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Abstract

Neural Radiance Fields (NeRFs) have emerged as

powerful tools for capturing detailed 3D scenes

through continuous volumetric representations.

Recent NeRFs utilize feature grids to improve

rendering quality and speed; however, these rep-

resentations introduce significant storage over-

head. This paper presents a novel method for

efficiently compressing a grid-based NeRF model,

addressing the storage overhead concern. Our

approach is based on the non-linear transform

coding paradigm, employing neural compression

for compressing the model’s feature grids. Due

to the lack of training data involving many i.i.d

scenes, we design an encoder-free, end-to-end

optimized approach for individual scenes, using

lightweight decoders. To leverage the spatial inho-

mogeneity of the latent feature grids, we introduce

an importance-weighted rate-distortion objective

and a sparse entropy model employing a mask-

ing mechanism. Our experimental results vali-

date that our proposed method surpasses existing

works in terms of grid-based NeRF compression

efficacy and reconstruction quality.

1. Introduction

Over the past few years, the field of 3D scene modeling

and reconstruction has been revolutionized by the advent of

Neural Radiance Fields (NeRF) methodologies (Mildenhall

et al., 2021; Zhang et al., 2020; Barron et al., 2021). NeRFs

offer a sophisticated method for 3D reconstruction, with

the ability to synthesize novel viewpoints from limited 2D

data. Yet, the original NeRF model requires millions of

MLP queries, which causes slow training and rendering.

To address these efficiency concerns, recent NeRF advance-

ments have transitioned to the integration of an explicit grid

representation (Yu et al., 2021; Sun et al., 2022; Fridovich-
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Keil et al., 2022; Chen et al., 2022; Fridovich-Keil et al.,

2023; Chan et al., 2022). While significantly accelerating

training and rendering processes, this change also poses

a new challenge: the storage cost for saving the explicit

grid NeRF representation increases. This problem is crucial,

especially in real-world (e.g., large-scale VR and AR) ap-

plications where storage and transmission impose critical

constraints.

Our work seeks to significantly reduce the storage costs of

NeRFs. Inspired by neural image compression methodol-

ogy (Yang et al., 2023b), we apply non-linear transform

coding techniques (Ballé et al., 2020) to compress the ex-

plicit grid NeRF representation efficiently. However, we

sidestep the conventional auto-encoder approach in favor

of an iterative inference framework, in which we jointly

optimize the latent code along with a lightweight decoder.

We further take account of the NeRF grid importance scores

while reconstructing the scene to boost the efficiency of our

compression model. Lastly, we propose a novel entropy

model that masks uninformative feature grid points. Utiliz-

ing a rate-distortion objective, we can choose from various

compression levels. Our proposed approach departs from

previous works on compressing explicit grid NeRF represen-

tations (Li et al., 2023a;b; Deng & Tartaglione, 2023) based

on voxel pruning and/or vector quantization (Gray, 1984)

while taking into account the varying importance levels of

different voxel grid locations.

To show the effectiveness of our proposed method, we per-

form extensive experiments on four different datasets. Our

results show that our model is capable of compressing di-

verse NeRF scenes to a much smaller size and improves over

previous works in terms of rate-distortion performance.

2. Background

2.1. Neural Radiance Fields

Neural radiance fields (Mildenhall et al., 2021) mark a

paradigm shift in 3D scene representation using deep neural

networks. Unlike traditional approaches that employ dis-

crete structures such as point clouds or meshes, NeRFs

model a scene using a continuous volumetric function

F : (x,d) → (c, Ã). Here, an input comprising of spa-

tial coordinates x and a viewing direction d is mapped to
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an output representing color c and volume density Ã.

For each pixel, the estimated color Ĉ(r) for the correspond-

ing ray r can be calculated by:

Ĉ(r) =

N
∑

i=1

Ti · ³i · ci, (1)

with the following definitions:

• ³i = 1− exp(−Ãi¶i) is the probability of light being

absorbed at the i-th point, dependent on the volume

density Ãi and the distance ¶i between adjacent sam-

pled points on the ray.

• Ti =
∏i

j=1(1− ³j) represents the accumulated trans-

mittance, or the remaining light that has not been ab-

sorbed before reaching the i-th point.

NeRF is then trained to minimize total squared error loss

between the rendered and true pixel colors.

Lrender =
∑

r

||Ĉ(r)− C(r)||22 (2)

Despite NeRF’s ability to provide intricate scene details with

a relatively compact neural network, the computational de-

mand remains a significant constraint. The evaluation over

the volume often requires thousands of network evaluations

per pixel. To reduce training and inference time, recent

research has employed explicit grid structure into NeRF.

More specifically, they introduce voxel grids (Sun et al.,

2022; Fridovich-Keil et al., 2022) or decomposed feature

planes (Chen et al., 2022; Fridovich-Keil et al., 2023; Chan

et al., 2022) into the model, and query point features via

trilinear or bilinear interpolation. While this notably speeds

up training and inference, it does come at the expense of

greater storage needs from saving the feature grids.

