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Abstract—Millions of new pieces of malicious software (i.e.,
malware) are introduced each year. This poses significant
challenges for antivirus vendors, who use machine learning to
detect and analyze malware, and must keep up with changes
in the distribution while retaining knowledge of older variants.
Continual learning (CL) holds the potential to address this
challenge by relaxing the requirements of the incremental storage
and computational costs of regularly retraining over all the
collected data. Prior work, however, shows that CL techniques,
which are designed primarily for computer vision tasks, fare
poorly when applied to malware classification. To address these
issues, we begin with an exploratory analysis of a typical malware
dataset, which reveals that malware families are heterogeneous
and difficult to characterize, requiring a wide variety of samples to
learn a robust representation. Based on these findings, we propose
Malware Analysis with Distribution-Aware Replay (MADAR),
a CL framework that accounts for the unique properties and
challenges of the malware data distribution. Through extensive
evaluation on large-scale Windows and Android malware datasets,
we show that MADAR significantly outperforms prior work. This
highlights the importance of understanding domain characteristics
when designing CL techniques and demonstrates a path forward
for the malware analysis domain.

Index Terms—Malware Analysis; Windows Malware; Android
Malware; Catastrophic Forgetting; Continual Learning;

Resources. The code and datasets of this paper are available
at: https://github.com/IQSeC-Lab/MADAR.

I. INTRODUCTION

Advances in machine learning have significantly enhanced
the detection and classification of malicious software, achieving
notable success across various domains such as Windows
executables [[1]-[3], PDFs [4], and Android applications [5]-
[7]]. Traditional models, trained on static datasets, are typically
expected to perform well on new data under the assumption of
a constant data distribution. However, in reality, both malicious
(malware) and benign (goodware) software evolve continuously,
necessitating regular model updates to adapt to changes in data
distribution and maintain effectiveness. For example, the AV-
TEST Institute reports approximately 450,000 new malware
samples daily [8]], while VirusTotal processes over one million
unique submissions each day [9]. This scale creates immense
challenges in training and even storing all the samples.

Training a malware classification model solely on new
data can lead to catastrophic forgetting (CF) [10], [11],
where previously learned information is forgotten, resulting
in increased misclassification and allowing attackers to evade
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detection with older malware strains, known as Retrograde
Malware Attacks (RMA) (see Section . As such, anti-virus
vendors must deal with difficult trade-offs: (i) removing older
samples from the training set, risking exposure to revived older
malware; (ii) ignoring newer samples, risking failure to detect
emerging trends; (iii) reducing the frequency of retraining,
compromising accuracy during intervals between updates; or
(iv) incurring significant effort and cost to frequently retrain
on the combined new and older samples. These challenges
highlight the need for agile and adaptive malware classification
techniques capable of learning incrementally and responding
to the dynamic malware landscape.

Continual learning (CL) provides a promising solution
to this problem by enabling models to adapt to new data
without requiring the retention of large datasets or frequent
retraining [[12]-[17]. By addressing catastrophic forgetting, CL
techniques ensure that models remain effective and efficient in
the face of evolving malware distributions. While designs for
CL have been extensively studied in the context of computer
vision [15], [18], [[19], there are very few such studies in the
malware classification domain [[12], [20]. Rahman et al. [20]
observed that CL techniques originally developed for computer
vision problems fail to deliver acceptable performance in
malware classification, due in part to the strong semantics
of malware features and the high level of heterogeneity found
in the malware ecosystem.

In this study, we first delve into the complexities of malware
data distributions using the EMBER dataset [21]|'} Our analysis
highlights the heterogeneity in malware, both between and
even within families, or groups of related malware. Leveraging
this insight, we devise MADAR — Malware Analysis with
Distribution-Aware Replay, a replay-based continual learning
strategy that accounts for heterogeneity and achieves improved
malware classification performance. In particular, MADAR
replays a mix of representative samples and novel samples (i.e.,
outliers) to enhance the model’s ability to retain knowledge and
identify new malware variants despite memory constraints. Our
techniques employ Isolation Forests (IF) [23]] to identify critical
novel samples, either directly through the raw feature vectors
(MADAR), or through the use of the hidden representations
of the model for a more compact representation (MADAR?).
For both of these approaches, we consider two mechanisms to

IThe recently released EMBER 2024 dataset [22] is outside the scope of
this study, as it was not available at the time the experiments were conducted.
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Fig. 1: Retrograde Malware Attack (RMA).

control how the number of replay samples is chosen, which
we refer to as Ratio and Uniform strategies.

We evaluate these techniques with comprehensive experi-
ments on two large-scale datasets across three CL scenarios
representative of real-world malware analysis tasks, covering
domain incremental learning (Domain-IL), class incremental
learning (Class-IL), and task incremental learning (Task-IL).
These datasets include the well-known EMBER dataset [21],
containing one million examples of Windows executables, and a
new benchmark dataset of Android malware from the AndroZoo
repository [24] specifically created to explore CL scenarios.
Our experimental results across these datasets demonstrate
that MADAR is effective and outperforms prior state-of-the-
art continual learning methods when confronted with realistic
distribution shifts in malware data.

In summary, the contributions of this study are:

« We provide an exploratory analysis of the heterogeneity
of malware distributions and show how it creates unique
challenges for continuous learning.

o« We develop a large-scale, realistic Android malware
benchmark dataset covering all three CL scenarios —
Domain-IL, Class-IL, and Task-IL.

o In Domain-IL scenarios, we show that MADAR performs
much better than prior CL techniques. On the AndroZoo
dataset, for example, MADAR comes within 0.4% average
accuracy of the retraining baseline using just 50K training
samples versus 680K for full retraining.

e MADAR is also effective in Class-IL scenarios, where it
consistently outperforms all prior methods over a wide
range of budgets. With a budget of 20K training samples
on EMBER, MADAR gets an average accuracy of 85.8%
versus 66.8% for the best method from prior work.

o For Task-IL, MADAR outperforms all prior methods
across all memory budget configurations for both the
EMBER and AndroZoo datasets. For example, in the
AndroZoo dataset, the MADAR-U variant of MADAR
achieves an average accuracy of 98.7% (within 0.1% of
full retrain) with a budget of only 20K replay samples
(versus approximately 250K for full retrain).

Through these contributions, this study stands as a significant
advancement in continual learning for malware classification,
highlighting the importance of understanding the domain
distribution to effectively combat catastrophic forgetting.

II. THREAT MODEL

The Retrograde Malware Attack (RMA) describes an attack
scenario where adversaries can exploit catastrophic forgetting
in machine learning-based malware detection systems. RMA
occurs when a system, updated incrementally with only new

Fig. 2: Frequencies of forgotten goodware, top mal-
ware families, and malware with unlabeled families (i.e.,
others_family) across incremental monthly learning
episodes for EMBER dataset.

samples, loses the ability to recognize older malware, allowing
attackers to reintroduce legacy or slightly modified variants
that can evade detection.

As shown in Figure [T, the attack can be realized in the
deployment phase of the detection system:

o Initial Training and Deployment (@): The system
is trained on an initial dataset of malware and benign
software and deployed for classification.

o Incremental Updates and Forgetting (@): As new
samples emerge, the model is retrained with only the
latest data. This process leads to catastrophic forgetting,
where older malware signatures are no longer retained,
reducing detection accuracy for previously known threats.
In addition, false positives increase as the model struggles
to differentiate between benign and malicious samples,
leading to the misclassification of legitimate software.
Figure [2] illustrates the frequencies of forgotten goodware,
top malware families, and malware with unlabeled fami-
lies (i.e., others_family) over incremental monthly
learning episodes for EMBER dataset [21], demonstrating
the extent of catastrophic forgetting in the model.

« Retrograde Malware Attack (RMA) ((3)): Attackers
exploit this limitation by reintroducing forgotten malware
or slightly modified versions, bypassing detection as the
model has lost prior knowledge. The success of this attack
increases with each incremental update if no mechanisms
are in place to retain past information.

This attack presents a challenge for CL-based malware
detection as maintaining detection accuracy for both new
and previously known threats is critical. We address this by
proposing MADAR a replay-based CL framework that mitigates
catastrophic forgetting and improves robustness against RMA.

ITI. RELATED WORK
A. Replay in Continual Learning

The fundamental challenge in developing a CL system
is addressing catastrophic forgetting, and one of the widely
studied methods to overcome forgetting is replay. In general,
replay techniques complement the training data for each new
task with older data that are representative of the tasks observed
by the model so far. These techniques can further be classified
into one of three subcategories — exact replay, generative replay,
and compressed replay.

Exact Replay. Selecting and utilizing replay samples in exact
replay involves determining a memory budget, denoted as B.



Finding the optimal way to choose B remains an open research
question [[17], [25]. Exact-replay techniques are designed to
choose replay samples from previously learned data to be
combined with new samples for retraining. The goal of these
techniques is to maximize the performance with minimal replay
samples [[16], [26]-[28].

Generative/Pseudo Replay. Generative or pseudo-replay strate-
gies are designed to replicate the original data [12], [[15], [18],
[29]. These techniques either generate a representative of the
original data using a separate generative model or generate
pseudo-data by using an earlier model’s predictions as soft
labels for training subsequent models.

B. CL in Malware and Related Domains.

Despite extensive work in CL, very few studies have
ventured into applying CL in the realm of malware. To the
best of our knowledge, Rahman et al. [20] were the first
to explore CL for malware classification. They concluded
that existing CL methods fall short in tackling forgetting
in malware classification systems due to differences in the
underlying nature of the data distribution shifts that occur
in practice versus those explored in the computer vision
domain. Malware representations leverage tabular features with
strong semantic constraints that limit the space of feasible
samples, and within that space, samples exhibit a high level of
heterogeneity. Replay-based techniques are found to perform
better compared to other approaches in this setting. Another
recent work, MalCL [12], introduces a generative replay-based
continual learning approach for malware classification using a
generative adversarial network (GAN). It achieves state-of-the-
art performance compared to prior generative replay methods.
Howeyver, its evaluation is restricted to the Class-IL scenario.

Furthermore, Chen et al. proposed to combine contrastive
learning with active learning to continuously train Android
malware classifiers [3]]. They focus on the detection of concept
drift, rather than overcoming forgetting.In addition, some
studies have used online learning for malware classification,
which deals with adding new samples as they are observed but
does not directly address catastrophic forgetting [30]. Another
CL domain in cybersecurity is network intrusion detection
(NID), looking for malicious activity based on network packets.
Amalapuram et al. explored a replay-based CL technique that
incorporates class-balancing reservoir sampling and perturba-
tion assistance for parameter approximation NID [?]. Another
recent work explored semi-supervised CL for NID in a class
incremental setting [31]. We note that NID is a different domain
with different data characteristics than malware. Further, these
works do not focus on reducing CF.

IV. PRELIMINARIES
A. CL Scenarios for Malware Classification

Continual Learning (CL) is categorized into three scenarios:
Domain Incremental Learning (Domain-IL), Class Incremental
Learning (Class-IL), and Task Incremental Learning (Task-
IL) [32]. In this work, we demonstrate how the three CL
scenarios naturally fit into a typical malware analysis pipeline
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Fig. 3: CL scenarios in a typical malware analysis pipeline.

(see Figure [3). The first step in the pipeline is to determine
whether a test sample is malware or goodware. Next, the
pipeline identifies the specific family of the detected malware,
which is formulated as a multi-class classification problem.
Finally, the pipeline classifies the broader category or behavior
of the malware, such as adware or ransomware, which is also
a multi-class classification problem.

1) Domain-IL: The primary challenge in malware classifi-
cation lies in distinguishing between goodware and malware.
Each day, VirusTotal receives one million never-before-seen
samples [9], highlighting the persistent and evolving nature of
software, known as concept drift 3. This evolution underscores
the importance of rapidly integrating these new samples into
operational systems to maintain effective protections against
new threats. In addition, with the continual emergence of new
benign software programs and the massive class imbalance in
practice (i.e., significantly more goodware than malware), it is
of utmost importance to not increase the false positive rate of
the classifiers.

In this adversarial context, attackers might deploy older
malware to evade detection by systems that have forgotten
their signatures, necessitating a balance between adapting to
new threats and preventing catastrophic forgetting. To address
this, we segment our Domain-IL datasets into monthly tasks
for EMBER and yearly tasks for AZ to mirror natural temporal
shifts in the threat distribution.

2) Class-IL: Another significant task in malware analysis
involves classifying malware into families, which are groups
of programs with substantial code overlap and similar function-
alities, as recognized by experts [|33]]. For instance, the zeus
banking trojan has evolved into 556 variants across 35 families,
including citadel and gameover. Labeling new samples
often relies on consensus from multiple anti-virus engines and
occurs when a significant set of similar samples forms a new
family [33], [34]. In our incremental multi-class model, we
start with known malware families and add new ones as they
emerge, continuously adjusting and assessing the model across
all known classes.

3) Task-IL: In malware analysis, leveraging insights from
additional methods can prove beneficial. This may involve
identifying the broader malware category (e.g., adware, ran-
somware, etc.), malware behaviors [35]], or the infection vector
(e.g., phishing, downloader, etc.). Task-IL encapsulates this
concept of constrained tasks, where the introduction of a new
task may symbolize a new category or behavior. This event
occurs less frequently than adding a new family, as seen in
Class-IL, yet it poses a genuine issue. Unlike Class-IL, the
task identity is provided to the model at test time, significantly
simplifying the problem. In malware, this could mean learning



the task identity from a separate model, manual analysis, or
field reports of the malware’s behavior. However, as our datasets
do not possess naturally defined tasks, we partition our dataset
into tasks comprising an equal number of independent and
non-overlapping classes to act as a proxy to new behaviors,
following common practice in the CL literature [[15], [32].
In other words, a given task would be to perform family
classification among one subset of families, and the subset that
each sample belongs to is known to the classifier. The model
is expected to be able to handle multiple tasks at once, and
new tasks are being added during each experiment.

B. Dataset

In this study, we use large-scale Windows and Android
malware datasets: EMBER [21], a Windows malware dataset
from prior work, recognized as a benchmark for malware
classification, and two new Android malware datasets derived
from AndroZoo [24]], specifically assembled for this research.

1) Windows PE Files: For our experiments, we leverage the
EMBER 2018 dataset, containing features from one million
Windows Portable Executable (PE) files, predominantly scanned
in 2018 ['| The dataset comprises 400K goodware and 350K
malware, with the rest labeled as unknown. EMBER provides
a diverse array of 2,381 hand-crafted features, covering general
file information, header data, import/export functions, and
section details. Notably, these features capture strong semantic
concepts that have a limited space of feasible settings, outside
of which the executable does not actually run.

In our Class-IL experiments, we focused on 2018 malware
samples from 2,900 families. After filtering out families with
fewer than 400 samples, we narrowed the remaining samples
down to the top 100 families, leaving 337,035 samples for
analysis. For Domain-IL, we included both goodware and
malware from the entire year of 2018 for binary classification,
excluding unknown samples.

2) Android APK Files: Additionally, we collected two
datasets from AndroZoo [24] (AZ) for our experiments: AZ-
Domain for Domain-IL and AZ-Class for Class-IL and Task-IL.
These datasets contain Android APK files, and both use a
9:1 ratio of goodware to malware to reflect real-world class
imbalance. Following the practice of prior work [30], the
malware samples are selected with a VirusTotal detection count
of >= 4. The AZ-Domain dataset includes 80,690 malware
and 677,756 goodware samples from 2008 to 2016. We divided
the AZ-Domain dataset into non-overlapping yearly training
and testing sets. The AZ-Class dataset consists of 285,582
samples from 100 Android malware families, each with at least
200 samples.

We extracted Drebin features [5] from the apps for both
datasets. These features cover various aspects of app behav-
ior, including hardware access, permissions, app component
names, filtered intents, restricted API calls, used permissions,
suspicious API calls, and network addresses. Again, we note
that these capture strong semantic concepts from the operation
of the application. The training sets of AZ-Domain and AZ-
Class have 3,858,791 and 1,067,550 features, respectively. We

Zhttps://github.com/elastic/ember

processed the test datasets to match the training feature sets and
reduced dimensionality by filtering features with low variance
(< 0.001) using scikit—-learn’s VarianceThreshold.
This resulted in final feature dimensions of 1,789 for AZ-
Domain and 2,439 for AZ-Class, respectively.

C. Model Selection and Implementation

We use a multi-layer perceptron (MLP) model for malware
classification, similar to the model used by Rahman et al. [20],
for experiments with the EMBER dataset. For the AZ dataset,
we developed a new MLP model with five fully-connected
layers, quite similar to the MLP used for EMBER. This model
uses the Adam optimizer with a learning rate of 0.001, and
batch normalization and dropout for regularization.

The implementation of the output layer varies among
Domain-IL, Class-IL, and Task-IL scenarios. Domain-IL oper-
ates as a series of binary classification tasks over 12 months for
EMBER, and over 9 years for the AZ dataset, with two output
units in each case: malicious and benign. In Class-IL, the output
layer comprises units — one for each malware family. Output
units are active only if they correspond to family that have
been seen by that point in the experiment. Class-IL begins with
an initial set of 50 families in the first task and progressively
adds five more families in each of the remaining 10 tasks for
both EMBER and AZ datasets. In Task-IL, only the output
units of the families in the current task are active. Both the
EMBER and AZ-Class datasets divide the families equally into
20 tasks, with each task containing five families.

D. Baselines and Metric

We adopt two baselines for comparison: None and Joint.
None sequentially trains the model on each new task without
any CL techniques, serving as an informal minimum baseline.
By contrast, Joint uses all new and prior data for training at
each step, acting as an informal maximum baseline. Despite its
resource demands, Joint ensures strong performance throughout
the dataset. We also introduce an additional baseline — Global
Reservoir Sampling — which provides an unbiased sampling of
the underlying class distributions and serves as a strong point
of comparison for our distribution-aware approach.

Global Reservoir Sampling (GRS): GRS simply selects
samples at random from a global stored data pool [36], [37].
Given a memory budget 5, GRS randomly picks 8 samples
from a data pool P, with each incremental learning task
contributing to the pool. If 3 > P, GRS selects all the available
samples in P. Rahman et al. [20] investigated GRS — which
they refer to as Partial Joint Replay — only for Domain-IL
scenario of EMBER dataset. In this work, we present a deeper
investigation of GRS in both Domain-IL and Class-IL scenarios
with both EMBER and AZ datasets.

Global average accuracy (AP € [0,100]%): To maintain
consistency with prior work, we present results using global
average accuracy as the primary metric for our evaluations [[15],
[16], [20]. Note that we conducted a subset of evaluations using
other metrics, such as F1 score, precision, and recall, which are
not included in this paper. The conclusions remain unchanged
for all of these metrics.
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Fig. 4: New and already learned families in each task.

Let P; ; be the accuracy of the model on the test set of task
T}, j <1, after continually training the model on tasks 1 to i.
Then the average accuracy AP at task T; is defined as AP; =
%2221 P; ;. For N total tasks, the global average accuracy

AP over all tasks is computed as AP = & > AP, x 100.

E. Training and Evaluation Protocol

A continual learning (CL) model is sequentially trained
to learn tasks from tq,to,...,t7, each with its distinct data
distribution p(z, y|t;). The goal is to adapt to new tasks without
forgetting the old ones. CL training involves three sets of
parameters: shared parameters (6,) across all tasks, old task-
specific parameters (6y), and new task parameters (6,,) [29]. The
Joint training benchmark trains the model with all the available
training samples up to the current task and optimizes all
these parameters simultaneously; however, it incurs incremental
storage and training costs. In contrast, CL training strives to
optimize and update 6, and 6,,, while maintaining 6y in a
relatively fixed state for each new task ¢,,. However, updating
any of the shared weights 6 risks confusing the classifier when
faced with older data, as those classification decisions depend
not only on 6, but also on 6. CL training typically boasts
significantly faster speeds and far less storage requirements than
Joint training, thus permitting more frequent model retraining
to adapt to evolving data distributions or other requirements.

In our evaluations, we use a non-overlapping hold-out set
corresponding to each task. For example, the AZ-Domain
dataset contains 8 years of training samples from 2008 to
2016, resulting in 9 hold-out sets, one for each year. A CL
model is evaluated on all the hold-out sets up to the current
task; formally, the model is evaluated on tasks ¢; to ¢p, for
1 < ¢ < T, after it been trained on the current task ¢7. In
this work, each set of experiments is performed around 10-15
times with different random parameter initializations. We use
PyTorch on a CentOS-7 machine with an Intel Xeon processor,
40 CPU cores, 128GB RAM, and four GeForce RTX 2080Ti
GPUs, each with 12GB memory.

V. EXPLORATORY ANALYSIS OF EMBER

In this section, we provide an analysis of the EMBER dataset,
which sheds light on the distribution across various families
and tasks, aiding in selecting representative samples for replay.
We identified 2,899 unique malware families within a subset
of EMBER, and an additional 11,433 samples lacking clear
family labels were assigned the label Other.

We investigate the prevalence of malware families over time,
distinguishing between recurring and newly identified families

TABLE I: Number of samples and families per task in EMBER

Task #of Goodware | #of Malware | #of Families
January 29423 32491 913
February 22915 31222 976
March 21373 20152 898
April 25190 26892 804
May 23719 22193 909
June 23285 25116 945
July 24799 26622 776
August 23634 21791 917
September 26707 37062 1160
October 29955 56459 393
November 50000 50000 574
December 50000 50000 754
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Fig. 5: EMBER Malware samples without AV-Class labels.

each month in Figure . Unlike many datasets used in CL
research, we see significant churn in the representation of
families over time. Of the 913 families seen in January, for
example, only 551 are seen in February, while 425 new families
emerge. This churn indicates a potential issue in training data
continuity, which may aggravate catastrophic forgetting and
underscores the need for different CL strategies in the malware
domain. Table |I| shows the number of goodware and malware
samples in each month, as well as the number of families.
Generally, each family has its own distinct distribution pattern,
and together these patterns make up the total distribution of
malware for a particular month.

Worse, many malware samples do not have family labels at
all (see Figure [5). Correctly labeling samples is a challenging
endeavor and often takes time and expert knowledge [34], so
this lack of labels matches real-world conditions. Family labels
for malware are based on the av-class labels provided by the
av-test engine [8]. Analysis of the Other-labeled samples do
not align with the labeled families, which shows that many of
them indeed come from unknown families.

Furthermore, our analysis shows that the prominent malware
families change with the evolution of tasks. We identified the
10 most common malware families based on the frequency of
samples from each family and found that the top 10 families
vary across tasks. The most prevalent families at the beginning
of the experiment (i.e., January) do not remain prevalent in
later tasks (i.e., from February on). For example, the emotet
malware family was the most consistent, appearing in 11 out
of 12 tasks. The next most consistent families were fareit
and zusy, appearing in eight and seven tasks, respectively.
This indicates considerable concept drift in malware data,
highlighting the need to regularly update classifiers.

In addition, many malware families display complex dis-
tributional patterns in feature space, making for additional
heterogeneity within classes. Figure [6, for example, shows
a t-SNE projection of the EMBER features for all malware
samples from January 2018. Each class (represented by color)
is not clustered into a single well-defined region. Rather, the
larger classes are split up into subsets that spread out in feature



Estimated number of clusters: 155

Fig. 6: t-SNE projection of EMBER malware from Jan. 2018.

space. To accurately represent the malware distribution, it is
thus important to select samples not only from each class, but
also from multiple areas within each class.

Despite some degree of overlap among different families,
it is possible to discern distinct clusters indicative of the
heterogeneity across and even within malware families. It is
vital to capture samples from each of these smaller clusters,
including those belonging to minority families, to accurately
represent the malware landscape for a specific task month.
To further complicate the situation, it is often not possible to
provide definitive family labels for a sample due to the inherent
subjectivity involved in malware analysis, which results in a
large, diverse set of additional unlabeled samples which must
be considered [34]. These attributes of the malware landscape
make it difficult to characterize classes as contiguous regions of
the feature space with relatively simple class boundaries. Rather,
each class might only be understood as a collection of smaller
pockets of the feature space that might be closer to pockets
from other classes than the same class. This may explain why
prior CL techniques designed for computer vision datasets are
less effective when applied to the malware domain [20]].

In light of these analysis, we propose that selecting samples
based on families and variations within those families could
more effectively capture the heterogeneity within the replay
data distribution, potentially mitigating catastrophic forgetting.

VI. DISTRIBUTION-AWARE REPLAY

Here, we introduce the our proposed continual learning (CL)
framework for malware classification with two distribution-
aware replay variants: MADAR and MADAR?. MADAR
operates on the basis of the raw-feature space and MADAR?
operates on the basis of the model’s weights-space of raw-
features.

A. MADAR

Building on the exploratory analysis in Section [V, we
postulate that stratified sampling, where replay samples are
chosen based on their representation in malware families, may
better preserve the model’s stability versus random sampling
as used in GRS. Moreover, we also seek to capture the
heterogeneity within each family’s data distribution. We do this
by selecting a balance between representative samples that are
close to each other and anomalous samples that are separated.
While any single anomalous sample is not as important to learn
and remember as a single representative sample, a collection

Algorithm 1: MADAR in Domain-IL.

Input : ¢ — Current Task number, X., Y. — Samples and
labels of ¢, P — Data pool, 8 — Memory budget, v —
Split of B for malware and goodware, €2 — Split of
anomalous/similar samples, £ — Ratio budgeting, ¥ —
Uniform budgeting
1 init P; init D« {Mj;: M.};
2 if ¢ = 0 then

3 P+ X, Y

4 Xgood7 Xomat < P;

5 VD + Xmal

6 L Xtrainy Krain — XCy 1/(’
7 else

8 Xgood,Xmal — Pa

° Bum,Ba B .7
10 Ba, Bs < Bu . Q; if U then

11 LN}—<—‘D|, B]—'%ﬂM/N]‘—;
12 Roinal [ ];

13 for X; C X,na1 do

14 Fme +— Xy;

15 if £ then

16 L MC ‘D|, B]:(—(]:Mc/MC)*/BM;
17 if Fare <= Br then

18 L Rinar-append(Xy);

19 else

20 (Ag, Sy) < IF(Xy, Ba, Bs);
21 Rmal-append(Afan)

22 Rgood  sample(Xgood, len(Rmai));

23 Xreplay — (Rgood, Rmul);

24 Yieptay < ([0] * Len(Rgooa), [1] * Len(Rmai));
25 Xirain Concat((XaXreplay));

2 Yirain < (concat((Ye, Yreplay));

27 P.append(Xe, Ye); VD +— Xonai;

28 return (Xtrai'rn Ytrain)

of anomalous samples helps to track the heterogeneity within
a class.

Isolation Forest (IF) [23] is a technique for identifying
outliers in high-dimensional data. IF uses decision trees to
isolate anomalous data points based on the intuition that outliers
are distinct and easy to separate from the rest of the data.
An important parameter in IF is the contamination rate C,,
which represents the expected fraction of outliers in the data.
We found that C,. = 0.1 works best and used it in all our
experiments. The algorithm for MADAR in the Domain-IL
setting is provided in Algorithm [I} The algorithm for MADAR
in the Class-IL and Task-IL settings is provided in Algorithm 2]

Procedure: We now describe MADAR using the framework
of Domain-IL; the process is similar for Class-IL and Task-
IL. The procedure begins by initializing a global data pool
P, containing both goodware and malware samples, and a
dictionary D that tracks malware families and their frequencies
in the data up to the current task.

For each new task ¢, MADAR divides the data into goodware
(Xgooa) and malware (X,,q;) subsets from P, allocating
memory budgets (), for malware and B¢ for goodware from
the total memory budget 3, based on a split ratio ~:

Ba=v-B, Pu=0-7)8 (1



For balanced datasets like EMBER, v = 0.5 ensures an equal

split between malware and goodware. For an imbalanced

dataset, it is better to tune . Our Android malware (AZ)
datasets, for example, have a 9:1 ratio of goodware to malware,

so we use v = 0.9.

Before training for a new task, MADAR incrementally trains
the classifier using a combination of new samples from the
current task and replay samples from previous tasks. The replay
samples include both goodware (124004 C Xgooq) and malware
(Rimai € Ximat), with R,,,4; sampled from specific malware
families rather than randomly from all of X,,4;.

For each family f, we set its family budget By— the number
of samples to select from f—using two sub-sampling variants:
Ratio budgeting and Uniform budgeting.

« Ratio Budgeting: Select the number of samples from a
family f proportional to that family’s representation in the
dataset. The family budget By is By = | )‘{)fnf!l‘ - Banr, where

| X ¢| is the number of samples in family f, and | X,,4;| is the
total number of malware samples. This strategy may be more
suitable in binary classification, as it provides proportional
representation of the malware families for training on the
malicious class.

Uniform Budgeting: In this method, the memory budget

Basr is uniformly distributed across all malware families:

By = f’%" where | F]| is the total number of malware families.

Compared with Ratio budgeting, Uniform budgeting may

work well for multi-class classification to determine which

family a sample belongs to, as it ensures better class balance.

Within each family f, we further split the family budget

B¢ into two parts: representative samples Sy and anomalous

samples Ay, using IF, controlled by a split parameter o:

|Sf|=Oz-Bf, |Af|:(1—a)-Bf

@

We found empirically that a balanced split (o« = 0.5) between
representative and anomalous samples provides optimal perfor-
mance. In this setup, the model learns equally the core class
characteristics from representative samples and less common
variations from anomalous samples.

The malware replay set R,,, is then constructed by
combining the representative and anomalous samples from
all malware families:

Ry = U {Sf U Af}.
feF

3)

The total replay set consists of both goodware and malware
replay samples, which are then concatenated with the new task
samples to form the training set for the current task c. After
training, the data pool P is updated with the new task samples,
P+ PU{X,, Y.}, and the malware family dictionary D is
updated to reflect the new frequencies of malware families in
Xmat: DD+ fTeQ(Xmal)'

B. MADAR?

While Isolation Forest (IF) outperforms other distance-
based anomaly detection techniques on high-dimensional data,
it struggles with correlated features [38]. Let X € RP
represent the input data, where D is the feature dimension.

Algorithm 2: MADAR in Class-IL and Task-IL

Input : ¢ — Task number, X., Y. — Malware samples and
their family labels, P — Malware data pool, 5 —
Memory budget, €2 — Split of anomalous/similar
samples, £ — Ratio budgeting, ¥ — Uniform
budgeting

1 init  P; init D« {M;: M.};

2 if ¢ = 0 then

3 P<_Xc,yvc; Xmal <_Pa V,D<_Xmal;

L Xtrai'ny }/train — X07 }/c;

else

Xmal <~ Pv B/Mﬁs — 5 : Q;

if U then
| NF«D; Br < B/NF;

8 Rl [ ]; for Xf g Xmar do

N~ o o &

9 Fume — Xy if € then

10 L MC("D, B]—‘%(}-MC/MC)ﬁy

11 if}_Mc SB]: then

12 L Rmal.append(Xf);

13 else

1 (Af, Sf) < IF(Xy, Ba, Bs);
Riai-append(Ay, S);

15 Xreplay — Rmal; Yreplay — ([1} X len(Rmal));
16 Xtrain < concat(Xe, Xrepiay);

Yirain < Concat(yvmyreplay);

17 P.append(Xe, Ye); VD <+ Xopai;

18 return (XtrainynTain)

For example, the EMBER dataset has D = 2381, while the
AZ datasets have D = 1789 for AZ-Domain and D = 2439
for AZ-Class, respectively. Instead of applying dimensionality
reduction techniques such as PCA, we propose leveraging a
neural network M to generate compact feature representations
Z < R? where d < D. This approach is particularly
advantageous in continual learning contexts, as it complements
ongoing model development and adapts to evolving tasks [39],
[40].

To address these, we introduce MADAR?, a variant of
MADAR that leverages learned representations from a trained
model M to identify both representative and diverse samples
effectively. For an input sample x, the model M computes
activations W(x), representing its internal state. Specifically,
for a set of inputs X belonging to a family f, MADAR?
extracts activations:

OF(Xy) = {W*-(x) 1 x € Xy}, where ©%(Xy) € R?,
“)
from a chosen layer £ of the model.

These activations are analyzed using the Isolation Forest (IF)
algorithm to identify anomalous activations A,, C O%(X}).
The corresponding anomalous samples in the original input
space are denoted as:

Ay ={x€X;: WEx) € Ay} 5)
Non-anomalous samples are similarly sampled to form the set
Sy, ensuring a balanced and representative replay set:

Sp={xeX; : W-(x) ¢ Ay} (6)



TABLE II: Summary of Results for EMBER Domain-IL. Experiments.

Budget
Group | Method K ] T0K | S0K ] 100K | 200K | 300K | 400K
Joint 96.4+0.3
Baselines | None 93.1+0.1
GRS 93.6+0.3 \ 94.1£1.3 \ 95.3+0.2 \ 95.3£0.7 \ 95.9+0.1 \ 95.8+0.6 \ 96.0+0.3
ER [26] 80.6+0.1 | 73.5+0.5 | 70.5+£0.3 | 69.9+0.1 | 70.0+0.1 | 70.0+0.1 | 70.0+0.1
Prior AGEM [27] | 80.5+0.1 | 73.6£0.2 | 70.44+0.3 | 70.0+0.1 | 70.0+£0.2 | 70.0£0.1 | 70.0%0.1
Work GR [[18] 93.140.2
RtF [41] 93.24+0.2
BI-R [15] 93.440.1
MADAR-R 93.7£0.1 | 94.7+0.1 | 95.4+0.1 | 95.3+£0.6 | 96.0+0.1 | 96.1+0.1 | 96.1+0.1
MADAR MADAR-U 93.6+£0.2 | 94.0+£0.2 | 95.1£0.1 | 95.3£0.1 | 95.5+£0.1 | 95.7£0.1 | 95.8+0.1
MADAR?R | 93.6+0.1 | 94.4+0.3 | 95.3+0.2 | 95.8+0.1 | 96.1+0.1 | 96.1+0.1 | 96.1+0.1
MADAR?-U | 93.540.2 | 94.14£0.2 | 94.940.1 | 952402 | 95.640.1 | 95.7+£0.1 | 95.740.1
TABLE III: Summary of Results for AZ Domain-IL Experiments.
Group Method Budget
K | 10K | 50K | 100K | 200K | 300K | 400K
Joint 97.34+0.1
Baselines | None 94.440.1
GRS 95.34+0.1 ‘ 96.440.1 ‘ 96.940.1 ‘ 97.14+0.1 ‘ 97.1+£0.1 ‘ 97.240.1 ‘ 97.2+0.1
ER [26] 40.4+0.1 | 40.1£0.1 | 41.1£0.2 | 42.6+0.1 | 44.0+0.1 | 45.9+£0.1 | 48.6£1.1
Prior AGEM [27] | 45.440.1 | 47.4+0.2 | 49.24+0.2 | 53.7£0.6 | 54.24+0.3 | 54.8+£04 | 56.7+0.3
Work GR (18] 93.3+0.4
RtF [41]] 93.4+0.2
BI-R [15] 93.5+0.1
MADAR-R 95.84+0.1 | 96.6+0.1 | 96.9+0.1 | 97.0+0.1 | 97.0+0.1 | 97.0+0.1 | 97.0+0.1
MADAR MADAR-U 95.7£0.1 | 95.5£0.1 | 95.2+0.2 | 95.2+0.1 | 95.4+0.1 | 95.8+£0.2 | 96.3+0.2
MADAR?R | 95.8+0.2 | 96.6£0.1 | 96.9+0.1 | 96.9+0.1 | 97.1+0.1 | 97.1+0.1 | 97.2+0.1
MADAR’-U | 95.6+0.1 | 96.140.1 | 96.6+0.1 | 96.840.1 | 97.0+0.1 | 97.1+£0.1 | 97.140.1

The replay samples Ay U Sy are then used in subsequent
training episodes to maintain knowledge retention and mitigate
catastrophic forgetting.

Selection of the Layer L. The choice of L is critical in
MADAR? to ensure that feature representations are captured
without interference from the model’s final classification stage.
Empirical testing revealed that the penultimate layers, denoted
as act 4 for the EMBER dataset and act 5 for the AZ datasets,
provide optimal results such that Lgyper = act4,
acths.

»CAZ =

Adaptation of Batch Normalization. During the forward pass,
batch normalization is omitted in MADAR? to preserve the
heterogeneity of the activation distributions. While batch nor-
malization typically stabilizes learning and improves generaliza-
tion, it can homogenize activations, reducing the heterogeneity
essential for identifying anomalies. This adaptation enhances
the performance of MADARY, as confirmed by empirical
results.

Efficiency of MADAR?. MADARY is computationally efficient
compared to MADAR applied directly to the input space. The
hidden layers act4 and act5 have d = 128, significantly
reducing the dimensionality from D. As a result, MADAR?
offers reduced computational complexity.

VII. EVALUATION

We present the results of our MADAR framework and
MADAR? in the Domain-IL, Class-IL, and Task-IL scenarios

using the EMBER and AZ datasets discussed in Section
To denote our techniques, we use the following abbreviations:
MADAR-R for MADAR-Ratio, MADAR-U for MADAR-
Uniform, MADAR?-R for MADAR?-Ratio, and MADAR?-U
for MADAR?-Uniform.

For all three scenarios, we compare MADAR against widely
studied replay-based continual learning (CL) techniques, includ-
ing experience replay (ER) [26], average gradient episodic mem-
ory (AGEM) [27], deep generative replay (GR) [18], Replay-
through-Feedback (RtF) [41], and Brain-inspired Replay (BI-R)
[15]. Additionally, we evaluate MADAR against iCaRL [16],
a replay-based method specifically designed for Class-IL. For
the Class-IL and Task-IL scenarios, we additionally compare
MADAR with Task-specific Attention Modules in Lifelong
Learning (TAMiL) [14]. Furthermore, we benchmark MADAR
against MalCL [12], a method specifically designed for Class-
IL. Notably, most recent work focuses primarily on Class-
IL and Task-IL scenarios, limiting direct comparisons in the
Domain-IL scenario. In our results tables, the best-performing
methods and those within the error margin of the top results
are highlighted.

A. Domain-IL

In EMBER, we have 12 tasks, each representing the monthly
data distribution spanning January—December 2018. Our results,
detailed in Table [II, provide a comprehensive view of each
method’s performance, reported as the average accuracy over
all tasks AP.



TABLE IV: Summary of Results for EMBER Class-IL Experiments.

Budget
Group | Method 0 | 500 | 1K | 5K | 10K | 15K | 20K
Joint 86.5+0.4
Baselines | None 26.5+0.2
GRS 519404 | 70.3+0.5 | 75.4+0.7 | 82.0402 | 83.540.1 | 843403 | 84.64+0.2
TAMIL [[14] | 322403 | 33.140.2 | 353402 | 36.7+0.1 | 382+0.3 | 37.240.2 | 38.84+0.2
iCaRL [16] | 53.940.7 | 58.740.7 | 60.0+£1.0 | 63.9+12 | 64.6+0.8 | 65.5£1.0 | 66.8+1.1
Prior ER [26] 27.540.1 | 27.8+0.1 | 28.040.1 | 27.940.1 | 28.0+0.1 | 28.0+0.1 | 28.240.1
Work | AGEM [27] | 27.340.1 | 27.4+0.1 | 27.7+0.1 | 28.540.1 | 28.2+0.1 | 28.3+0.1 | 28.240.1
GR (18] 26.84+0.2
ReF (1] 26.5+0.1
BI-R [15] 26.940.1
MalCL [12] 54.5+0.3
MADAR-R | 68.0+0.4 | 73.6402 | 76.0+£0.3 | 81.5+0.2 | 832402 | 83.840.2 | 84.0+0.2
MADAR | MADAR-U | 66.4-0.4 ‘ 76.5+0.2 ‘ 79.4+0.4 ‘ 83.8+0.2 ‘ 84.8+0.1 ‘ 85.5+0.1 ‘ 85.840.3
MADAR’R | 67.9+0.3 | 727405 | 72.7£0.5 | 81.740.2 | 83240.1 | 83.9£0.1 | 84.5£0.2
MADAR’-U | 67.540.3 ‘ 76.440.4 ‘ 78.5+0.4 ‘ 84.1+0.1 ‘ 85.3+0.1 ‘ 85.840.2 ‘ 86.240.2

The informal lower and upper performance bounds for
this configuration are approximated by the None and Joint
methods, achieving AP scores of 93.1% and 96.4%, respec-
tively. Meanwhile, GRS serves as a strong baseline, providing
unbiased sampling without incorporating sample heterogeneity
awareness.

At a lower budget of 1K, MADAR-R, MADAR-U, and
MADARY-R exhibit competitive performance, all achieving
AP of over 93.6%, significantly outperforming prior ap-
proaches. This highlights their ability to effectively utilize
limited resources. In particular, MADAR-R achieves the
highest accuracy at this budget, with AP of 93.7%. As the
memory budget increases, the performance of all MADAR
and MADAR? variants improves steadily. At a budget of
200K, MADAR-R and MADAR’-R achieve an impressive
AP of 96.0% and 96.1%, respectively, closely approaching
the 96.4% achieved by the Joint baseline, which utilizes over
670K samples. Uniform strategies, including MADAR-U and
MADAR?-U, are only slightly behind, with AP values of
95.5% and 95.6%, respectively.

For the experiments with AZ-Domain, we consider 9 tasks,
each representing a yearly data distribution from 2008 to 2016.
The performance of each method is presented in Table [IIT as
AP and compared to two baselines: None, which achieves
94.4%, and Joint, which reaches 97.3%.

Similar to the results observed with EMBER, our MADAR
techniques consistently outperform prior methods such as ER,
AGEM, GR, RtF, and BI-R across all budget levels. For lower
budgets, such as 1K, MADAR-R achieves AP of 95.8% and
coming within 1.5% of the Joint baseline.

At higher budgets, ranging from 100K to 400K, MADAR-R
continues to demonstrate high AP scores of up to 97.0%,
closely matching GRS and only marginally below the Joint
baseline, which requires significantly more training samples
(680K). Notably, MADAR’-R exhibits comparable perfor-
mance, reaching a peak AP of 97.2% at the highest budget
level, further underscoring the efficacy of our distribution-aware
approach.

In summary, these results empirically demonstrate the effec-
tiveness of MADAR’s distribution-aware sample selection in
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Fig. 7: EMBER Class-IL: Comparison of the MADAR-R,
MADAR-U, MADAR?-R, and MADAR?-U with Joint baseline.

enhancing the efficiency and accuracy of malware classification
in Domain-IL scenarios. MADAR-R and MADAR’-R, in
particular, consistently either yield on-par or outperform GRS
while delivering significant improvements over prior methods.

B. Class-IL

In this set of experiments with EMBER, we consider 11
tasks, starting with 50 classes (representing distinct malware
families) in the initial task, and incrementally adding five
new classes in each subsequent task. Table presents the
performance of each method, measured by average accuracy
AP. The None and Joint baselines achieve AP values of
26.5% and 86.5%, respectively, providing informal lower
and upper bounds. Figure [7 illustrates the progression of
average accuracy across tasks, showing how the MADAR
and MADAR? methods compare to the Joint baseline.

At a very low budget of just 100 samples, MADAR-R
achieves a notable AP of 68.0%, outperforming GRS and



TABLE V: Summary of Results for AZ Class-IL Experiments.

Budget
Group | Method 0 | 500 | 1K | 5K | 10K | 15K | 20K
Joint 94.240.1
Baselines | None 26.440.2
GRS 438407 | 62.940.8 | 702404 | 83.0403 | 86.4+0.2 | 88.2+0.2 | 89.140.2
TAMIL [[14] | 53.4+03 | 552+0.3 | 57.6403 | 60.8+0.2 | 63.5+0.1 | 653405 | 67.740.3
iCaRL [[16] | 43.6+12 | 54.9+1.0 | 61.740.7 | 772404 | 81.5+0.6 | 83.4£0.5 | 84.6+0.5
Prior ER [26] 50.84+0.7 | 58.3+0.6 | 58.940.2 | 59.2+0.8 | 62.9+0.7 | 63.140.5 | 64.2+0.4
Work | AGEM [27] | 27.340.7 | 28.0£1.4 | 27.1403 | 280406 | 28.2£1.0 | 29.8+2.6 | 28.0+0.8
GR (18] 22.7+0.3
ReF (1] 22.940.3
BI-R [15] 23.440.2
MalCL [12] 59.840.4
MADAR-R | 59.4+0.6 | 67.8409 | 71.940.5 | 82.9+0.2 | 86.340.1 | 88.240.2 | 89.1+0.1
MADAR | MADAR-U | 573405 ‘ 70.4+0.4 ‘ 76.240.2 ‘ 86.8+0.1 ‘ 89.8+0.1 ‘ 91.0+0.1 ‘ 91.5+0.1
MADAR’-R | 58.8+0.3 | 66.240.7 | 71.0£0.7 | 812403 | 85.1402 | 86.940.2 | 88.1£0.1
MADAR’-U | 58.5+0.7 ‘ 70.140.2 ‘ 74.7+0.2 ‘ 85.5+0.1 ‘ 88.7+0.1 ‘ 90.3+0.2 ‘ 90.7+0.1

e MADARR 10K MADAR-R 500 ADAR-U 10K MADAR-U 500
—a— MADAR-R 20K MADARRSK  —a— MADARR 100 —a— MADARU 20K MADARUSK  —e— MADARU 100
DARY 1K

- MADARRISK  —— MADARR 1K —— MADARUISK  —— MA

Accuracy
o o

Accuracy

o o
@

50 55 60 65 70 75 80 85 90 95 100
Incremental Classes

50 55 60 65 70 75 80 85 90 95 100
Incremental Classes

(a) MADAR Ratio (b) MADAR Uniform

—— Joint —a MADAR®.R 10K MADAR®-R 500 —= Joint o MADAR®.U 10K MADAR®.U 500
—=— MADAR®-R 20K MADARPRSK  —a— MADAR®-R 100 —=— MADAR®-U 20K MADAR-USK  —s— MADAR™-U100
- MADARR 15K  —+— MADAR™AR 1K o MADARS-UTSK  —— MADAR™-U IK

Accuracy
o o
a 2
Accuracy
o o
a 2

50 55 60 65 70 75 80 85 90 95 100
Incremental Classes

50 55 60 65 70 75 80 85 90 95 100
Incremental Classes

(c) MADAR’ Ratio (d) MADAR? Uniform

Fig. 8: AZ Class-IL: Comparison of the MADAR-R, MADAR-
U, MADAR?-R, and MADAR?-U with Joint baseline.

prior methods by a significant margin. As the budget increases,
MADAR-U emerges as the top performer, achieving AP values
of 76.5% and 79.4% at 1K and 10K budgets, respectively,
surpassing all other methods, including GRS.

At higher budgets, MADAR-U and MADAR?-U continue
to excel, with MADAR?-U achieving the best results overall.
At a 20K budget, MADAR’-U reaches an AP of 86.2%,
nearly equaling the Joint baseline, which uses over 150 times
more training samples. These results clearly demonstrate the
effectiveness of MADAR’s distribution-aware sample selection
and the effectiveness of MADAR-U and MADAR’-U in
leveraging limited resources.

In contrast, prior methods such as ER, AGEM, GR, RtF, and
BI-R fail to exceed 30% AP, while more advanced techniques
like TAMIiL and MalCL achieve only 38.2% and 54.8%,
respectively. Even iCaRL, designed specifically for Class-
IL, achieves only 64.6%, further highlighting the significant
advantage of our approaches in the malware domain.

In the Class-IL setting of AZ-Class, we consider 11 tasks.
The summary results of all experiments are provided in Table[V,
with comparisons against the None and Joint baselines, which
achieve AP scores of 26.4% and 94.2%, respectively. Figure
illustrates the progression of average accuracy across tasks,
showing how each method performs relative to the Joint
baseline.

As shown in Table [V, among the prior methods, iCaRL
performs best across most budget configurations, outperforming
techniques such as MalCL, TAMIL, ER, AGEM, GR, RtF,
and BI-R. Therefore, we focus on comparing MADAR’s
performance with iCaRL. At a low budget of 100 samples,
iCaRL and GRS achieve less than 44% AP, while all MADAR
methods surpass 57%. In particular, MADAR-R and MADAR?-
R achieve AP scores of 59.4% and 58.8%, respectively,
highlighting their efficiency at low-resource levels.

As the budget increases, all methods improve, but MADAR-
U consistently delivers the best results. At a budget of 1K,
MADAR-U achieves the highest AP at 70.4%, followed
closely by MADAR?-U at 70.1%. This trend continues as
budgets increase, with MADAR-U outperforming all other
methods, achieving AP scores of 89.8% at 10K and 91.5% at
20K. Compared to GRS, which achieves 90.1% at 20K, and
iCaRL, which trails at 84.6%, MADAR-U demonstrates clear
superiority. MADAR?-U also performs GRS reaching 90.7%
at 20K.

In summary, our experiments demonstrate the effectiveness
of MADAR’s distribution-aware replay techniques in the Class-
IL setting for both EMBER and AZ datasets. While GRS
shows significant improvement with larger budgets, MADAR’s
uniform variants consistently outperform it across all budget
levels. These results underscore MADAR’s ability to mitigate
catastrophic forgetting and enhance malware classification
performance, even in resource-constrained environments.

C. Task-IL

In this set of experiments with EMBER, we consider 20
tasks, with 5 new classes added in each task. The summarized
results are shown in Table |VI| where performance is reported
as the average accuracy over all tasks (AP). It is worth



TABLE VI: Summary of Results for EMBER Task-IL Experiments.

Budget
Group | Method } 0 | 500 | 1K | 5K | 10K | 15K | 20K
Joint 97.0+0.3
Baselines | None 74.6£0.7
GRS 86.940.3 | 87.4+0.3 | 93.6403 | 94.4+0.2 | 94.7+03 | 94.940.1 | 95.0+0.1
TAMIL [[14] | 72.84+0.1 | 81.5+0.3 | 86.9402 | 88.1+0.3 | 90.3+0.1 | 93.240.3 | 94.2+40.7
ER [26] 67.4403 | 84.9+0.2 | 89.5+0.5 | 93.940.2 | 94.8+0.2 | 95.2+0.1 | 95.440.1
Prior AGEM [27] | 79.6+0.2 | 81.7+0.2 | 83.840.4 | 84.9+0.2 | 86.140.2 | 88.940.2 | 89.340.1
Work | GR [18] 79.840.3
ReF [#1] 77.84+0.2
BI-R [T5] 87.240.3
MADAR-R | 92.1402 | 923409 | 93.8+0.2 | 94.2+0.1 | 948402 | 95.70.2 | 95.6+0.1
MADAR | MADAR-U | 93.4:0.2 ‘ 93.7+0.3 ‘ 93.9+0.3 ‘ 94.8+0.2 ‘ 95.6+0.1 ‘ 95.7+0.1 ‘ 95.840.2
MADAR’R | 93.1+0.2 | 93.3%£0.1 | 93.6£0.1 | 943+0.1 | 94602 | 94.8+0.2 | 94.7+0.3
MADAR’-U | 93.240.1 ‘ 93.140.2 ‘ 93.8+0.2 ‘ 94.4+0.1 ‘ 94.8+0.1 ‘ 95.3+0.2 ‘ 95.5+0.3
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Fig. 9: EMBER Task-IL: Comparison of the MADAR-R,
MADAR-U, MADAR?-R, and MADAR"-U with Joint baseline.

noting that Task-IL is considered the easiest scenario in
continual learning [15], [32]. The None and Joint methods
serve as informal lower and upper bounds, achieving AP
scores of 74.6% and 97%, respectively. Figure [9] visualizes
the progression of average accuracy across tasks, highlighting
comparisons with the Joint baseline.

As shown in Table [VI, ER consistently outperforms TAMIL,
A-GEM, GR, RtF, and BI-R across all budget configurations
and even surpasses GRS in some cases. However, MADAR
variants significantly outperform all prior methods, particu-
larly under lower budget constraints (100-1K). For example,
MADAR-U achieves the highest AP of 93.4% and 93.7%
at budgets of 100 and 1K, respectively, outperforming GRS
and all other approaches. Similarly, MADAR’-U performs
competitively, with AP of 93.2% at a 100 budget and 93.8%
at 1K.

As the budget increases, the performance gap among
MADAR, ER, and GRS narrows; however, MADAR variants
continue to either outperform or match other techniques.
Notably, the MADAR-U variant of MADAR achieves the best

overall performance at a budget of 20K, attaining a AP of
95.8%, which closely approaches the Joint baseline. Similarly,
MADAR-R yields AP of 95.6% at 20K.

Task-IL for AZ consists of 20 tasks, each with 5 non-
overlapping classes. The results are summarized in Table
and benchmarked against the None and Joint baselines, which
achieve AP values of 74.5% and 98.8%, respectively. Fig-
ure [T0] illustrates the progression of average accuracy across
tasks, showing how each method performs relative to the Joint
baseline.

As seen in Table ER consistently outperforms TAMIiL,
AGEM, GR, RtF, BI-R, and GRS across most budget con-
figurations, making it a strong baseline for comparison. At
a low budget of 100 samples, MADAR-U achieves AP of
88.1%, which is 4.5% higher than ER’s performance. Similarly,
MADAR?-U demonstrates competitive performance, achieving
87.9% at the same budget.

As the budget increases, MADAR-U continues to deliver
the best performance, reaching AP scores of 94.5% at a
IK budget and 98.1% at a 10K budget, outperforming all
other methods, including ER and GRS. At the highest budget
of 20K, MADAR-U achieves an AP of 98.7%, surpassing
ER by 1.2% and nearly matching the Joint baseline. Notably,
MADAR?-U also performs well, achieving 98.1%. In contrast,
MADAR-R and MADAR?-R perform slightly lower but remain
competitive, with AP values of 97.9% and 96.9% at a 20K
budget, respectively. These results indicate that ratio-based
methods, while effective, are slightly less robust than uniform
sampling in this scenario.

In summary, MADAR-U and MADAR’-U consistently
demonstrate better performance across most of the budget
levels, particularly excelling at low-resource settings and
achieving near-optimal results at higher budgets. These findings
underscore the effectiveness of MADAR framework in Task-IL
scenarios and their ability to approach joint-level performance
with significantly fewer resources.

D. Analysis and Discussion

Our results demonstrate that MADAR yields markedly better
performances compared to previous methods for both the
EMBER and AZ datasets across all CL settings. This clearly
indicates that distribution-aware replay is effective in preserving



TABLE VII: Summary of Results for AZ Task-IL Experiments.

B t
Group | Method 00 [ 500 | 1K | e [ T0K | 135K | 20K
Joint 98.84+0.2
Baselines | None 74.5+0.2
GRS 85.240.1 | 89.2+£0.2 | 90.840.1 | 91.6£0.2 | 93.5+0.1 | 93.940.1 | 95.2+0.1
TAMiL 80.5£0.4 | 85.34+0.6 | 91.5+0.2 | 92.1£0.1 | 93.54£0.1 | 94.04+0.2 | 94.84+0.2
ER 83.6£0.2 | 90.24+0.1 | 92.3+£0.3 | 95.6£0.1 | 96.2£0.1 | 96.84+0.2 | 97.54+0.2
Prior AGEM 76.740.5 | 82.8+0.2 | 85.3+0.1 | 85.6+£0.2 | 86.74+0.2 | 88.9+0.2 | 91.3+0.3
Work GR 75.6+0.2
RtF 74.2+0.3
BI-R 85.4£0.2
MADAR-R 86.0£0.3 ‘ 90.3+0.2 ‘ 92.440.1 ‘ 95.840.2 ‘ 96.740.1 ‘ 97.14+0.1 ‘ 97.940.2
MADAR MADAR-U 88.1+0.3 | 92.9+0.2 | 94.5+0.3 | 97.2+0.2 | 98.1+0.1 | 98.5+0.1 | 98.7+0.1
MADAR?R | 87.3£0.3 | 90.6+0.2 | 93.2+0.2 | 957402 | 95.940.1 | 96.6£0.1 | 96.940.1
MADAR’-U | 87.9+0.2 ‘ 90.8+0.2 ‘ 93.6+0.1 ‘ 96.21+0.3 ‘ 97.24+0.2 ‘ 97.54+0.2 ‘ 98.1+0.1
e o o a7 vl e in Class-IL and Task-IL. MADAR’-U reaches 91.5% in
P e e voo e L LT T AZ at 20K, significantly outperforming iCaRL and TAMiL.
- 09 i Furthermore, in EMBER, MADAR-U achieves near Joint
%o Zoso Win =% baseline performance at just a 5K budget, underscoring the
gm g effectiveness of uniform selection in class-incremental settings.
’ 050 Intuitively, this makes sense because ratio budgeting for binary
" classification in the Domain-IL setting naturally captures the
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Fig. 10: AZ Task-IL: Comparison of the MADAR-R, MADAR-
U, MADAR?-R, and MADAR’-U with Joint baseline.

the stability of a CL-based system for malware classification,
while prior CL techniques largely fail to achieve acceptable
performance.

MADAR in low-budget settings. In Domain-IL, MADAR
achieves competitive performance even with a 1K budget,
surpassing prior work by over 3 percentage points in EMBER
and AZ. At higher budgets, ratio-based selection (MADAR-R
and MADAR?-R) achieves near Joint baseline performance
(96.4% in EMBER and 97.3% in AZ) while using significantly
fewer resources. This demonstrates MADAR’s efficiency in
leveraging limited samples to achieve robust classification.

MADAR is both effective and scalable. Traditional CL
methods, including ER and AGEM, experience significant
performance degradation as tasks increase. In contrast, MADAR
maintains high accuracy across 20 Task-IL tasks, with MADAR-
U achieving 95.8% in EMBER and 98.7% in AZ at a 20K
budget, nearly matching the Joint baseline.

Ratio vs. Uniform Budgeting. A consistent trend across
our experiments is that ratio-based selection performs best
in Domain-IL, whereas uniform-based selection is superior

contributions of each family to the overall malware distribution.
Additionally, since there are many small families in the
Domain-IL datasets, uniformly sampling from them consumes
budget while offering little improvement in malware coverage.
In contrast, our Class-IL and Task-IL experiments perform
classification across families, which is better supported by
Uniform budgeting to maintain class balance and ensure
coverage over all families. Moreover, in most settings we can
leverage efficient representations using MADAR? to scale the
approach regardless of feature dimension without significant
loss of performance.

GRS remains a strong baseline at high budgets. While
MADAR consistently outperforms GRS in low-resource set-
tings, GRS performs comparably at higher budgets, particularly
in Domain-IL. This suggests that distribution-aware replay is
most impactful when the number of available samples per
class is limited, whereas uniform selection provides sufficient
representation at larger budgets.

VIII. CONCLUSION

In this paper, we propose MADAR, a framework for
distribution-aware replay in continual learning specially de-
signed for the challenging setting of malware classification.
Our comprehensive evaluation across Domain-IL, Class-IL,
and Task-IL scenarios against Windows executable (EMBER)
and Android application (AZ) datasets demonstrates that
distribution-aware sampling is helpful for effective CL in
malware classification. As malware and goodware continue to
evolve, these insights steer continual learning towards strategic,
resource-efficient methods, ensuring model effectiveness amid
the constantly shifting landscape of cybersecurity threats.
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