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Accurate prediction of thermodynamic properties is pivotal in chemical engineering for optimizing process
efficiency and sustainability. Physical group-contribution (GC) methods are widely employed for this purpose
but suffer from historically grown, incomplete parameterizations, limiting their applicability and accuracy.
In this work, we overcome these limitations by combining GC with matrix completion methods (MCM) from
machine learning. We use the novel approach to predict a complete set of pair-interaction parameters for
the most successful GC method: UNIFAC, the workhorse for predicting activity coefficients in liquid mixtures.

The resulting new method, UNIFAC 2.0, is trained and validated on more than 224,000 experimental data
points, showcasing significantly enhanced prediction accuracy (e.g., nearly halving the mean squared error)
and increased scope by eliminating gaps in the original model’s parameter table. Moreover, the generic nature
of the approach facilitates updating the method with new data or tailoring it to specific applications.

1. Introduction

Understanding the thermodynamic properties of mixtures is in-
dispensable in chemical engineering and various related disciplines.
However, the vast combinatorial diversity of mixtures makes it im-
possible to study each relevant mixture experimentally, necessitating
reliable prediction methods. Group-contribution (GC) methods address
this challenge by deconstructing components into structural groups,
significantly reducing the number of parameters since the number of
structural groups is much smaller than those of individual components.
These methods rely on modeling pair interactions between these struc-
tural groups to describe mixture behavior. The effectiveness of GC
methods hinges on selecting suitable groups and accurately determin-
ing their interaction parameters, both of which depend crucially on the
database used for method development and parameterization.

Among GC methods, UNIFAC stands out as the most sophisticated
and widely adopted approach for predicting activity coefficients in lig-
uid mixtures. Since its introduction in 1975 [1], UNIFAC has undergone
continuous refinement and improvement [2-7], becoming integral to
industrial process simulations. Available in both public [7] and com-
mercial [8] formats, UNIFAC supports diverse applications, including
variants like UNIFAC LLE [9] for predicting liquid-liquid equilibria. All
UNIFAC variants rely on the same equations but differ in the number
and type of groups considered and their parameterization. The process
of finding suitable UNIFAC parameters was, in the past, sequential and
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based on a stepwise extension whenever data became available. This
tedious process makes it very difficult to modify decisions taken at early
steps.

This study addresses the challenges of updating and improving
UNIFAC by leveraging modern computational techniques, aiming to en-
hance prediction accuracy and expand its applicability across a broader
range of components and mixtures.

Throughout this work, we reference the latest published version of
UNIFAC. It was trained on a broad data basis focusing on vapor-liquid
equilibrium data to develop a widely applicable model, not one for
some specific purpose [7]. It is astonishing that, despite the importance
of UNIFAC, this version is about 20 years old. The leading developers
of UNIFAC have updated the method since then, but they have not
disclosed these updates — they are only available for members of the
UNIFAC consortium. One might ask why no one else has updated
this important method since then. The answer to this question is
undoubtedly related to the considerable effort required to do this when
the conventional strategy is used. Another issue is the accessibility of
suitable data. For simplicity, we will label the reference version of
UNIFAC [7] as UNIFAC 1.0 here.

UNIFAC describes the molar excess Gibbs energy gF, of a mixture as
a function of temperature T, and composition. From gF, the activity co-
efficients of the components i, y;, in the mixture are obtained. UNIFAC
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contains group-specific parameters, namely, a size parameter (R,) and
a surface parameter (Q,), as well as binary pair-interaction parameters
(there are two for each group combination a,, # a,,, which we will
often refer to simply as a,,, for simplicity). UNIFAC 1.0 considers 54
main groups, subdivided into 113 subgroups [7].