2.2. Neural Compression

Neural compression utilizes neural networks to perform

end-to-end learned data compression (Yang et al., 2023b).

Traditional compression algorithms are handcrafted and

specifically tailored to the characteristics of the data they

compress, such as JPEG (Wallace, 1991) for images or

MP3 for audio. In contrast, neural compression seeks to

learn efficient data representations directly from the data,

exemplified by the nonlinear transform coding paradigm

(Ballé et al., 2020).

Existing lossy neural compression methods (Ballé et al.,

2016; 2018; Minnen et al., 2018; Cheng et al., 2020; Mat-

subara et al., 2022; Yang & Mandt, 2023a;b; Yang et al.,

2023a) often leverage an auto-encoder architecture (Kingma

& Welling, 2014). Here, an encoder E maps data X to con-

tinuous latent representations Z = E(X). This continuous

Z is then quantized to integers by Q, resulting in Ẑ = Q(Z).

An entropy model P is used to transmit Ẑ losslessly. Fi-

nally, a decoder D receives the quantized latent code Ẑ and

reconstructs the original data X̂ = D(Ẑ). One commonly

trains the encoder E, the decoder D and the entropy model

P jointly using a rate-distortion objective:

L(E,D, P ) =EX∼p(X)[d(X, D(Q(E(X)))

− ¼ log2 P (Q(E(X)))]
(3)

where d(·, ·) is a distortion loss and the second term is the

rate loss that measures the expected code length. The pa-

rameter ¼ balances between the two loss terms. At training

time, the quantizer Q is typically replaced with injecting

uniform noise (Ballé et al., 2016). See (Yang et al., 2023b)

for a detailed review of neural compression.

3. Method

In this section, we describe our method for grid-based NeRF

compression. Our primary focus is on the compression of

the TensoRF-VM model (Chen et al., 2022), characterized

by its decomposed 2D feature plane structure (Kolda &

Bader, 2009). We select TensoRF-VM because of its profi-

cient 3D scene modeling capabilities, often outperforming

alternative methods like Plenoxels (Fridovich-Keil et al.,

2022) or DVGO (Sun et al., 2022). Our method has the po-

tential to be applied to other grid-based NeRF architectures.

Problem setting. We have a TensoRF-VM model that was

pre-trained for a single scene, and our task is to reduce its

size through compression while maintaining its reconstruc-

tion quality. We assume that we have access to the training

dataset comprising view images at compressing time.

Notation. The three feature planes (or matrix components)

of TensoRF-VM are denoted by {Pi}
3
i=1, in which sub-

script i signifies the index of the planes and each Pi ∈
R

Ci×Hi×Wi . In practice, {Pi}
3
i=1 is the channel-wise con-

catenation of the density planes and appearance planes of

TensoRF-VM. The vector components are not considered

in our compression and, hence, are not represented in our

notation. For indexing a specific spatial grid location j in

the feature plane i, we employ a superscript, represented as

P
j
i .

3.1. Compressing the feature planes

Most storage for compressing TensoRF-VM is spent on

the feature grids. To illustrate this, we analyze a trained

model for the Lego scene from the Synthetic-NeRF dataset

(Mildenhall et al., 2021). In this model, the 2D feature

planes take 67.61 MB, while the other components, such

as the rendering MLP, the rendering mask, and the vector
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Figure 1: Overview of our model. At training time (left), we learn the three latent codes {Zi}
3
i=1 to reconstruct the three

frozen feature planes {Pi}
3
i=1. The reconstructed feature planes {P̂i}

3
i=1. are used to render the scene and calculate the

rendering loss. The entropy model P is used to calculate the rate loss and compress the latent codes to bitstring. At rendering

time (right), we use P to decompress the bitstring to latent codes {Ẑi}
3
i=1 and then reconstruct the feature planes {P̂i}

3
i=1.

components, take only 1.21 MB. Given this disparity, we

focus on compressing TensoRF-VM’s feature planes.

In more detail, we can define an encoder E that embeds

the three feature planes {Pi}
3
i=1 to latent codes {Zi}

3
i=1, in

which the Zi may have lower resolution than Pi. The latent

codes are quantized to {Ẑi}
3
i=1 and compressed with en-

tropy coding using an entropy model P . At rendering time,

we decompress the quantized latent codes {Ẑi}
3
i=1 and for-

ward them to the decoder D to reconstruct the three feature

planes {P̂i}
3
i=1. We then use {P̂i}

3
i=1 to query sampling

point features and render the scene. The compressed NeRF

model includes the compressed latent codes, the decoder,

the entropy model, and the other components.

It is crucial to highlight that we only need to reconstruct

the three feature planes once, and all subsequent querying

operations for the sampling points are executed on these

reconstructed planes. Thus, the decompression process only

adds minimal overhead to the overall rendering procedure.

