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ABSTRACT
In actor-critic framework for fully decentralized multi-agent re-

inforcement learning (MARL), one of the key components is the

MARL policy evaluation (PE) problem, where a set of𝑁 agents work

cooperatively to evaluate the value function of the global states

for a given policy through communicating with their neighbors.

In MARL-PE, a critical challenge is how to lower the sample and

communication complexities, which are defined as the number of

training samples and communication rounds needed to converge

to some 𝜖-stationary point. To lower communication complexity in

MARL-PE, a “natural” idea is to perform multiple local TD-update

steps between each consecutive rounds of communication to reduce

the communication frequency. However, the validity of the local

TD-update approach remains unclear due to the potential “agent-

drift” phenomenon resulting from heterogeneous rewards across

agents in general. This leads to an interesting open question: Can
the local TD-update approach entail low sample and communication
complexities? In this paper, we make the first attempt to answer

this fundamental question. We focus on the setting of MARL-PE

with average reward, which is motivated by many multi-agent

network optimization problems. Our theoretical and experimen-

tal results confirm that allowing multiple local TD-update steps is

indeed an effective approach in lowering the sample and commu-

nication complexities of MARL-PE compared to consensus-based

MARL-PE algorithms. Specifically, the local TD-update steps be-

tween two consecutive communication rounds can be as large as

O(1/𝜖1/2 log (1/𝜖)) in order to converge to an 𝜖-stationary point of

MARL-PE. Moreover, we show theoretically that in order to reach

the optimal sample complexity, the communication complexity of

local TD-update approach is O(1/𝜖1/2 log (1/𝜖)).
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1 INTRODUCTION
1) Background and Motivation: With the recent success of rein-

forcement learning (RL) techniques in the dynamic decision-making

process [26], MARL, a natural extension of RL to multi-agent sys-

tems, has also received increasing attention. Compared to tradi-

tional RL, the richness of multi-agent systems has given rise to

far more diverse problem settings in MARL, including cooperative,

competitive, and mixed MARL (see [34] for an excellent survey).

In this paper, we are interested in fully decentralized cooperative
MARL, which has found a wide range of applications in the field

of networked large-scale systems, such as power networks [3, 22],

autonomous driving [23, 33], wireless network [31] and so on. A

defining feature of fully decentralized cooperative MARL is that all

agents in the system collaborate to learn a joint policy to maximize

long-term system-wide total rewards through communicating with

each other. However, due to the decentralized nature (i.e., lack of a

centralized infrastructure) of fully decentralized cooperative MARL,

the collaboration between the agents can only rely on some speical

algorithmic designs to induce a “consensus” that can be reached by

all agents.

In a consensus-based actor-critic framework, one of the key

components is the MARL policy evaluation (PE) problem, where a

set of 𝑁 agents work cooperatively to evaluate the value function

of the global states for a given joint policy. Just as the PE problem

in single-agent RL, temporal difference (TD) learning [25] has been

the prevailing method for MARL-PE thanks to its simplicity and

effectiveness. Simply speaking, the key idea of TD learning is to

learn the value function by using the Bellman equation to bootstrap

from the current estimated value function.

However, as mentioned earlier, the decentralized nature of the

MARL-PE problem necessitates communication among agents for

TD learning. Hence, a critical challenge in consensus-based MARL-

PE is how to lower the sample and communication complexities,
which are defined as the required number of training samples and

rounds of communications between neighboring agents to converge

to an 𝜖-stationary point of the MARL-PE problem.

To lower communication complexity for solving MARL-PE prob-

lems, a “natural” idea is to use an “infrequent communication”

approach where we perform multiple local TD-update steps be-

tween each consecutive rounds of communication to reduce the

communication frequency. However, the validity of the “local TD-

update” approach remains unclear due to the potential “agent-drift”

phenomenon resulted from heterogeneous rewards across agents

(more on this soon). This leads to two interesting open questions:
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1) Can the local TD-update approach achieve low sample and
communication complexities for solving MARL-PE?

2) If the answer to 1) is “yes,” how does the local TD-steps approach
perform in comparison to other approaches?

In this paper, we make the first attempt to answer the above open

questions. However, unlike conventionalMARL research that adopts

discounted reward, in this paper, we are particularly interested in

the cooperative MARL setting with average reward [7, 20, 28, 29, 35].
The average reward setting of MARL-PE is motivated by and highly

relevant for many multi-agent and network optimization problems

that care about “average performances” (e.g., average throughput,

average latency, and average energy consumption in multi-hop

wireless networks).

2) Technical Challenges: Answering Questions 1) and 2) above
is highly non-trivial due to several technical challenges in the con-

vergence analysis of the local TD-update approach. Notably, it is

easy to see that the structure of TD learning in consensus-based

cooperative MARL resembles that of decentralized stochastic gra-

dient descent (DSGD) method in consensus-based decentralized

optimization[13, 17, 18]. Thus, it is tempting to believe that one can

borrow convergence analysis techniques of DSGD and apply them

in TD learning. However, despite such similarities, there also exist

significant differences between TD learning in MARL and DSGD.

• Structural Differences: First, we note that TD learning is not a
true gradient-based method since TD error is not a gradient es-

timator of any static objective function which is well-defined

in a consensus-based decentralized optimization problem. Also,

in decentralized optimization, the gradient terms are often as-

sumed to be bounded. However, when using approximation for

value function in TD learning, TD-errors can not be assumed to

be bounded without further assuming that the approximation

parameters lie in some compact set.

• Markovian Noise in TD Learning: In RL/MARL problems, there

exists an underlying Markovian dynamic process across time

steps, where the state distribution may differ at different time

steps. By contrast, in decentralized optimization, it is often safe

to assume that the data at each agent are independently dis-

tributed. Thus, it is not possible to directly apply convergence

analysis techniques of decentralized optimization in TD learning

for MARL-PE. The coupling and dependence among samples

renders the convergence analysis of TD learning in MARL far

more challenging.

• “Agent-Drift” Phenomenon: Due to heterogeneity nature of the

rewards across agents, executing multiple local TD-update steps

would inevitably pull the value functions toward the direction

of local value functions rather than the global value function,

leading to the “agent-drift” phenomenon. Hence, it is unclear

under such "tug of war" whether local TD-update steps help or

hurt the convergence of TD learning in MARL-PE. Because of

the agent-drift effect, the number of local TD update steps has

to be chosen judiciously to mitigate the potentially large diver-

gence of the value functions among agents between consecutive

communication rounds.

3) Main Results and Contribution: The main contribution of

this paper is that we overcome the above challenges in analyzing

the upper bounds of the sample and communication complexities

for the local TD-update approach in cooperative fully decentralized

MARL-PE. By doing so, we shed light on the effect of local TD-

update steps in the consensus-based TD learning in MARL-PE with

average reward. We summarize our main results in this paper as

follows:

• Both theoretically and empirically, we show that allowing multi-

ple local TD-update steps is indeed a valid approach that can sig-

nificantly lower communication complexities of MARL-PE com-

pared to vanilla consensus-based decentralized TD learning algo-

rithms [5, 6, 35]. Specifically, we show that under the condition

of achieving O(1/𝜖 log2 (1/𝜖)) sample complexity (which differs

from the state-of-the-art sample complexity only by a log factor),

the local TD-update approach can allow up toO(1/𝜖1/2 log(1/𝜖))
local TD-update steps and the communication complexity upper

bound is O(1/𝜖1/2 log(1/𝜖)). Compared to vanilla algorithms,

this improves the communication complexity by a factor of

O(1/𝜖1/2).
• In comparison with another notable batching approach, we show

that the local TD-update approach not only matches the commu-

nication complexity of the batching approach, but also achieves a

better sample complexity than that of the batching approach [7]

by a factor of O(1/𝜖1/2) in average reward setting. Our extensive

empirical results also verify the performance of the local TD-

update approach and confirm our theoretical results compared

to the vanilla TD learning and batching approaches with both

synthetic and real-world datasets.

The rest of the paper is organized as follows. In Section 2, we

review the literature to put our work in comparative perspectives.

In Section 3, we present the system model and formulation of the

MARL-PE problem in the average reward setting. In Section 4, we

introduce the decentralized TD learning algorithm with multiple

local TD-update steps for MARL-PE. In Section 5, we provide the

theoretical convergence analysis for the decentralized TD learning

algorithm with multiple local TD-update steps. In addition, we pro-

vide comparisons of both sample and communication complexities

of the proposed local TD-update approach with other methods.

Section 6 presents numerical results and Section 7 concludes this

paper. Due to space limitation, some proof details and additional

experiments are relegated to the supplementary material .

2 RELATEDWORK
In this section, we provide an overview on two lines of research

that are related to this work: i) multi-agent reinforcement learning

policy evaluation; and ii) single-agent RL policy evaluation.

1) Multi-agent reinforcement learning policy evaluation:
To our knowledge, the work in [35] proposed the first fully decen-

tralized multi-agent actor-critic algorithm using TD learning in

the critic step, which solves the PE problem in average reward set-

ting. However, the convergence results for both its critic and actor

steps are asymptotic. Finite-time analysis of MARL-PE problem

using distributed TD learning algorithm has been first studied in

[5] under the i.i.d. sampling assumption, and later the work in [6]

generalized the result to Markovian sampling assumption only in



discounted reward settings. In [14], a compressed algorithm is pro-

posed where, instead of sending a vector, only a single entry is sent

during communication. However, their communication complexity

(i.e., the number of communication rounds) remains the same as

sample complexity and the convergence is only asymptotic. In [2],

a lazy communication algorithm is proposed assuming a central

controller, which is different from the fully decentralized setting

that we consider in this paper.

It is worth noting that many of the above existing distributed TD

learning algorithms [5, 6, 35] forMARL-PE perform frequent consen-
sus rounds (i.e., one round of communication per local TD update)

to share the value functions among neighbors. Specifically, in these

algorithms, agents share the value functions to their neighbors in

every sampling step, which causes the communication complexity

to be the same as the sample complexity. In this paper, we consider

an infrequent communication framework that allows the agents

to do multiple local TD-update steps and communicate with the

neighbors once every 𝐾 (≫ 1) rounds. In [4, 7], complete actor-

critic algorithms have been proposed and the batching approach

has been used in the critic step, which corresponds to MARL-PE,

in discounted and average reward respectively. In this batching ap-

proach [7], consensus is performed in every𝑀 = O(1/𝜖) samples,

which in return only requires 𝑂 (1/𝜖1/2 log(1/𝜖)) communication

complexity. Detailed discussions on the comparison of the local TD

approach and batching approach is provided in Section 5.3.

We also remark that there exists another class of approaches

[11, 16, 21, 30, 36] that solve the MARL-PE problem by formu-

lating MARL-PE into optimizing projected Bellman error or its

variants, where the proposed algorithms require frequent commu-

nications. This class of algorithms do not use the on-policy TD

learning approach as we do in our paper. In [9], the paper optimizes

communication in order to comply with the bandwidth restriction

and minimize the collision between pair-wise channels. However,

this work adopts centralized learning and distributed execution

paradigm, where in our paper, the learning process is fully decen-

tralized.

