps. Therefore, the method updates similar to a centralized TD

learning in a single-agent setting. By applying Theorem 2 for the

average parameter, we have following results:

Bl[liwz.0 — w21 <ea(t - erY<E7B) (s — w12 + (o — J)?
r
+ )2 4 cofe(p),
where 7(f) is a mixing time. Under Assumption 1, 7(f) = O(log %)

To specify the constants c1, ¢z, c3, recall the definition of ¥ in Eq. (5),
which is negative definite [28]. Further, define

-1 0
-o'ps1 ¥

>

where D¥ = diag(d(s1),- -+ ,d(s|s|)) and @ is the feature matrix. It
is easy to see the lower diagonal block matrix ¥ is a Hurwitz matrix
due to the fact that both diagonal blocks are Hurwitz. Therefore,
we have a symmetric matrix U > 0 [24] such that

YU +UP+I1=0,

which is referred to as the Lyapunov equation. For symmetric matrix
U, there exist the largest and smallest eigenvalues Amax and Apin,
respectively. In addition, Amax and A, are both positive. As a
result, by [24, Theorem 7], the constants are:

0.9
c1 = ,
Amax
A
cg = 2.25°7,
min
oo 222 (r2 s + 55(1 + Finax)®)
3= .

0.9Amin

B COOPERATIVE NAVIGATION TASK

In this section, we provide further experimental details on coopera-
tive navigation task in addition to Section 6.2. Moreover, we use
consensus error as another performance metric, which is defined
as following

N 1 Po— 2
CE({wihis,) = 5 > Iwe — %l
ieN
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Figure 5: Network Topology

B.1 Network Topology

We compare all algorithms under five different network typolo-
gies. These are ring network, 4-regular network, 6-regular network,
Erdos-Renyi(ER) network with 0.5 connection probability, and fully
connected network. These network topologies are illustrated in
Figure 5. For simplicity, the local aggregation is the average of
neighboring nodes for all networks.

B.2 Convergence Performance

First, we show the empirical convergence performances of all algo-
rithms in terms of MSBEs and CEs. Here we choose the number of
local steps to be K = 20 for local TD-update algorithm, the batch
size to be 20 for batch TD algorithm. For all algorithms, we set the
total sample number to be 10000. The comparisons among the algo-
rithms are shown in Figure 6-10 over various network topologies.
Left columns of the Figure 6-10 demonstrate the mean squared Bell-
man error(MSBE), and right columns demonstrate the consensus
error(CE).

We can see that all algorithms converge. More specifically, in
terms of MSBE, the error floor of vanilla TD is the lowest, our
proposed local TD-update approach is the second best and batch
TD algorithm is the worst with a significant error gap. Similarly
for CE, vanilla TD shows the lowest consensus error, our local
TD-update approach shows slightly higher error, while batch TD
algorithm shows the largest and oscillating consensus error across
all network topologies. This verifies our analysis that allowing
local steps and performing infrequent communications is feasible
and can converge. In this parameter setting, vanilla TD algorithm
performs 10000 communication rounds, which is the most, batch
TD algorithm performs 1000 communication rounds, while local
TD-update algorithm only performs 500 communication rounds.
For more details, see discussion on the communication round in
Section B.3.

In Figure 11, we present the topology effect on our proposed algo-
rithm. It is, in general, as the network becomes more and more con-
nected the consensus error fluctuates less. Intuitively, with denser
network, after local consensus aggregation, the parameter can be
closer to the global average of the network.
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In addition, we have compared different pairs of local step and
communication round for our proposed algorithm and different
pairs of batch size and communication round for batch TD algo-
rithm in Figure 12 for cooperative navigation task. In this setting,
all algorithms converge to a similar Bellman error level. However,
the convergence for local TD algorithm is faster than batch TD
algorithms in all parameter settings. Moreover, with the increase
of batch size, batch TD algorithm seems to converge slower while
with the increase of local step, local TD algorithm convergence
increases in general but not significantly.
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B.3 Convergence Performance With Respect to
Communication Rounds

In Figure 13, we provide the convergence results with respect to
the communication rounds for all algorithms, where the local step
K = 20 for local TD-update algorithm and the batch size is 20 for
batch TD algorithm. We can see that within 500 communication
rounds, local TD-update algorithm converges and requires much
less communication round than vanilla TD algorithm, the conver-
gence of which requires more than 1000 communication rounds.
On the other hand, local TD-update approach converges to a lower
error floor compared to batch TD algorithm. We can observe such
empirical results across all network topologies.

B.4 Impacts of the Number of Local Steps on
Convergence

Next, we illustrate the effect of the number of local steps K on the
convergence for our proposed algorithm. In Figure 14, we vary
the number of local steps from K = 10 to K = 200. The right
column is the consensus error of first 2000 samples, which displays
a better view. As the number of local steps increases, the mean
squared Bellman error converges to a higher error level, on the
other hand, the consensus error oscillates more. In summary, larger
local steps helps with saving more communication cost while it
also result in converging to a higher mean squared Bellman error
and a greater fluctuation of the consensus error. This conclusion
echoes the results in synthetic experiment in Figure 2b.

B.5 Impacts of Step Size on Convergence

Here, we illustrate the effect of step size  on the convergence for
our proposed algorithm and batch TD algorithm over 4-regular
network to shed lights on the choice of step sizes for batch TD
algorithm and our proposed local TD algorithm. First of all, Figure
15-17 show the performance of batch TD algorithm over various
batch sizes. The purple line shows the performance of our proposed
algorithm as a baseline comparison. In general, in terms of mean
squared Bellman error, larger step size § leads to faster convergence
speed and larger error level. Smaller step size f leads to slower
convergence speed, but could eventually converge to a smaller
error floor. Also, larger step size ff results in a greater consensus
error. Thus, we set step size § = 0.1 and batch size to be 20 for batch

TD algorithm.
— B=005
p=01
—— =05
— B=10
T oot st

— |V’.l ) W i WM Wﬂil‘i““m

hu .UmuLh -.umm it a4
2000 4000 6000 8000 10000 . a 2 4000 6000 saou wana
Sample Number Sample Number

=
W

|

g
&
@
E
2
2
@
&
2
s
S

Mean Squared Bellman Error

—

(a) Mean Squared Bellman Error (b) Consensus Error

Figure 15: Comparison among Different step sizes  for TD
Learning with Batch Size 5 in 4 Regular Network
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Learning with Batch Size 10 in 4 Regular Network
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Learning with Batch Size 20 in 4 Regular Network

In Figure 18-20, we show the effect of step size § on the conver-
gence performance of local TD-update algorithm. Similar to batch
TD algorithm, larger step size f§ leads to faster convergence speed
and larger mean squared Bellman and consensus error floor in local
TD-update algorithm. However, the error floor differences among
different step sizes f are smaller compared to batch TD algorithm.
In order to balance among convergence speed, error floor, and com-
munication cost, we decide to use step size § = 0.05 and local step
K =20.
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Figure 18: Comparison among Different step sizes  for TD
Learning with Local Step K = 10 in 4 Regular Network
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C PROOFS OF LEMMA AND THEOREM FOR
AVERAGE REWARD SETTING

In this section, we provide the derivation for the consensus error.
Then, we prove the Lemma 1 and Theorem 1.

C.1 The derivation of consensus error

Within each communication round 0 < [ < L — 1, the parameter
update w .. for agent i at local step k can be written as follows

WIi,k+1

Wik +ﬂ51i’k : ¢(sl,k)

(1+ B3 Cs110 19 s1e) = ST ) whie + BTy = )9 s10)
(15)

— i i
= Bl,kwl,k + Cl,k

where By j. := I+f¢ (s ) [§ (s k41) —$ (1)1 and €=
yfk)zﬁ(sl’k). Then, from local step 0 to K — 1, we have

i
B e

K-1 K-1 K-1
w K= l_l Bl,kwll’() + Bl,nc;,k'
k=0 k=0 n=k+1

After a consensus update, the parameter for agent i will be

i _ - J
W10 = Z A J) - w)
JEN;
K-1  K-1 K-1 .

= Z A(, j) - 1_[ Bl,kwio + Bl,nc{,k

JEN; k=0 k=0 n=k+1
-1 K-1 .

- 3 wen T Tmeder 3 a6 S 1] s
JEN; JEN; k=0 n=k+1

The equation above shows the parameter update between two
consecutive communication rounds. Now we consider the aver-
age dynamics of the parameters across all agents. Recall w;; =
% DieN Wli, 1> then within each communicationround 0 </ < L—1,



using equation 15 we have

Wi+l = Z W] et

lEN

— i i
= ﬁ Z (Bl,kwl,k + cl,k)

ieN
¥ e
Lk
N ieN
= By kWi +Crk (16)

=Brxwik +

where ¢ j = ﬁ DieN c;, «- Hence, the average dynamics from local
step 0 to K — 1 will be

K-1 K-1 K-1
WK = 1_[ Brrwio + BinClk-
k=0 k=0 n=k+1
After a consensus update, we have
Wit1,0 = WK 17)

Note that the equation above means that consensus step will not
change the average dynamics and average dynamic will only be
updated during local steps.

For an agent i € N, we consider the consensus error at commu-
nication round / and local step k, where 0 < k < K — 1 and recall
Q;,k = Wli,k — Wy - Then, we have

Qf,k+1 :Wli,k+1 ~ Wik+1
=Bl,kW£k + Cf,k = Bixwik — Ck
:Bl,k(Wli,k —Wig) + Cf,k — Ok
=Bz,ka,k + ijk = CLk-

Then, for the matrix form Q; ;. = [Qllk’ e Ql]\;c] € RN we have

1. .7
Qpks1 =BrxQux + Crp(I - N1 )

where Cjj = [cl1 « and 1 denotes the all-1 column vector.

N
i
Then, for communication round [, we have

K-1K-1

Qi = 1—[ Bk Qro + Z l—[ By iCre(I - —11T)

t=0 >t

After a consensus update, we have

W0~ Wik = Z A, j)wlj,K - WK

JEN;
= D AGHW e =wig) = D AGHO]
JEN; JEN;

As a result, we have

T
Ql+1,0 = Ql KA
K-1K-1

= ]_[ Bix0oAT + 3 [ Bicuer - 51iDAT.

t=0 f>¢

After L communication rounds, we have

L-1K-1

T\L
QLo = l—[ l—[ By Qoo(A7)
1=0 k=0
L-1L-1-1K-1 K-1K-1
+ Bl+]k Z l_[ By iCre(I~ —11T)(AT)L !
=0 j=1 t=0 7>t
Note that for the second term When | = L -1, inside the summa-
tion, the summand becomes Z Hitl BL 1iCL—1t (I—ﬁllT)AT.

In other words, the matrix multlpher in front becomes an identity
matrix.

C.2 Proof of Lemma 1

The norm of the consensus error is following

[1QLoll

L-1K-1

—||1_[ [ ] BixQoo(ahH

1=0 k=0
L-1L- K-1K-1

1-1K-1
£y ﬂ ﬂBz+,kZ l_lBuc“u——uTxAT)L gl
=1

1=0 k=0 t=0 >t
-1

L-1K-1
<[]
1=0 k=0
L-1L-

1=0

By xQoo(AD|

K-1 K-1K-1

1-1
*i 1_[ [ 1Bk rlBltClt(I__llT)(AT)L I,
=1

k=0 t=0 >t
(18)

Before obtaining bounds on the terms of the consensus error in
equation 18, we first provide some useful bounds on B, ;. and Cj .
First, we have

IBLll = 11+ B (s.x) [P (spp41) — S (s I

L+ Bl (s NP Cspges) I+ 1P (s )1
<1+2f

IA

where the second inequality is due to Assumption 4. Then, we have
[ICh Il < 2B8VNrmax, where rmax = sup; s o ' (s, @) by Assumption
2. This is because

€kl = 189 (k) ((h oo+ Tes) = G+ ) I
< Bl - (1 o
= Zﬂ\/ﬁrmax.

Next, inspired by [24], we want to use the following bound

N 1 N
’rl)k+l)|| + ||(l1k’1a T ’ﬂl’k)H)

(1+x)K < 1+2xK

for small x. Note that

(1 +x)K|xz0 = 1+ 2xK|x=0

log2
and when x < 227,

P P)
Za+0K =K1 +xK ! < ke¥ED <2k = 2 (1 +2xK)
ox ox



where the first inequality is due to the fact log(1+x) < x forx > 0

and the second inequality is due to the fact x < ng .Let2f =x
_log2
and f < 5p < 2(R-1)°

For the first term in equation 18, when f < 5 K, we have that

L-1K-1 L-1K-1
ITTT T BaQoo D I < I [ ] Bull- 11Qooa™ I
=0 k=0 I=0 k=0

<x(1+2p)KE(1 -7

<xk(1+4pK)t(1-1p

N—I)L

N—l)L

where we define p == (1+ 4BK)(1 — 7V~1). When 0 < K <

-1
4(1'7_%}, we have 0 < p < 1. The second inequality
comes from the following two results.

min{ %,

First, consider the case where A is a symmetric matrix for sim-
plicity, then we have

||Q00AL [l = ||Q00AL Q00—1||
=11 ), (4t = )0l
ieN
1 .
< D 1AL = 51105l
ieN
14y N7V N-1,L i
<N:-2———mMmM(1- - ma: !
TN (1-77"77) ie/@illQo,oll
147~ (N-D N-1\L
SZNw(l—U ) 11Qo0lls

where the second inequality is from [17] (Proposition 1). Hence,

14~ (N-1 - —
11Qo.0A%|| < ZNZ%(I—UN HEN1Qooll = r1 (1=nN"HE11Qoll,

214~ N

where k1 = 2N’ T Second, we have

L-1K-1 L-1K-1
ITTT] Bl < 1Bl
1=0 k=0 1=0 k=0
L-1K-1
< (1+2p) = (1+2p)KE,
1=0 k=0

To bound the second term of equation 18, we have

_ 1
1= DA = (4t - 4T

IN

2N2(1 + U_(N_l))(l _ UN—I)L—I—I.

where the inequality is also from [17] (Proposition 1). Then, we
also have

=
=

-1K-1
1Bzl - [ICrell

t

”Tr
)_.O
-
\Y

(1+2ﬂ)K 1=t 28V Nrimax

t=0
VN 3 (1429
t=0

<4pK \/Nrmax.
Then, for the multipliers, we have

L-1-1K-1

[T [] Bl < (142705 < (14 apr)t

J=1 k=0

Finally, for the second term in consensus error equation 18, we
have

1 TT [T 8 X, [T Buicueti = uhan =
J=1 k= i>t

1=0 0 t=0
L-1 L-1-1IK-1 K-1K-1
<) Brjll -l By Crell - ||<I—N11T><AT>L gl
=0 j=1 k=0 =0 f>¢
L-1
(1+4BK) 11 4BKVNFmay - 2N2 (1 + 5~ N~y (1 = yN-1)L-1-1
1=0
L-1
<’<2,BKZ,0L -1
1=0
KzﬁK
1-p

5
where ky = 8(1 + q_(N_l))NE Fmax-
As a result, we have the results consensus bound of equation 9
in Lemma 1.

C.3 Proof of the Theorem 1

For the mean square error, we have

N
E[D lIw)o—wlI?]

i — — 2
=E[ ) [} o = wro + Lo - w'lI’]
i=1

= I

N N
<2B[ Y lIw) o = wroll®] + 2B llwr,o = wlI?]
i i=1

i=1
<2dB[||QrolI*] + 2NE[||wr,0 — w*[|] (19)

where the first inequality is due to ||x+y||? < 2||x||?+2||y||? and the

second inequality || X||r < Vd||X|| for X € RN Then, the stated

result in equation 11 follows from Lemmas 1 and 2, and equation 19.
This concludes the proof.
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