Per-scene optimization. The conventional approach to

neural image compression (Ballé et al., 2016; 2018) in-

volves training a compression model on a big dataset con-

taining thousands of images. However, applying this same

training method to NeRF compression presents three chal-

lenges: First, we need a dataset with numerous 3D objects.

Although datasets like Objaverse (Deitke et al., 2023) or

Objaverse-XL (Deitke et al., 2024) exist, they are synthetic

datasets and only contain a single object for each scene. Ad-

ditionally, pre-trained NeRF models are required for every

3D object in the dataset, demanding significant computa-

tional resources and storage. Finally, we cannot adapt other

components of the NeRF model, such as the rendering MLP

and the vector components of the TensorF-VM model. Due

to these challenges, we optimize each NeRF scene individ-

ually, a process we refer to as per-scene optimization. In

this approach, the compressor is overfitted to each NeRF

scene, which results in improved compression performance.

Transform coding without encoder. In nonlinear trans-

form coding (Ballé et al., 2020; Yang et al., 2023b), one

usually employs an encoder to obtain the latent code of a

new data point via amortized inference (Kingma & Welling,

2014; Gershman & Goodman, 2014). This is essential for

compressing a new data point quickly in a single network

pass. Nonetheless, in the case of per-scene TensoRF-VM

compression, our primary objective is to compress merely

the three feature planes, and our decoder is overfitted to a

single scene. Moreover, using an encoder for amortized

inference leads to an irreducible amortization gap in opti-

mization (Cremer et al., 2018; Marino et al., 2018), which

has been shown to degrade compression performance (Cam-

pos et al., 2019; Yang et al., 2020).

For these reasons, we remove the encoder and directly learn

the three latent codes {Zi}
3
i=1 for each scene. More specif-

ically, we initialize the {Zi}
3
i=1 as a tensor of zeros, and

jointly optimize {Zi}
3
i=1 with the decoder D and the en-

tropy model P . At decoding time, the receiver thus receives

a binary code along with the entropy model and decoder

to reconstruct the sample, all three of which are counted

towards the bitrate.

Architecture design. Since we must transmit the decoder

D along with the latent code {Zi}
3
i=1 to decompress the

scene, it’s essential for the decoder to be lightweight. Yang

& Mandt (2023b) established a lightweight decoder for neu-

ral image compression. We found that a two-layer trans-

posed convolutional neural network with SELU activation

(Klambauer et al., 2017) is effective for our needs.
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3.2. Importance-weighted training loss

Our model is trained end-to-end (on top of the pre-trained

NeRF) with a rate-distortion loss. The rate loss is defined

as the log-likelihood of the entropy model P , and it ensures

that the compressed feature planes have low relative entropy

to the prior P . For the distortion loss, we discover that using

only the NeRF rendering loss Lrender is not sufficient; we

also need to use an L2 feature plane reconstruction loss for

good rendering quality.

However, reconstructing the entire feature planes is not the

most efficient approach for compression. Prior research (Li

et al., 2023a;b; Deng & Tartaglione, 2023) has illustrated

that these feature grids possess significant redundancy and

could be pruned to decrease the size of the model. Conse-

quently, if we were to reconstruct every single grid location,

it would inevitably lead to additional storage costs.

To address this issue, we suggest computing weight maps,

defined below, that we use to re-weight the feature plane

reconstruction loss. With this approach, our model is guided

to reconstruct only high-density grid locations while ignor-

ing the less populated ones, ensuring a more optimized and

effectively compressed representation.

For each feature plane Pi ∈ R
Ci×Wi×Hi , we define Wi ∈

R
Wi×Hi as the corresponding weight map, shared across

all feature channels. These weight maps are constructed

based on the rendering importance score {Ii}
3
i=1 by Li et al.

(2023a;b), defined next.

As follows, we consider feature plane i and grid location j.

The collection of sampling points xk ∈ R
3 in the vicinity of

location j (upon projection) shall be denoted as Nj . Since

the coordinates of xk are continuous and the grid locations

discrete, we distribute the ”mass” of each xk onto the rele-

vant grid locations using bilinear interpolation, resulting in

the interpolation weights Éi
kj for sampling point xk ∈ Nj .

In addition, each sampling point xk in Eq. 1 has a corre-

sponding transmittance coefficient Tk · ³k that we interpret

as its importance. This lead to the following importance

scores for each grid location j in plane i,

I
j
i =

∑

k∈Nj

Éi
kj · Tk · ³k (4)

In sum, each importance score I
j
i is a weighted aggregate

of the individual importance scores of the neighboring sam-

pling points xk over the feature grid.

Finally, we apply a log-transform to the importance maps

{Ii}
3
i=1, and then normalize them to the range of [0, 1] to

get the weights {Wi}
3
i=1:

Wi = normalize(log(Ii + ϵ)), (5)

in which ϵ = 0.01 to ensure that the log is well-defined.

3.3. Masked entropy model

Applying neural compression to TensoRF-VM enables us to

use a wide range of different entropy models. In this section,

we design a simple but effective entropy model that works

well for TensoRF-VM compression, exploiting the spatial

sparsity of the feature plane representation.

Theoretically, a learned entropy model, P , should result in

a close-to-optimal coding strategy, provided the model is

flexible enough. In practice, we observed that a predomi-

nant portion of the learned latent code is zero, especially in

the background. This observation might be attributed to our

choice of initializing the latent codes as zero tensors and the

fact that large parts of the feature planes are not used for ren-

dering. Such sparsity is poorly captured using the standard

entropy models used in neural image compression (Ballé

et al., 2016; 2018), leading to entropy coding inefficiencies.

To design a better entropy model, we construct a spike-and-

slab prior, oftentimes used in Bayesian statistics (Mitchell

& Beauchamp, 1988). To this end, we construct binary

masks {Mi}
3
i=1 into our entropy model P . The model P

compresses grid features P
j
i only when M

j
i = 1, allow-

ing selective compression of specific features and avoiding

others. Those masks are learnable and can be treated as

additional parameters of P .

In more detail, we design P to be a fully factorized probabil-

ity distribution as in Ballé et al. (2016) and Ballé et al.

(2018). Every grid location is independent and identi-

cally distributed by binary mixture, consisting of a non-

parametric distribution pθ(·) with learnable ¹, and a Dirac

mass ¶(·) at zero. For each latent code Ẑi to be compressed,

we establish a corresponding binary mask Mi that has the

same spatial size and is shared across features channels. The

conditional probability distribution P (given the mask) is

then factorized across spatial locations j as:

PMi
(Ẑi) =

∏

j

p(Ẑj
i |M

j
i );

p(Ẑj
i |M

j
i ) =

{

¶(Ẑj
i ) if M

j
i = 0

pθ(Ẑ
j
i ) if M

j
i = 1.

(6)

We stress that we could also entropy-code the masks under a

hyperprior p(M), but found little benefit to do so in practice.

This construction implies that, if M
j
i = 0, then we designate

Ẑ
j
i = 0. Thus, the input to the decoder D can be calculated

as Ẑi »Mi, and the reconstructed planes are

P̂i = D(Ẑi »Mi). (7)

However, since the masks Mi are binary, they cannot be

learned directly. To address this, we turn to the Gumbel-

Softmax trick (Jang et al., 2016; Yang et al., 2020) to fa-
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cilitate the learning of Mi. For each Mi, we define the

binary probabilities denoted by Ã0
Mi

and Ã1
Mi

indicating

Mi = 0/1, respectively. At training time, we sample Mi

using the straight-through Gumbel-Softmax estimator (Ben-

gio et al., 2013; Jang et al., 2016):

Mi = argmax
j∈{0,1}

(gj + log Ãj
Mi

) (8)

in which gj are i.i.d samples drawn from Gumbel(0, 1).
The straight-through Gumbel-Softmax estimator allows us

to calculate the gradients of Ãj
Mi

. We then optimize the

mask probabilities Ãj
Mi

following the rate-distortion loss:

L =Lrender({P̂i}
3
i=1)

+

3
∑

i=1

(

||(Pi − P̂i)»Wi||
2
2 − ¼ log2 PMi

(Ẑi)
)

,

(9)

where P̂i is calculated with Equation 7. In practice, we use

an annealing softmax temperature Ä that decays from 10 to

0.1 to calculate the softmax gradients.

4. Experiments

As follows, we empirically demonstrate that our proposed

approach of learning a lightweight, per-scene neural com-

pression model without an encoder outperforms existing

approaches based on vector quantization and models trained

on multiple scenes in terms of rate-distortion performance.

4.1. Experiment Setting

Datasets. We perform our experiments on 4 datasets:

• Synthetic-NeRF (Mildenhall et al., 2021): This dataset

contains 8 scenes at resolution 800× 800 rendered by

Blender. Each scene contains 100 training views and

200 testing views.

• Synthetic-NSVF (Liu et al., 2020): This dataset also

contains 8 rendered scenes at resolution 800 × 800.

However Synthetic-NSVF contains more complex ge-

ometry and lightning effects compared to Synthetic-

NeRF.

• LLFF (Mildenhall et al., 2019): LLFF contains 8 real-

world scenes made of forward-facing images with non

empty background. We use the resolution 1008× 756.

• Tanks and Temples (Knapitsch et al., 2017): We use 5

real-world scenes: Barn, Caterpillar, Family, Ignatus,

Truck from the Tanks and Temples dataset to experi-

ment with. They have the resolution of 1920× 1080.

In our compression experiments, we initially train a

TensoRF-VM model for every scene within the datasets

listed above. We use the default TensoRF-VM 192 hyperpa-

rameters, as detailed in (Chen et al., 2022). Subsequently,

we apply our proposed method to compress these trained

models. All experimental procedures are executed using Py-

Torch (Paszke et al., 2019) on NVIDIA RTX A6000 GPUs.