Applying UNIFAC 1.0 to a given mixture requires the following:
(i) all components of the mixture must be decomposable into the 113
subgroups, (ii) the parameters R, and Q, must be available for each
relevant subgroup k, and (iii) the pair-interaction parameters a,,, must
be available for each binary combination of the relevant main groups m
and n (all subgroups of a given main group share the same interaction
parameters). The group parameters R, and Q, are available for all 113
groups [10], but interaction parameters a,,, are missing for many pairs
of groups. Specifically, numbers for the interaction parameters are only
available for 44% of all pairs of groups; Fig. S.1 in the Supporting
Information illustrates this. The missing pair-interaction parameters, in
some cases due to the challenging fitting process and in other cases
due to the lack of experimental data for direct fitting, severely hampers
the applicability of UNIFAC 1.0 (a single missing relevant parameter
prevents the application of the model).

In this work, we introduce a new way of determining the inter-
action parameters of GC methods based on machine learning. The
pair-interaction parameters can be treated as elements of a square
matrix with dimensions 54 x 54, where the size corresponds to the
number of main groups. Since experimental data are only available
for a fraction of the pair-interaction parameters, many entries of this
matrix cannot be fitted directly, resulting in a matrix completion prob-
lem that can, in general, be solved by matrix completion methods
(MCM) [11-13]. As numbers for all entries are found, the problem
of missing parameters does not exist anymore. In the MCM, so-called
group features are determined for all groups from a fit to experimental
data on activity coefficients. The entire data set is considered during
the fit, and a well-defined learning algorithm (in our case, a Bayesian
one) is applied. This method replaces the sequential, intuitively guided
procedure previously used to determine pair-interaction parameters.
As the number of features to be determined scales linearly with the
number of main groups Ny (O(Npyg)), it is much lower than the
number of interaction parameters (O(N]%,IG)). Consequently, the param-
eterization of the MCM is significantly more robust than a direct fit of
the interaction parameters to the experimental data.

From the features of any two groups m and n of interest, the entries
of the interaction parameter matrix a,, are found by a simple matrix
multiplication, resulting in a complete set of interaction parameters,
thus facilitating the prediction of the activity coefficients for any binary
mixture given its structural group composition at any temperature and
concentration.

The result is UNIFAC 2.0, a hybrid model consisting of the frame-
work of the physical UNIFAC model, in which an MCM from machine
learning is embedded. While the MCM used for predicting missing
interaction parameters from group-specific features is rather simple,
UNIFAC 2.0 fully retains the non-linear UNIFAC equations, allowing
it to also describe complex interactions between structural groups.

In prior work, we have already employed MCMs for directly pre-
dicting thermodynamic properties of binary mixtures [14-18]. We
have also shown that MCMs are suitable for predicting pair-interaction
parameters between components [19] and structural groups using syn-
thetic training data [20]. The synthetic training data in Ref. [20] were
derived from the existing parameter tables of UNIFAC 1.0, providing
a practical starting point. However, the limited prediction accuracy
of this approach underscores the need for a more comprehensive ap-
proach. In this work, we present the first application of MCMs to the
development of GC methods for predicting activity coefficients with
direct end-to-end training on several hundred thousand experimental
data points.
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2. Development of UNIFAC 2.0
2.1. General framework

Fig. 1 illustrates UNIFAC 2.0 with end-to-end training of MCM
features, which is compared to UNIFAC 1.0 with sequential parameter
fitting. Both UNIFAC variants are based on the same structural groups
and physical model equations. UNIFAC 2.0 was trained on experimental
logarithmic activity coefficients (Iny;) in binary mixtures derived from
vapor-liquid equilibrium data for binary mixtures, cf. Section “Data”
for details.

The MCM can only work if the available entries of the matrix are
correlated. The MCM learns these correlations and represents them
by the features. This enables the prediction of missing matrix en-
tries through learned features. Each pair-interaction parameter a,,, is
thereby modeled as follows:

Apn = 9; B @

Here, 6,, and $, are column vectors of length K, with K representing
the latent dimension, a hyperparameter that was determined in pre-
liminary studies and set to K = 8. The feature vectors 0,, and g, are
an abstract characterization of the structural groups determining their
interactions with other groups.