2) Single-agent reinforcement learning policy evaluation:
For single-agent RL, policy evaluation problems have been exten-

sively studied in terms of asymptotic convergence [27–29] for both

discounted and average reward settings, later finite-time conver-

gence under i.i.d. sampling assumption [10] and under Markov-

ian sampling assumption using different techniques [1, 24] in dis-

counted reward setting. Further, using batching TD learning [32]

yields state-of-the-art sample complexity 𝑂 (1/𝜖 log(1/𝜖)) in the

discounted reward setting. For average reward setting, [19] yields

a sample complexity of O(1/𝜖2 log3 (1/𝜖)), where the sample com-

plexity is worse than that in our multi-agent setting. To the best

of our knowledge, the sample complexity of O((1/𝜖) log2 (1/𝜖)) in
[24] is the state-of-the-art sample complexity for the single agent

average-reward RL policy evaluation problem. However, there is

no notion of “communication with other agents” due to the single-

agent nature. Thus, results in this area, though related, are not

directly comparable to our work in terms of communication com-

plexity.

3 DISTRIBUTED POLICY EVALUATION IN
MULTI-AGENT REINFORCEMENT
LEARNING

Throughout this paper, ∥ · ∥ denotes the ℓ2-norm for vectors and the

ℓ2-induced norm for matrices. ∥ · ∥𝐹 denotes the Frobenius norm

for matrices. (·)𝑇 denotes the transpose for a matrix or a vector.

3.1 System Model
Consider a multi-agent system with 𝑁 agents, denoted by N =

{1, · · · , 𝑁 }, operating in a networked environment. Let E be the

edge set for a given network G = (N , E). To formulate our MARL

problem and facilitate our subsequent discussions, we first de-

fine the notion of networked multi-agent Markov decision process

(MDP) in the average reward setting as follows.

Definition 1 (Networked Multi-Agent MDP). Let G = (N , E) be
a communication network that connects 𝑁 agents. A networked

multi-agent MDP is defined by following five-tuple:

(S, {A𝑖 }𝑖∈N , 𝑃, {𝑟 𝑖 }𝑖∈N ,G),

whereS is the global state space,A𝑖 is the action set for agent 𝑖 . Let
A =

∏
𝑖∈N A𝑖 be the joint action set of all agents. 𝑃 : S×A×S →

[0, 1] is the global state transition function and 𝑟 𝑖 : S × A is the

local reward function for agent 𝑖 .

In this paper, we assume that the global state space S is finite.

We also assume that at time step 𝑡 ≥ 0, all agents can observe the

current global state 𝑠𝑡 . However, each agent can only observe its

own reward 𝑟 𝑖
𝑡+1, i.e., agents do not observe or share rewards with

other agents. Each agent 𝑖 ∈ N receives a deterministic reward

𝑟 𝑖 (𝑠, 𝑎) given the global state 𝑠 and joint action 𝑎 1
.

In our MARL system, each agent chooses its action following

its local policy 𝜋𝑖 that is conditioned on the current global state

𝑠 , i.e., 𝜋𝑖 (𝑎𝑖 |𝑠) is the probability for agent 𝑖 to choose an action

𝑎𝑖 ∈ A𝑖 . Then, the joint policy 𝜋 : S × A → [0, 1] can be written

as 𝜋 (𝑎 |𝑠) = ∏
𝑖∈N 𝜋

𝑖 (𝑎𝑖 |𝑠).
The global long-term average reward for a given joint policy 𝜋

in average reward setting is defined as follows:

𝐽𝜋 = lim

𝑇→∞
1

𝑇
E

(
𝑇−1∑︁
𝑡=0

1

𝑁

∑︁
𝑖∈N

𝑟 𝑖𝑡+1

)
=

∑︁
𝑠∈S

𝑑 (𝑠)
∑︁
𝑎∈A

𝜋 (𝑎 |𝑠) · 𝑟 (𝑠, 𝑎), (1)

where 𝑑 (·) is the steady state distribution, which is guaranteed to

exist due to the Assumption 1 below, and 𝑟 (𝑠, 𝑎) = 1

𝑁

∑
𝑖∈N 𝑟

𝑖 (𝑠, 𝑎).
In other words, in the average reward setting, 𝐽𝜋 evaluates the

performance of the given policy 𝜋 at steady state as given in (1).

3.2 Technical Assumptions
We now state the following assumptions for the MARL system

described above.

Assumption 1. For the given policy 𝜋 , we assume the induced

Markov chain {𝑠𝑡 }𝑡≥0 is irreducible and aperiodic.

1
For simplicity of the presentation, we assume that the rewards are deterministic. For

more general stochastic rewards, the results are straightforward.



Assumption 2. The reward 𝑟 𝑖𝑡 is uniformly bounded by a constant

𝑟max > 0 for any 𝑖 ∈ N and 𝑡 ≥ 0.

Assumption 3. Let 𝐴 be a consensus weight matrix for a given

communication network G. There exists a positive constant 𝜂 > 0

such that 𝐴 ∈ R𝑁×𝑁 is doubly stochastic and 𝐴𝑖𝑖 ≥ 𝜂, ∀𝑖 ∈ N .

Moreover, 𝐴𝑖 𝑗 ≥ 𝜂 if 𝑖, 𝑗 are connected, otherwise 𝐴𝑖 𝑗 = 0.

Assumption 4. The global value function is parameterized by

linear functions, i.e., 𝑉 (𝑠;𝑤) = 𝜙 (𝑠)⊤𝑤 where

𝜙 (𝑠) = [𝜙1 (𝑠), · · · , 𝜙𝑛 (𝑠)]⊤ ∈ R𝑛

is the feature vector associated with the state 𝑠 ∈ S. We typically

assume the dimension of the vector is smaller than the cardinality of

the state space, i.e. 𝑛 < |S|. The feature vectors 𝜙 (𝑠) are uniformly

bounded for any 𝑠 ∈ S. Without loss of generality, we assume that

∥𝜙 (𝑠)∥ ≤ 1. Furthermore, the feature matrix Φ ∈ R |S |×𝑛 is full

column rank. Also, for any 𝑢 ∈ R𝑛 , Φ𝑢 ≠ 1, where 1 is an all-one

vector.

Assumption 1 guarantees that there exists a unique stationary

distribution over S for the induced Markov chain by the given

policy 𝜋 . In other words, it guarantees that the steady state distri-

bution 𝑑 (·) induced by the policy 𝜋 is well defined. Assumption 2

is common in the RL literature (see, e.g., [5, 32, 35]) and easy to be

satisfied in many practical MDP models with finite state and action

spaces. Assumption 3 is standard in the distributed multi-agent

optimization literature [17]. This assumption says that non-zero

entries of the weight matrix 𝐴 needs to be lower bounded by a

positive value 𝜂. Note that this characterization of the weight ma-

trix is a rich representation, as for the same graph/topology G, the
weights can vary, which correspond to different consensus effects.

Assumption 4 on features is standard and has been widely adopted

in the literature, e.g., [7, 19, 24, 28, 35]. The goal of this assumption

is to approximate the value function as follows:

𝑉 (𝑠) ≈ 𝑉 (𝑠;𝑤) = 𝜙 (𝑠)⊤𝑤
where 𝜙 (𝑠) is the aforementioned feature vector associated with

state 𝑠 ∈ S.

4 DECENTRALIZED TD LEARNING WITH
LOCAL TD-UPDATE STEPS FOR MARL-PE

In this section, we introduce the decentralized TD learning algo-

rithm with local TD-update steps (i.e., infrequent communication),

which is illustrated in Algorithm 1
2
. Given a joint policy 𝜋 , the

goal of the MARL-PE in the decentralized setting is that the agents

collaborate in a consensus manner to characterize the global value

function. Specifically, each agent 𝑖 maintains a value function ap-

proximation parameter𝑤𝑖 locally, which estimates the global value

function as follows:

𝑉 (𝑠;𝑤𝑖 ) = 𝜙 (𝑠)⊤𝑤𝑖 .
The local TD-update algorithm for MARL-PE contains two loops.

The outer loop is the communication rounds, where consensus

update (Line 12 in Algorithm 1) is performed for 𝐿 rounds in total.

The inner loop is local TD-update steps (Line 10 in Algorithm 1),

2
For simplicity, we present TD(0) in our paper, the algorithm and theoretical results

can be generalized to TD(𝜆) straightforwardly.

which are executed𝐾 times in between consecutive communication

rounds. Locally, each agent performs local TD-updates within each

communication round 𝑙 ∈ {0, · · · , 𝐿 − 1} as follows:
𝑤𝑖
𝑙,𝑘+1 = 𝑤

𝑖
𝑙,𝑘
+ 𝛽 · 𝛿𝑖

𝑙,𝑘
· 𝜙 (𝑠𝑙,𝑘 ), (2)

where 𝛽 > 0 is the constant step size and 𝛿𝑖
𝑙,𝑘

is the local TD error,

which is defined as follows

𝛿𝑖
𝑙,𝑘

:= 𝑟 𝑖
𝑙,𝑘+1 − 𝜇

𝑖
𝑙,𝑘
+ 𝜙 (𝑠𝑙,𝑘+1)𝑤𝑖𝑙,𝑘 − 𝜙 (𝑠𝑙,𝑘 )𝑤

𝑖
𝑙,𝑘
,

and 𝜇𝑖
𝑙,𝑘

tracks the local average reward, which is updated as follows

𝜇𝑖
𝑙,𝑘+1 = (1 − 𝛽)𝜇

𝑖
𝑙,𝑘
+ 𝛽𝑟 𝑖

𝑙,𝑘+1 . (3)

We remark that Eq. (3) is the key difference between the average

reward setting and the conventional discounted reward setting in

MARL-PE. In the discounted reward setting, there is no 𝜇𝑖 -terms.

The use of the 𝜇𝑖 -term is to keep track of the local average reward

for agent 𝑖 . Surprisingly, we will show later that consensus and

finite-time convergence results on𝑤𝑖 parameters can be obtained

without performing consensus on these 𝜇𝑖 terms. We also note that

each execution of Eq. (2) is considered performing one local TD

learning step. Within each inner loop, this local TD update step is

performed 𝐾 times.

Due to the privacy of the reward signals in the fully decentral-

ized setting, the agents are unable to access the rewards of any

other agents, let alone the average rewards. Therefore, commu-

nication/sharing of the value function approximation parameters

among the neighbors is necessary [4, 5, 7, 35]. This step is often

referred to as consensus update, which is defined as follows:

𝑤𝑖
𝑙+1,0 =

∑︁
𝑗∈N𝑖

𝐴𝑖 𝑗𝑤
𝑗

𝑙,𝐾
, (4)

where N𝑖 denotes the set of neighbors for agent 𝑖 . In other words,

after performing 𝐾 local TD-update steps, each agent shares its

parameter with the neighbors, receives the ones from the neighbors,

and then updates its own parameter in a weighted aggregation as

shown in Eq. (4).

We note that in our algorithm, the infrequent communication

is achieved by agents communicating with neighbors periodically

with the period being 𝐾 . We also note that when 𝐾 = 1, our al-

gorithm reduces to the vanilla distributed TD learning algorithm

[5, 6, 35]. Therefore, the vanilla distributed TD learning can be

viewed as a special case of our proposed algorithm.

5 CONVERGENCE ANALYSIS OF THE LOCAL
TD-UPDATE APPROACH FOR MARL-PE

In this section, we present the convergence results for Algorithm 1,

which further imply both the sample and communication complexi-

ties of the local TD-update approach for MARL-PE. To characterize

the convergence, we define the following quantities:

Ψ := E[(𝜙 (𝑠′) − 𝜙 (𝑠))𝜙⊤ (𝑠)] and

𝑏 :=
1

𝑁
E[𝜙 (𝑠) (

∑︁
𝑖∈N

𝑟 𝑖 (𝑠, 𝑎) − 𝐽𝜋 )], (5)

where 𝐽𝜋 is defined in Eq. (1). The expectations in Eq. (5) are taken

over the steady state distribution induced by the given joint policy,

which is guaranteed to exist due to Assumption 1, stationary action



Algorithm 1: Decentralized TD Learning with periodic

local TD-update steps

Input : Initial state 𝑠0, 𝜋 = {𝜋𝑖 |𝑖 ∈ N}, feature map 𝜙 ,

initial parameters {𝑤𝑖
0,0
, 𝜇𝑖

0,0
|𝑖 ∈ N}, step size 𝛽 ,

communication round number 𝐿, local step

number 𝐾

1 for 𝑙 = 0, · · · , 𝐿 − 1 do
2 𝑠𝑙,0 = 𝑠𝑙−1,𝐾 (when 𝑙 = 0 and 𝑘 = 0 , 𝑠𝑙,𝑘 = 𝑠0);

3 for 𝑘 = 0, · · · , 𝐾 − 1 do
4 for all 𝑖 ∈ N do in parallel
5 Execute action 𝑎𝑖

𝑙,𝑘
∼ 𝜋𝑖 (·|𝑠𝑙,𝑘 );

6 Observe the state 𝑠𝑙,𝑘+1 and reward 𝑟 𝑖
𝑙,𝑘+1;

7 Update 𝛿𝑖
𝑙,𝑘
←

𝑟 𝑖
𝑙,𝑘+1 − 𝜇

𝑖
𝑙,𝑘
+ 𝜙 (𝑠𝑙,𝑘+1)𝑇𝑤𝑖𝑙,𝑘 − 𝜙 (𝑠𝑙,𝑘 )

𝑇𝑤𝑖
𝑙,𝑘
;

8 Update 𝜇𝑖
𝑙,𝑘+1 ← 𝛽𝑟 𝑖

𝑙,𝑘+1 + (1 − 𝛽)𝜇
𝑖
𝑙,𝑘
;

9 Local TD-update Step:

𝑤𝑖
𝑙,𝑘+1 ← 𝑤𝑖

𝑙,𝑘
+ 𝛽𝛿𝑖

𝑙,𝑘
· 𝜙 (𝑠𝑙,𝑘 );

10 end
11 end
12 for all 𝑖 ∈ N do in parallel
13 Consensus Update:𝑤𝑖

𝑙+1,0 ←
∑
𝑗∈N𝑖

𝐴(𝑖, 𝑗) ·𝑤 𝑗

𝑙,𝐾
;

14 end
15 end

Output : {𝑤𝑖
𝐿,0
|𝑖 ∈ N}

policy 𝑎 ∼ 𝜋 (·|𝑠) and state transition probability 𝑠′ ∼ 𝑃 (·|𝑠, 𝑎).
Furthermore, we define

𝑤∗ = −Ψ−1𝑏, (6)

where the invertibility is due to Ψ being negative definite [7, 19, 28].

Consequently, ∀𝑠,∀𝑘 ≥ 𝜏 (𝛽), we define mixing time 𝜏 (𝛽) as the
time index 𝑘 that satisfies the following relationship:

∥Ψ − E[(𝜙 (𝑠𝑘+1) − 𝜙 (𝑠𝑘 ))𝜙⊤ (𝑠) |𝑠0 = 𝑠] ∥ ≤ 𝛽, (7)

where the expectation is taken over appropriate distributions. We

note that under the Assumption 1, by [12, Theorem 4.9], the Markov

chain mixes at a geometric rate, which implies 𝜏 (𝛽) = O(log 1

𝛽
).

5.1 Supporting Lemmas
Before presenting our main theorem, we introduce two useful lem-

mas. Our strategy of convergence analysis is to divide the conver-

gence error into two parts. They are the consensus error, which

is defined as the agent’s parameters deviation from the average

parameter, and convergence error of the average parameter to the

solution of the ODE in Eq. (6).

First, we define the average of the parameters to be 𝑤̄𝑙,𝑘 =
1

𝑁

∑
𝑖∈N 𝑤

𝑖
𝑙,𝑘

for any communication round 𝑙 ∈ {0, · · · , 𝐿 − 1}
and local step 𝑘 ∈ {0, · · · , 𝐾 − 1} and similarly 𝜇𝑙,𝑘 = 1

𝑁

∑𝑁
𝑖=1 𝜇

𝑖
𝑙,𝑘
.

Then, we define the consensus error for agent 𝑖 as:

𝑄𝑖
𝑙,𝑘

:= 𝑤𝑖
𝑙,𝑘
− 𝑤̄𝑙,𝑘 (8)

and the matrix form is 𝑄𝑙,𝑘 = [𝑄1

𝑙,𝑘
, · · · , 𝑄𝑁

𝑙,𝑘
] ∈ R𝑛×𝑁 .

We provide an upper bound for the consensus error generated

by Algorithm 1 in the following lemma.

Lemma 1. Suppose that Assumptions 2–4 hold. For the consensus

error generated by Algorithm 1, if 𝛽𝐾 ≤ min{ 1
2
,

𝜂𝑁 −1

4(1−𝜂𝑁 −1 ) }, it then
holds that

∥𝑄𝐿,0∥ ≤ 𝜅1𝜌𝐿 ∥𝑄0,0∥ +
𝜅2𝛽𝐾

1 − 𝜌 , (9)

where 𝜅1 =
2𝑁 2 (1+𝜂−(𝑁 −1) )

1−𝜂𝑁 −1 , 𝜅2 = 8(1 + 𝜂−(𝑁−1) )𝑁
5

2 𝑟max and 𝜌 :=

(1 + 4𝛽𝐾) (1 − 𝜂𝑁−1). By the condition on 𝛽𝐾 , we have 0 < 𝜌 < 1.

The first term in Lemma 1 shows that even if the parameters are

not set to be the same initially, the effect of the initial consensus

error will vanish exponentially fast as the round of communication

𝐿 goes to infinity. The second term is linear with respect to 𝛽𝐾 ,

which resembles the constant term in optimization using stochastic

gradient descent (SGD) with constant step-sizes. This product term

dictates the consensus error and the error level that the algorithm

converges to, see discussion on Figure 2b for more details. Next, we

provide a lemma that characterizes the convergence of the average

parameter 𝑤̄𝑙,𝑘 to the TD fixed point defined in Eq. (6).

Lemma 2. Suppose Assumptions 1-4 hold. For the 𝑤-parameters
generated by Algorithm 1, we have following result for the average of
the𝑤-parameters:

E[∥𝑤̄𝐿,0 −𝑤∗∥2]

≤𝑐2 (1 − 𝑐1𝛽)𝐾𝐿−𝜏 (𝛽 )
(√︃
∥𝑤̄0,0 −𝑤∗∥2 + (𝜇0,0 − 𝐽𝜋 )2

+ 𝑟max

3

)
2

+ 𝑐3𝛽𝜏 (𝛽), (10)

where 𝑐1, 𝑐2, 𝑐3 > 0 are constants that are independent of step-size
𝛽 , local TD-update step 𝐾 and communication round 𝐿; and 𝜏 (𝛽) =
O(log 1

𝛽
) is the mixing time. The specified expressions of the constants

𝑐1, 𝑐2, and 𝑐3 can be found in supplementary material.

The average parameter 𝑤̄𝐿,0 =
1

𝑁

∑
𝑖∈N 𝑤

𝑖
𝐿,0

corresponds to the

updates after 𝐾 × 𝐿 samples and 𝐿 communication rounds. Lemma

2 shows that 𝑤̄𝐿,0 converges to solution of the ODE with the rate

given by the right-hand-side (RHS) of Eq. (10).

5.2 Main Results
Now, we state the main convergence result of Algorithm 1:

Theorem 1. Suppose that Assumptions 1-4 hold. For the given
policy, consider the output parameters {𝑤𝑖

𝐿,0
|𝑖 ∈ N} generated by

Algorithm 1. If 𝛽𝐾 ≤ min{ 1
2
,

𝜂𝑁 −1

4(1−𝜂𝑁 −1 ) }, it then follows that:

E

[ 𝑁∑︁
𝑖=1

∥𝑤𝑖𝐿,0 −𝑤
∗∥2

]
≤ 2𝑛

(
𝜅1𝜌

𝐿 ∥𝑄0,0∥ +
𝜅2𝛽𝐾

1 − 𝜌

)
2

+ 2𝑁
(
𝑐2 (1 − 𝑐1𝛽)𝐾𝐿−𝜏 (𝛽 ) (

√︃
∥𝑤̄0,0 −𝑤∗∥2 + (𝜇0,0 − 𝐽𝜋 )2

+𝑟max

3

)2 + 𝑐3𝛽𝜏 (𝛽)
)
, (11)

where 𝜅1, 𝜅2, 𝑐1, 𝑐2, 𝑐3 > 0, 0 < 𝜌 < 1 are constants, and 𝑤̄0,0 =
1

𝑁

∑
𝑖∈N 𝑤

𝑖
0,0
, 𝜇0,0 = 1

𝑁

∑
𝑖∈N 𝜇

𝑖
0,0

and 𝑄0,0 is the initial consensus



error defined in Eq. (8). Furthermore, by letting

𝛽 =Θ(𝜖 log−1 (1/𝜖)), 𝐾 =Θ(1/𝜖1/2 log(1/𝜖)), 𝐿=Θ(1/𝜖1/2 log(1/𝜖)),

we have E[∑𝑁
𝑖=1 ∥𝑤𝑖𝐿,0 − 𝑤

∗∥2] = O(𝜖). The sample complexity
is 𝐾𝐿 = O(1/𝜖 log2 (1/𝜖)) and the communication complexity is
𝐿 = O(1/𝜖1/2 log(1/𝜖)).

Note that due to the use of a double-loop structure in Algorithm

1, the parameter𝑤𝑖
𝐿,0

of agent 𝑖 corresponds to the result after𝐾 ×𝐿
samples. We remark that to the best of our knowledge, the state-

of-the-art sample complexity for the average reward RL in single

agent setting is O((1/𝜖) log2 (1/𝜖)) [24]. The sample complexity

of our algorithm in decentralized multi-agent setting, matches this
sample complexity in the single-agent setting.

5.3 Discussion
In this section, we provide a comparison of the proposed local

TD-update step approach with vanilla and batching approaches in

terms of both sample and communication complexities.

1) Sample complexity in comparison with single agent
setting: The sample complexity of our algorithm matches the state-

of-the-art sample complexity in the single-agent setting. Also, com-

pared to the single-agent discounted reward policy evaluation [32]

(a batching method) and its multi-agent counterpart [4], the sam-

ple complexity of local TD-update only differs by a log factor. We

note that, in [4, 7, 32], the algorithms are complete actor-critic

algorithms. Thus, we only compare our results with their policy

evaluation counterparts(i.e., critic steps).

2) Communication and sample complexity in comparison
with vanilla approach: In the local TD-update algorithm, between

consecutive communication rounds, the number of local TD-update

steps for each agent can be 𝐾 = O(1/𝜖1/2 log(1/𝜖)). This improved

the communication complexity of vanilla distributed TD algorithms

[5, 6, 35] by a factor of𝐾 = O(1/𝜖1/2 log(1/𝜖)). The communication

complexity of the local TD-update is 𝐿 = O(1/𝜖1/2 log(1/𝜖)). In
terms of sample complexity, both approaches require a sample

complexity of O(1/𝜖 log2 (1/𝜖)). This is because as we set local step
𝐾 = 1 of local TD approach, it reduces to the vanilla approach.

3) Communication and sample complexities in compari-
son with batching approach: It is worth noting that “batching”
[7] is another natural TD learning approach that can achieve in-

frequent communication among agents via locally updating value

function parameters using a batch of 𝑀 (≥ 1) samples, then per-

forming consensus. Specifically, instead of repeatedly updating𝑤𝑖

for each sample locally as in Line 10 in Algorithm 1, at each commu-

nication round 𝑙 ∈ {0, · · · , 𝐿 − 1}, the batching approach performs

the following update:

𝑤̃𝑖
𝑙
← 𝑤𝑖

𝑙
+ 1

𝑀

𝑀−1∑︁
𝜏=0

𝛿𝑖
𝑙,𝜏
(𝑤𝑖
𝑙
) · 𝜙 (𝑠𝑙,𝜏 ),

which is followed by a consensus update same as Line 12 in Algo-

rithm 1 for {𝑤̃𝑖
𝑙
}𝑁
𝑖=1

. The full algorithm description of the batching

approach can be found in [7, Algorithm 1]. The key difference

Table 1: Comparison of sample and communication complex-
ities.

Approaches Sample Complexity Communication Complexity

Vanilla O(1/𝜖 log2 (1/𝜖)) O(1/𝜖 log2 (1/𝜖))
Batching O(1/𝜖3/2 log(1/𝜖)) O(1/𝜖1/2 log(1/𝜖))
Local TD O(1/𝜖 log2 (1/𝜖)) O(1/𝜖1/2 log(1/𝜖))

between batching and local TD-update approaches is that the 𝑤-

parameters are updated repeatedly with each sample in local TD-

update, whereas in batching, the 𝑤-parameters are updated only
once through a batch of samples.

Under the average reward setting, the local TD-update approach

achieves the same communication complexity. However, the lo-

cal TD-update approach outperforms the batching approach in

terms of sample complexity. Specifically, the sample complexity

upper bound of the local TD-update approach is O(1/𝜖 log2 (1/𝜖)).
In contrast, the sample complexity of the batching approach is

O(1/𝜖3/2 log(1/𝜖)), which is worse than that of the local TD-update
approach by a factor of O(1/𝜖1/2/log(1/𝜖)).

To conclude the comparisons, we list the sample and communi-

cation complexities of different approaches in Table 1.

6 EXPERIMENTAL RESULTS
In this section, we conduct numerical experiments to compare our

proposed algorithm, TD learning with local steps, with vanilla TD

learning [5, 6, 35] and the batch TD learning [4, 7] in both synthetic

settings as in [35] and cooperative navigation tasks as in [15].

6.1 Performance with Synthetic Experiments
1) Synthetic Experiment Setup: We consider the same setting as

in Section 6.1 of [35]. There are 𝑁 = 20 agents, each of which has a

binary-valued action space, i.e.,A𝑖 = {0, 1} for all 𝑖 ∈ N . There are

|S| = 10 states. The entries in the transition matrix are uniformly

sampled from the interval [0, 1] and normalized to be stochastic. For

each agent 𝑖 and global state action pair (𝑠, 𝑎), the reward 𝑟 𝑖 (𝑠, 𝑎) is
sampled uniformly from [0, 4] and the instantaneous rewards {𝑟 𝑖𝑡 }
are sampled uniformly within the set [𝑟 𝑖 (𝑠, 𝑎) − 0.5, 𝑟 𝑖 (𝑠, 𝑎) + 0.5].
The policy considered in the simulation is 𝜋𝑖 (·|𝑠) = 0.5 for all 𝑖 ∈ N ,

𝑠 ∈ S. The entries of feature matrix Φ are sampled uniformly at

random from [0, 1] with feature dimension 𝑛 = 5 and ensured to be

full rank and satisfy Assumption 4. In addition, we set each feature

vector to be of unit length. The network topology is chosen as a

ring network with diagonal elements being 0.4 and off-diagonal

elements being 0.3. The simulation results are averaged over 10

trials. We choose the step sizes for our algorithm to be 0.005, vanilla

TD to be 0.1, and batch TD to be 0.1. We note that these step sizes

are chosen to be best for the corresponding algorithms.

The objective error is defined as the normalized version of con-

vergence term (LHS of Eq. (11)), i.e., the sample mean errors divided



by the number of agents 𝑁 and the dimension number 𝑛:

Objective Error

:= sample average of

√︃∑𝑁
𝑖=1 ∥𝑤𝑖𝑙,𝑘 −𝑤

∗∥2

𝑛𝑁
for 10 trials.

We remark that due to the fact that the transition matrix is

not dependent on joint action, the steady state distribution can be

computed and so is the value of𝑤∗, whose definition is in Eq. (6).
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(a) 𝐾 = 50, 𝐿 = 200.
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(b) 𝐾 = 100, 𝐿 = 100.
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(c) 𝐾 = 50, 𝐿 = 200.
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(d) 𝐾 = 100, 𝐿 = 100.

Figure 1: Convergence with respect to the number of com-
munication rounds and samples.

2) Convergence Performance: In Fig. 1, the y-axis is the nor-

malized convergence error of the LHS of Eq. (11) and the x-axes are

the numbers of communication rounds in Figure 1a,1b and sample

numbers in Figs. 1c and 1d. For fair comparisons between the local

TD-update and batching approaches, we keep the local TD-update

step number and batch size to be the same for the majority of the

comparisons except for Fig. 2a, where we compare the results for

various local TD-update step numbers and batch sizes.

In Fig. 1a, we illustrate the convergence results with respect

to the communication rounds for all three algorithms, where the

local TD-update step 𝐾 = 50 for the local TD-update approach

and the batch size is 50 for batch algorithm. Under such a setting,

both local TD-update and batched TD algorithms perform consen-

sus communication every 50 samples. We can see that within 200

communication rounds, both local TD-update and batching algo-

rithms converge to a very similar error level, yet the vanilla TD

algorithm does not converge even after 400 rounds of communi-

cation. Between local TD-update and batching, both algorithms

perform similarly, which means similar communication rounds to

converge. In Fig. 1b, when local TD-update step 𝐾 = 100 and the

batch size is 100, the local TD-update approach requires the least

amount of communication rounds to converge compared to the

batching approach. On the other hand, local TD-update again per-

forms significantly better compared to vanilla TD. In Fig. 1d and 1c,

we illustrate the corresponding convergence results with respect
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Figure 2: Convergence comparisons with different settings
of (𝐾, 𝐿) and the impact of local TD-update steps 𝐾 on con-
vergence performance.

to the number of samples. We can see that vanilla TD eventually

converges but requires consensus operation at every sample. Fig. 1

verifies the theoretical analysis that allowing local TD-update steps

does reduce the number of communication rounds compared to

vanilla TD. In addition, the communication rounds of local TD-

update algorithm is similar in the setting of Fig. 1a and significantly

better in the setting of Fig. 1b.

In addition, we compare local TD-update approach under differ-

ent number of local TD-update steps 𝐾 and communication rounds

𝐿 with batching approach under different batch sizes 𝑀 and com-

munication rounds 𝐿 in Fig. 2a. In general, the local TD-update

approach converges faster than the batching approach, but with a

slightly larger objective error. As the number of local TD-update

steps increases, the convergence speed of the local TD-update ap-

proach converges also increases, but the objective error becomes

larger. This verifies the “agent-drift” phenomenon. In contrast, as

the batch size increases, the convergence speed becomes slower,

and the objective error continues to improve.

3) Impacts of the Number of Local TD-Updates: Next, we
further investigate the effect of the number of local TD-update

steps on the convergence of the local TD-update approaches and

the agent-drift phenomenon. In Fig. 2b, we vary the number of

local steps from 𝐾 = 40 to 𝐾 = 250. There are two interesting

observations from our experiments. First, the initial dropping of

objective error increases as the number of local TD-update steps

increases. For example, when 𝐾 = 100 or larger, the curves drop

much more rapidly in the beginning compared to the curves with a

smaller 𝐾 . Second, the objective error floor increases as the number

of local steps increases. For example, when 𝐾 ≤ 100, the objective

error floor is relatively low and stable. However, as 𝐾 increases to

200 or 250, the objective error floor also increases with a larger

oscillation magnitude. This observation is consistent with our the-

oretical analysis in Lemma 1, where the second term on the RHS

of Eq. (9) is proportional to the product of step size 𝛽 and local

TD-update step 𝐾 . This term indicates that the objective error will

only converge to neighborhood of zero, whose size depends on 𝛽𝐾 .

As a result, for a larger 𝐾-value, the objective error will oscillate

with a larger magnitude. This is similar to the constant error term in

the convergence of the dencentralized SGD method [17]. Also, the

agent-drift phenomenon worsens as the number of local TD-update

steps increases, which can be seen by the result of𝐾 ≥ 200 in Fig. 2b.

To summarize, under a fixed step size, more local TD-update steps



Figure 3: A cooperative navigation task.

improve the initial convergence speed, but will eventually result in

a larger objective error floor.

6.2 Performance with Cooperative Navigation
As illustrated in Fig. 3, in the cooperative navigation task [15, 35],

the agents (blue circles) are trained to cover the landmarks (crosses).

Agents observe positions of all other agents and all landmarks and

collaboratively cover the landmarks while avoiding collisions. The

rewards for agents are defined through the proximity to the nearest

landmarks. Unlike the synthetic experiments, the fixed point of the

corresponding ODE as in Eq. (6) is difficult to compute. Thus, we

use the mean squared Bellman error(MSBE) as the performance

metric. Due to space limitation, we relegate some experimental

results to our online technical report [8], including discussions on

various network typologies, local TD-update steps, batch sizes, step

sizes, and consensus error metrics.

1) Experiment Setup and Performance Metrics:We consider

a cooperative navigation task that is adapted from one of the multi-

agent environments [15]. There are N = 9 agents in total, and the

goal is to cover 9 landmarks collaboratively. Each agent chooses

from the action space A𝑖 ={no action, move left, move right, move

down, move up} based on the given policy 𝜋 . The policy considered

in the simulation is 𝜋𝑖 (·|𝑠) = 0.2 for all actions and 𝑖 ∈ N , 𝑠 ∈
S, i.e. uniformly random policy. The local rewards are given by

the distance between the agents and the nearest goal landmarks.

However, if the agents collide with each other, a penalty will incur.

The agents are trained to cover landmarks and reach the destination,

while avoiding to collide with other agents, and the entire learning

process is fully decentralized. The feature dimension here is 𝑛 = 36,

which includes all agents’ self positions, landmark relative positions,

and other agent relative positions. We choose step sizes for the TD-

update and the vanilla TD approaches to be both 0.1. We note

that such step sizes are chosen for the best performance for the

corresponding algorithms.

As mentioned earlier, we adopt the mean squared Bellman er-

ror (MSBE) as our performance metric. Given 𝑤-parameters and

samples (𝑠𝑘 , 𝑠𝑘+1), the empirical squared Bellman error (SBE) of the

𝜅-th sample is defined as:

SBE

({
𝑤𝑖𝜅

}𝑁
𝑖=1

, 𝑠𝜅 , 𝑠𝜅+1
)

: =
1

𝑁

∑︁
𝑖∈N

(
𝜙 (𝑠𝜅 )𝑇𝑤𝑖𝜅 + 𝜇𝜅 − 𝑟𝜅 − 𝜙 (𝑠𝜅+1)𝑇𝑤𝑖𝜅

)
2

,

where 𝑟𝜅 = 1

𝑁

∑
𝑖∈N 𝑟

𝑖
𝜅 and 𝜇𝜅 = 1

𝑁

∑
𝑖∈N 𝜇

𝑖
𝜅 . Then, MSBE up to

the 𝑘-th sample is defined as the average of SBEs over the history,

which is as follows:

MSBE :=
1

𝑘

𝑘∑︁
𝜅=1

SBE

({
𝑤𝑖𝜅

}𝑁
𝑖=1

, 𝑠𝜅 , 𝑠𝜅+1
)
.

(a) Bellman error with respect to
communication rounds.

(b) Bellman error with respect to
the number of samples.

Figure 4: Convergence in terms of the number of communi-
cation rounds and training samples.

2) Convergence Performance: In Fig. 4a and 4, we illustrate

the results of MSBEs with respect to the number of communication

rounds and training samples, where 𝑁 = 9 agents are connected

through an Erdos-Renyi (ER) network. We set the number of lo-

cal TD-update steps and the batch size both to be 20 for the local

TD-update and batching approaches, respectively. Similar to the

synthetic experiments, all algorithms converge to similar levels

of MSBE as shown in Fig. 4. This again verifies our theoretical

analysis that allowing local TD-update steps and performing in-

frequent communications do not affect convergence. Moreover, in

this setting, the local TD-update algorithm converges much faster

in terms of the number of communication rounds. Specifically, in

Fig. 4a, the local TD-update algorithm requires roughly 250 rounds

of communication to converge, while both the batching and vanilla

TD algorithms perform similarly and require more than 500 rounds

of communication to converge.

7 CONCLUSION
In this paper, we investigated the question of whether the local

TD-update approach can achieve low sample and communication

complexities for multi-agent reinforcement learning policy eval-

uation (MARL-PE) under the average reward setting and, if so,

how is the performance in comparison with other approaches un-

der the average reward setting. Our theoretical analysis and ex-

perimental results show that the local TD-update approach can

significantly lower the communication complexity compared to

the vanilla TD learning. In addition, our theoretical analysis also

shows that the number of local TD-update steps can be as large

as 𝐾 = O(1/𝜖1/2 log(1/𝜖)) to converge to an 𝜖-neighborhood of

the solution of the corresponding ODE for MARL-PE. Compared

with the batching approach for solving MARL-PE under average

reward, the local TD-update approach achieves the same communi-

cation complexity as that of the batching approach, while enjoying

a better sample complexity by a factor of O(1/𝜖1/2) than that of

the batching approach. Our experimental results also verify our

theoretical findings in both synthetic and real-world data settings.



Algorithm 2: Single Agent TD(0) Learning in Average

Reward Setting

Input : Initial state 𝑠0, 𝜋 , feature map 𝜙 , initial parameters

𝑤0, 𝜇0, step size 𝛽 , traning iteration 𝑇

1 for 𝑡 = 0, · · · ,𝑇 − 1 do
2 Execute action 𝑎𝑡 ∼ 𝜋 (·|𝑠𝑡 );
3 Observe the state 𝑠𝑡+1 and reward 𝑟𝑡+1;
4 Update 𝛿𝑡 ← 𝑟𝑡+1 − 𝜇𝑡 + 𝜙 (𝑠𝑡+1)𝑇𝑤𝑡 − 𝜙 (𝑠𝑡 )𝑇𝑤𝑡 ;
5 Update 𝜇𝑡+1 ← 𝛽𝑟𝑡+1 + (1 − 𝛽)𝜇𝑡 ;
6 TD Step:𝑤𝑡+1 ← 𝑤𝑡 + 𝛽𝛿𝑡 · 𝜙 (𝑠𝑡 );
7 end
Output :𝑤𝑇

A SINGLE-AGENT POLICY EVALUATION
CONVERGENCE UNDER THE AVERAGE
REWARD SETTING

In this section, we provide the finite-time convergence result for

single-agent RL in the average reward setting, as the update of

average parameter 𝑤̄ in Lemma 2 is essentially a centralized single-

agent TD learning. The finite time convergence for a more general

form of stochastic approximation has been established in [24]. We

utilize such results by verifying the conditions in [24].

A.1 Single Agent RL in Average Reward Setting
We first describe the single agent TD(0) algorithm in the average

reward setting in Algorithm 2.

Theorem 2. Suppose 𝑁 = 1 and Assumptions 1-4 hold. For the
parameter generated by Algorithm 2, we have following results:

E[∥𝑤𝑇 −𝑤∗∥2] ≤𝑐2 (1 − 𝑐1𝛽)𝑇−𝜏 (𝛽 ) (
√︃
∥𝑤0 −𝑤∗∥2 + (𝜇0 − 𝐽𝜋 )2

+ 𝑟max

3

)2 + 𝑐3𝛽𝜏 (𝛽), (12)

where 𝑐1, 𝑐2, 𝑐3 > 0 are constants that are independent of step size 𝛽
and iteration number 𝑇 ; and 𝜏 (𝛽) = O(log 1

𝛽
) is the mixing time.

Proof. To apply Theorem 7 in [24], we need to verify the three

conditions in [24, Section 2.1]. We have the following notations

𝑍𝑡 = (𝑠𝑡 , 𝑎𝑡 ) and 𝑟𝑡+1 = 𝑟 (𝑍𝑡 ). For TD(0) learning under the average
reward setting, we have

𝜇𝑡+1 = 𝜇𝑡 + 𝛽 (𝑟𝑡+1 − 𝜇𝑡 ),

𝑤𝑡+1 = 𝑤𝑡 + 𝛽 (𝑟𝑡+1 − 𝜇𝑡 + 𝜙𝑇 (𝑍𝑡+1)𝑤𝑡 − 𝜙𝑇 (𝑍𝑡 )𝑤𝑡 )𝜙 (𝑍𝑡 ).
Equivalently, the matrix form is(
𝜇𝑡+1
𝑤𝑡+1

)
=

(
𝜇𝑡

𝑤𝑡

)
+𝛽

(
−1 0

−𝜙 (𝑍𝑡 ) 𝜙 (𝑍𝑡 ) (𝜙 (𝑍𝑡+1) − 𝜙 (𝑍𝑡 ))𝑇

)
·
(
𝜇𝑡

𝑤𝑡

)
+𝛽

(
𝑟𝑡+1

𝜙 (𝑍𝑡 )𝑟𝑡+1

)
. (13)

So the corresponding ODE can be written as:(
¤𝜇
¤𝑤

)
=

(
−1 0

−Φ𝑇𝐷𝑠1 Φ𝑇𝐷𝑠 (𝑃𝜋 − 𝐼 )Φ

)
·
(
𝜇

𝑤

)
+

(
𝐽𝜋

Φ𝑇𝐷𝑠𝑅

)
, (14)

where 𝑃𝜋 is the state transition matrix induced by the policy 𝜋 ,

𝐷𝑠 = diag(𝑑 (𝑠1), · · · , 𝑑 (𝑠 |S | )) and 𝑅 := [𝑅(𝑠), 𝑠 ∈ S]𝑇 , where
𝑅(𝑠) = ∑

𝑎 𝜋 (𝑎 |𝑠)𝑟 (𝑠, 𝑎). Now, using the notation in [24], we have

𝐴 = 𝐴̃ =

(
−1 0

−Φ𝑇𝐷𝑠1 Φ𝑇𝐷𝑠 (𝑃𝜋 − 𝐼 )Φ

)
and

˜𝑏 =

(
𝐽𝜋

Φ𝑇𝐷𝑠𝑅

)
.

Next, by centering

(
𝜇

𝑤

)
←

(
𝜇

𝑤

)
−

(
𝐽𝜋

𝑤∗

)
and defining, we have

𝑋𝑘 = (𝑍𝑘 , 𝑍𝑘+1)𝑇 ,

𝐴(𝑋𝑘 ) =
(
−1 0

−𝜙 (𝑍𝑡 ) 𝜙 (𝑍𝑡 ) (𝜙 (𝑍𝑡+1) − 𝜙 (𝑍𝑡 ))𝑇

)
,

𝑏 (𝑋𝑘 ) =
(

𝑟𝑡+1
𝜙 (𝑍𝑡 )𝑟𝑡+1

)
−𝐴(𝑋𝑘 ) ·

(
𝐽𝜋

𝑤∗

)
,

¯𝑏 = 0.

Note that 𝐴

(
𝐽𝜋

𝑤∗

)
= ˜𝑏. Next, consider the following conditions:

• Condition 1: Note that

| |𝐸 [𝑏 (𝑋𝑘 |𝑋0 = (𝑍0, 𝑍1) = (𝑧0, 𝑧1))] | |

=| |
∑︁
𝑖

(𝑃 (𝑍𝑘 = 𝑖 | (𝑍0, 𝑍1) = (𝑧0, 𝑧1)) − 𝑑 (𝑖))

·
((

𝑟 (𝑖)
𝜙 (𝑖)𝑟 (𝑖)

)
−

(
−1 0

−𝜙 (𝑖) 𝜙 (𝑖) (∑𝑗 𝑝
𝜋
𝑖 𝑗
𝜙 ( 𝑗) − 𝜙 (𝑖))𝑇

) (
𝐽𝜋

𝑤∗

))
| |

≤| |
∑︁
𝑖

(𝑃 (𝑍𝑘 = 𝑖 | (𝑍0, 𝑍1) = (𝑧0, 𝑧1)) − 𝑑 (𝑖)) | | · 𝑏max,

where 𝑏max = 2(𝑟max + 𝐽𝜋 ) + 2𝑤∗, where we used Assump-

tion 4 and

| |𝐴 − 𝐸 [𝐴(𝑋𝑘 ) |𝑋0 = (𝑍0, 𝑍1) = (𝑧0, 𝑧1)] | |

=| |
∑︁
𝑖

(𝑃 (𝑍𝑘 = 𝑖 | (𝑍0, 𝑍1) = (𝑧0, 𝑧1)) − 𝑑 (𝑖))

·
(
−1 0

−𝜙 (𝑖) 𝜙 (𝑖) (∑𝑗 𝑝
𝜋
𝑖 𝑗
𝜙 ( 𝑗) − 𝜙 (𝑖))𝑇

)
| |

≤ 4| |
∑︁
𝑖

(𝑃 (𝑍𝑘 = 𝑖 | (𝑍0, 𝑍1) = (𝑧0, 𝑧1)) − 𝑑 (𝑖)) | |.

Since {𝑍𝑘 } is a finite state, aperiodic and irreducible Markov

chain, it has a geometric mixing rate, so Assumption 1 holds.

• Condition 2: By Assumption 4, max𝑖∈S | |𝜙 (𝑖) | | ≤ 1 < ∞
and max𝑖∈S×A 𝑟 (𝑖) = 𝑟max, it implies

| |𝐴(𝑋𝑘 ) | | = | |
(
−1 0

−𝜙 (𝑖) 𝜙 (𝑖) (𝜙 ( 𝑗) − 𝜙 (𝑖))𝑇

)
| | ≤ 4.

Hence it is bounded. To normalize, we can set 𝐴(𝑖) ← 𝐴(𝑖 )
4

and 𝑏 (𝑖) ← 𝑏 (𝑖 )
4

to ensure the | |𝐴| | ≤ 1.



• Condition 3: By the standard assumptions on the feature

vectors in [28], we have that (1) Φ is full rank; (2) for every

𝜈 ∈ 𝑅𝑛 , Φ𝜈 ≠ 1. This ensures that real parts of all eigenvalues
of 𝐴 are strictly negative.

As a result, by directly applying Theorem 7 of [24], we have

E[∥𝑤𝑇 −𝑤∗∥2 + |𝜇𝑇 − 𝐽𝜋 |2]

≤𝑐2 (1 − 𝑐1𝛽)𝑇−𝜏 (𝛽 ) (
√︃
∥𝑤0 −𝑤∗∥2 + (𝜇0 − 𝐽𝜋 )2

+ 𝑟max

3

)2 + 𝑐3𝛽𝜏 (𝛽),

from which the result in Eq. (12) follows. □

A.2 Details of the Constants 𝑐1, 𝑐2, and 𝑐3 in
Lemma 2

The average parameter is signaled by the average of the rewards, i.e.

𝑟𝑙,𝑘 = 1

𝑁

∑
𝑖∈N 𝑟

𝑖
𝑙,𝑘

during both the local TD-update and consensus

steps. Therefore, the method updates similar to a centralized TD

learning in a single-agent setting. By applying Theorem 2 for the

average parameter, we have following results:

E[| |𝑤̄𝐿,0 −𝑤∗ | |2] ≤𝑐2 (1 − 𝑐1𝛽)𝐾𝐿−𝜏 (𝛽 ) (
√︃
| |𝑤̄0 −𝑤∗ | |2 + (𝜇0 − 𝐽𝜋 )2

+ 𝑟max

3

)2 + 𝑐3𝛽𝜏 (𝛽),

where 𝜏 (𝛽) is a mixing time. Under Assumption 1, 𝜏 (𝛽) = 𝑂 (log 1

𝛽
).

To specify the constants 𝑐1, 𝑐2, 𝑐3, recall the definition of Ψ in Eq. (5),

which is negative definite [28]. Further, define

Ψ̃ :=

(
−1 0

−Φ𝑇𝐷𝑠1 Ψ

)
,

where 𝐷𝑠 = diag(𝑑 (𝑠1), · · · , 𝑑 (𝑠 |S | )) and Φ is the feature matrix. It

is easy to see the lower diagonal block matrix Ψ̃ is a Hurwitz matrix

due to the fact that both diagonal blocks are Hurwitz. Therefore,

we have a symmetric matrix 𝑈 > 0 [24] such that

Ψ̃𝑇𝑈 +𝑈 Ψ̃ + 𝐼 = 0,

which is referred to as the Lyapunov equation. For symmetricmatrix

𝑈 , there exist the largest and smallest eigenvalues 𝜆max and 𝜆min,

respectively. In addition, 𝜆max and 𝜆min are both positive. As a

result, by [24, Theorem 7], the constants are:

𝑐1 =
0.9

𝜆max

,

𝑐2 = 2.25
𝜆max

𝜆min

,

𝑐3 =
2𝜆2

max
(𝑟2
max
+ 55(1 + 𝑟max)3)

0.9𝜆min

.

B COOPERATIVE NAVIGATION TASK
In this section, we provide further experimental details on coopera-

tive navigation task in addition to Section 6.2. Moreover, we use

consensus error as another performance metric, which is defined

as following

CE

({
𝑤𝑖
𝑘

}𝑁
𝑖=1

)
:=

1

𝑁

∑︁
𝑖∈N



𝑤𝑖
𝑘
−𝑤𝑘
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(a) Ring
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(b) 4-Regular
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(c) 6-Regular
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(d) ER
Network

(e) Complete
Network

Figure 5: Network Topology

B.1 Network Topology
We compare all algorithms under five different network typolo-

gies. These are ring network, 4-regular network, 6-regular network,

Erdos-Renyi(ER) network with 0.5 connection probability, and fully

connected network. These network topologies are illustrated in

Figure 5. For simplicity, the local aggregation is the average of

neighboring nodes for all networks.

B.2 Convergence Performance
First, we show the empirical convergence performances of all algo-

rithms in terms of MSBEs and CEs. Here we choose the number of

local steps to be 𝐾 = 20 for local TD-update algorithm, the batch

size to be 20 for batch TD algorithm. For all algorithms, we set the

total sample number to be 10000. The comparisons among the algo-

rithms are shown in Figure 6-10 over various network topologies.

Left columns of the Figure 6-10 demonstrate the mean squared Bell-

man error(MSBE), and right columns demonstrate the consensus

error(CE).

We can see that all algorithms converge. More specifically, in

terms of MSBE, the error floor of vanilla TD is the lowest, our

proposed local TD-update approach is the second best and batch

TD algorithm is the worst with a significant error gap. Similarly

for CE, vanilla TD shows the lowest consensus error, our local

TD-update approach shows slightly higher error, while batch TD

algorithm shows the largest and oscillating consensus error across

all network topologies. This verifies our analysis that allowing

local steps and performing infrequent communications is feasible

and can converge. In this parameter setting, vanilla TD algorithm

performs 10000 communication rounds, which is the most, batch

TD algorithm performs 1000 communication rounds, while local

TD-update algorithm only performs 500 communication rounds.

For more details, see discussion on the communication round in

Section B.3.

In Figure 11, we present the topology effect on our proposed algo-

rithm. It is, in general, as the network becomes more and more con-

nected the consensus error fluctuates less. Intuitively, with denser

network, after local consensus aggregation, the parameter can be

closer to the global average of the network.
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Figure 6: Comparison among Algorithms in Ring Network
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Figure 7: Comparison among Algorithms in 4-Regular Net-
work
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Figure 8: Comparison among Algorithms in 6-Regular Net-
work
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Figure 9: Comparison among Algorithms in ER Network
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Figure 10: Comparison among Algorithms in Complete Net-
work
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Figure 11: Topology on Local TD Algorithm

In addition, we have compared different pairs of local step and

communication round for our proposed algorithm and different

pairs of batch size and communication round for batch TD algo-

rithm in Figure 12 for cooperative navigation task. In this setting,

all algorithms converge to a similar Bellman error level. However,

the convergence for local TD algorithm is faster than batch TD

algorithms in all parameter settings. Moreover, with the increase

of batch size, batch TD algorithm seems to converge slower while

with the increase of local step, local TD algorithm convergence

increases in general but not significantly.

0 2000 4000 6000 8000 10000
Sample Number

0

5

10

15

20

25

30

35

40

45

50

M
ea

n 
Sq

ua
re

d 
Be

llm
an

 E
rro

r

Vanilla TD Learning
local TD learning with K=5, L=2000
local TD learning with K=10, L=1000
local TD learning with K=20, L=500
Batch TD learning with M=5,L=2000
Batch TD learning with M=10,L=1000
Batch TD learning with M=20,L=500

Figure 12: Additional Comparisons



B.3 Convergence Performance With Respect to
Communication Rounds

In Figure 13, we provide the convergence results with respect to

the communication rounds for all algorithms, where the local step

𝐾 = 20 for local TD-update algorithm and the batch size is 20 for

batch TD algorithm. We can see that within 500 communication

rounds, local TD-update algorithm converges and requires much

less communication round than vanilla TD algorithm, the conver-

gence of which requires more than 1000 communication rounds.

On the other hand, local TD-update approach converges to a lower

error floor compared to batch TD algorithm. We can observe such

empirical results across all network topologies.

B.4 Impacts of the Number of Local Steps on
Convergence

Next, we illustrate the effect of the number of local steps 𝐾 on the

convergence for our proposed algorithm. In Figure 14, we vary

the number of local steps from 𝐾 = 10 to 𝐾 = 200. The right

column is the consensus error of first 2000 samples, which displays

a better view. As the number of local steps increases, the mean

squared Bellman error converges to a higher error level, on the

other hand, the consensus error oscillates more. In summary, larger

local steps helps with saving more communication cost while it

also result in converging to a higher mean squared Bellman error

and a greater fluctuation of the consensus error. This conclusion

echoes the results in synthetic experiment in Figure 2b.

B.5 Impacts of Step Size on Convergence
Here, we illustrate the effect of step size 𝛽 on the convergence for

our proposed algorithm and batch TD algorithm over 4-regular

network to shed lights on the choice of step sizes for batch TD

algorithm and our proposed local TD algorithm. First of all, Figure

15-17 show the performance of batch TD algorithm over various

batch sizes. The purple line shows the performance of our proposed

algorithm as a baseline comparison. In general, in terms of mean

squared Bellman error, larger step size 𝛽 leads to faster convergence

speed and larger error level. Smaller step size 𝛽 leads to slower

convergence speed, but could eventually converge to a smaller

error floor. Also, larger step size 𝛽 results in a greater consensus

error. Thus, we set step size 𝛽 = 0.1 and batch size to be 20 for batch

TD algorithm.
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Figure 15: Comparison among Different step sizes 𝛽 for TD
Learning with Batch Size 5 in 4 Regular Network
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Figure 16: Comparison among Different step sizes 𝛽 for TD
Learning with Batch Size 10 in 4 Regular Network
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Figure 17: Comparison among Different step size 𝛽 for TD
Learning with Batch Size 20 in 4 Regular Network

In Figure 18-20, we show the effect of step size 𝛽 on the conver-

gence performance of local TD-update algorithm. Similar to batch

TD algorithm, larger step size 𝛽 leads to faster convergence speed

and larger mean squared Bellman and consensus error floor in local

TD-update algorithm. However, the error floor differences among

different step sizes 𝛽 are smaller compared to batch TD algorithm.

In order to balance among convergence speed, error floor, and com-

munication cost, we decide to use step size 𝛽 = 0.05 and local step

𝐾 = 20.
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Figure 18: Comparison among Different step sizes 𝛽 for TD
Learning with Local Step 𝐾 = 10 in 4 Regular Network
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(b) 4-regular network
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(c) 6-regular network
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(d) ER network
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Figure 13: Convergence Respect to Communication Rounds
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Figure 14: Comparison among Different Local Steps in 4 Regular Network
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Figure 19: Comparison among Different step sizes 𝛽 for TD
Learning with Local Step 𝐾 = 20 in 4 Regular Network
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Figure 20: Comparison among Different step sizes 𝛽 for TD
Learning with Local Step 𝐾 = 50 in 4 Regular Network

C PROOFS OF LEMMA AND THEOREM FOR
AVERAGE REWARD SETTING

In this section, we provide the derivation for the consensus error.

Then, we prove the Lemma 1 and Theorem 1.

C.1 The derivation of consensus error
Within each communication round 0 ≤ 𝑙 ≤ 𝐿 − 1, the parameter

update𝑤𝑖
𝑙,𝑘

for agent 𝑖 at local step 𝑘 can be written as follows

𝑤𝑖
𝑙,𝑘+1

= 𝑤𝑖
𝑙,𝑘
+ 𝛽𝛿𝑖

𝑙,𝑘
· 𝜙 (𝑠𝑙,𝑘 )

=

(
𝐼 + 𝛽𝜙 (𝑠𝑙,𝑘 ) [𝜙 (𝑠𝑙,𝑘+1) − 𝜙 (𝑠𝑙,𝑘 )]𝑇

)
𝑤𝑖
𝑙,𝑘
+ 𝛽 (𝑟 𝑖

𝑙,𝑘+1 − 𝜇
𝑖
𝑙,𝑘
)𝜙 (𝑠𝑙,𝑘 )

= 𝐵𝑙,𝑘𝑤
𝑖
𝑙,𝑘
+ 𝑐𝑖

𝑙,𝑘
(15)

where 𝐵𝑙,𝑘 := 𝐼 +𝛽𝜙 (𝑠𝑙,𝑘 ) [𝜙 (𝑠𝑙,𝑘+1)−𝜙 (𝑠𝑙,𝑘 )]𝑇 and 𝑐𝑖
𝑙,𝑘

:= 𝛽 (𝑟 𝑖
𝑙,𝑘+1−

𝜇𝑖
𝑙,𝑘
)𝜙 (𝑠𝑙,𝑘 ). Then, from local step 0 to 𝐾 − 1, we have

𝑤𝑖
𝑙,𝐾

=

𝐾−1∏
𝑘=0

𝐵𝑙,𝑘𝑤
𝑖
𝑙,0
+
𝐾−1∑︁
𝑘=0

𝐾−1∏
𝑛=𝑘+1

𝐵𝑙,𝑛𝑐
𝑖
𝑙,𝑘
.

After a consensus update, the parameter for agent 𝑖 will be

𝑤𝑖
𝑙+1,0 =

∑︁
𝑗∈N𝑖

𝐴(𝑖, 𝑗) ·𝑤 𝑗

𝑙,𝐾

=
∑︁
𝑗∈N𝑖

𝐴(𝑖, 𝑗) ·
(
𝐾−1∏
𝑘=0

𝐵𝑙,𝑘𝑤
𝑗

𝑙,0
+
𝐾−1∑︁
𝑘=0

𝐾−1∏
𝑛=𝑘+1

𝐵𝑙,𝑛𝑐
𝑗

𝑙,𝑘

)
=

∑︁
𝑗∈N𝑖

𝐴(𝑖, 𝑗) ·
𝐾−1∏
𝑘=0

𝐵𝑙,𝑘𝑤
𝑗

𝑙,0
+

∑︁
𝑗∈N𝑖

𝐴(𝑖, 𝑗) ·
𝐾−1∑︁
𝑘=0

𝐾−1∏
𝑛=𝑘+1

𝐵𝑙,𝑛𝑐
𝑗

𝑙,𝑘
.

The equation above shows the parameter update between two

consecutive communication rounds. Now we consider the aver-

age dynamics of the parameters across all agents. Recall 𝑤̄𝑙,𝑘 =
1

𝑁

∑
𝑖∈N 𝑤

𝑖
𝑙,𝑘

, then within each communication round 0 ≤ 𝑙 ≤ 𝐿−1,



using equation 15 we have

𝑤̄𝑙,𝑘+1 =
1

𝑁

∑︁
𝑖∈N

𝑤𝑖
𝑙,𝑘+1

=
1

𝑁

∑︁
𝑖∈N
(𝐵𝑙,𝑘𝑤𝑖𝑙,𝑘 + 𝑐

𝑖
𝑙,𝑘
)

= 𝐵𝑙,𝑘𝑤̄𝑙,𝑘 +
1

𝑁

∑︁
𝑖∈N

𝑐𝑖
𝑙,𝑘

= 𝐵𝑙,𝑘𝑤̄𝑙,𝑘 + 𝑐𝑙,𝑘 (16)

where 𝑐𝑙,𝑘 := 1

𝑁

∑
𝑖∈N 𝑐

𝑖
𝑙,𝑘

. Hence, the average dynamics from local

step 0 to 𝐾 − 1 will be

𝑤̄𝑙,𝐾 =

𝐾−1∏
𝑘=0

𝐵𝑙,𝑘𝑤̄𝑙,0 +
𝐾−1∑︁
𝑘=0

𝐾−1∏
𝑛=𝑘+1

𝐵𝑙,𝑛𝑐𝑙,𝑘 .

After a consensus update, we have

𝑤̄𝑙+1,0 = 𝑤̄𝑙,𝐾 . (17)

Note that the equation above means that consensus step will not

change the average dynamics and average dynamic will only be

updated during local steps.

For an agent 𝑖 ∈ N , we consider the consensus error at commu-

nication round 𝑙 and local step 𝑘 , where 0 ≤ 𝑘 ≤ 𝐾 − 1 and recall

𝑄𝑖
𝑙,𝑘

= 𝑤𝑖
𝑙,𝑘
− 𝑤̄𝑙,𝑘 . Then, we have

𝑄𝑖
𝑙,𝑘+1 =𝑤

𝑖
𝑙,𝑘+1 − 𝑤̄𝑙,𝑘+1

=𝐵𝑙,𝑘𝑤
𝑖
𝑙,𝑘
+ 𝑐𝑖

𝑙,𝑘
− 𝐵𝑙,𝑘𝑤̄𝑙,𝑘 − 𝑐𝑙,𝑘

=𝐵𝑙,𝑘 (𝑤𝑖𝑙,𝑘 − 𝑤̄𝑙,𝑘 ) + 𝑐
𝑖
𝑙,𝑘
− 𝑐𝑙,𝑘

=𝐵𝑙,𝑘𝑄
𝑖
𝑙,𝑘
+ 𝑐𝑖

𝑙,𝑘
− 𝑐𝑙,𝑘 .

Then, for the matrix form𝑄𝑙,𝑘 = [𝑄1

𝑙,𝑘
, · · · , 𝑄𝑁

𝑙,𝑘
] ∈ 𝑅𝑑×𝑁 , we have

𝑄𝑙,𝑘+1 =𝐵𝑙,𝑘𝑄𝑙,𝑘 +𝐶𝑙,𝑘 (𝐼 −
1

𝑁
11𝑇 )

where 𝐶𝑙,𝑘 := [𝑐1
𝑙,𝑘
· · · 𝑐𝑁

𝑙,𝑘
] and 1 denotes the all-1 column vector.

Then, for communication round 𝑙 , we have

𝑄𝑙,𝐾 =

𝐾−1∏
𝑘=0

𝐵𝑙,𝑘𝑄𝑙,0 +
𝐾−1∑︁
𝑡=0

𝐾−1∏
𝑡>𝑡

𝐵𝑙,𝑡𝐶𝑙,𝑘 (𝐼 −
1

𝑁
11𝑇 )

After a consensus update, we have

𝑤𝑖
𝑙+1,0 − 𝑤̄𝑙,𝑘 =

∑︁
𝑗∈N𝑖

𝐴(𝑖, 𝑗)𝑤 𝑗

𝑙,𝐾
− 𝑤̄𝑙,𝐾

=
∑︁
𝑗∈N𝑖

𝐴(𝑖, 𝑗) (𝑤 𝑗

𝑙,𝐾
− 𝑤̄𝑙,𝐾 ) =

∑︁
𝑗∈N𝑖

𝐴(𝑖, 𝑗)𝑄 𝑗
𝑙,𝐾
.

As a result, we have

𝑄𝑙+1,0 = 𝑄𝑙,𝐾𝐴
𝑇

=

𝐾−1∏
𝑘=0

𝐵𝑙,𝑘𝑄𝑙,0𝐴
𝑇 +

𝐾−1∑︁
𝑡=0

𝐾−1∏
𝑡>𝑡

𝐵𝑙,𝑡𝐶𝑙,𝑡 (𝐼 −
1

𝑁
11𝑇 )𝐴𝑇 .

After 𝐿 communication rounds, we have

𝑄𝐿,0 =

𝐿−1∏
𝑙=0

𝐾−1∏
𝑘=0

𝐵𝑙,𝑘𝑄0,0 (𝐴𝑇 )𝐿

+
𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∏
𝑗=1

𝐾−1∏
𝑘=0

𝐵𝑙+𝑗,𝑘

𝐾−1∑︁
𝑡=0

𝐾−1∏
𝑡>𝑡

𝐵𝑙,𝑡𝐶𝑙,𝑡 (𝐼 −
1

𝑁
11𝑇 ) (𝐴𝑇 )𝐿−𝑙

Note that for the second term when 𝑙 = 𝐿 − 1, inside the summa-

tion, the summand becomes

∑𝐾−1
𝑡=0

∏𝐾−1
𝑡>𝑡

𝐵𝐿−1,𝑡𝐶𝐿−1,𝑡 (𝐼− 1

𝑁
11𝑇 )𝐴𝑇 .

In other words, the matrix multiplier in front becomes an identity

matrix.

C.2 Proof of Lemma 1
The norm of the consensus error is following

| |𝑄𝐿,0 | |

=| |
𝐿−1∏
𝑙=0

𝐾−1∏
𝑘=0

𝐵𝑙,𝑘𝑄0,0 (𝐴𝑇 )𝐿

+
𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∏
𝑗=1

𝐾−1∏
𝑘=0

𝐵𝑙+𝑗,𝑘

𝐾−1∑︁
𝑡=0

𝐾−1∏
𝑡>𝑡

𝐵𝑙,𝑡𝐶𝑙,𝑡 (𝐼 −
1

𝑁
11𝑇 ) (𝐴𝑇 )𝐿−𝑙 | |

≤| |
𝐿−1∏
𝑙=0

𝐾−1∏
𝑘=0

𝐵𝑙,𝑘𝑄0,0 (𝐴𝑇 )𝐿 | |

+ | |
𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∏
𝑗=1

𝐾−1∏
𝑘=0

𝐵𝑙+𝑗,𝑘

𝐾−1∑︁
𝑡=0

𝐾−1∏
𝑡>𝑡

𝐵𝑙,𝑡𝐶𝑙,𝑡 (𝐼 −
1

𝑁
11𝑇 ) (𝐴𝑇 )𝐿−𝑙 | |.

(18)

Before obtaining bounds on the terms of the consensus error in

equation 18, we first provide some useful bounds on 𝐵𝑙,𝑘 and 𝐶𝑙,𝑘 .

First, we have

| |𝐵𝑙,𝑘 | | = | |𝐼 + 𝛽𝜙 (𝑠𝑙,𝑘 ) [𝜙 (𝑠𝑙,𝑘+1) − 𝜙 (𝑠𝑙,𝑘 )]𝑇 | |
≤ 1 + 𝛽 | |𝜙 (𝑠𝑙,𝑘 ) | | ( | |𝜙 (𝑠𝑙,𝑘+1) | | + | |𝜙 (𝑠𝑙,𝑘 ) | |)
≤ 1 + 2𝛽

where the second inequality is due to Assumption 4. Then, we have

| |𝐶𝑘,𝑙 | | ≤ 2𝛽
√
𝑁𝑟max, where 𝑟max = sup𝑖,𝑠,𝑎 𝑟

𝑖 (𝑠, 𝑎) by Assumption

2. This is because

| |𝐶𝑘,𝑙 | | = | |𝛽𝜙 (𝑠𝑘,𝑙 )
(
(𝑟1
𝑘,𝑙+1, · · · , 𝑟

𝑁
𝑙,𝑘+1) − (𝜇

1

𝑘,𝑙
, · · · , 𝜇𝑁

𝑙,𝑘
)
)
| |

≤ 𝛽 | |𝜙 (𝑠𝑘,𝑙 ) | | · ( | | (𝑟1𝑘,𝑙+1, · · · , 𝑟
𝑁
𝑙,𝑘+1) | | + | | (𝜇

1

𝑘,𝑙
, · · · , 𝜇𝑁

𝑙,𝑘
) | |)

= 2𝛽
√
𝑁𝑟max .

Next, inspired by [24], we want to use the following bound

(1 + 𝑥)𝐾 ≤ 1 + 2𝑥𝐾

for small 𝑥 . Note that

(1 + 𝑥)𝐾 |𝑥=0 = 1 + 2𝑥𝐾 |𝑥=0

and when 𝑥 ≤ log 2

𝐾−1 ,

𝜕

𝜕𝑥
(1 + 𝑥)𝐾 = 𝐾 (1 + 𝑥)𝐾−1 ≤ 𝐾𝑒𝑥 (𝐾−1) ≤ 2𝐾 =

𝜕

𝜕𝑥
(1 + 2𝑥𝐾)



where the first inequality is due to the fact log(1 + 𝑥) ≤ 𝑥 for 𝑥 ≥ 0

and the second inequality is due to the fact 𝑥 ≤ log 2

𝐾−1 . Let 2𝛽 = 𝑥

and 𝛽 ≤ 1

2𝐾
≤ log 2

2(𝐾−1) .

For the first term in equation 18, when 𝛽 ≤ 1

2𝐾
, we have that

| |
𝐿−1∏
𝑙=0

𝐾−1∏
𝑘=0

𝐵𝑙,𝑘𝑄0,0 (𝐴𝑇 )𝐿 | | ≤ | |
𝐿−1∏
𝑙=0

𝐾−1∏
𝑘=0

𝐵𝑙,𝑘 | | · | |𝑄0,0 (𝐴𝑇 )𝐿 | |

≤ 𝜅 (1 + 2𝛽)𝐾𝐿 (1 − 𝜂𝑁−1)𝐿

≤ 𝜅 (1 + 4𝛽𝐾)𝐿 (1 − 𝜂𝑁−1)𝐿

= 𝜅𝜌𝐿

where we define 𝜌 := (1 + 4𝛽𝐾) (1 − 𝜂𝑁−1). When 0 < 𝛽𝐾 <

min{ 1
2
,

𝜂𝑁 −1

4(1−𝜂𝑁 −1 ) }, we have 0 < 𝜌 < 1. The second inequality

comes from the following two results.

First, consider the case where 𝐴 is a symmetric matrix for sim-

plicity, then we have

| |𝑄0,0𝐴
𝐿
1,: | | = | |𝑄0,0𝐴

𝐿
1,: −𝑄0,0

1

𝑁
1| |

= | |
∑︁
𝑖∈N
(𝐴𝐿

1,𝑖 −
1

𝑁
)𝑄𝑖

0,0 | |

≤
∑︁
𝑖∈N
|𝐴𝐿

1,𝑖 −
1

𝑁
| · | |𝑄𝑖

0,0 | |

≤ 𝑁 · 21 + 𝜂
−(𝑁−1)

1 − 𝜂𝑁−1
(1 − 𝜂𝑁−1)𝐿 ·max

𝑖∈N
| |𝑄𝑖

0,0 | |

≤ 2𝑁
1 + 𝜂−(𝑁−1)

1 − 𝜂𝑁−1
(1 − 𝜂𝑁−1)𝐿 · | |𝑄0,0 | |,

where the second inequality is from [17] (Proposition 1). Hence,

| |𝑄0,0𝐴
𝐿 | | ≤ 2𝑁 2 1+𝜂−(𝑁 −1)

1−𝜂𝑁 −1 (1−𝜂
𝑁−1)𝐿 ·| |𝑄0,0 | | = 𝜅1 (1−𝜂𝑁−1)𝐿 | |𝑄0,0 | |,

where 𝜅1 = 2𝑁 2 1+𝜂−(𝑁 −1)
1−𝜂𝑁 −1 . Second, we have

| |
𝐿−1∏
𝑙=0

𝐾−1∏
𝑘=0

𝐵𝑙,𝑘 | | ≤
𝐿−1∏
𝑙=0

𝐾−1∏
𝑘=0

| |𝐵𝑙,𝑘 | |

≤
𝐿−1∏
𝑙=0

𝐾−1∏
𝑘=0

(1 + 2𝛽) = (1 + 2𝛽)𝐾𝐿 .

To bound the second term of equation 18, we have

| | (𝐼 − 1

𝑁
11𝑇 )𝐴𝐿−𝑙 | | = | |𝐴𝐿−𝑙 − 1

𝑁
11𝑇 | |

≤ 2𝑁 2 (1 + 𝜂−(𝑁−1) ) (1 − 𝜂𝑁−1)𝐿−𝑙−1 .

where the inequality is also from [17] (Proposition 1). Then, we

also have

𝐾−1∑︁
𝑡=0

𝐾−1∏
𝑡>𝑡

| |𝐵𝑙,𝑡 | | · | |𝐶𝑙,𝑡 | |

≤
𝐾−1∑︁
𝑡=0

(1 + 2𝛽)𝐾−1−𝑡 · 2𝛽
√
𝑁𝑟max

=2𝛽
√
𝑁𝑟max

𝐾−1∑︁
𝑡=0

(1 + 2𝛽)𝐾−1−𝑡

≤4𝛽𝐾
√
𝑁𝑟max .

Then, for the multipliers, we have

| |
𝐿−1−𝑙∏
𝑗=1

𝐾−1∏
𝑘=0

𝐵𝑙+𝑗,𝑘 | | ≤ (1 + 2𝛽) (𝐿−𝑙−1)𝐾 ≤ (1 + 4𝛽𝐾)𝐿−𝑙−1 .

Finally, for the second term in consensus error equation 18, we

have

| |
𝐿−1∑︁
𝑙=0

𝐿−1−𝑙∏
𝑗=1

𝐾−1∏
𝑘=0

𝐵𝑙+𝑗,𝑘

𝐾−1∑︁
𝑡=0

𝐾−1∏
𝑡>𝑡

𝐵𝑙,𝑡𝐶𝑙,𝑡 (𝐼 −
1

𝑁
11𝑇 ) (𝐴𝑇 )𝐿−𝑙 | |

≤
𝐿−1∑︁
𝑙=0

| |
𝐿−1−𝑙∏
𝑗=1

𝐾−1∏
𝑘=0

𝐵𝑙+𝑗,𝑘 | | · | |
𝐾−1∑︁
𝑡=0

𝐾−1∏
𝑡>𝑡

𝐵𝑙,𝑡𝐶𝑙,𝑡 | | · | | (𝐼 −
1

𝑁
11𝑇 ) (𝐴𝑇 )𝐿−𝑙 | |

≤
𝐿−1∑︁
𝑙=0

(1 + 4𝛽𝐾)𝐿−𝑙−1 · 4𝛽𝐾
√
𝑁𝑟max · 2𝑁 2 (1 + 𝜂−(𝑁−1) ) (1 − 𝜂𝑁−1)𝐿−𝑙−1

≤𝜅2𝛽𝐾
𝐿−1∑︁
𝑙=0

𝜌𝐿−𝑙−1

≤𝜅2𝛽𝐾
1 − 𝜌

where 𝜅2 = 8(1 + 𝜂−(𝑁−1) )𝑁
5

2 𝑟max.

As a result, we have the results consensus bound of equation 9

in Lemma 1.

C.3 Proof of the Theorem 1
For the mean square error, we have

E[
𝑁∑︁
𝑖=1

∥𝑤𝑖𝐿,0 −𝑤
∗∥2]

=E[
𝑁∑︁
𝑖=1

∥𝑤𝑖𝐿,0 − 𝑤̄𝐿,0 + 𝑤̄𝐿,0 −𝑤
∗∥2]

≤2E[
𝑁∑︁
𝑖=1

∥𝑤𝑖𝐿,0 − 𝑤̄𝐿,0∥
2] + 2E[

𝑁∑︁
𝑖=1

∥𝑤̄𝐿,0 −𝑤∗∥2]

≤2𝑑E[∥𝑄𝐿,0∥2] + 2𝑁E[∥𝑤̄𝐿,0 −𝑤∗∥2] (19)

where the first inequality is due to ∥𝑥 +𝑦∥2 ≤ 2∥𝑥 ∥2+2∥𝑦∥2 and the
second inequality ∥𝑋 ∥𝐹 ≤

√
𝑑 ∥𝑋 ∥ for 𝑋 ∈ R𝑑×𝑁 . Then, the stated

result in equation 11 follows from Lemmas 1 and 2, and equation 19.

This concludes the proof.
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