Baselines. We compare our compression paradigm with:

The original NeRF model with MLP (Mildenhall et al.,

2021), the uncompressed TensoRF-CP and TensoRF-VM

from Chen et al. (2022), two prior compression meth-

ods for TensoRF-VM based on pruning and vector quan-

tization named VQ-TensoRF from Li et al. (2023a) and

Re:TensoRF from Deng & Tartaglione (2023).

Hyperparameters. As discussed in Section 3.1, our de-

coder has two transposed convolutional layers with SELU

activation (Klambauer et al., 2017). They both have a kernel

size of 3, with stride 2 and padding 1. Thus, each layer

has an upsampling factor of 2. Given a feature plane sized

Ci ×Wi ×Hi, we initialize the corresponding latent code

Zi to have the size of CZi
×Wi/4×Hi/4.

Having a decoder with more parameters will enhance

the model’s decoding ability while also increase its size.

In light of this trade-off, we introduce two configura-

tions: ECTensoRF-H (stands for Entropy Coded Ten-

soRF - high compression) employs latent codes with

192 channels and a decoder with 96 hidden channels,

while ECTensoRF-L (low compression) has 384 la-

tent channels and 192 decoder hidden channels. Re-

garding the hyperparameter ¼, we experiment within

the set {0.02, 0.01, 0.005, 0.001, 0.0005, 0.0002, 0.0001},

with higher ¼ signifying a more compact model.

We train our models for 30, 000 iterations with Adam opti-

mizer (Kingma & Ba, 2015). We use an initial learning rate

of 0.02 for the latent codes and 0.001 for the networks, and

apply an exponential learning rate decay.

4.2. Results

We first compare our results with the baselines quantitatively.

We use the PSNR and SSIM (Wang et al., 2004) metrics to

evaluate the reconstruction quality. The compression rate is

determined by the compressed file size in MB.

Quantitative Results. Table 1 showcases quantitative re-

sults in both rate and distortion in the high-quality/low-

distortion regime, where the reconstruction quality of all

compressed TensoRF models are close to other uncom-

pressed performances for novel view synthesis. This regime

is particularly relevant in NeRF compression applications,

where high-quality renderings for compressed models are

typically expected.

Compared to the other two TensoRF compression baselines,
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Table 1: Quantitative results comparing our method versus the baselines. PSNR is measured in dB, while the sizes are in

MB. We choose the ¼ to balance between the reconstruction quality and storage size.

Methods
Synthetic-NeRF Synthetic-NSVF LLFF Tanks and Temples

PSNR SSIM Size PSNR SSIM Size PSNR SSIM Size PSNR SSIM Size

U
n
co

m
-

p
re

ss
ed

NeRF 31.01 0.947 5.0 - - - 26.50 0.811 5.0 25.78 0.864 5.0

TensoRF-CP 31.56 0.949 3.9 34.48 0.971 3.9 - - - 27.59 0.897 3.9

TensoRF-VM 33.09 0.963 67.6 36.72 0.982 71.6 26.70 0.836 179.8 28.54 0.921 72.6

C
o
m

-
p
re

ss
ed

VQ-TensoRF 32.86 0.960 3.6 36.16 0.980 4.1 26.46 0.824 8.8 28.20 0.913 3.3

Re:TensoRF 32.81 0.956 7.9 36.14 0.978 8.5 26.55 0.797 20.2 28.24 0.907 6.7

TC-TensoRF-L (ours) 32.93 0.961 3.4 36.34 0.980 4.0 26.44 0.826 4.9 28.42 0.915 2.9

TC-TensoRF-H (ours) 32.31 0.956 1.6 35.33 0.974 1.6 25.72 0.786 1.7 28.08 0.907 1.6

Table 2: Relative improvement of our method versus VQ-TensoRF. BD-PSNR and BD-rate measure the average difference

in PSNR and bitrate between the two methods.

Synthetic-NeRF Synthetic-NSVF Tanks and Temples

BD-PSNR 0.279 dB 0.289 dB 0.344 dB

BD-Rate 28.827 % 21.104 % 16.717 %

VQ-TensoRF and Re:TensoRF, our variant ECTensoRF-L

shows superior reconstruction performance in this regime

in terms of both the PSNR and SSIM metrics while simul-

taneously maintaining a reduced file size across 3 datasets:

Synthetic-NeRF, Synthetic-NSVF, and Tanks & Temples.

In the case of the LLFF dataset, we are slightly behind

VQ-TensoRF and Re:TensoRF in PSNR. Despite this, our

achieved SSIM values surpass both baselines and, remark-

ably, the size of our compressed files is just about half of VQ-

TensoRF and a mere quarter when compared to Re:TensoRF.

For a smaller number of channels, our ECTensoRF-H is

able to compress the model sizes to less than 2MB while

maintaining a decent reconstruction quality. Notably, our

ECTensoRF-H has a similar SSIM as Re:TensoRF on

Synthetic-NeRF and Tanks&Temples.

