
Rapidly�Built�Medical�Crash�Cart!�Lessons�Learned�
and�Impacts�on�High-Stakes�Team�Collaboration� in�

the�Emergency�Room�
Angelique�Taylor�
Information Science 
Cornell University 
New�York,�USA�

amt298@cornell.edu�

Tauhid�Tanjim�
Information Science 
Cornell University 
New�York,�USA�
tt485@cornell.edu�

Michael�Joseph�Sack�
Information Science 
Cornell University 
New�York,�USA�

mjs596@cornell.edu�

Maia�Hirsch�
Mechanical Engineering 

Israel Institute of Technology 
Haifa,� Israel�

maia-edna@campus.technion.ac.il�

Kexin�Cheng�
Information Science 
Cornell University 
New�York,�USA�

kc2248@cornell.edu�

Kevin�Ching�
Emergency Medicine 

Weill Cornell Medicine 
New�York,�USA�

kec9012@cornell.edu�

Jonathan�St.�George�
Emergency Medicine 

Weill Cornell Medicine 
New�York,�USA�

jos7007@cornell.edu�

Thijs�Roumen�
Information Science 
Cornell University 
New�York,�USA�

thijs.roumen@cornell.edu�

Malte�F.�Jung�
Information Science 
Cornell University 
New�York,�USA�

mfj28@cornell.edu�

Hee�Rin�Lee�
Media & Information 

Michigan State University 
East�Lansing,�Michigan�

heerin@msu.edu�

Abstract—Designing� robots� to� support� high-stakes� teamwork�
in� emergency� settings� presents� unique� challenges,� including�
seamless� integration� into� fast-paced� environments,� facilitating�
effective� communication� among� team� members,� and� adapting�
to� rapidly� changing� situations.� While� teleoperated� robots� have�
been� successfully� used� in� high-stakes� domains� such� as� firefight-
ing� and� space� exploration,� autonomous� robots� that� aid� high-
stakes�teamwork�remain�underexplored.�To�address�this�gap,�we�
conducted� a� rapid� prototyping� process� to� develop� a� series� of�
seemingly� autonomous� robots� designed� to� assist� clinical� teams�
in� the� Emergency� Room.� We� transformed� a� standard� crash�
cart—which� stores� medical� equipment� and� emergency� supplies�
into� a� medical� robotic� crash� cart� (MCCR).� The� MCCR� was�
evaluated�through�field�deployments�to�assess�its�impact�on�team�
workload� and� usability,� identified� taxonomies� of� failure,� and�
refined�the�MCCR�in�collaboration�with�healthcare�professionals.�
Our� work� advances� the� understanding� of� robot� design� for�
high-stakes,�time-sensitive�settings,�providing�insights�into�useful�
MCCR�capabilities�and�considerations�for�effective�human-robot�
collaboration.�By�publicly�disseminating�our�MCCR�tutorial,�we�
hope�to�encourage�HRI�researchers�to�explore�the�design�of�robots�
for�high-stakes� teamwork.�

Index Terms—robots,� teamwork,� emergency� medicine,� co-
design�

I.� INTRODUCTION�

Teleoperated� robots� have� become� indispensable� tools� for�
action� teams—highly� skilled� specialist� teams� that� collaborate�
in� short,� high-pressure� events,� requiring� improvisation� in� un-
predictable�situations�[1].�For�example,�disaster�response�teams�
rely�on�teleoperated�robots�and�drones�to�aid�search�and�rescue�
operations�[2],�[3].�High-stakes�military�and�SWAT�teams�use�
teleoperated�ordnance�disposal�[4]�and�surveillance�robots�[5]�
to� keep� the� teams� safe.� Surgical� teams� employ� teleoperated�
robots� to�perform�keyhole� surgeries�with� a� level� of�precision�
that� would� be� unimaginable� without� these� machines� [6],� [7].�

Fig.�1.� We�built�three�teleoperated�medical�crash�cart�robots�(MCCRs).�MCCR�
1� delivers� supplies� using� a� hoverboard� circuit.� MCCR� 2� delivers� supplies,�
recommends� supplies� using� drawer� opening� capabilities,� and� was� deployed�
at�a�medical� training�event�which�revealed�insights.�This�led�to�the�MCCR�3�
design�which�recommends�supplies�and�generates�task�reminders�using�drawer�
lights,�speech,�and�alerts.�

Despite� these� advances,� current� robotic� systems� for� high-
stakes�teams�remain�teleoperated,�and�questions�about�how�to�
increase�their�autonomy�for�such�teams�remain�underexplored.�

A�growing�body�of�human-robot�interaction�(HRI)�research�
examines� the� design� of� autonomous� robots� to� better� support�
teamwork.�For�example,�recent�work�has�explored�how�robots�
can� contribute� to� group� conversational� dynamics� and� collab-
orative� learning�processes� [8],� [9].�Other�work�has�addressed�
teamwork,�which�involves�activities�such�as�action�teams�[10],�
navigation,� and� lifting� objects� [11].� Despite� a� few� notable�
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exceptions� (e.g.� [10],� [12],� [13]),� prior� work� has� focused� on�
low-stakes� teamwork� such� as� problem-solving� or� decision-
making�teams.�Designing�autonomous�robots�to�support�high-
stakes� teamwork� in� emergency� settings�presents�unique� chal-
lenges� that�our�work�aims� to�explore.�This� includes�seamless�
integration� into� fast-paced� settings,� facilitating� effective� team�
communication,�and�adapting� to� rapidly�changing�situations.�

We� present� the� design,� development,� and� deployment� of�
seemingly� autonomous� medical� crash� cart� robots� (MCCRs)�
into�action�teams.�Our�work�focuses�on�high-stakes�teamwork�
in�the�emergency�room�(ER)�which�presents�unique�challenges�
including� time� pressure,� specialized� expertise,� and� unique�
demands�for�communication.�The�ER�also�presents�challenges�
for� the� integration� of� autonomous� robots:� loud� noises� from�
sensors,� alerts,� team� communication,� and� visual� occlusions�
through�tightly�crammed�ER�equipment�make�perception�chal-
lenging.�Tight�spaces�provide�little�room�for�navigation�and�the�
nature�of� the�work� leaves�no�room�for�error.�

By� leveraging� the� concept� of� embodiment� [14],� our� ap-
proach� integrates� robots� into� medical� crash� carts� or� ’code�
carts’,� a� tool� used� to� store� medical� supplies� and� equipment.�
This�form�factor�is�well-suited�to�provide�multimodal�feedback�
to� support� team� decision-making� during� medical� procedures.�
We�highlight�key�findings�including�the�identification�of�useful�
capabilities� for� robots� working� with� teams� in� time-sensitive,�
high-stakes� settings,� and� we� encourage� others� to� explore� the�
design�of� robots� from�stakeholders’�perspectives.�

Our� research� contributes�1)� knowledge� about� the� iterative�
design�process�of�building�new�robots�that�engage�with�users,�
lessons� learned� throughout� these� iterations,� and� HCWs’� per-
spectives�of�robots�in�safety-critical�high-stakes�environments�
and�2)�release�a�publicly�available�robotic�development�tutorial�
and�toolkit�for�the�ER�including�GitHub�code�and�documenta-
tion�of�circuit�diagram,�electrical�components,�and�supplies1.�

II.� RELATED�WORK�

A. Human-Robot Collaboration 
The�field�of�human-robot�interaction�(HRI)�has�long�studied�

effective� ways� for� robots� to� engage� in� collaborations� with�
humans.� Prior� work� human-robot� collaboration� in� terms� of�
conversational� dynamics� and� physical� human-robot� collabo-
ration.� For� example,� prior� work� has� explored� how� robots�
can� shape� conversation� dynamics� in� group� collaboration� [8]�
and� how� robots� can� improve� group� learning� processes� [9].�
Furthermore,� physical� human� teaming� involves� physical� ac-
tivities� such� as� moving� around,� lifting� items,� and� moving�
items� from� one� place� to� another.� The� literature� often� frames�
this� as� a� joint� action,� adaptation,� and� entrainment� problem�
which�models�psychological,�neurological,�and�physical�mech-
anisms� by� which� humans� collaborate� with� robots� [11],� [15],�
[16].�Furthermore,�prior�work�often�involves�evaluating�robots�
in� well-controlled� environments� with� minimal� consequences�
for� their� actions,� whereas,� in� acute� care� settings� which� are�
high-risk�environments,�human�actions�could�result� in�patient�

1https://github.com/Cornell-Tech-AIRLab/crash� cart� robot� tutorial�

safety� risks.� HRI� in� action teams is� the� most� relevant� work�
as� it� highlights� the� importance� of� well-designed� proactive�
robot�behaviors�to�address�operational�failures�in�time-critical�
contexts� (i.e.,�healthcare�and�firefighting)� [10].�Prior� research�
has� explored� modeling� techniques� for� human� intent,� human�
collaborations� with� robots,� and� methods� that� enable� robots�
to� anticipate� human� actions� [17]–[20].� As� a� result,� further�
research� is� required� to� understand� how� robots� can� assist� in�
team�collaborations� in�ER�environments.�

B. Collaboration in Medical Teams 
There�are�many�robots�designed�to�support�people�in�terms�

of� health� and� well-being� [21],� [22].� For� example,� assistive�
robots�are�used�as�companions�to�support�older�adults�[23],�and�
robotic�wheelchairs�are�used�to�support�patient�mobility�[24],�
[25].� Robots� are� used� to� support� people� with� rehabilitative�
training,� patients� with� psychiatric� disabilities� by� engaging� in�
rehabilitative� training� [26],� older� adults� to� support� recreation�
[27],�and�improve�patients’�motor�skills�[28].�Robots�also�per-
form�non-patient-facing�tasks,�such�as�fetching�and�delivering�
supplies� [29]–[33]� to� free� up� time� for� HCWs� to� focus� on�
patient�care.�They�are�also�used� to�support�nurses�with� triage�
[29],� lifting�patients� [34],�and� telemedicine�[35].�

C. Embodiment of Robots 
Much� prior� research� in� HRI� demonstrates� that� robot� em-

bodiment� sets� the� expectations� of� how� robots� can� interact�
with� people� based� on� robot� affordances� [36],� [37],� shapes�
how� people� perceive� robots� [38]–[40],� and� to� what� extent�
people�adopt� robots� [22].�For�example,� robots�come� in�many�
shapes� including� humanoids� [40]–[43],� zoomorphic� (animal-
like)�[44],�[45],�ottomans�[46],�and�even�adjustable�wall�robots�
[47],� [48],� and� adjustable� furniture� [49],� [50].� Robots� can�
also� vary� in� terms� of� how� human-like� or� machine-like� they�
appear� where� those� that� appear� too� human-like� often� appear�
uncanny� to� humans� [51],� [52]� and� those� that� appear� more�
machine-like� are� often� viewed� as� companions� or� pets� [53].�
Most� similar� to� our� work� is� the� work� done� by� Ju� et� al.�
[54]�who�designed�an�automatic�drawer�open�mechanism� for�
robot� carts� in�office� spaces.�Building�on� this�work,�we� focus�
on� building� robots� for� safety-critical� healthcare� settings� and�
we� focus� on� building� robots� for� team-based� interactions,� as�
opposed� to� dyadic� interactions.� Taylor� et.� al.’s� work,� [30],�
[55]� motivates� the� use� of� crash� cart� form� factors� as� a� way�
to� integrate� robots� into�clinical� team�collaborations.�A� recent�
study�revealed�robotic�use�cases�in�clinical�team�settings�which�
we�build�on� in� this� research.�

D. Design Approaches for Field Studies 
Participatory� design� (PD)� has� gained� increasing� popular-

ity� in� HRI� as� a� way� to� invite� stakeholders� to� act� as� co-
designers� [56]–[58].� Despite� this� growing� interest,� PD� has�
been�used�limitedly�to�generate�initial�design�ideas.�However,�
PD�researchers�outside� the�HRI�community�have�emphasized�
the� importance� of� long-term� ongoing� efforts,� advocating� for�
the� PD� process� as� a� form� of� ‘infrastructuring’� [59].� This�
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concept� highlights� that� prototypes� (or� existing� technologies)�
are�merely�entry�points�situated�within�the�complex�networks�
of� the� communities� [60],� [61].� Inspired� by� the� concept� of�
infrastructuring,� we� have� focused� on� benefiting� healthcare�
teams� through� a� long-term� collaboration� (since� 2021)� with� a�
healthcare�professionals’�organization�that�conducts�an�annual�
boot� camp� for� interprofessional� emergency� medicine� team�
training.�Our�work�involved�an�entangled�process�of�designing,�
developing,�deploying,�and�redesigning�our�MCCRs�to�ensure�
they� align� well� with� the� needs� of� our� HCWs.� This� study�
will� demonstrate� understudied� aspects� of� PD� that� view� the�
design� process� as� a� continuous� dynamic� endeavor.� This� new�
approach� is� particularly� beneficial� to� the� HRI� community,�
considering�the�importance�of�prototyping�unique�factors� that�
differ�depending�on� the�setting�[62].�

III.� METHODOLOGY�

Over�the�past�several�years,�we�collaborated�with�two�med-
ical� educators� in�Emergency�Medicine,�with�18�and�20�years�
of� experience� respectively� in�medical� education�and�practice.�
Their�wealth�of�experience�in�medical�education�is�well-suited�
for�our�iterative�feedback�loops�to�collect�design�requirements�
of� MCCRs� that� can� enhance� clinical� workflows.� Robots� are�
not� found� in� emergency� room� (ER)� settings� that� assist� team�
collaborations�during�medical�procedures�introducing�the�goal�
of� creating� a� wizard� of� OZ� platform� for� healthcare� workers�
to� control� and�provide� ideal�behavior.�As� already�mentioned,�
the� cost� of� mistakes� is� astronomical� (to� the� point� of� life-
threatening� consequences)� making� the� risk� of� exploring� full�
automation� unacceptable� at� this� point.� In� order� to� fulfill� and�
enact� autonomous� decision� making� we� seek� to� understand�
the� types� of� feedback� the� robot� should� provide,� and� the�
impact� of� these� capabilities� on� team� dynamics.� Throughout�
this�rapid�design�process,�we�collected�feedback�on�the�robot’s�
capabilities,�potential�use�cases,�and�concerns.�

A. Design Considerations 

We�present�key�MCCR�design�factors:�appearance,�naviga-
tion,�supply�recommendations,�and�decision�support.�

Appearance:� Our� rapid� prototyping� process� begins� with� a�
cart� that� does� not� resemble� the� appearance� of� a� traditional�
crash�cart� to�further�our�understanding�of�appropriate�naviga-
tion�capabilities.�However,�feedback�from�our�medical�collabo-
rators�emphasized�the�importance�of�making�the�MCCR�easily�
identifiable�as�a�crash�cart�to�ensure�effective�supply�retrieval.�
MCCRs� that� do� not� resemble� the� crash� cart� could� cause�
confusion� and� a� lack� of� adoption� when� stakeholders� search�
for� carts� to� treat� patients.� We� redesigned� the� prototype� to�
increase�their�resemblance�to�traditional�crash�carts�throughout�
our�design�process,�prioritizing�clarity�and�adoption.�

Navigation:�By� leveraging� the�benefits�of� traditional�crash�
carts� in� ERs,� we� sought� to� design� new� MCCR� capabilities,�
including� a�navigation� system� to� enable� the� crash� cart� to�de-
liver�relevant�supplies�to�healthcare�workers.�Patient�rooms�are�
tight�spaces,�making�it�unclear�how�a�robot�could�appropriately�

Fig.�2.� We�built�Prototype�1�by�connecting�the�Garbatrage�hoverboard�circuit�
[63]� to�a� tool�cart�using�metal�chassis,�cardboard,�and� tape.�

navigate�to�users�while�avoiding�occlusions,�and�disrupting�pa-
tient�care.�Thus,�we�started�by�designing�a�teleoperated�MCCR�
platform� that� can� allow� us� to� collect� expert� observations� of�
appropriate� robot�behaviors� from�stakeholders.�

Supply� Recommendations:� Another� factor� introduced� in�
our� design� process� was� a� MCCR� supply� recommendation�
system.�HCWs�often�shuffle�through�drawers�to�locate�relevant�
supplies� and� medication� which� could� lead� to� care� delays.�
As� a� result,� we� explored� ways� for� the� MCCR� prototypes�
to� communicate� supply� recommendations� to� streamline� item�
retrieval�processes�and�reduce�care�delays.�

Decision-Support:� MCCRs� are� well-suited� to� provide�
decision-support�to�healthcare�workers�because�many�medical�
errors�originate� from�the� item�retrieval�process.�For�example,�
due� to� the� loud�noises� in� the�patient� room�and� the� fast-paced�
nature�of�care�tasks,�healthcare�workers�may�retrieve�incorrect�
items�(e.g.�wrong�medication�dosage)�which�can�lead�to�patient�
safety� risks.�Thus,�our� rapid�prototyping�process�consisted�of�
designing� capabilities� for� the� MCCR� to� communicate� with�
healthcare�workers�to�assist�with�decision-support�in�terms�of�
indicating�which�and�when�errors�occur.�

B. Crash Cart Robot Prototype 1 
The� objective� of� this� prototype� was� to� be� flexible� and�

modular�to�serve�as�a�boundary�object�for�communication�with�
different�stakeholders.�Its�core�functionality�is�centered�around�
mobility� (see� Figure� 1).� Each� function� was� accomplished� by�
effectively� slapping� together�off-the-shelf�modules�on�a� stan-
dard�workshop�shelf.�We�chose�this�cart�because�it�resembles�
a� crash� cart� in� terms� of� its� red� color.� However,� the� drawers�
do� not� open� similarly� to� a� medical� crash� cart.� Nevertheless,�
these�prototypes�provided�an�opportunity�for�us�to�rapidly�add�
mobility� to� cart-based� objects� and� explore� how� robots� could�
navigate� in�ERs.�

We�built�the�first�MCCR�prototype�built�upon�the�Garbatrage�
framework�[63]�as�a�motorized�base�for�a�red�tool�cart�that�was�
being�disposed�of�(see�Figure�2).�The�“Garbatrage”�framework�
is� a� hardware� platform� built� on� a� hoverboard,� hands-free�
motorized�scooter.�This�platform�offers�many�benefits� includ-
ing� repurposed�hardware�components�and�devices,� recaptures�
electronic� waste� as� a� product,� automatically� self-balances� an�
object� placed� on� it,� and� is� integrated� with� Robot� Operating�
System� (ROS)� for� teleoperation� using� a� remote� controller.�
This� allows� for� ease� of� control� and� the� range� of� motion� that�
satisfies� our� technical� requirements.� To� secure� the� cart� on�
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the� hoverboard� circuit,� we� mounted� the� cart� using� cardboard�
and�tape.�However,� the�cart�height�was�incompatible�with�the�
height�of�the�hoverboard;�as�a�result,�we�used�a�metal�chassis�
to� lift� the�cart� to�promote�self-balancing.�

This� prototype� was� a� unique� compact� assessment� of� what�
could�be�done�and�what� tasks�would� take�more� iterations,�al-
lowing�acute�knowledge�for�the�prototyping�process.�It�painted�
a� clear� picture� of� future� development� directions� and� sparked�
discussion� among� stakeholders� about� important� features� for�
successful�deployments�in�clinical�team�collaboration.�We�con-
ducted�a�1-hour�interview�with�our�two�medical�collaborators�
to� collect� feedback� on� MCCR� v1� which� involved� showing�
demonstrations� of� the� robot� in� videos,� and� asking� questions�
about�the�robot’s�functionality,�appearance,�and�concerns�about�
integrating�the�robot� into�medical�procedures.�We�learned�the�
importance�of�using�a�cart�that�resembles�a�crash�cart�and�that�
a� mobile� cart� is� useful,� but� it� would� be� helpful� for� the� robot�
to�provide�supply�recommendations.�

C. Crash Cart Robot Prototype 2 

After� informal� validation� of� the� properties� of� the� first�
MCCR,�we�proceeded�to�iterate�on�the�design�to�accomplish�a�
more�holistic�prototype�that�incorporated�feedback�and�lessons�
from� informal� suggestions� from� our� medical� collaborators.�
In� this� section,� we� lay� out� the� design� considerations� for�
each� of� these� components.� A� core� principle� for� driving� the�
implementation�of�this�prototype�is�to�keep�the�robot�as�close�
as� possible� to� the� original� crash� cart� design.� The� vision� for�
this� prototype� is� to� enable� the� robot� to� approach� healthcare�
workers�during�medical�procedures�and�open�relevant�drawers�
with� equipment� to� prevent� them� from� shuffling� through� cart�
drawers� in� search� of� supplies.� We� use� inspiration� from� prior�
cart�robots�that�provide�interactive�drawer�opening�capabilities�
[54].�Thus,�we�focus�on�developing�a�modular�mobile�platform�
based� on� a� hoverboard,� integrating� linear� actuators� for� the�
shelves,�and�developing�Printed�Circuit�Boards�(PCBs)�as�well�
as�control� logic� in�Robot�Operating�System�(ROS)� to�control�
a�robot�that�resembles�drawers�of�a�traditional�crash�cart�with�
less� focus�on� the�appearance�of� the�cart.�

We�chose�a�six-drawer�cart�for�the�second�MCCR�prototype�
for�several�reasons.�The�dimensions�are�28”�W�x�18”�D�x�34.5”�
H�with�a�weight�capacity�of�300�lbs,�it�has�a�taller�height�from�
the�ground� than� the�previous�cart,�closely�resembling�a� tradi-
tional�crash�cart.�However,�we�faced�challenges�finding�a� red�
cart�of�similar�dimensions�so� the�cart�color� is�granite.�Lastly,�
the�cart�was�inexpensive�($580)�compared�to�a�traditional�crash�
cart� (>$1000).�

Building� this� prototype� involved� the� design� of� hardware,�
software,�and�products�using�Computer-Aided�Design�(CAD)�
to� connect� them� as� an� integrated� teleoperated� system.� The�
main� design� considerations� include� a� Printed� Circuit� Board�
(PCB)� that� controls� linear� actuators� mounted� on� the� cart�
drawers� using� a� remote� controller,� 3D� printed� products� to�
mount� the� linear� actuators� on� the� drawers,� and� assembling�
the�full�integrated�circuit�on�the�cart.�All�components�must�fit�

Fig.�3.� Schematic�of�linear�actuator�array�for�drawer�opening�mechanism�and�
CAD�of�actuator�and�holder.�

within�the�dimensions�of�the�cart�and�allow�for�communication�
between�devices�over�Bluetooth�or�WiFi.�

Printed� Circuit� Board� Design:� The� PCB� design� was� an�
iterative�process�that�involved�searching�for�electronics�that�en-
abled�the�robot�to�open�relevant�drawers�of�the�cart,�parts�that�
fit�within�the�spatial�constraints�of�the�cart,�and�power�supply�
requirements�that�allowed�for�at�least�2�hours�of�operation�(see�
Figure�3).�This�system�enables�an�ER�stakeholder�to�remotely�
control� the�MCCR�during�medical�procedures�and�encourage�
users� to� retrieve� supplies� from� relevant� drawers.� The� PCB�
design� requirements� include� connecting� two� linear� actuators�
to�each�drawer� in�parallel,�generating�enough�current� to�open�
drawers�filled�with�supplies,�as�well�as�opening�and�closing�the�
linear�actuators�via�predefined�wireless�buttons�using�a�remote�
controller�over�Wi-Fi�or�Bluetooth.�

The�most�challenging,�yet�critical,�component�of�the�MCCR�
is� the� mechanism� to� open� the� shelves� of� the� crash� cart.�
Requirements�include�ease�of�teleoperation,�fast�response,�and�
constant� control� (e.g.,� not� pushing� out� so� fast� that� the� tools�
inside� the� drawers� are� lunged� outwards� into� the� floor).� We�
explored�a�range�of�solutions�such�as�spring-based�mechanisms�
with� solenoid� valves,� geared� conveyor� belts,� and� magnetic�
valves.�To�drive� the� linear�actuators,�we�use�basic�H-bridges.�
We�built�a�custom�PCB�containing�three�H-bridges�to�control�
our� 12� linear� actuators� via� multiplexing.� Eventually,� linear�
actuators�Mini�Electric�Linear�Actuators�were�our�solution�of�
choice�as�they�best�satisfied�our�mix�of�requirements�including�
a�compact�solution� that�fits�along� the�drawers�of� the�cart�and�
has�a�maximum�speech�of�1.97� inches�per�second.�

We� discovered� an� effective� circuit� design� through� trial�
and� error.� This� circuit� is� controlled� with� an� Arduino� UNO�
microcontroller.� We� used� an� ESP8266� module� to� enable�
the� microcontroller� to� connect� to� 2.4GHz� Wi-Fi� and� three�
DRV8833� Dual� H-Bridge� Motor� Drivers� to� open� and� close�
12� linear� actuators� using� a� parallel� circuit.� We� communicate�
remotely�with�the�Arduino�using�a�paired�Bluetooth�keyboard�
over�WiFi.�The�entire�circuit� is�powered�by�a�50V�battery.�

We�conducted�experiments� to� test� the� linear�actuator�speed�
by�varying� the�voltage� from�5V� to�10V� to�ensure� fast�move-
ment� without� startling� users.� We� found� that� 8V� provided� an�
appropriate� speed.� Then,� we� explored� how� to� position� the�
circuit� on� the� cart,� but� found� that� the� Arduino� UNO� did� not�
fit� in� the� cart� dimensions.� To� address� this� problem,� we� used�
the�Adafruit�Feather�to�replace�the�Arduino�UNO�because�it�is�
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Fig.�4.� Prototype�2:�(Top)�The�first�actuator�case�prototype�pushed�the�actuator�
back� when� it� opened� so� we� built� a� more� stable� casing� to� hold� it� in� place.�
(Bottom)�Assembly�of�hardware�components.�

smaller� in� size,� compact,� and� meets� our� Wi-Fi� requirements.�
On� the� more� engineering� side� of� the� spectrum,� this� process�
painted� a� good� picture� of� the� motor� strength� required� to�
motorize� the� shelves� of� the� cart� of� choice� and� the� resulting�
speed/impulse�of�movement�when� the�shelf� is� in�motion,�and�
how�much�space� it� requires� to�move�around�freely.�

Linear� Actuator� Casings:� To� support� the� actuators,� we�
required� a� custom� 3D-printed� mount� to� integrate� directly�
within� the� MCCR� interior� walls.� Given� the� weight� capacity�
of� the� shelves� (99� lbs),� a� mounting� mechanism� that� rigidly�
links� the�actuator� to� the�side�wall�of� the�cart� is� required.�The�
actuators� are� held� in� two� locations,� in� the� back� as� well� as�
towards� the� end� of� the� actuator� with� two� mounts� as� shown�
in�Figure�4.�Each�actuator� case�was� created�keeping� in�mind�
the� thickness� of� the� piece� and� its� geometry� to� withstand� the�
actuator’s� recoil� once� the� corresponding� drawer� was� pushed�
open.� We� used� Polylactic� Acid� (PLA)� filament� as� the� casing�
material� for� simplicity.� After� designing� the� first� prototype�
casing,� we� found� that� the� actuators� would� push� and� slide�
backward.� To� address� this� problem,� we� designed� a� blocking�
wall� so� the� actuator� would� not� push� back� once� activated,�
effectively� holding� the� actuator� in� place.� All� products� were�
designed�in�Fusion�360�and�created�using�a�Bambu�3D�printer.�

Robot�Assembly:�To�allow�others�to�benefit�from�our�pro-
totype,�we�describe�the�stepwise�assembly�process�of�building�
our� robot� from� the� individual� components� which� involved�
mounting� the�hoverboard,� linear� actuators,� and�wiring�on� the�
cart�(see�Figure�4).�To�affix�the�hoverboard�[63],�the�MCCR�is�
equipped�with�a�custom�laser-cut�acrylic�bracket�and�a�modular�
mount.�This� interface� allows� for� easy� adoption� to� other� carts�
or� devices� given� the� ease� of� laser� cutting� a� new� variation.� It�
secures�a� rigid�connection�with� the� rest�of� the�crash�cart� and�
the�weight�of�the�cart�on�top�of�it�further�keeps�the�mechanism�
in�place.�We�drilled�holes�in�the�side�of�the�cart�to�mount�the�
actuators� on� the� cart� drawers.� Then,� we� wired� the� circuit� to�
control� the� actuators� between� the� drawers� to� the� back� of� the�
cart�with�a�50V�battery�pack,�with�at� least�2�hours�of�power.�

IV.� EVALUATION�

To� better� understand� the� nuances� of� appropriate� robot�
feedback� in� acute� care� settings,� we� conducted� IRB-approved�
(#STUDY00008415)� field� deployments� with� Wizard-Of-Oz�

Fig.�5.� Demographic� locations�of�field�deployment�attendants.�

controlled� crash� cart� robots� (V2).� This� is� a� two-day� inter-
professional� medical� training� event,� hosted� by� a� medical�
school� in� the� global� north� annually� that� invites� over� 130�
participants� from� around� the� U.S.� to� participate� in� mass�
casualty� training�sessions,�designed�by�medical�educators.�At�
this� event,� medical� students� engage� in� training� using� robotic�
patient�simulators�that�are�teleoperated�robots�that�show�physi-
ological�signs�(e.g.,�breathing,�bleeding,�vital�signs)�to�increase�
the� realism� of� the� training� scenarios.� We� aimed� to� explore�
the� medical� crash� cart� robot� (V2)� that� supports� teamwork�
during� resuscitation� procedures� at� the� patient’s� bedside� such�
as� delivering� supplies� or� recommending� materials.� The� robot�
was�teleoperated�by�a�member�of�our�team�to�deliver�supplies�
and�move�the�cart� toward�participants�who�needed�to�retrieve�
equipment.� Participants� engaged� in� a� between-subjects� study�
with� two�conditions:�C1)� regular�crash�cart�and�C2)�MCCR.�

A. Participants 
Participants� were� medical� students� and� practicing� health-

care� workers� from� across� North� America� and� their� expertise�
included�Registered�Nursing�(36),�Child�Life�Specialists�(12),�
and�Fellows�(72)�from�across�the�global�north�(see�Figure�5).�A�
subset�of�these�participants�engaged�in�4�experimental�groups�
and� 9� control� groups� with� 6-8� people� per� group.� Due� to� the�
nature�of�field�deployment�at�a�public�medical� training�event,�
we�were�unable� to�collect�standard�demographic� information.�
Nevertheless,� we� can� confirm� that� all� study� participants� are�
over� 18� years� old.� They� traveled� from� 24� states� with� most�
participants� from� the� northeast� (67)� and� 2� countries.� The�
majority�of�participants�were�females.�Specifically,�in�the�four�
experimental� groups,� there� were� 16� females� and� 5� males.� In�
the�nine�control�groups,�it�was�difficult�to�determine�the�exact�
number�of�males�and�females�as�we�only�had�audio�data.�

B. Study Task 
The�study�tasks�involved�participants�performing�30-minute�

medical� training� sessions� including� Joint� Teamwork� Simula-
tions,� Joint� Difficult� Airway,� and� Joint� Trauma,� designed� by�
medical� educators� overseeing� the� event.� Participants� engaged�
in�one�of� the� two�conditions.�Next,�participants�engaged� in�a�
10-minute�debrief�discussion�facilitated�by�a�medical�educator�
to� enable� participants� to� discuss� what� went� well,� what� went�
wrong,�and�how�they�could�improve�their�decision-making�for�
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the�next�procedure.�Lastly,�we�administered�post-study�surveys�
to�measure�workload�and�usability.�

C. Data Collection, Analysis, & Measures 
Data�Recording:�11�members�of�our�research�team�assisted�

with�data�collection�efforts�during�field�deployments.�We�col-
lected�video�and�audio�recordings�from�15�45-minute�sessions�
across�both� experimental� and� control� conditions.�For� each�of�
these�sessions,�we�captured�recordings�from�two�camera�angles�
to� support� our� analysis.� Additionally,� we� administered� post-
study� surveys� to� both� experimental� and� control� groups.� We�
considered�it�critical�to�contrast�our�survey�responses�and�field�
observations�from�the�intervention�condition�(robot)�against�a�
control.�Due�to�instances�of�hardware�failure,�we�were�unable�
to� capture� recordings� outside� of� the� 15� sessions� mentioned�
above.� Despite� this� loss,� we� retained� survey� responses� from�
each�session�including�those�without�video�and/or�audio�data.�
These� recordings,� paired� with� the� responses� collected� from�
our�post-study�survey�provided�a�rich�source�of�data�for�both�
qualitative�and�quantitative�analysis.�

Measures:� We� measured� participants’� workload� in� terms�
of�demand,�physical�demand,�temporal�demand,�performance,�
effort,� and� frustration� using� the� NASA-TLX� scale� [64]� and�
MCCR�v2�usability�using� the�System�Usability�Scale� [65].�

Quantitative� Analysis:� To� identify� statistically� significant�
differences� between� the� study� conditions,� we� ran� a� t-test� to�
compare�the�workload�of�participants.�Given�the�comparatively�
larger�size�of�the�control�group,�we�used�the�Welch�approxima-
tion�t-test�to�account�for�differences�in�sample�sizes,�preserving�
the� integrity� of� the� comparison.� This� approach� allowed� us�
to� compare� the� mean� scores� of� the� control� and� robot� groups�
without� assuming� homogeneity� of� variances� or� equal� sample�
sizes,�ensuring� the�comparison�was�fair�and�valid.�

Qualitative� Analysis:� We� conducted� ethnomethodological�
and�conversational�analysis�(EMCA)�[66]�on�video�recordings�
collected�from�the�study.�Our�analysis�involved�multiple�steps,�
followed� by� a� review� of� the� aggregate� session� data� as� we�
documented�any� instances�of� interaction�between�participants�
and� the� robot.� We� categorized� interactions� as� direct (i.e.,�
physical�human-robot�contact,�or�indirect (i.e.,�emerging�from�
other� participants’� interactions�with� the� robot,� or� interactions�
between� the� robot� and� its� environment).� Throughout� this�
process,� we� identified� common� themes� of� interactions� and�
categorized� them� into� a� “Taxonomy� of� Failure,”� focusing� on�
conflicts�between�robot�behavior�and�user�expectations.�

V.� QUANTITATIVE�FINDINGS:�WORKLOAD�AND�
USABILITY�

Figure�6�shows�the�NASA-TLX�results�for�the�experimental�
and�control�groups�respectively.�The�results�indicate�that�both�
groups� experienced� a� high� workload� during� the� field� studies.�
The� average� perceived� workload� was� slightly� higher� in� the�
control� group� (64.0)� compared� to� the� Robot� Group� (56.8).�
After� we� collected� the� average� NASA-TLX� score� for� each�
respondent� in�both�groups,� a�Welch�approximation� t-test�was�
conducted�to�assess�whether�there�was�a�statistically�significant�

Fig.� 6.� Medical� crash� cart� robot� v2� field� deployment� results.� Control� and�
robot�groups�NASA-TLX�[64]�scores.�

difference�in�workload�between�the�two�groups.�The�resulting�
t-statistic� was� 2.08� with� a� p-value� of� 0.04.� Given� that� the�
p-value� is� less� than� the� conventional� threshold� of� 0.05,� we�
reject�the�null�hypothesis,�indicating�that�there�is�a�significant�
difference� in� workload� between� the� two� groups.� Contrary� to�
what�might�be�expected,� the�control�group� reported�a�signifi-
cantly�higher�workload�than�the�robot�group,�even�though�both�
groups� were� within� the� “High� Workload”� range� according� to�
the�NASA-TLX�scale.�This�suggests� that� the�use�of�robots� in�
the� task�may�have� reduced� the�perceived�workload�compared�
to� the� traditional�control�conditions.�

Figure�6�shows� the� results� for� the�MCCR�group� indicating�
a�SUS�score�of�39.4�out�of�100�(see�supplemental�material1),�
in� the� range� of� Not� Acceptable.� The� SUS� score� indicates�
that� participants� are� neutral� about� whether� they� would� use�
the� MCCR.� This� suggests� that� while� the� MCCR� has� utility,�
participants�likely�viewed�its�complexity�as�a�barrier�to�regular�
use.�Participants�found�the�MCCR�unnecessarily�complex�and�
did�not�find�it�easy�to�use,�as�indicated�by�the�higher�score�for�
complexity�and�a�lower�score�for�ease�of�use.�This�combination�
suggests�that�participants�experienced�difficulties�navigating�or�
understanding�the�MCCR’s�functionality.�A�significant�portion�
of� participants� believed� they� would� need� the� support� of� a�
technical� person� to� operate� the� MCCR� effectively.� This� is�
a� strong� indication� that� the� MCCR� is� not� user-friendly� or�
intuitive�enough�for�most�participants�to�handle�independently.�
While� the� MCCR’s� functions� are� somewhat� well-integrated,�
there�is�concern�about�inconsistent�robot�behavior,�which�adds�
to�participants’�cognitive�load.�Participants�expressed�that�they�
needed�to�learn�many�things�before�they�could�get�going�with�
the�MCCR,�which�points�to�a�steep�learning�curve.�The�MCCR�
was�found�to�be�cumbersome�to�use,�and�participants�reported�
low�confidence�while� interacting�with� it.�

VI.� QUALITATIVE�FINDINGS:�TAXONOMY�OF�FAILURE�

Our� Taxonomy� of� Failure� behavioral� conflicts� into� three�
categories:�(1)�Suggestive,�(2)�Obstructive,�and�(3)�Distractive.�

Suggestive�Failures.�These�failures�predominantly�concern�
the�intuitive—or�unintuitive—patterns�of�interaction�facilitated�
by� the� cart� and� their� impact� on� team� performance� in� the�
emergency� room� context.� A� key� issue� observed� was� the�
ambiguity� of� our� original� signaling� system.� The� actuated�

Session 4B: Groups and Teams HRI 2025, March 4-6, 2025, Melbourne, Australia

506



drawers�were�activated�remotely�and�served�as�signals�intended�
to� communicate� to� participants� which� drawer� they� should�
access.� These� signals,� however,� often� failed� to� convey� clear�
information,� leading� to� confusion� about� the� cart’s� behavior.�
For�example,�our�drawer�signaling�was�largely�overlooked�by�
a�majority�of�participants.�Most�commonly,�this�manifested�as�
participants� opening� several� drawers� in� succession� searching�
for� a� specific� tool� or� supply.� In� many� cases,� we� found� these�
misalignments�of�behavior�and�expectation�to�complicate�and�
exacerbate�confusion�during�otherwise�critical�moments.�

Obstructive�Failures.�These�failures�characterize�instances�
of�physical�robot�movement�that�modify�human�behavior.�Our�
initial� design� restricted� control� of� the� cart� to� teleoperation,�
preventing�participants�from�moving�it�manually—a�limitation�
stemming� from� hardware� constraints� rather� than� a� deliber-
ate� design� choice.� This� restriction� often� led� to� participants’�
attempting� to� push� the� cart� manually,� only� to� be� met� with�
resistance,� disrupting� their� workflow,� and� often� leading� to�
subsequent�distractive�failures.�In�some�instances,�this�inability�
to� move� the� cart� by� hand� resulted� in� participants� having� to�
navigate�around�it�in�a�tight�space,�causing�delays�in�reaching�
essential�equipment�or�positioning.�

Distractive� Failures.� These� failures� occur� when� the� cart’s�
behavior� or� appearance� diverts� attention� away� from� primary�
tasks.� We� observed� that� the� cart’s� navigation,� while� intended�
to� assist� in� optimizing� space� and� resource� management,� fre-
quently� captured� participants’� attention� at� inopportune� mo-
ments.� For� example,� the� cart’s� sudden� movements� or� unex-
pected� stops,� triggered� by� its� navigation� and� environmental�
collisions,�often�drew�glances�and�reactions�from�participants�
who� were� engaged� in� critical� tasks.� These� distractions� were�
compounded�by�participants’� perception�of� the� cart’s� novelty�
and� challenges� that� arose� from� teleoperation,� both� further�
fragmenting� the� focus� of� the� team.� In� several� documented�
cases,� the� sudden� movement� of� the� cart� startled� one� or� more�
participants,�momentarily�diverting�their�attention�and�prompt-
ing�verbal�exchanges�that�disrupted�the�flow�of�the�procedure.�

VII.� PROTOTYPE�3:�RAPID�CRASH�CART�ROBOTIC�
FEEDBACK�SYSTEM�

A. Approach 
After�field�deployments,�we�designed�MCCR�3�to� improve�

usability,� reduce� workload� (see� Section� V),� and� prevent� the�
taxonomy� of� failures� (see� Section� V)� using� our� accumulated�
findings�from�all�previous�rapid�prototyping�efforts.�A�unique�
benefit� of� MCCR� 3� is� its� use� of� multimodal� feedback� using�
speech,� drawer� lights,� and� alerts� to� indicate� the� location� of�
relevant�supplies�and�task�reminders.�The�design�requirements�
of� MCCR� 3� include� building� the� robot� rapidly� with� limited�
complexity�to�enable�others�to�build�a�robot�with�little�techni-
cal�knowledge�(see�our�publicly�available� tutorial1).�We�used�
3�primary�materials�to�develop�the�new�MCCR�which�include�
a�Raspberry�Pi,�LED�light�strip,�and�a�Bluetooth�speaker.�We�
mounted� the�LED�strip�along� the� right/left�drawers�along� the�
bottom� of� the� cart� to� the� outside� of� the� cart.� We� developed�
a� series� of� Raspberry� Pi� modules,� one� for� each� modality,�

to� enable� remote� teleoperation� of� the� MCCR.� We� connected�
the� speaker� and� LED� light� strip� to� the� Raspberry� Pi� using�
Bluetooth�and�wires�respectively.�Our�modules�generate�three�
graphic� user� interfaces� to� enable� a� stakeholder� (wizard)� to�
generate�appropriate� robot� feedback�on�a�computer.�

To�evaluate�the�MCCR�3,�we�collected�preliminary�feedback�
in� informal� conversations.� We� demonstrated� the� aforemen-
tioned� MCCR� capabilities� in� person� to� four� HCWs� with�
expertise�in�Emergency�Medicine�and�Clinical�Medicine,�with�
2-26� years� of� experience,� with� ages� ranging� from� 28� to� 58,�
and� limited� knowledge� about� robots.� We� asked� participants�
questions� such� as� ‘How� do� you� envision� this� system� being�
used� in� real� ERs?’� and� ‘What� additional� developments� and�
functionalities� could� be� added� to� make� the� system� effective�
in� real� ERs?’� We� recorded� the� conversations� in� video� in-
cluding�audio�and� images�with�participants’�permission� (IRB�
#STUDY00008415).� We� analyzed� the� data� using� grounded�
theory� to� identify� key� themes�participants� mentioned� in� their�
feedback� to� reflect�on� the�potential�benefits�and�concerns.�

B. Key Insights 
Our� findings� highlight� important� design� themes� about� the�

MCCR� 3’s� modes� of� communication� during� team� collabora-
tion.� Two� participants� found� MCCR� 3� alerts� beneficial� for�
generating�reminders�to�perform�repetitive�chest�compressions�
using� ‘metronome’� sounds.� The� sounds� should� be� different�
from� standard� ER� alerts� and� used� to� indicate� when� supply�
inventory� is� low.�One�participant� indicated� that� the�design�of�
lights� outside� the� MCCR� 3� is� useful,� but� it� would� also� be�
helpful� to� include� LED� lights� within� the� drawers� to� guide�
HCWs� to� approximate� locations� within� the� drawers� (P1)� to�
locate� items� faster.� Furthermore,� lights� tailored� to� a� partic-
ular� recommended� medical� task� and� sequence� of� items� to�
retrieval� could� provide� more� decision-making� support� (P2).�
Furthermore,�participants� found�dialogue�helpful,�particularly�
for�standardized�procedures�and�stating�the�full�name�of�med-
ications�to�retrieve�based�on�the�patient’s�condition�and�when�
the� medication� should� be� administered� (P2,� P4).� Speech� and�
drawer�lights�can�also�be�used�to�guide�users�to�a�sequence�of�
locations� in� the�cart� (e.g.,� ’Retrieve�Epinephrine�from�drawer�
1’,� then� ’Retrieve� needles� from� drawer� 2’)� while� activating�
LEDs�for� those�drawers� (P1,�P4).�

VIII.� DISCUSSION�

A. Important Crash Cart Robot Design Factors 
Our� iterative� prototyping� process� generated� important�

lessons�learned�and�design�factors�for�medical�crash�cart�robots�
(MCCRs)� that� assist� healthcare� workers� during� medical� pro-
cedures� Emergency� Room� settings� and� beyond� (see� Table� I).�
We�found�that�MCCR�mobility�can�pose�unique�challenges�to�
medical�teams,�including�frustration�and�distractions.�Also,�our�
findings�suggest�that�the�use�of�automated�drawer�opening�for�
supply�recommendations�is�useful,�only�when�the�drawers�can�
automatically�close,�which�presents�safety�concerns�in�terms�of�
detecting�users’�hands�to�avoid�injuries.�Lastly,�we�found�that�
MCCRs� can� create� new� failures� during� medical� procedures,�
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TABLE�I�
IMPORTANT�DESIGN�FACTORS�FOR�CRASH�CART�ROBOTS�

Communication:�Robots�communicate�must�
be�clear�and�quickly�provided� to�users� in�an�
intuitive�way.�

Mobility:�Robotic�mobility� is�more�suitable�
for�outside� the�patient� room�than� inside� the�
patient� room.�

User�Adoption:�Robots�must�provide�
advanced�benefits�over� traditional�crash�
cart� to� increase�healthcare�workers�adopt.�

Human�autonomy:�The�robot�cannot� interrupt�
human�autonomy�and�must�only�provide�
assistance�when�prompted.�

Trust:�Robots�need� to�assist�healthcare�
workers�accurately�and�reliably� to�build�
user� trust�over� time.�

Context�matters:�Robots�should�assist�
workers�passively� in� the�patient’s� room�
and�deliberately�outside� the�patient’s� room.�

a� setting� where� human� error� is� a� long-standing� issue.� These�
findings�highlight� the�need�for� iterative� testing�and�validation�
of� new� robotic� capabilities� in� high-stakes� environments� to�
ensure� that� robot� failures� do� not� cause� additional� medical�
errors.� Recent� work� in� HRI� demonstrates� to� importance� of�
computational� models� of� users’� reactions� to� robot� failures�
[67]–[69].�However,�further�research�is�required�to�understand�
how� robots� can� detect� when� they� commit� failures,� and� ap-
proaches� to� enable� them� to� recover� from� failures� in� group�
interactions,� which� could� be� particularly� useful� in� healthcare�
settings� to�build� trust with�users�over� time.�

Our� findings� suggest� that� MCCRs� are� well-suited� to� serve�
as� a� reactive actor in� patient� rooms� to� respond� to� sensor� or�
direct� inputs� from� users� and� as� a� deliberative actor outside�
the� patient� room� where� the� robot� assists� HCWs� to� achieve� a�
common� goal;� in� other� words,� context matters.� As� a� reactive�
actor,�the�MCCR�could�serve�as�a�communication mechanism�
for�error�detection�when�incorrect�items�are�retrieved�from�the�
cart�by�equipping� the�drawers�with�motion�detection�sensors.�
Prior�HRI�studies�relevant�to�the�Emergency�Room�(ER),�focus�
on�telehealth�to�increase�communication�between�patients�and�
healthcare�workers�[35],�delivery�agents�that�triage�patients�in�
the�waiting�room�[70],�and�receptionist�robots�[29].�Our�study�
demonstrates� new� use� cases� for� MCCRs� during� ER� patient�
care�to�provide�feedback�to�HCWs�to�improve�their�decision-
making� in� terms� of� speech,� drawer� light� recommendations,�
and� alerts� or� sounds.� More� specifically,� our� study� suggests�
that�equipping� the�robot�with� lights� in� the�cart�drawers�could�
guide� users� to� retrieve� relevant� items� for� patient� care.� These�
capabilities� combined� could� serve� as� an� inventory� tracking�
system� that�passively�notifies�users�when� supplies� are� in� low�
supply.�For�instance,�active�robot�drawer�lights�would�only�be�
visible� to�users� actively�using� the� cart,� speech� can� indicate� a�
sense� of� urgency,� only� speaking� to� the� users� when� a� patient�
safety�risk�has�been� identified�by� the�robot.�

Another� important� lesson� is� that� MCCRs� can� introduce�
safety� risks.� During� our� studies,� we� found� that� participants�
became� frustrated� when� the� robot� moved� toward� a� user� who�
appeared�to�be�approaching�the�cart.�For�example,�one�partici-
pant�yelled�at�the�robot�in�frustration�during�field�deployments�
because� it� moved� while� this� user� was� attempting� to� retrieve�
items� from� the� cart.� This� caused� additional� distractions� and�
could�negatively� impact�user� trust� in� the� robot.�Thus,�health-
care� workers’� autonomy must� be� preserved� to� allow� them� to�
override� the� robot�when�needed,� such�as� stopping� it� to� avoid�
distractions.�This�need�for�worker�autonomy�was�observed�not�
only�in�healthcare�settings�[55]�but�also�in�other�contexts�[71].�

Participants� reflected� on� potential� robotic� use� cases� after�
field� studies,� particularly� those� that� involve� tasks� inside� and�
outside� the� patient’s� room.� For� example,� the� MCCR� could�
indicate� when� inventory� is� low,� navigate� to� a� supply� room,�
and� request� HCWs’� help� to� restock� the� cart� during� down-
time.�Moreover,�through�inventory�tracking,�the�MCCR�could�
support� documentation� efforts� after� procedures� to� indicate�
what� supplies� are� retrieved� to� be� entered� into� the� elec-
tronic�healthcare�record.�Thus,�through�inventory�tracking,�the�
MCCR� could� provide� insights� into� approximate� time� periods�
of� specific� medical� tasks� to� help� healthcare� workers� recall�
when�these�tasks�were�performed,�which�is�particularly�useful�
for� the� recorder� in� resuscitation� procedures.� Our� findings�
are� consistent� with� prior� research� on� HRI� in� action� teams�
which� demonstrates� the� need� for� passive� and� deliberative� (or�
proactive)� MCCR� behavior� [10]� that� adapts� to� the� team� in� a�
manner� that�avoids� interruptions�during� time-critical� tasks.�

B. Limitations and Future Work 

Our�study�has�some�limitations.�Participants�in�field�studies�
are�limited�to�Pediatric�workers�such�as�Child�Life�Specialists,�
Registered�Nurses,�and�M.D.�Fellows�specialties.�Participants�
performed�three�medical�scenarios;�thus,�our�findings�may�not�
be� generalizable� to� adult� care� or� those� with� other� expertise.�
MCCR� 3� was� not� tested� with� users;� thus,� our� findings� do�
not�reflect�the�usefulness�of�speech,�alerts/sounds,�and�drawer�
lights� for� recommendations� of� supplies,� error� detection,� and�
procedural�steps�during�patient�care.�

We� plan� to� address� these� limitations� in� future� work.� Re-
cently,� we� set� up� a� patient� room� experimental� testbed� in� our�
lab�to�conduct�in-lab�studies�to�test�future�versions�of�the�robot�
with�stakeholders�of�different�expertise.�Furthermore,�we�plan�
to� explore� more� medical� training� scenarios� in� collaboration�
with� our� medical� collaborators� to� build� robots� that� can� work�
across�multiple�medical�scenarios.�

We� hope� this� research� inspires� HRI� researchers� to� explore�
robot� design� for� high-stakes� environments.� While� we� realize�
this�approach�to�HRI�research�is�time-consuming�and�requires�
iterative� user� engagement,� it� is� a� worthwhile� endeavor� to�
improve� the�experiences�of�people� in� real-world�settings.�
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