A Bayesian approach is applied to train the model, treating each
logarithmic activity coefficient Iny;, each feature, and each interaction
parameter q,, as a random variable following a probability distri-
bution, detailed further in the Section “Probabilistic Model”. From
the model training, we obtain a probability density for each q,,, the
mean of which is used to obtain the scalar value for each parameter.
These scalar values are then used in all subsequent evaluations. The
completed set of interaction parameters a,,,, derived from training on
all considered binary data, and the subgroup-specific size parameters
R, and Q, for using UNIFAC 2.0 are provided freely in the Supporting
Information. The size parameters are identical to those of the published
UNIFAC 1.0 version.

The relevance of UNIFAC 2.0 becomes apparent when analyzing
the applicability of UNIFAC 1.0 and 2.0 considering an example: the
Dortmund Data Bank (DDB) [10], which is the most extensive database
for thermodynamic properties, presently lists 39,587 unique compo-
nents that can be broken down into the published UNIFAC subgroups,
which translates into more than 783 million possible binary mixtures.
Of these binary mixtures, UNIFAC 1.0 is limited to predicting only
58% due to missing pair-interaction parameters, whereas UNIFAC 2.0
can be applied to all these mixtures. For multi-component mixtures,
the fraction of mixtures that can only be predicted with UNIFAC 2.0
increases dramatically with an increasing number of components, as a
mixture drops out if only a single parameter (pair) is missing.

Besides the hybrid model described above, a variant that is based on
symmetrical pair-interaction energies U,,, = U,,, between main groups
instead of the asymmetric parameters a,, was developed and tested.
The symmetric model has fewer parameters and performs almost as
well as the asymmetric model. We report on the asymmetric model
here, as it is the standard way to use UNIFAC, and the results can
be implemented and used in a very simple manner. Details on the
symmetric model are given in the Supporting Information. For a short
background discussion of the two variants applied to component-wise
pair interactions, see Ref. [19].

2.2. Probabilistic model

Our proposed probabilistic model integrates observations (Iny;) and
the latent variables (LVs) that characterize UNIFAC main groups (6,,,
B,) within a Bayesian framework. UNIFAC 2.0 adheres to Bayes’ theo-
rem by incorporating three probability distributions: prior, likelihood,
and posterior. The prior describes knowledge about the LVs prior to
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Fig. 1. Comparison of UNIFAC 1.0 and UNIFAC 2.0. UNIFAC 1.0 relies on sequential parameter fitting guided by intuition, whereas UNIFAC 2.0 integrates a matrix completion
method (MCM) for predicting pair-interaction parameters into the UNIFAC framework. UNIFAC 2.0 is trained end-to-end on experimental logarithmic activity coefficients (Iny,)
derived from binary vapor-liquid equilibrium (VLE) data. After training, the completed pair-interaction parameter matrix facilitates accurate predictions of phase diagrams for a

wide range of binary or multi-component mixtures.

fitting the model to the training data. The likelihood constitutes a prob-
ability distribution over the observable quantity (Iny; here) conditioned
on the LVs, i.e., it specifies how the LVs manifest themselves in the
data for Iny;. The aim of Bayesian inference is finding the posterior,
which is the probability distribution over the LVs that encapsulates the
updated beliefs about the LVs after considering both prior information
and empirical data. A more detailed explanation of the key terms in
Bayesian modeling is given in the Supporting Information.
Specifically, all Iny; and LVs are modeled as independent random
variables. A standard normal distribution, i.e., a normal distribution
with the mean y = 0 and the standard deviation ¢ = 1, is used as prior
for each LV. The likelihood of observing Iny;, given the LVs, follows a
Cauchy distribution centered around the predicted activity coefficients

InyUNIFAC 2.0 with scale parameter 4:
p(ny; | 0,,, B,) = Cauchy(ln y?NFAC 20 p), 2)
where InyNFAC 20 js determined via the standard UNIFAC equa-

tions [7] using the predicted interaction parameters a

mn*

InyUNIFAC 2.0 — UNIFAC(a,y, Ry Qs %, T). 3)

Here, R, and Q, are the subgroup-specific size parameters, T is the
temperature, and x corresponds to the composition (expressed as mole
fractions) of the considered binary mixture. The use of a Cauchy dis-
tribution for the likelihood is motivated by its robustness to outliers in
the experimental data. Unlike the normal distribution, the heavy-tailed
nature of the Cauchy distribution reduces the influence of extreme
values, ensuring that the training process remains stable even when the
data set contains flawed data points.

Written in Pyro, a probabilistic programming language based on
Python and PyTorch support [21], our probabilistic model adopts
stochastic variational inference (VI) [22] for posterior approximation.
This approach leverages the Adam optimizer [23], with a learning rate
of 0.15. A normal distribution is employed as the variational distribu-
tion, with all LVs being treated independently. During training, this
approach facilitates learning variational parameters, specifically the
mean and standard deviation, for each LV. Based on preliminary studies
that have shown robust behavior in terms of predictive performance,
the hyperparameters K = 8 and 4 = 0.4 were chosen.

Post-training, the LVs inferred from the posterior enable, via Egs. (1)
and (3), the prediction of Iny; for any binary or multi-component mix-
ture, including unstudied ones, whose components can be decomposed
in the 113 UNIFAC subgroups.

2.3. Data

Experimental data on vapor-liquid equilibria (VLE) and activity
coefficients at infinite dilution in binary mixtures were taken from the
largest database for thermodynamic properties, the DDB [10]. In the
preprocessing phase, data points identified as poor quality by the DDB
were excluded, and the focus was narrowed to binary mixtures whose
components can be decomposed into UNIFAC subgroups. Furthermore,
only VLE data points from which the activity coefficients y; of compo-
nents i in the mixture could be calculated using the extended Raoult’s
law

PYi

Vi = pvap @

i X

were used. Here, p is the total pressure and p;'ap the vapor pressure

of component i, while x; and y; correspond to the mole fractions of
component i in the liquid and vapor phases, respectively.

3. Results
3.1. Overall performance of UNIFAC 2.0

To evaluate the performance of UNIFAC 2.0 and compare it to
that of the original UNIFAC 1.0, we employ the mean absolute error
(MAE) and the mean squared error (MSE) in the logarithmic activity
coefficients Iny;, which are calculated mixture-wise (from the scores for
each binary mixture) to ensure that each mixture is weighted equally
in the final score and frequently measured mixtures do not lead to a
false impression of the model quality.

In the following, we focus on the predictions of UNIFAC 2.0 ob-
tained after training the hybrid model on all available data points
from our database. We have chosen this way for assessing our model
since this is likely also the case for UNIFAC 1.0, as the people main-
taining UNIFAC and the DDB are essentially the same (although the
exact training set of UNIFAC 1.0 has not been disclosed), so we con-
sider the comparison fair. Nevertheless, as described in the following
subsections, two additional extrapolation tests were carried out with
UNIFAC 2.0 to dispel doubts about its predictive capacity.

The performance of UNIFAC 2.0 on all available experimental data
is shown in Fig. 2 and compared to UNIFAC 1.0. Since UNIFAC 2.0
has a more extensive scope than UNIFAC 1.0, a distinction is made:
all data points that can be predicted with both methods are labeled as
the “UNIFAC 1.0 horizon”, whereas all data points that can only be
predicted with UNIFAC 2.0 are labeled as “UNIFAC 2.0 only”.

Fig. 2(a) clearly shows the superior prediction accuracy of
UNIFAC 2.0 over UNIFAC 1.0 in both error scores. The MSE can
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Fig. 2. Comparison of results for Iny; with UNIFAC 1.0 and UNIFAC 2.0 for different data sets: the “UNIFAC 1.0 horizon” comprises 210,767 data points for 15,758 binary
mixtures, while an additional 13,795 experimental data points for 2957 binary mixtures can only be predicted with UNIFAC 2.0 (“UNIFAC 2.0 only”). (a) Mean absolute error
(MAE) and mean squared error (MSE) of the model predictions. Error bars denote standard errors of the means. (b) Histogram of the number of binary mixtures N;, that can be
predicted with an MAE in a certain interval. The MAE range shown in panel (b) comprises 98.8% (UNIFAC 1.0) and 99.4% (UNIFAC 2.0) of all mixtures.

almost be halved compared to the original, demonstrating
UNIFAC 2.0’s effectiveness in reducing the occurrence of outliers.
Table S.1 in the Supporting Information highlights the 20 binary
mixtures with the largest improvement in prediction accuracy (MSE)
achieved by UNIFAC 2.0 compared to UNIFAC 1.0. Notably, mixtures
involving methoxy groups paired with silane groups and those with
water paired with chlorinated aromatic components show significant
improvements, indicating that these specific interactions benefit greatly
from the updated parameters in UNIFAC 2.0. Even more importantly,
the new method not only improves accuracy for data points within the
predictive range of UNIFAC 1.0, but it also maintains this accuracy for
data points beyond the scope of UNIFAC 1.0, cf. the results for the
“UNIFAC 2.0 only” set.

In Fig. 2(b), a detailed analysis of the MAE for the UNIFAC 1.0
horizon in the form of a histogram of individual binary mixture scores
is shown. It underpins that UNIFAC 2.0 achieves an exceptional predic-
tion accuracy: for 7133 mixtures, the MAE is below 0.1, and thereby
in the range of the experimental uncertainty. This accuracy is achieved
for only 6133 mixtures with UNIFAC 1.0.

The activity coefficients obtained by UNIFAC 2.0 can be used di-
rectly to predict phase equilibria of mixtures, which are at the core of
many tasks in chemical engineering. For instance, vapor-liquid phase
diagrams are crucial for designing and optimizing distillation processes,
where the separation efficiency relies on accurate predictions of boiling
and dew points. They also play a key role in azeotropic and extractive
distillation, where deviations from ideality must be accurately modeled
in order to select suitable entrainers. Beyond distillation, they are also
directly applicable in absorption and stripping processes, where the
vapor-liquid phase equilibrium determines the efficiency of gas capture
or solvent recovery. In Fig. 3, we show six examples of isothermal
vapor-liquid phase diagrams predicted by UNIFAC 2.0, cf. Section
“Data” for computational details. All six mixtures are part of the
“UNIFAC 2.0 only” set, i.e., they cannot be modeled with the original
UNIFAC 1.0. UNIFAC 2.0 accurately describes the phase behavior of all
these mixtures. The examples shown in Fig. 3 represent typical cases
and were selected to cover different types of phase behavior, ranging
from small deviations of the ideal behavior to low-boiling azeotropes.

Furthermore, although no data on multi-component mixtures were
used for training UNIFAC 2.0, the underlying physical framework of
UNIFAC also enables predictions for such mixtures. As examples, Fig. 4
shows isothermal vapor-liquid phase diagrams for two ternary mixtures
selected from the “UNIFAC 2.0 only” set, i.e., for which UNIFAC 1.0 is

not applicable. For each data point, the temperature and the liquid-
phase composition (blue symbols in Fig. 4) were specified and used
to predict the corresponding vapor-phase composition in equilibrium
with UNIFAC 2.0 (shown as filled orange symbols), which was then
compared to the experimentally determined vapor-phase composition
(open orange symbols). Excellent accuracy is found.

The results demonstrate the very good performance of UNIFAC 2.0,
which outperforms UNIFAC 1.0 not only in terms of applicability by
closing all gaps in its parameter table but even in terms of prediction
accuracy. This highlights UNIFAC 2.0 as a compelling approach to pre-
dicting activity coefficients, particularly as it retains the classic UNIFAC
framework. This retention facilitates straightforward implementation in
process simulators, ensuring broad accessibility and automatic applica-
bility to multi-component mixtures — a significant advantage over other
state-of-the-art machine learning approaches. Among these, HANNA,
a recently developed hard-constraint neural network [24], is, to our
knowledge, currently the most accurate model for predicting activity
coefficients in binary mixtures. HANNA’s accuracy is achieved through
a much more flexible architecture, using more than 70 times the num-
ber of parameters compared to UNIFAC 2.0, complicating its direct use
in process simulators. Furthermore, HANNA is presently restricted to
binary mixtures, whereas UNIFAC 2.0 can intrinsically and consistently
extrapolate to multi-component mixtures. These trade-offs highlight the
complementary strengths of UNIFAC 2.0 and other machine learning
approaches like HANNA, which address different aspects of activity
coefficient prediction and meet different user needs.

3.2. Extrapolation to unknown components

In a study to evaluate the capacity of UNIFAC 2.0 to extrapolate
to unknown components, 100 randomly selected components were
intentionally excluded from the training by withholding all data points
for systems containing any of these components from the training set
and using the systems removed from the training set as the test set. This
test set contains 27,287 data points and covers 2603 different binary
mixtures. The results for this test set are shown in Fig. 5, which, again,
contains the result from UNIFAC 1.0 for comparison.

Fig. 5 shows that the accuracy of the true predictions with
UNIFAC 2.0 obtained by withholding the test data during the training
(open symbols) is only marginally lower than that of the UNIFAC 2.0
version that was trained on all data points (closed symbols); this holds
for both the “UNIFAC 1.0 horizon” and the “UNIFAC 2.0 only” data
sets. Furthermore, also in this true predictive test case, UNIFAC 2.0
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Fig. 3. Prediction of isothermal vapor-liquid phase diagrams for binary mixtures with UNIFAC 2.0 (lines) and comparison to experimental data from the DDB (symbols). Blue:

bubble point curves. Orange: dew point curves.

outperforms UNIFAC 1.0, especially considering the MSE, even though
it is likely that UNIFAC 1.0 has been trained on most of the test data
points, as discussed above. These findings highlight, on the one hand,
the robustness of UNIFAC 2.0 and, on the other hand, the predictive
qualities of this hybrid model.

3.3. Extrapolation to unknown pair-interaction parameters

Another, even more challenging, test was carried out by randomly
choosing 100 combinations of UNIFAC main groups for which exper-
imental data are available and withholding the data on all systems
in which any of the chosen combinations of groups occurs from the
training of UNIFAC 2.0. In this way, the capacity of the hybrid model
to predict pair-interaction parameters a,,, that cannot be obtained by
direct fitting is investigated. For each of the 100 selected main group

combinations, illustrated in Fig. S.4 in the Supporting Information, a
test set was created that includes the data for those systems in which the
selected group combination occurs. All other data points were used to
train the model, and the predictions on the test set were evaluated. This
process was repeated for all selected main group combinations. MAE
and MSE were calculated for each test set. Fig. 6 shows the average
error scores over all 100 test sets. Again, the results are compared
to those of UNIFAC 1.0 and the UNIFAC 2.0 version trained on all
data points. Note that the 100 test sets vary strongly in the number
of data points and different binary mixtures, as shown in Table S.2 in
the Supporting Information. This table also includes the MAE for each
individual test set.

The comparison of the UNIFAC 2.0 predictions to the UNIFAC 1.0
predictions on the “UNIFAC 1.0 horizon” in Fig. 6 reveals that the truly
predicted pair-interaction parameters of UNIFAC 2.0 outperform those



N. Hayer et al.

W Liquid 00
Vapor (exp)
Vapor (pred)

2-Propanol (1)
‘X0 Diisopropy! ether (2)
1-Methoxy-2-propanol (3)

Chemical Engineering Journal 504 (2025) 158667

1,1,1-Trichloroethane (1)
1.0 1-Chloro-1,1-difluoroethane (2)
1,1-Dichloro-1-fluoroethane (3)

0.0

323.25 K

X1, y1 / mol mol~!

(a)

0.0
03 04 05 06 07 08 085 10

x1, y1 / mol mol~!

(b)

Fig. 4. Prediction of isothermal vapor-liquid phase diagrams for ternary mixtures with UNIFAC 2.0 (pred) and comparison to experimental data (exp) from the DDB. The temperature
and the composition of the liquid phase were specified, and the composition of the corresponding vapor phase in equilibrium was predicted. Solid lines are experimental conodes,

dashed lines are predicted conodes.
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are also shown (fit). The “UNIFAC 1.0 horizon” comprises 25,998 data points for 2202
binary mixtures, while an additional 1289 experimental data points for 401 binary
mixtures can only be predicted by UNIFAC 2.0 (“UNIFAC 2.0 only”). Error bars denote
standard errors of the means.
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Fig. 6. Mean absolute error (MAE) and mean squared error (MSE) of the predicted
Iny, averaged over 100 test sets with UNIFAC 2.0 (pred). The test sets were created
by selecting all data points for which a specific interaction parameter a,, is relevant,
cf. Table S.2 in the Supporting Information. The results for UNIFAC 2.0 trained on all
experimental data and UNIFAC 1.0 are shown for comparison (fit). Error bars denote
standard errors of the means.

of UNIFAC 1.0, which were presumably fitted to the experimental data
used for evaluation here; this is particularly evident considering the
MSE. When comparing the true predictions with UNIFAC 2.0 (open
symbols) to those of UNIFAC 2.0 trained on the whole experimen-
tal database (full symbols), a slight reduction in prediction accuracy
is observed, as expected. However, the differences are small, which
demonstrates the robustness of UNIFAC 2.0. The increased standard
error associated with the MSE for UNIFAC 1.0 can be attributed to
individual test sets for which the predictions are extremely poor.

The results of these tests demonstrate the capability of UNIFAC 2.0
to accurately predict pair-interaction parameters, which enormously
increases the scope of this group-contribution method. UNIFAC 2.0 is
not only much more applicable than UNIFAC 1.0, but its predictions are
also more accurate, as shown by the comparison on the shared horizon.
Hence, UNIFAC 2.0 should not only be used when UNIFAC 1.0 cannot
be applied, but it should replace UNIFAC 1.0 as the default method for
predicting activity coefficients. The fact that UNIFAC 2.0 performs bet-
ter than UNIFAC 1.0 as measured by lumped criteria, such as the MAE
and MSE, that we have used here for describing the performance on a
broad database does not exclude, of course, that for specific systems,
UNIFAC 1.0 may give better results. Implementing UNIFAC 2.0 is as
simple as possible: one must only substitute the original (incomplete)
UNIFAC parameter table, e.g., in an established process simulator, with
the completed one, which we provide in the Supporting Information.
This ease of implementation clearly distinguishes our hybrid model
from other machine learning methods for property prediction.

4. Conclusions

Group-contribution (GC) methods are widely used workhorses for
the prediction of thermodynamic properties of materials. Here, we
study how they can be combined with methods from machine learning
to obtain hybrid models that outperform their physical parent models.
This is demonstrated here for the GC model UNIFAC for predicting
activity coefficients in liquid mixtures. UNIFAC is one of the most
important GC methods, broadly used in engineering, and implemented
in basically all process simulation packages. Like most GC methods for
predicting properties of mixtures, UNIFAC is based on the concept of
group pair interactions. We demonstrate that these pair interactions
can be learned and predicted with matrix completion methods (MCM)
from machine learning. The resulting new hybrid model, UNIFAC 2.0,
is systematically compared to its physical parent model, UNIFAC 1.0.
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In contrast to the UNIFAC 1.0 parameter table, which has significant
gaps, the parameter table of UNIFAC 2.0 obtained from the MCM has
no gaps, leading to a substantial increase in the range of applicability.
One could expect to have to pay for this increase in applicability with
a deterioration of the accuracy of the predictions — but this is not the
case: UNIFAC 2.0 is better than its parent model in both regards.

The hybrid approach described here also has essential advantages
regarding the workflow: as the physical framework is kept, the new
model can be implemented very easily in existing software packages;
only parameter tables have to be updated to use its advantages. The full
UNIFAC 2.0 parameter table is provided in the Supporting Information
accompanying this paper. Furthermore, the end-to-end training of the
hybrid model to experimental data can be carried out in an automated
manner so that updates can be supplied easily if new data become
available or targets shift; also, tailored versions of the model, adapted
to special needs, can be obtained easily.
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