Qualitative Results. We compare rendered images from

the Synthetic-NeRF dataset, using VQ-TensoRF and our

conpression method for both configurations: ECTensoRF-L

and ECTensoRF-H in Figure 3. Visually, there is minimal

disparity between the uncompressed and compressed Ten-

soRF models. We further show more qualitative results for

the other datasets in the Appendix.

Rate-distortion performance. The rate-distortion curve

is widely used in neural compression to compare the

compression performance across different compression

level. Here we analyze the rate-distortion curve of our

ECTensoRF-L with various ¼ values versus VQ-TensoRF

with various codebook size. For the VQ-TensoRF evalua-

tions, we employed the officially released code and utilized

the same pre-trained TensoRF models for consistency.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
File Size (MB)

31.0

31.5

32.0

32.5
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B
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Uncompressed
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Figure 2: Comparison of rate-distortion curves between our

proposed methods and the baseline VQ-TensoRF on the

Synthetic-NeRF dataset. The upper figure illustrates PSNR

against file size, and the lower figure showcases SSIM in

relation to file size.
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Uncompressed VQ-TensoRF ECTensoRF-L ECTensoRF-H

Figure 3: Qualitative results on Chair and Mic scenes from the Synthetic-NeRF dataset. From left to right: uncompressed,

VQ-TensorF (average size 3.6 MB), ECTensoRF-L (3.4 MB), ECTensoRF-H (1.6 MB). Our decompressed renderings are

barely distinguishable in quality from both uncompressed and VQ-compressed versions at a significantly reduced file size.

Figure 2 shows that our ECTensoRF-L outpaces VQ-

TensoRF across various levels of compression in Synthetic-

NeRF dataset with both PSNR and SSIM metrics. Rate-

distortion curves for other datasets can be found in the Ap-

pendix A.2.

Moreover, Table 2 shows the relative improvement of our

method over VQ-TensoRF using Bjontegaard Delta (BD)

BD-PSNR and BD-rate metrics (Bjontegaard, 2001), high-

lighting that our model achieves better PSNR and bit-rate

across various compression levels.

Training and rendering time. Training an uncompressed

TensoRF model for a scene from the Synthetic-NeRF dataset

takes around 15 minutes on an NVIDIA A6000 GPU. Run-

ning on top of that, our compression method takes an ad-

ditional 40 minutes. Our framework is slower than the

baseline VQ-TensoRF, which runs in 7 minutes on the same

hardware. Regarding rendering, our approach adds a negli-

gible overhead of roughly 2 seconds for the decompression

of parameters. Once decompressed, the rendering procedure

is the same as TensoRF.

Compression details. The average storage size break-

down of our model on the Synthetic-NeRF dataset (with

the configuration from Table 1) is provided in the Table 3.

For the feature planes, we compresse them with the learned

entropy model. All the other components (the renderer MLP,

decoder, density/appearance vectors, learned masks, entropy

Table 3: Storage size breakdown.

Component Size (MB)

Feature planes 1.657

Decoder 1.380

Other components 0.366

Total 3.403

bottleneck parameters and model config) are packed into a

single file and compressed with LZ77 (ziv, 1977).

5. Ablation Studies

We conduct experiments to verify our design choices. We

test on the Synthetic-NeRF datasets, with our ECTensoRF-L

architecture.

5.1. Advantages of per-scene optimization

As outlined in Section 3.1, our compression methodology

is optimized on a per-scene basis. However, this raises

the question: how is the performance of traditional nonlin-

ear transform coding on TensoRF compression, even on a

small-scale dataset? To address this, we conduct a compar-

ative analysis. We compress the TensoRF model by first

training a compression network using an encoder-decoder

architecture, similar to traditional nonlinear transform cod-

7



Neural NeRF Compression

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
File Size (MB)

24

26

28

30

32

34

36
PS

N
R

 (d
B

)

ECTensoRF-L
ECTensoRF-H
NTC

Figure 4: Rate-distortion comparison between traditional

nonlinear transform coding (green), trained across 7 scenes,

and our per-scene compression methods (orange, blue).

ing. Specifically, we train the compression network on

seven scenes from the Synthetic-NeRF dataset and tested

the trained model on the remaining scene (Lego). We com-

pare this approach with our per-scene optimized model.

Figure 4 shows the results of this experiment. Compared

to per-scene training, pre-trained NTC suffers from inferior

reconstruction quality. More specifically, the maximum

PSNR that the pre-trained NTC can achieve is only 24.52 dB,

which is 12.03 dB lower than the uncompressed PSNR value

(36.55 dB) and also much lower than the PSNR values of

per-scene trained models. However, we note that the major

advantage of pre-trained NTC is a much faster compression

time. Using a pre-trained NTC model also avoids the need

to transmit the entropy model and the decoder, as we assume

that the receiver always has access to them, which is similar

to the image compression setting.

5.2. Ablation on other design choices

Using the encoder We first show the sub-optimal perfor-

mance of ECTensoRF-L compression with an encoder. As

discussed in Section 3.1, using an encoder leads to an irre-

ducible amortization gap in optimization, and the resulting

compression performance is worse, as shown in Figure 5.

Training without Importance-Weighted Loss. We ex-

amine the rate-distortion curves of ECTensoRF-L, trained

both with and without importance weight, as depicted in

Figure 5. At an identical PSNR of 32.98 dB, employing

importance weight in training our model helps reduce the

file size from 4.59 MB to 3.92 MB.

The Effect of the Masked Entropy Model. To demon-

strate the efficacy of our masked entropy model, we un-

dertook a comparative analysis between the compression

2.0 2.5 3.0 3.5 4.0 4.5
File Size (MB)

31.25

31.50

31.75

32.00

32.25

32.50
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Uncompressed
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ECTensoRF-L without Importance Weight
Uncompressed

Figure 5: Ablation studies. Top: rate-distortion comparison

of our approach against a version with encoder, trained on a

single scene. Bottom: comparisons between model versions

with factorized prior and without importance weight.

performance of ECTensoRF-L using the conventional factor-

ized prior (Ballé et al., 2016; 2018) and our masked model.

The results related to rate distortion curves can be found in

the bottom plot of Figure 5.

It’s noteworthy that, due to the additional overhead intro-

duced by sending the masks, our results lag slightly behind

the factorized prior in a low-rate setting. Yet, in medium

to high-rate regimes, our prior emerges superior compared

to the traditional factorized prior. To illustrate, for a PSNR

value of 32.98 dB, the compressed file with the factorized

prior occupies 4.26 MB. In contrast, our method employing

the proposed masked entropy model results in a reduced file

size of 3.92 MB.

To further understand the behavior of our masked entropy

model, we visualize the masks learned for the Chair and

Mic scene from Synthetic-NeRF dataset in Figure 6. We can

observe that the masks resemble the rendering objects when

viewed from different angles, and they inherently ignore

the background. This behavior is similar to the pruning

8
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Figure 6: Ablation studies. We show the sparsity masks of

our entropy model learned on the Chair and Mic scene.

strategies employed in prior grid-based NeRF compression

works (Li et al., 2023a;b; Deng & Tartaglione, 2023).

More experimental results. We further conduct experi-

ments on different latents initialization and end-to-end train-

ing in the Appendix A.2.

6. Related Works and Discussion

Grid-based NeRF compression. Since storage cost is

a significant challenge of grid-based NeRF, several meth-

ods were proposed to solve this problem. Li et al. (2023a)

introduces a three-stage approach, integrating voxel prun-

ing and vector quantization (Gray, 1984) through a learn-

able codebook. Similarly, Re:NeRF (Deng & Tartaglione,

2023) employs voxel pruning, but adopts a strategy of se-

quentially removing and reintegrating parameters to prevent

a significant drop in performance. Meanwhile, Takikawa

et al. (2022) adopts the codebook idea from Instant-NGP

(Müller et al., 2022), but substitutes hash-based encoding

with a learned mapping that associates grid positions to

corresponding codebook indices. However this approach

requires considerable training memory. Li et al. (2023b) ap-

plies downsampling to the voxels and employs a network to

enhance render quality. Our method shares some similarity

to Li et al. (2023b), but we learn the downsampled latent

codes with a novel entropy model to effectively compress

them. Additionally, while our masked factorized prior also

resembles the pruning mechanism used in previous works,

our method differentiates itself by adaptively learning the

masks instead of relying on fixed thresholds.

Neural compression for NeRF. Applying neural com-

pression to NeRF is a relatively young field. Bird et al.

(2021) learns an entropy model to compress the MLP-based

NeRF (Mildenhall et al., 2021) network weights, based on

the prior model compression work of Oktay et al. (2019). In

contrast, our work focuses on compressing the feature grids

of grid-based NeRF. We additionally improve the conven-

tional compression procedure and propose a novel entropy

model. Concurrent to our work, Li et al. (2024) also applies

neural compression to TensoRF by leveraging a pretrained

image comression network.

Discussion. Throughout this paper, our emphasis has been

on applying neural compression techniques specifically to

TensoRF. Nonetheless, our method has the potential to be

applied to other grid-based NeRF methods beyond just Ten-

soRF, such as Triplanes (Chan et al., 2022; Fridovich-Keil

et al., 2023), Factor Fields (Chen et al., 2023) or DVGO

(Sun et al., 2022). Taking DVGO as an example, we can

learn a 4D latent code and have an entropy model to model

its probability density. Then a decoder may decode this 4D

latent code to render the scene.

7. Conclusion

In this study, we present a novel approach to applying neural

compression to the TensoRF model, a prominent grid-based

NeRF method. Our approach adapts traditional neural com-

pression techniques, commonly used in image and video

compression, to NeRF models. We develop an efficient

per-scene optimization scheme and propose various designs,

such as importance-weighted feature reconstruction and a

masked entropy model. Our experiments demonstrate that

we can significantly reduce storage requirements of a NeRF

model with only a minimal compromise in rendering qual-

ity, and outperform previous NeRF compression baselines.

More importantly, our compression method only adds mini-

mal overhead to the rendering process.

Limitation and future work. One limitation of our neural

compression approach is the longer training time compared

to the baseline VQ-TensoRF, as mentioned in Section 4.

Additionally, the final compressed model still includes the

cost of transmitting the decoder. Future work could focus on

reducing compression time, learning a network compression

model (Oktay et al., 2019; Girish et al., 2022) to compress

the decoder network, and applying our method to other

NeRF architectures.

Impact Statement

Neural compression is a collection of methods that advance

data compression with end-to-end learning approaches. Bi-

ased training data may influence how models reconstruct

data and may lead to misrepresentations, e.g., of individuals,

especially at low bitrates.
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A. Appendix

A.1. Algorithm

Algorithm 1 TensoRF-VM compression

Input: Pretrained TensoRF-VM model

Output: Compressed TensoRF-VM model

Calculate {Wi}
3

i=1
using Eq 4 and 5

Initialize {Zi}
3

i=1
as 0-tensors

Initialize decoder D and entropy model P with masks parameters {Ã0

Mi
}3
i=1

and {Ã1

Mi
}3
i=1

while not converged do

Sample {Mi}
3

i=1
using Gumbel-Softmax as in Eq 8

Reconstruct {P̂i}
3

i=1
by Eq 7

Render the scene with {P̂i}
3

i=1

Calculate the loss in Eq 9 and update the model

end while

A.2. More experimental results

A.2.1. RATE-DISTORTION COMPARISON ON OTHER DATASETS

We further compare the rate-distortion curves of ECTensoRF and the baseline VQ-TensoRF on the Synthetic-NSVF, LLFF

and Tanks&Temples datasets in Figure 7, 8 and 9.
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Figure 7: Comparison on Synthetic-NSVF dataset.

A.2.2. ADDITIONAL EXPERIMENTS

Latent initialization. We compare the performance of Gaussian initialization and Zero initialization of the latents code.

The results are shown in Table 4.
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Figure 8: Comparison on LLFF dataset.
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Figure 9: Comparison on Tanks and Temples dataset.

Table 4: Comparison of Zero Initialization vs. Gaussian Initialization

¼ Values Zero Initialization Gaussian Initialization

PSNR (dB) Size (MB) PSNR (dB) Size (MB)

2e-2 31.31 1.86 31.13 1.85

1e-2 31.80 1.99 31.75 1.99

5e-3 32.25 2.20 32.26 2.20

1e-3 32.83 3.00 32.83 3.01

5e-4 32.93 3.40 32.92 3.42

2e-4 32.98 3.92 32.98 3.94

1e-4 33.00 4.24 32.99 4.26

End-to-end training. We conduct experiments to compare the performance of our two-stage training (by first using a

pre-trained TensoRF model, and train the compression model) and a single stage (by training the compression model from

scratch). We show the results in Table 5.
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Table 5: Comparison of End-to-End Training vs. Two Stages Training

¼ Values End-to-End Training Two Stages Training

PSNR (dB) Size (MB) PSNR (dB) Size (MB)

2e-2 25.86 1.69 31.31 1.86

1e-2 28.30 1.71 31.80 1.99

5e-3 30.05 1.81 32.25 2.20

1e-3 31.29 2.39 32.83 3.00

5e-4 31.53 2.57 32.93 3.40

2e-4 31.86 2.69 32.98 3.92

1e-4 31.80 2.95 33.00 4.24

Hyperprior model. We also perform experiments using a version of hyperprior model (Ballé et al., 2018) with our

masking mechanism. More specifically, we apply masking on both the hyper-latents and latents. Both type of latents are

directly optimized without using amortized inference. The hyper decoder has two transposed convolutional layers with

SELU activation. We show the result on NeRF-Synthetic on Table 6.

Table 6: Comparison of ECTensorF-L with and without Hyperprior

¼ Values ECTensorF-L + Hyperprior ECTensorF-L

PSNR (dB) Size (MB) PSNR (dB) Size (MB)

2e-2 31.31 1.92 31.31 1.86

1e-2 31.92 2.04 31.80 1.99

5e-3 32.35 2.25 32.25 2.20

1e-3 32.85 2.97 32.83 3.00

5e-4 32.93 3.32 32.93 3.40

2e-4 32.98 3.72 32.98 3.92

1e-4 33.00 3.95 33.00 4.24

At lower bit rates, the hyperprior is slightly worse than the ECTensoRF-L baseline because of the irreducible cost to transmit

the hyper decoder and hyper entropy model. At higher bit rates, the compression performance with the hyperprior method

is better than using only a single entropy model, which aligns with prior observations in image compression (Ballé et al.,

2018).

Preliminary results for Factor Fields. We show the potential of applying our method to other grid-based NeRF

architectures. We choose Factor Fields (Chen et al., 2023) to experiment with. We show the result of our method for Factor

Fields in Table 7. