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ARTICLE INFO ABSTRACT

Editor: Fernando Pacheco As coastal regions face escalating risks from flooding in a changing climate, Nature-based Solutions (NbS) have
garnered attention as promising adaptation measures to mitigate the destructive impacts of coastal flooding.

Keywords: However, the challenge of compound flooding, which involves the combined effects of multiple flood drivers,

Nature-based solution (NbS) demands a deeper understanding of the efficacy of NbS against this complex phenomenon. This manuscript
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reviews the literature on process-based modeling of NbS for mitigating compound coastal flooding and identifies
knowledge gaps to enhance future research efforts. We used an automated search strategy within the SCOPUS
database, followed by a screening process that ultimately resulted in 141 publications assessing the functionality
of NbS against coastal flooding. Our review identified a dearth of research (9 %) investigating the performance of
NbS against compound flooding scenarios. We examined the challenges and complexities involved in modeling
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such scenarios, including hydrologic, hydrodynamic, and ecological feedback processes by exploring the studies
that used a process-based modeling framework. Key research gaps were identified, such as navigating the
complex environment, managing computational costs, and addressing the shortages of experts and data. We
outlined potential modeling pathways to improve NbS characterization in the compound flooding framework.
Additionally, uncertainties associated with numerical modeling and steps to bridge the research-to-operation
gaps were briefly discussed, highlighting the bottlenecks in operational implementation.

1. Introduction

Approximately 40 % of the global population resides within a 100-
km proximity to oceanic coastlines, twice the global average popula-
tion density (Maul and Duedall, 2019). With growing populations and
economic expansion in coastal regions, exposure to flood risk is pro-
jected to increase (Bates, 2022; Hallegatte et al., 2013; Hauer et al.,
2021; Sandifer and Scott, 2021). Coastal flooding events can be trig-
gered by different drivers, such as high tides (Sweet et al., 2021), storm
surges (Helderop and Grubesic, 2019), heavy rains (Tabari, 2020), high
river flow (Bermudez et al., 2021; Ghanbari et al., 2021), and long-term
increases in sea level (Nicholls et al., 2021).

In addition, coastal flooding may result from the concurrent or suc-
cessive interaction of inland factors, such as precipitation and discharge,
and coastal drivers, including storm surges, waves, and tides. This
combination is known as coastal compound flooding (CCF) (Feng et al.,
2023; Moftakhari et al., 2017; Santiago-Collazo et al., 2019). In recent
years, many coastal flooding events were counted as CCF, like flooding
due to Hurricane Harvey (Van Oldenborgh et al., 2017) and Hurricane
Irma in 2017; the Brisbane and Thailand Floods in 2011; Hurricane Isaac
and tropical storm Debby in 2012; typhoon Haiyan in 2013; and the
series of winter storms in the UK in 2013/2014 (Wahl et al., 2015).
Recently, Hurricane Ian (2022), the fifth-deadliest hurricane in the
United States since 1963, also caused CCF (Masters, 2022). Unlike in-
dividual drivers that do not impact coastal regions, the interactions
between inland-coastal or coastal-coastal processes can lead to intricate
nonlinear effects. These effects can amplify the overall impact of mul-
tiple factors (Bilskie et al., 2014; Dykstra and Dzwonkowski, 2021; Shen
et al.,, 2019; Xu et al., 2014). As a consequence of these interactions,
extreme flood hazards can arise, leading to negative socio-
environmental impacts (Hinkel et al., 2014; Wahl et al., 2017). The
intensified joint effects of these multivariate drivers highlight the
importance of considering the intricate dynamics within inland and
coastal systems when addressing coastal flooding phenomena. Notably,
climate change has further altered the exposure of coastal communities
to various flood drivers such as sea level rise (SLR) and precipitation
(Bilskie et al., 2022; Jongman et al., 2012; Kulp and Strauss, 2019;
Nicholls et al., 2021; Pfahl et al., 2017; Santiago-Collazo et al., 2021).

The increasing likelihood of floodings demands better knowledge to
implement concrete strategies to reduce flood risk (Niazi et al., 2021).
Achieving this goal requires a comprehensive understanding of the
financial implications, benefits, and effectiveness of a series of individ-
ual actions or policies. This understanding is an essential component of a
holistic strategy during the planning phase, aimed at ensuring that
synergistic actions are effectively taken to mitigate flood risk across both
immediate and extended planning intervals. Risk-reducing options for
coastal communities may include hard or structural engineering solu-
tions (referred to as gray infrastructure), Nature-based Solutions (NbS)
(Evans et al., 2019; Ghofrani et al., 2017; Zandersen et al., 2021), or
hybrid solutions involving elements of both gray and green (Cohen-
Shacham et al., 2016).

Using hard-engineered structures, such as dikes, sea walls, and
earthen embankments is a traditional and common mitigation and
adaptation strategy. However, these fixed defenses come with ongoing
and more expensive implementation and maintenance requirements
compared to their competitors. The expenses are further intensified by
the need to repeatedly adjust and expand these structures in response to

elevated water levels (Christie et al., 2020; Le Coent et al., 2023; van
Rees et al., 2023). Moreover, gray solutions typically focus on mitigating
flood impacts without considering environmental aspects (Suedel et al.,
2022).

NbS have emerged as alternative solutions that can provide multiple
benefits for ecosystem and flood protection, including biodiversity and
habitat conservation, long-term sustainability, lower maintenance costs,
less raw material consumption, applicability at different spatial scales,
while being more environmentally friendly and reducing greenhouse gas
emissions (Mutlu et al., 2023; van der Meulen et al., 2023; Van der Nat
et al., 2016). These solutions also offer aesthetic and cultural value,
making them appealing options for coastal protection. NbS performance
is hard to assess due to a limited knowledge of their flood protection
effectiveness. A paradigm shift is necessary to recognize that NbS can be
used alongside (hybrid) or as a replacement for traditional infrastructure
to achieve more sustainable and efficient mitigation of flood risks and
associated impacts. Tidal marshes, mangrove forests, intertidal flats,
dunes, barrier islands, and maritime forests are examples of NbS that can
effectively dissipate wave energy, reduce storm surge impacts that
coincide with coastal flooding, and contribute to infrastructure damage
and erosion. In some cases, NbS has shown superiority or comparable
performance to gray solutions for wave attenuation (De Costa and
Tanaka, 2021; Hynes et al., 2022; Montgomery et al., 2019). Moreover,
the combination of hard and soft solutions is often proposed as a
beneficial complement to traditional coastal defense and risk mitigation
techniques (Carrick et al., 2019; van Wesenbeeck et al., 2014).

The efficacy of NbS in protecting against CCF depends on several
factors, in particular the different types of species and their character-
istics (e.g. the drag coefficient), the type of flood drivers (wave, storm
surges, or river discharge), and the seasonal variability of vegetation
characteristics (Ascencio et al., 2022; Garzon et al., 2019b). Evaluating
NbDS efficiency often requires the use of a multifaceted approach that
includes laboratory and field experiments, numerical modeling, or a
combination of both. In field and laboratory experiments, it is quite
challenging to simulate hydrodynamic conditions with strong waves and
water depths of several meters (Vuik et al., 2016). Other major draw-
backs of this approach are the difficulties in adequate replicating plant
properties and the costs of ongoing measurements (Garzon et al., 2019bj;
Hadadpour et al., 2019). Numerical models offer more flexibility and
advantages in terms of feature evolution, roughness characterization,
and wave attenuation. In addition, the advancement in computational
resources motivates the widespread application of numerical models
(Garzon et al., 2019b). Therefore, the scope of this review paper is
centered on process-based models. There is a significant limitation in the
current research landscape as most modeling investigations in the
context of NbS implementation have focused on individual flood drivers
rather than CCFs. It is noteworthy that the inclusion of inland processes,
such as river discharge, precipitation, and groundwater level, has been
conspicuously missing from the modeling studies carried out.

In this study, we review the studies that focus on the effects of NbS on
coastal flooding, particularly compound coastal flooding. The analysis
covers the geographical locations, the spatial extent evaluated, and the
numerical tools used in the relevant studies. It also explores the potential
integration of NbS with traditional engineering, the types of flooding
events considered, and the economic dimensions associated with these
strategies. Following this, we narrow our scope to CCF and numerical
studies to synthesize existing knowledge and mobilize it toward bridging
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research gaps.
2. Methodology and scope

This study uses an online database search to extract relevant litera-
ture from the SCOPUS database. The purpose of this literature review is
to retrieve papers that adopt numerical modeling tools to examine the
performance of NbS against coastal flooding. We aim to understand the
existing knowledge and then narrow down the focus to put a spotlight on
the research gaps and pathways within the framework of CCF as a
growing threat to coastal communities in a warming climate. For this
purpose, various keyword sets have been incorporated into the search
query as outlined in Fig. 1. We selected a subset of keywords and
keyword categories from the systematic mapping protocol of (Paxton
et al., 2023) to compile the evidence base on the performance of NbS
related to coastal protection. In our methodology, four search strings
were developed to align with the key elements of our overarching goal.
Within each substring, a list of keywords was employed and separated
using “OR” operator to reflect that search string comprehensively. The
first substring is “NbS type” and involves keywords representing com-
mon NbS types. This list can be expanded to include other types in the
future studies. The next substring, i.e. “Topic”, was used to ensure that
the retrieved documents encompass nature-based perspectives. For this
reason, some of the commonly used alternatives to the NbS keyword
were included. The third search string is “Hazard” and was deployed to
retrieve only flooding hazard studies. Complementary keywords such as
sea level rise, water waves, wave propagation, wave transmission, storm
surge condition, and storm damage help lower the chance of missing
relevant documents during online database search. Finally, the search
string “Mitigation” represents the scope of the relevant documents. Since
our objective is only the papers investigating the functionality of NbS in
mitigating coastal flooding hazard, we employed 68 keywords to
effectively constrain search results to those within the study scope. Like
any other online database search, this methodology results in a list of
articles that should be screened. Therefore, first the titles, abstracts,

("oyster“ OR "mussel" OR "coral" OR "reef" OR "marsh" OR
'saltmarsh" OR "wetland" OR "kelp" OR "seaweed" OR
"seagrass" OR "sea grass" OR "mangrove" OR "meadow" OR
"swamp" OR "aquatic plant" OR "vegetation")

NbS type

=
g |
AND.
Z|("flood" OR "flooding" OR "flooded" OR "sea level rise"
=~ | OR "wave propagation" OR "wave transmission" OR "storm [—
T surge" OR "storm damage")
AND.

("reducing storm surge" OR "vegetation dynamics" OR
"marsh migration" OR "wave damping" OR "wave dampening"
OR "flow resistance" OR "wave attenuation" OR "surge
attenuation" OR "wave dissipation" OR "vegetation
damping" OR "wetland response" OR "climate-induced
impact" OR "blockage effects" OR "flood risk reduction"
OR "flood damage reduction" OR "vegetation drag" OR
"flood mitigation" OR "flood protection" OR "disaster
reduction solution" OR "flood adaptation" OR "coastal
adaptation" OR "water level attenuation" OR "attenuate
storm surge")

|

g e ey
Final database:
1H articles

Fig. 1. Literature retrieval methodology.
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keywords, and then, the full texts of the initial results were reviewed to
ensure papers utilized in the review are relevant and fully aligned with
the scope. After this step, we identified 141 articles for the final data-
base. It is important to note that almost any systematic review paper
cannot ensure that its final list encompasses all relevant documents. Yet,
the authors have attempted to consider a large body, if not all, of
research papers examining the performance of NbS against coastal
flooding to avoid unnecessarily expanding of the scope of the present
study.

The final database of 141 articles is summarized in Table S1, chro-
nologically from oldest to newest. To organize subsequent discussions
for in-depth analysis, this collection of articles has been classified into
six categories. The 1st category determines the spatial scale of each
article. Its associated four categories are (i) Global: study on a global or
intercontinental scale; (ii) Regional: study in several provinces or states;
(iii) Local: study along a coast, a bay, or a city; and (iv) N/A: for
experimental or idealized studies. The 2nd category summarizes the list
of countries and states in the case of the USA. The 3rd category mentions
all numerical tools adopted for characterizing the performance of
vegetation fields and conducting the analyses. The 4th category presents
the types of examined Nature-based Solutions. Categories five and six
determine whether the mentioned study addresses hybrid solutions (a
combination of soft and hard solutions) or compound flooding.

3. Literature review results and analysis

This section provides a statistical overview of the existing knowledge
on investigating the performance of NbS against coastal flooding from
various perspectives. Fig. 2 represents the evolution of the number of
publications over time. Based on the documents from the SCOPUS
database, the oldest papers were published in 2009. There has been a
gradual upward trend over the years. However, two notable periods of
increase in 2016 and 2022 culminate in sharp peaks, each followed by a
significant decline in the next year.

The relevant literature on this topic has been published in 60 aca-
demic journals. In this list, 25 journals have at least two publications and
are displayed in the treemap of Fig. 3, along with their number of
relevant papers. As can be seen, the journal “Coastal Engineering” is the
most frequent choice of researchers in this field, with 20 articles (15 % of
the documents). The next journal is “Ocean Engineering”. The large
body of literature published in these two journals can be attributed to
the abundance of journal papers investigating the wave attenuation
behavior of idealized vegetation fields.

Fig. 4 represents the distribution of the analysis scales. The results
show that a large proportion of studies (61 %) are carried out at the local
scale and focus on individual coasts, cities, or bays. Three studies
examined the regional effects of vegetation patches, all conducted in
different states in the US (see Table S1 for more details). Further, two
studies considered mixed scope. Narayan et al. (Narayan et al., 2017)
considered local and regional analyses, and Menendez et al. (Menéndez
et al., 2020) considered local, regional, and global scales.

Fig. 5 depicts the distribution of the number of documents worldwide
and the number of articles in the US and Asia, which have been provided
in sub-panels of this figure for better representation. The research was
conducted in 22 countries, of which 12 countries were mentioned more
than once. Notably, there are no studies from Africa. As expected, the US
is the most studied country, accounting for 53 % of study locations in the
relevant literature. Within the US, the coastal regions of Virginia and
New York were the most frequently studied for the influence of vege-
tation. After them, the states of Maryland and Florida (selected six times)
and Louisiana and New Jersey (selected five times) were the most
studied areas in previous studies. Outside the US, 12 articles focused on
the sites in the Netherlands. China is the third most frequently studied
country, with five articles.

The eight most common tools for numerical studies are shown in
Fig. 6. Simulating WAves Nearshore (SWAN) was adopted as a
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Fig. 2. Number of documents per year retrieved from the Scopus database published between 2009 and 2023.
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Fig. 3. Most frequent journals, along with their number of relevant published papers.
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Fig. 4. Spatial scale of relevant studies. “None” in this plot refers to studies that
modeled an idealized or prototype vegetation, not a geographical study domain
in nature.

numerical tool in 36 articles. After that, computational models such as
finite volume and finite difference were frequent with 24 articles.
Advanced CIRCulation (ADCIRC) was the third choice with 23 studies.
Notably, in this context, the coupling of ADCIRC and SWAN was also
widely used with 16 studies. Furthermore, the results support the notion
that ArcGIS, XBeach, and Delft3D have received considerable attention
in the literature.

Since our ultimate goal is to discuss the research directions toward
understanding the performance of NbS against compound flooding, a
closer look at the numerical tools used is helpful. Our analysis (see
Fig. 7) showed that TELEMAC and SWAN (4 articles) were the most
common numerical tools in such studies. In addition, in the presence of
hybrid solutions (a combination of NbS and a hard coastal-defense
structure), it was more common to use SWAN (9 articles), TELEMAC
(7 articles), and Delft3D (5 articles) for numerical analysis.
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Different NbS types in previous studies have been classified into
seven categories, as presented in Fig. 8. Based on these results, marshes
are the most frequent NbS type, responsible for 43 % of case studies. In
addition, 22 % and 11 % of the literature selected swamps and barrier
islands as their NbS model, respectively. Besides, 8 % of studies reported
seagrass as their NbS ecosystem. Another 23 % mentioned only wetlands
or used idealized vegetation models as a general class (not a specific
type). Further, 8 % and 5 % of publications focused on reef and dune
models, respectively, in their analyses.

The key finding of the literature review is that only 9 % have
numerically investigated the performance of NbS against compound
flooding in terms of attenuation or mitigation functions. This motivates
the need for further investigation to gain a more consistent and
comprehensive understanding of NbS functionality. Therefore, in the
following section, various components of a comprehensive numerical
modeling framework for NbS efficacy in face of compound flooding are
discussed, and remarks are presented on the challenges and possible
future research directions.

4. Discussion: process-based modeling framework for
evaluating NbS efficacy in mitigating CCF

Adequate representation of nature-based features in a numerical
model is challenging due to the difficulties in linking multiple process-
based models, considering various hydrometeorological scenarios,
geomorphological parameters, vegetation characteristics, and gray
structures (see Fig. 9). This challenge can be further exacerbated when
considering the evaluation of NbS against CCFs, making it a multidi-
mensional modeling challenge. CCF is a complex coastal hazard that
includes multiple oceanic, hydrological, meteorological, and anthropo-
genic drivers. This multi-dimensional event can be characterized and
described through various process-based, data-driven, machine
learning-based, and statistical approaches (Jafarzadegan et al., 2023;
Santiago-Collazo et al., 2019). Generally, full representation of CCFs
(see Fig. 9) requires a model that accounts for (a) wave generation,

RUSSIA
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CHINA

AUSTRALIA

s “‘. IA;A_V!"’ }. )
A N ﬁ?rr‘“
‘&g__‘.;. ’
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Fig. 5. World map of study locations and their number of mentions in the relevant literature.
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storm surge, and tide processes in the offshore boundary; (b) short and
long waves and shoaling (namely, shoaling zone processes), breaking
and wave setup/set down (namely, surf zone processes), swash, runup
and overtopping (namely, swash zone processes) in the nearshore; (c)
flow over land, sudden transitions, and obstacle interaction (namely,
flow-related processes); (d) other processes like infiltration, precipita-
tion, wind setup, and river discharge (Leijnse, 2018). These complexities
have hindered a widespread evaluation of the functionality of NbS in
mitigating the risks of CCFs. In this area, numerical models hold promise
because they provide high-resolution predictions of flooding extent,
land change, and ecological conditions and can be further adapted for
analysis of infrastructure exposure and vulnerability.

A holistic process-based modeling framework demands the integra-
tion of various numerical models, including ecological, hydrologic, hy-
draulic, ocean circulation (hydrodynamic), nearshore, and deepwater
wave models. Fig. 10 shows schematically the scope of each modeling
component. In the following sections, we provide an overview of the
various components of a comprehensive numerical model, excluding the
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deepwater wave models. Additionally, we briefly overview alternatives
for pure numerical models (i.e. hybrid models) and their inherent
uncertainties.

Eliminating any of the CCF sources can result in substantial predic-
tion errors; therefore, the use of coupling techniques is inevitable to
address the complex interplay of various drivers of compound flooding
events in the coastal regions. The computational burden often rises
when there is a need to capture the impacts of hydrodynamic and hy-
drologic components via coupling process-based models. This coupling
can be achieved in a variety of ways, including one-way (a.k.a. linking
technique), loosely (a.k.a. two-way), tightly, and fully coupled schemes
(Santiago-Collazo et al., 2019). Referring to Table S1 and Fig. 7, it is
evident that most coupling efforts to address the interaction between
ecological feedback and coastal flood response have focused on the
development of tightly coupled wave and ocean circulation models
(mainly ADCIRC and SWAN models). In tightly coupled modeling, the
source codes of independent models are integrated, and some kind of
information exchange occurs at each computational time step.

Fully coupled modeling is the most comprehensive and sophisticated
approach for compound flood modeling. In this method, the hydrologic,
hydraulic and hydrodynamic models are fully integrated and solved
simultaneously, taking into account the mutual feedback and interaction
between the models at each time step. This approach captures the dy-
namic coupling of rainfall-runoff and flooding processes by solving the
governing equations for all physical processes simultaneously, thereby
enabling a comprehensive representation of the compound flooding
phenomena. The single modeling technique can be described as ‘full-
coupling” when all relevant equations from hydrology, hydraulic and
hydrodynamic are solved simultaneously (Santiago-Collazo et al.,
2019). Fully coupled models require significant computational resources
due to the complex interactions taken into account but provide the most
accurate representation of compound flood events. Basically, in an ideal
fully or two-way coupled model, upstream flood water, tributary run-
offs, main water body or river system, ecological feedback, and storm
surge contribution should be characterized accurately and efficiently.

The nonlinear relationship between multiple flood drivers is also
crucial, as evidenced by various studies examining the impacts of
compound flooding resulting from hurricanes (Stephens et al., 2022).
Discrepancies and shortcomings in the outcomes of various numerical
models due to their unique frameworks and capabilities underscore the
need to develop a fully coupled CCF modeling framework capable of
simulating complex flooding drivers and their nonlinear interactions.
Current state-of-the-art modeling efforts still lacks a holistic framework
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Fig. 7. Most frequent numerical tools in the studies considering compound flooding and hybrid structures.
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that accounts for the multidimensional dynamics and interactions.
Moving toward a full coupling model requires overcoming challenges
related to the complex mathematical representation of their physical
processes, the computational power required, and the temporal and
spatial resolution (different time and length scales) of the numerical
models (Tanim et al., 2022). Furthermore, the limited research on
coupled CCF-ecological models highlights the pressing requirement to
develop more extensive coupling frameworks for CCF modeling in the
presence of ecological feedback.

4.1. Ecological model

Evaluating the performance of NbS hinges on their comprehensive
and accurate representation in various environmental scenarios. Over
the last decade, there have been an increasing number of studies
exploring numerical schemes to adequately represent nature-based

(D) Other processes:
- Infiltration

- Precipitation

- Wind setup

- River discharge

(C) Flow processes:
- Flow over land

- Sudden transitions

- Obstacle interaction

Modeling \\ J
compound
flooding
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features. Despite all these developments, numerical studies have their
own challenges and a unified and universal approach for vegetation
simulation is still missing. (Wamsley et al., 2010) listed six challenges in
numerical models that account for wetland characterization: (1)
considering storm-induced changes in wetland structure; (2) enhancing
frictional formulations by explicitly accounting for bottom (bathy-
metric) friction and form (frictional) drag; (3) a method for capturing
the wave setup when vegetation is present; (4) modeling of the three-
dimensional vegetation; (5) considering sub-grid channels through
vegetated fields; (6) identifying changes in hurricane structure. (Van
Rooijen et al., 2016) also emphasized that a suitable numerical model
for NbS simulation in the nearshore zone should account for three items:
attenuation of wind sea and swell waves (e.g., (Mendez and Losada,
2004)); wave setup/set-down reduction due to emergent vegetation or
nonlinear waves (e.g., (Guannel et al., 2015; Ma et al., 2013)); and the
presence of infragravity waves as a major driver of wave runup (e.g.,
(Ruggiero et al., 2001; Stockdon et al., 2006)).

The relevant literature from Section 3 shows that a proper simulation
of wave-vegetation interaction (i.e. wave propagation and attenuation)
should entail several components. As shown in Fig. 11, the components
include: (a) hydrodynamic conditions; (b) storm characteristics (in-
tensity, track, duration, and forward speed); (c) geomorphological fac-
tors (land/water configuration, surrounding bathymetry and
topography); (d) vegetation characteristics (height, thickness, density,
buoyancy, stiffness, distribution of roots, stems and canopies, and sea-
sonal effects); and (e) presence of human interventions, such as chan-
nels, dikes and levees (Ascencio et al., 2022; Augustin et al., 2009; Baaij
et al., 2021; Highfield et al., 2018; Hu et al., 2015; Kiesel et al., 2022;
Phan et al., 2019; Smolders et al., 2015; Vuik et al., 2016; Wamsley
et al., 2010).

Various approaches have been used to simulate wave energy dissi-
pation through vegetation, including: (1) a bottom friction or bed
roughness approach (Hasselmann and Collins, 1968); (2) modeling
vegetation as structural elements like cylinders (Dalrymple et al., 1984;
Mendez and Losada, 2004); (3) treating vegetation as a porous medium
(Hoffmann, 2004; Zinke, 2012). The bottom friction approach is the
most used approach in the literature, especially for marshes. It is
implemented in numerical models through Manning’s n formulation,
Darcy-Weisbach friction factor or Chézy coefficient (Familkhalili and
Tahvildari, 2022). The bottom friction approach does not take into ac-
count the emergence and submergence levels (depth-dependent or
height characteristics) of vegetation fields (Hewageegana et al., 2022;
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Fig. 9. Different components of a full compound flood model.
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Fig. 10. Conceptual diagram of CCF modeling components in the coastal environment.
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Fig. 11. Different types of factors affecting the wave-vegetation interaction.

Stark et al., 2016). Among them, determining Manning’s n coefficient
through a 2D parameterization using landcover types or vegetation
characteristics (e.g. stem diameter, height and density) is common (Cao
etal., 2021). In addition, this approach is uncertain for vegetations with
time-varying roughness, such as seagrasses and kelps (Holzenthal et al.,
2022). The 2D parameterization is inadequate when the relative vege-
tation height (stem height to water depth) is not negligible (Cao et al.,
2021). To overcome some of these limitations, 3D parameterization can
be used to resolve flow through vegetation (Lapetina and Sheng, 2014;
Zhang et al., 2020).

The second approach (modeling as structural elements) relies on a
pre-defined bulk drag coefficient, Cp, which is subsequently calibrated
or obtained from similar studies and direct measurements (Garzon et al.,
2019b; Wang et al., 2019). Several influential parameters and many
uncertainties involved in the process of selecting the prior drag coeffi-
cient exert challenges in the modeling process (Ascencio et al., 2022). It
should be noted that incorporating prior knowledge might introduce
more uncertainty into the modeling process. However, the use of Cp has
the advantage of addressing unresolved factors like the swaying motion
of plants (flexibility), spatial variations, the attenuation of orbital

motion, array blockage, wake interaction in dense vegetation, and
sheltering effects, especially in mangroves (Figueroa-Alfaro et al., 2022;
Vuik et al.,, 2016). An alternative approach to determining Cp that
eliminates the need for calibration is to use drag formulations based on
Reynolds number (Re) or Keulegan—Carpenter number (KC) (Garzon
etal., 2019b). (Vuik et al., 2016) and (Henry et al., 2015) reviewed some
of the most common drag coefficient formula in the literature based on
Re and KC. Ignoring blade flexural rigidity (Zhu et al., 2020), and
absence of wave frequency (Marsooli et al., 2017) in most formulations
impedes this alternative approach from becoming common practice.
Furthermore, the lack of a universal formulation for different vegetation
types and wave conditions further hinders widespread application (Chen
and Zou, 2019; Figueroa-Alfaro et al., 2022).

The third approach, treating vegetation as a porous medium, uses a
porosity term in Volume Averaged Navier-Stokes (VRANS) equations
(Hadadpour et al., 2019) or in the shallow water equations to reduce the
computational cost with Boussinesq-type equation and RANS model
(Magdalena et al., 2021). The use of a porosity term is particularly
recommended for highly complex 3D structured marine ecosystems such
as coral reefs (Lowe et al., 2008; van Rooijen et al., 2022).
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Besides, the inertia force is often ignored in wave-vegetation inter-
action models based on the Morrison equation. In shallow intertidal
areas with nonlinear waves, this assumption is not valid. In particular,
considering the inertia force is more important when the vegetation is
dense and has low porosity (Suzuki et al., 2019). In dense vegetation
fields such as dense forests, in addition to inertial forces, porosity is also
of great importance (Zhu et al., 2020), as the wave attenuation capacity
is reduced by inertial forces, whereas it is enhanced by porosity due to
the reflective effects of vegetations (Arnaud et al., 2017). It is note-
worthy that for dense vegetation such as mangrove roots or horizontal
brushwood, the ability to capture the drag force induced by horizontal
cylinders contributes to better simulation of such NbS (Suzuki et al.,
2019).

From the aspects presented in Fig. 11, many of the relevant methods
in this area still deal with issues related to flexibility and seasonality
effects. Most existing numerical models and tools are based on a rigid
schematization of vegetation and avoid modeling flexible plants.
Therefore, considering flexibility has been one of the most challenging
aspects of wetland characterization over the past decade. Flexibility
plays a pivotal role in modeling of marsh ecosystems as it controls wave
damping and velocity structure (van Veelen et al., 2020). In efforts to
address this research need, several methodologies have been proposed
to improve numerical models by increasing bottom friction (Moller
etal., 1999; Smith et al., 2016); reducing drag coefficient (Jadhav et al.,
2013; Losada et al., 2016; Marsooli et al., 2017; van Veelen et al., 2020);
using the concept of effective blade length (Beudin et al., 2017; Lei and
Nepf, 2019; Luhar et al., 2017; Luhar and Nepf, 2011); implementing
cantilever beam theory (Chen and Zou, 2019; Hu et al., 2021; Mattis
et al., 2019; Zhu et al., 2020); or utilizing damped oscillatory dynamic
equation (Ikeda et al., 2001; Maza et al., 2013; Zhu and Chen, 2015).
Addressing spatial and temporal variability of vegetations is also crucial
for a realistic representation of wetlands. While the spatial variability of
vegetation properties is well known in the literature, the temporal
variability is not well documented and is often overlooked in numerical
modeling studies. The temporal variability of vegetation properties can
be attributed to seasonal growth and decay (Garzon et al., 2019a; Moller
et al., 2003; Silinski et al., 2016). CCF models need to account for the
actual vegetation cover, which can be low and high at low and peak
biomass, respectively. Using a piecewise linear relationship or coupling
vegetation characteristics with storm characteristics could be informa-
tive in this regard (van Loon-Steensma et al., 2016).

There is also an ongoing debate about the application of implicit
(bottom friction) or explicit (stem drag) dissipation models. Recently,
(Ascencio et al., 2022) showed that for vegetations with small stem-
submergence ratio, h,/h (i.e., vegetation height/water depth), an im-
plicit model using enhanced bottom roughness is appropriate, whereas
an explicit model based on bulk vegetation properties is preferred for
vegetations with a high h,/h. The level of uncertainty could be exacer-
bated due to seasonal differences in vegetation if stem drag is different
between winter senescence and summer peak biomass seasons. The
frequency-dependent explicit model proposed by (Jacobsen and McFall,
2019) in SWAN acts as a bridge between these two extreme conditions,
reducing the need to make a single selection between them to charac-
terize vegetation canopies. However, their model has a significant
computation burden for dense vegetations (more than twice that of the
simpler implicit or explicit models when vegetation cover is at least 40
%). Another potential improvement could be adding more layers in
numerical models, especially in the case of mangroves since sufficient
mimic requires layering different characteristics of vegetation elements
in the water column (Ostrow et al., 2022). As a concluding remark, it
should be noted that while the response of NbS is unpredictable due to
the breadth of influential factors and increased uncertainties in the
future climate conditions, current efforts are primarily focused on vali-
dating numerical models under specific storm and field conditions
(Ostrow et al., 2022). To tackle this challenge, it would be informative to
evaluate NbS models using synthetic scenarios that include different

Science of the Total Environment 938 (2024) 173529

ecosystem conditions and vegetation morphologies, storm characteris-
tics, water level scenarios, and potential intervention strategies.

4.2. Wave model

The mathematical models used for wave modeling can be either
phase-averaged or phase-resolving. Phase-averaged models deal with
waves stochastically rather than individually, often using linear wave
theory in conjunction with empirical formulations derived from field or
laboratory experiments (Buckley et al., 2014). Such models offer bene-
fits in terms of computational efficiency, making them more applicable
to large scale and long duration studies (Ma et al., 2013; Van Rooijen
et al., 2016). Nevertheless, their approach to physically represent
vegetation fields through enhanced bottom friction or a vegetation term
based on local hydrodynamic conditions, vegetation characteristics and
drag coefficients may appear unrealistic (Garzon et al., 2019b; Marsooli
et al., 2017). Examples of these models are SWAN (Suzuki et al., 2011),
WAVEWATCH-III (WW3) (Roland, 2008), and Steady State Spectral
Wave (STWAVE) (Anderson and Smith, 2015). The predominant choice
for the wave model in the literature is SWAN model (see Table S1 and
Fig. 6). A common approach to simulating the wave-induced surge is to
incorporate the effects of wind waves on storm surges by coupling an
ocean circulation model (see Section 4.3) with a phase-averaged wave
model. SWAN and STWAVE models are primarily designed for nearshore
(shallow water) waves. Typically, they can be coupled with a deep-water
wind wave model such as WAM (The Wamdi Group, 1988) or a regional
scale wave model such as WW3 to generate open-water boundary con-
ditions by extracting the wave energy spectra.

On the other hand, phase-resolving (or wave-resolving) models use
conservation of mass or momentum to explicitly reproduce wave pro-
cesses and can also be supplemented by empirical formulations cali-
brated to experimental data (Buckley et al., 2014). A key advantage of
these models is that they provide velocity structures with intra-wave
resolutions and can be used to directly assess the attenuation effects of
vegetations. In this way, they properly model nearshore wave trans-
formations, including wave breaking, as well as accounting for low-
frequency infragravity waves (Torres-Freyermuth et al., 2012). This
makes them numerically more expensive than phase-averaged models.
Nonlinear shallow water (NLSW) models and full Navier Stokes (NS)
equations models are two categories of phase-resolving modes (Jafar-
zadegan et al., 2023). NLSW models, which solve a simplified form of
the NS equations, are popular for studying wave runup and overtopping
due to their computational efficiency (Briganti and Dodd, 2009; Hu
et al., 2000). Full NS models or their Reynolds-averaged Navier-Stokes
equations, which serve as their approximate time-averaged solutions,
provide a more detailed flow description. They utilize Eulerian-based
techniques such as the Volume-Of-Fluid method to trace fluid-air in-
terfaces or employ Lagrangian-based approaches such as Smoothed
Particle Hydrodynamics to simulate particle interactions. However, it is
essential to note that these methods are computationally intensive
(Jafarzadegan et al., 2023; Rosenberger and Marsooli, 2022). As
computational resources and efficiency increase, large-scale simulations
of coastal wetland can benefit from these models (van Rooijen et al.,
2022).

Reviewing of the literature reveals that there have been attempts to
integrate an ecological model into a CCF modeling framework, such as
coupled ADCIRC + SWAN + SLAMM in (Rezaie et al., 2020) or CH3D +
SWAN in (Dietrich et al., 2012; Peter Sheng et al., 2022a). Relying on
widely-applicable model of ADCIRC, Refs. (Alizad et al., 2018; Alizad
et al., 2016; Bilskie et al., 2016) employed a coupled hydrodynamic-
marsh model called Hydro-MEM. This integrated two-dimensional
model projects marsh productivity, vegetation, and migration in
response to sea-level rise. Additionally, the Wetland Accretion Rate
Model for Ecosystem Resilience (WARMER (Swanson et al., 2014)) is a
1-D model of elevation that incorporates both ecological and physical
processes of vertical marsh accretion. Buffington et al. (2021) presented
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an application of this modeling framework to assess elevation changes in
three tidal wetlands in the San Francisco Bay estuary.

4.3. Hydrodynamic model

Hydrodynamic models are essential tools for characterizing water
level fluctuations in the coastal environment. A comprehensive hydro-
dynamic modeling approach can be achieved by integrating ocean cir-
culation, wave, atmospheric, and sediment transport models (Roland
etal., 2012; Warner et al., 2010; Warner et al., 2008). Table S2 provides
an overview of some of the widely used numerical models applicable to
CCF simulation. The use of a 2D depth-averaged model is a common
practice to reduce the computational burden of CCF simulations due to
their applicability to large-scale circulation. However, it is important to
note that a depth-averaged model is at risk of misinterpretation because
it overlooks strong vertical gradients in wave velocity. This increases
local turbulence induced by coastal canopy structures (van Rooijen
et al., 2022; van Rooijen et al., 2020).

Typically, ocean circulation models replicate astronomical tides as
well as wind- and pressure-induced water level surges (i.e., storm surge
events) (Santiago-Collazo et al., 2019). The most common ocean circu-
lation model in previous studies is ADCIRC. The robustness of this model
has been successfully tested in several coastal regions (please refer to
(Abdolali et al., 2022; Bilskie et al., 2022; Deb and Ferreira, 2017;
Holzenthal et al., 2022) among others). ADCIRC can be coupled with
WW3 or SWAN to account for the effects of short-range waves (Loveland
et al., 2021). The Semi-implicit Cross-scale Hydroscience Integrated
System Model (SCHISM) model (Zhang et al., 2016) is another flexible
and increasingly uses hydrodynamic model. The SCHISM model is an
open source modeling framework based on Navier-Stokes equations and
unstructured grids. On a smaller scale, wave-resolving nearshore models
that solve non-hydrostatic equations (e.g. Xbeach-NH (Roelvink et al.,
2009)) or the ones that implement Boussinesq approximations (e.g.,
FUNWAVE (Bruno et al., 2009)) are applicable. It should be noted that
the inclusion of the non-hydrostatic term in the pressure correction
significantly improves the ability to properly model incident waves, run-
up and overtopping (Roelvink et al., 2018). This improvement is
particularly important at shallower depths where the assumption of
hydrostatic pressure distribution may not be valid due to shorter wave
periods (Leijnse et al., 2021). SFINCS (Leijnse et al., 2021) is another
hydrodynamic model that incorporates simplified shallow water equa-
tions to simulate CCFs relatively fast and with sufficient accuracy
(Leijnse et al., 2020; Robke et al., 2021). Other alternatives include
CH3D-SSMS (Peter Sheng et al., 2022b) and Delft3D (Munoz et al., 2020;
Munoz et al., 2022), which have been used to explore the vegetation
effects on CCF using spatially varying Manning’s n.

4.4. Hydrologic model

In the hydrological cycle, runoff is an important component that
regulates the flow of water into streams and redirects excess water to the
oceans (Jehanzaib et al.,, 2022). Rainfall, temperature, watershed
topography, vegetation, and hydrogeology are essential elements of a
rainfall-runoff model to simulate runoff (Devia et al., 2015). Developing
a reliable and efficient rainfall-runoff model can be considered as the
primary challenge in CCF simulation. The complexity arises from the
interplay of various physical processes such as 1D channel flow, 2D
overland flow, infiltration and groundwater flow, precipitation inter-
ception, snow melting, and evapotranspiration. There is still a lack of
tools and software that enable seamless integration of hydrology and
storm surge models, further exacerbating the challenges.

Based on the routing calculation scheme, hydrological models can be
classified into empirical, conceptual, or physics-based (i.e., process-
based) models (please refer to (Devia et al., 2015) and (Li et al.,
2021c) for more detail). Further, these models can be categorized into
four classes according to their spatial discretization and routing scheme:
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lumped, semi-distributed, distributed, and fully distributed (Shen and
Jiang, 2023). Lumped hydrologic models represent the entire watershed
as a single unit, disregarding spatial variations in hydrological pro-
cesses. One of the best models of this type is the Sacramento Soil
Moisture Accounting (SAC-SMA) model, which has been used by the
National Weather Service since 1973 and it is still one of the best lumped
hydrologic models. Although lumped models are relatively simple and
require fewer inputs, they typically underestimate the actual response of
a rainfall-runoff system. Semi-distributed hydrologic models divide the
watershed into multiple sub-catchments, considering spatial variations
in land characteristics and runoff generation processes. This class of
hydrologic models uses a 1D routing scheme, which is a highly simpli-
fied routing representation and poses a significant limitation in flood
forecasts. Distributed hydrologic models further refine the representa-
tion by dividing sub-basins into computational units, so-called hydro-
logic response units (a.k.a. HRUs), while accounting for variations in
topography, land use and soil properties. However, the use of a 1D
routing scheme is their main drawback. Due to the underestimation of
lumped models, the use of a distributed or semi-distributed model im-
proves accuracy because they take into account the interconnected na-
ture of hydrological processes, including runoff generation, snow
formation and melting, groundwater recharge, evapotranspiration, soil
moisture dynamics, and routing in lakes and rivers (El-Nasr et al., 2005).
Finally, fully distributed hydrologic models enable spatial representa-
tion at the finest scale by dividing the entire watershed into numerous
HRUs or grids, allowing for a comprehensive and detailed representa-
tion of hydrological processes across the landscape. This class in-
corporates a 2D routing scheme to capture runoff transport more
realistically as it is more consistent with the runoff routing. This feature
and requirement of reach dataset incurs a much higher computational
cost compared to the lumped, semi-distributed or distributed models.

The Hydrologic Engineering Center- Hydrologic Modeling System
(HEC-HMS) model (Scharffenberg and Fleming, 2006) and the Storm
Water Management Model (SWMM) (Rossman, 2010) are the two
widely-used conceptual-based lumped-parameter hydrologic models.
For long-term modeling, a physics-based, semi-distributed, continuous
simulation model, the Soil and Water Assessment Tool (SWAT; (Arnold
et al., 1998)), can be used to predict the impacts of land management
practices on water, sediment, and agricultural chemicals in large com-
plex watersheds on a daily basis. Because SWAT is typically executed in
a daily or sub-daily time steps, the model can be run on a decadal scale
(Johnson et al., 2023). In addition, this model has been used to quantify
rainfall-runoff flooding events when linked to other hydraulic models
such as HEC-RAS and LISFLOOD-FP, and also to determine river dis-
charges when used independently (Santiago-Collazo et al., 2019). In the
category of physically-based, distributed-parameter hydrologic models,
one of the prominent models is the Gridded Surface Subsurface Hydro-
logic Analysis (GSSHA) model (Downer et al., 2003). The fully distrib-
uted GSSHA model is intuitively more realistic compared to a lumped
HEC-HMS model in terms of land use change (Sith and Nadaoka,
2017). Additionally, GSSHA has been successfully applied to small to
medium-sized watersheds (e.g. acres to a 1000 mile?) and/or for seasons
and design years (e.g. annual record periods of high, medium, and low
rainfall intensity) (Johnson et al., 2023; Pradhan et al., 2014; Sharif
etal., 2010). Likewise, the MIKE-SHE (Danish Hydraulic Institute, 2014)
and the Hydrology Laboratory-Research Distributed Hydrologic Model
(HL-RDHM) (Colorado Basin River Forecast Center, 2008) are other fully
distributed alternatives. On the other hand, Interconnected Channel and
Pond Routing (ICPR) is a physically-based distributed model that can
provide a computationally efficient approach for large-scale flood
modeling (Joyce et al., 2018; Saksena and Merwade, 2022; Saksena
et al., 2021).

4.5. Hydraulic model

The resulted runoff from the hydrological model can be fed into



S. Radfar et al.

either the hydraulic model or the ocean circulation model, allowing
simulation of water level or inundation extent (Dresback et al., 2013).
Thus, it is imperative to first estimate rainfall-runoff in the hydrologic
domain and then, transport it using a routing scheme. Nonetheless, flood
modeling has limitations because the hydrologic models fail to consider
the actual physical properties of the rivers in the routing scheme.
Therefore, hydraulic models such as HEC-RAS (Warner and Brunner,
2001), MIKE 11 (Havng et al., 1995), FLO-2D (O’Brien et al., 1993) and
LISFLOOD-FP (Bates et al., 2005) have been used to simulate floods
together with hydrologic models due to their reliance on the channel
and floodplain topography, aligning with principles of continuity and
momentum while requiring minimal parameters (Nguyen et al., 2016).
Using a 2D version of these tools with rain-on-grid options could also be
an interesting alternative. However, extensive application of these
models is hampered by the fact that they do not incorporate hydrologic
fluxes and the full range of physical processes in CCF (Tanim et al.,
2022). Using the discontinuous Galerkin shallow water equations model
(DG-SWEM) (Dawson et al., 2011), the discontinuous Galerkin Section-
Averaged Kinematic wave Eq. (DG-SAKE) (West et al., 2017), deep
neural networks (e.g., using long-short-term-memory (LSTM) (Lee et al.,
2023a; Li et al., 2021a; Li et al., 2021b), or HRU-based LSTM (Abbas
et al., 2020)) are other alternatives for the runoff transport model.

4.6. Groundwater model

In addition to fluvial (river) flooding, pluvial (surface) flooding, and
coastal flooding, the interaction of groundwater flooding can also in-
crease the likelihood of CCFs (Pena et al., 2022). This phenomenon
causes the water table in permeable rocks to rise to reach cellars or over
the surface and can last for weeks or even months. The contribution of
surface-subsurface interactions from permeable soil strata is often
neglected in CCF models. Regions that lie on permeable rocks are
particularly affected by groundwater flooding. Although these events
are rare, the significant consequences arising from these events and their
potential complex interactions with other flood drivers emphasize the
importance of incorporating groundwater flooding into CCF models.
This is particularly crucial for areas prone to groundwater leaks. Failure
to do so may result in substantial uncertainty in estimating flood risk in
terms of magnitude, timing and overall assessment. ModelMuse (Win-
ston, 2009) and MODFLOW (McDonald and Harbaugh, 1988) can be
used to incorporate groundwater flooding. The detailed description of
groundwater models is beyond the scope of this review.

4.7. Hybrid CCF model

Another challenge associated with coupling process-based models is
their numerical cost. Although substantial headway has been achieved,
process-based models face limitations due to the requirements for ac-
curate geographic data, proficient users capable of creating the
computational mesh and input files, and performing computationally
demanding calibration and inference processes (Li, 2021). This
computational complexity stems from the multitude of parameters,
forcing conditions and uncertainties involved, process-based models can
be numerically expensive (Bilskie et al., 2022; Bilskie et al., 2021; Huang
et al., 2021; Ye et al., 2020). These costs depend heavily on the grid size
as the most influential parameter in accurately simulating flood dy-
namics (Alipour et al., 2022). Therefore, in many cases a trade-off be-
tween model accuracy and computational effort is unavoidable. In
response to the limitations associated with process-driven models, there
have been several attempts in recent years to leverage machine learning,
data-driven and statistical methods in establishing a hybrid compound
flood model. This hybrid modeling framework consist of a coupling
between a hydrodynamic model and a data-driven model, a statistical
model or a physics-informed machine learning model (Jafarzadegan
et al., 2023). Recent efforts in this category of hybrid models have been
based primarily on random forest algorithm (Zahura and Goodall, 2022;
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Zahura et al., 2020), support vector machines (Bermtidez et al., 2019),
convolutional neural network (Lee et al., 2021; Munoz et al., 2021), and
also, data assimilation schemes, e.g., using combination of the ensemble
Kalman filter (EnKF) technique (Jafarzadegan et al., 2021a) and the
Delft3D hydrodynamic modeling in (Munoz et al., 2022). Also, Ref. (Li,
2021) proposed a two-way coupling scheme of RNN runoff model and
ADCIRC.

Combining statistical approaches with process-based models to
develop hybrid models is also strongly recommended (Moftakhari et al.,
2019; Serafin et al., 2019). Using copulas in this approach facilitates
flexibility in selecting marginal distributions and modeling nonlinear
dependencies (Hao and Singh, 2016). Such features favor the wide
application of copulas in exploring the of coastal ocean water level and
freshwater discharge, coastal water level and waves, storm surge and
river flow, storm surge and river flow with precipitation, storm surge
and precipitation, wave/surge parameters, and storm surge, wave, river
flow and precipitation ((Jafarzadegan et al., 2023) discussed further
details). Despite all benefits of joint density approaches, the sufficient
number of realizations that adequately cover the wide range of com-
pound hazard scenarios remains a major obstacle in these models. To
tackle this challenge, using reduced physics surrogate modeling
(Anderson et al., 2021; Bass and Bedient, 2018), utilizing HPC systems
to generate numerous scenarios based on Monte Carlo simulation (Yang
et al., 2020), merging joint cumulative distribution functions and joint
probability density functions to implement informed sampling (Mofta-
khari et al., 2019; Munoz et al., 2020; Sadegh et al., 2018) may be of
interest (Jafarzadegan et al., 2023).

Non-stationarity also plays a critical role in linking statistical and
hydrodynamic models. Warming climate may undermine stationarity
assumption of extremes, making it invalid (Barbier et al., 2013; Cheng
et al., 2014; Tan and Gan, 2017). This problem will be more acute,
particularly for compound flooding, as multiple components interact
and neglecting non-stationarity, if present, could result in significant
over- or underestimation of flood risk. Table 1 summarizes the relevant
literature dealing with the impacts of non-stationarity in compound
flood modeling. The results are based on a recent review paper by
(Radfar et al., 2023) and have been extended to the end of 2022. At first
glance, it can be seen that incorporating non-stationary extreme value
analysis (hereafter, NEVA) into the CCF framework has attracted
considerable attention in recent years. However, the number of publi-
cations to date is very limited and this is an area that requires further
research. One of the major limitations in advancing this topic is the
paucity of long overlapping data records. This motivates to use process-
based models, hindcast or reanalysis data to achieve a long and ho-
mogenous observation record. As a rule of thumb, at least 25 to 30 years
of continuous data is required for 100-year multivariate estimates
(Radfar et al., 2021; Vanem, 2015), but for reliable capturing of long-
term trends and variations, availability of 60-70 years of data is a pre-
requisite (Calafat et al., 2022; Obeysekera and Park, 2013).

It is noteworthy that the tendency to consider the non-stationarity of
rainfall is consistent with the findings that the uncertainty in a non-
stationary framework is determined primarily by rainfall and not by
sea level and its dependence (Naseri and Hummel, 2022). Also, it can be
observed that the consideration of non-stationarity in the parameters of
the GEV model is extremely common in the CCF modeling framework,
and deploying other types of extreme value models is almost unad-
dressed in the relevant literature. Further investigations is needed to test
the applicability of other extreme value models, such as GP (with time-
varying scale and shape parameters), mixture models (e.g., GP-Poisson,
GP-Normal, GP-Gamma) or 4-parameter kappa distribution (Radfar
et al., 2023). Moreover, integration of non-stationarity was mainly done
through the location parameter of the GEV distribution. This approach
only addresses the variations in the mean values of the variables.
Therefore, performing NEVA based on a single time-varying parameter
may not adequately capture the trends and variations and requires
further improvements to overcome the challenges and uncertainties
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Table 1
Categorization of the studies that implemented NEVA within compound flood modeling framework.
Reference Estimated Covariate(s) Model  Nonstationary Using simulation Bayesian
variable parameter data approach
(Chapon and Hamdi, 2022) Surge, Wave SLP, SST, PP u oo, & - Yes
height Wind speed
(Xu et al., 2022) Rainfall, Storm Time (linear) GEV " - -
tide
(Naseri and Hummel, 2022) TWL, Rainfall Time (linear) GEV i - Yes
(Razmi et al., 2022) ESL, Rainfall Temperature, Time (logarithmic) GEV W 0, & - -
(Karamouz and Mahani, 2021) TWL, Rainfall Time (linear) GEV " Yes -
(Ghanbari et al., 2021) ESL, River flow SLR, Time (linear) GP u - -
(Karamouz and Mohammadi, Rainfall, Surge SOI, SST, GEV W c - -
2020) Time (linear, polynomial)
(Karamouz et al., 2020) Rainfall, Surge Time (linear) GEV H" - Yes
(Binh et al., 2019) TWL, Rainfall ENSO, PDO, SLR, Global warming, GEV W o - -
LMT
(Karamouz et al., 2017) TWL, Rainfall Time (linear) GEV u - -

* ENSO: El Nino Southern Oscillation index; ESL: extreme sea level; GEV: generalized extreme value distribution; GP: generalized Pareto distribution; LMT: local mean
temperature; PDO: Pacific Decadal Oscillation; PP: point process approach; SLP: sea level pressure; SLR: sea level rise; SOI: Southern Oscillation index; SST: sea surface

temperature; TWL: total water level.

** u, o, & location, scale, and shape parameters in the PP and GEV extreme value model; u: threshold parameter in the GP model.

around detecting a non-stationary behavior (Naseri and Hummel, 2022;
Wong et al., 2022). Improper model selection and parameters’ estima-
tion as well as the relatively short records can majorly contribute to the
uncertainty of the NEVA estimates (Liu et al., 2018; Serinaldi, 2013). To
circumvent this problem, the Bayesian approach was applied in the
NEVA framework of three studies (see Table 1) to reduce the uncertainty
resulting from the extreme value models. Finally, it can be seen that the
most common assumption for covariates is that parameters of extreme
value distributions change linearly over time. Nevertheless, it is known
that time covariates are poorly suited to capture trends and variations in
hydrological and oceanic parameters and only maintain constant pat-
terns (Du et al., 2015). Therefore, it is imperative to include physically-
based covariates in the NEVA models to gain insights into the physical
driving mechanisms that generate the observed sequence or signal
(Agilan and Umamahesh, 2017; Bayazit, 2015). To resolve this issue,
several studies incorporated temperature, SLR or climatic indices, such
as SOI, PDO and ENSO in their models. Despite this, investigating the
impacts of this type of covariates, particularly climatic variables, in the
CCF modeling framework is a research gap and it would be an active
field of research over the coming years.

4.8. Uncertainties involved in CCF modeling

Despite the significant advantages of CCF modeling, the existence
and cascade of uncertainties in hydrologic and hydrodynamic modeling
should be taken seriously. Parameter estimation problems due to non-
uniqueness of model parameters resulted from calibration (referred to
as un-identifiability) (Moradkhani et al., 2018), structural uncertainty,
including model inadequacy (Abbaszadeh et al., 2019; Kennedy and
O’Hagan, 2001; Pathiraja et al., 2018) and model discrepancy (Smith
et al., 2015)), and measurement uncertainty (Gupta and Govindaraju,
2019; Moradkhani et al., 2018) are important elements of hydrologic
uncertainties. Besides hydrodynamic uncertainties may originate from
initial state of the system (i.e., topobathy data errors and inadequacies)
(Bates, 2022; Gallien et al., 2018; Holmquist and Windham-Myers,
2022), observational, forcing data and boundary condition (Flower-
dew et al., 2009; Jafarzadegan et al., 2021b; Oruc Baci et al., 2024;
Pappenberger et al., 2005; Saleh et al., 2017), model parameters (e.g.,
bed roughness, surface friction, and sea surface (wind) drag), and model
structure (due to limitations and simplifications in the physically-based
modeling) (Moradkhani et al., 2018). Among these parameters, input
data is recognized as a major source of uncertainty and error in the CCF
modeling process. The accuracy of the input data has a great impact on
the modeling process. For example, (Eilander et al., 2022) listed
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bathymetry in data-scarce areas as an important source of uncertainty in
their SFINCS model. They suggested using bathymetry estimation ap-
proaches such as gradually varying flow theory-based method (Garam-
bois and Monnier, 2015; Neal et al., 2021) instead of approximation
methods in areas with no or insufficient local measurements. Also, a sub-
grid schematization improves model performance in streams smaller
than the model resolution (Neal et al., 2012; Volp et al., 2013). Lack of
information about the locations and specifications of flood protection
structures can significantly affect the accuracy of the flood model
(Scussolini et al., 2015; Wing et al., 2019). Further, forcing data into
ungauged areas should be carefully considered to reduce uncertainty in
modeling (Hoch and Trigg, 2019; Wing et al., 2020). Different methods
can be incorporated to deal with uncertainties, including Monte Carlo
method (e.g., traditional Monte Carlo, Latin hypercube sampling and
Multi-level Monte Carlo in (Aitken et al., 2022)), Generalized Likelihood
Uncertainty Estimation (e.g., generalized extreme value and generalized
logistic in (Ellis et al., 2021)), Data Assimilation (Abbaszadeh et al.,
2020; Abbaszadeh et al., 2018)), and post-processing methods like
Bayesian Model Averaging(Liu and Merwade, 2019; Madadgar and
Moradkhani, 2014; Madadgar et al., 2014), or Sequential Bayesian
Combination in (DeChant and Moradkhani, 2014; Hsu et al., 2009) and
multivariate copulas in (Tanim and Goharian, 2021)). With regard to
ecological feedback, parametrization of vegetations (i.e. the definition
of roughness coefficients) and time-dependent updating of vegetation
characteristics represent a significant uncertainty. All in all, uncertainty
quantification is still an area of active research in the field of CF
modeling and still requires much more research efforts.

4.9. Research-to-operation gap

Despite the recent advances reviewed here, significant challenges
still need to be faced to comprehensively and efficiently model CCF. The
challenges include navigating the complex environment, managing
computational costs, and addressing a shortage of experts and sufficient
data. The individual models to understand overland flooding, coastal
water levels, and storm surges are at an operational capacity for near-
term forecasting and for assessing the performance of hazard mitiga-
tion approaches. Unfortunately, the coupling of these approaches to
provide estimates of the compound flood risk is not operational. There is
substantial support through funding agencies (e.g. federal and state re-
sources in the US) being applied toward advancing compound flood
models capable of evaluating policy decisions and restoration activities
that include nature-based flood mitigation approaches. However, most
efforts are local and in a research phase. The modeling community has
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yet to reach a point where they have consistent approaches to inform
CCF decision-making.

In addition to the models’ advancement as recommended above,
there remains a need to develop the models with those that will be users
of the information. We still lack the foundational literature and evalu-
ation of what coupled models are most effective at informing decisions.
It is not enough to advance modeling in an academic space, they need to
be codeveloped with stakeholders to ensure the outputs are actionable,
consider the scenarios relevant to decisions, and are trusted. Preliminary
studies that have involved end user feedback, highlighted a need for
common language and understanding between researchers and stake-
holders on the importance of compound flood modeling and what
coastal water level and precipitation scenarios are most useful to
different types of decisions. An example of such approaches is underway
in coastal Alabama, where together modelers and stakeholders identi-
fied four general compound flood scenarios to be studied that balance
computational rigor with utility of the information (Lee et al., 2023b;
Moftakhari et al., 2024). This included a moderate probability storm
surge with a moderate probability precipitation event, both opposite low
probability and high probability combinations of surge and precipita-
tion, and low probability extreme water level and precipitation combi-
nations. This provided end users with additional information for short-
term and long-term hazard mitigation with each scenario providing
different perspectives. For example, in the case of the low-probability
extreme compound flood events, there is limited opportunity to avoid
the damage predicted; however, it can inform conversations around land
acquisition, policy decisions on zoning or buy outs, or protection of
critical facilities.

Beyond the specific flood scenarios, there are other critical aspects
co-development can provide to enhance the usability of CCF outputs. For
example, working toward faster assessments of flood mitigation strate-
gies will enhance the use of these models in planning and decision-
making. Additionally, more work is done to understand how best to
integrate CCFs into forecasting and public warnings. The process of
collaborating with end-users as the foundation of CCF modeling is built,
will speed up adoption of these models when they have reached an
operational readiness stage.

5. Conclusions

This study reviews the existing numerical modeling studies for
simulating NbS against CCF. To expand our knowledge of NbS perfor-
mance against CCF hazard, we recommend more efforts toward coupling
various components affecting CCF while considering and simulating
NbS. Major challenges in assessing the NbS impacts on the CCF miti-
gation in a numerical model are (a) sufficient mimic of vegetation dy-
namic, accounting for plant characteristics (including its dimension,
motion, flexibility, and seasonality) as well as hydrodynamic and storm
conditions (Section 4.1), (b) selection of a tool with adequate repre-
sentation of underlying physics, vegetation characteristics, morphology
and hydrology (Sections 4.2 and 4.3), (c) coupling of different model
with effective information exchange during model execution process
(Sections 4.4 to 4.6).

Various approaches to mimic NbS including bottom friction tech-
niques, modeling vegetation as structural elements, and considering
vegetation as a porous medium, have limitations, such as uncertainties
with time-varying roughness and computational effort (Section 4.1).
Strategies such as 3D parameterization, sensitivity analysis, and devel-
opment of universal formulations could improve predictability and
effectiveness. Modeling wave-vegetation interactions is also challenging
because it oversimplifies the flexibility and variability of plants over
time. Potential solutions include improving the representation of bottom
friction, adjusting drag coefficients, applying the effective blade length
concept, and using cantilever beam theory and piece-wise linear
relationships.

Aside from the challenges of ecological modeling, CCF modeling per
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se requires meticulous setup and calibration to fully integrate ecological,
hydrological, hydraulic and hydrodynamic processes (Sections 4.2 to
4.5). Hybrid approaches can help with high computational costs and
difficulties in harmonizing dynamic interactions in purely process-based
models, but they have limitations in data availability, non-stationarity,
and nonlinear interactions (Section 4.7). Dealing with structural,
model and measurement uncertainties, particularly due to the time-
varying properties of vegetations should be given serious consider-
ation (Section 4.8).

From a broader perspective, there is an important research-to-
operation gap that the modeling community not yet reached the point
of having consistent approaches to inform CCF decision making (Section
4.9). To address this challenge, it is crucial to develop models collabo-
ratively with end-users and ensure actionable results that consider
relevant scenarios and are trustworthy. Through collaborative devel-
opment efforts specific CCF scenarios can be identified that balance
computational power with practical utility. Additionally, co-
development can improve the usability of CCF outputs by accelerating
the assessment of flood mitigation strategy and improving integration
into forecasts and public warnings. It is expected that collaborating with
end-users lays the foundation for CCF modeling adoption, speeding up
the transition to operational readiness.
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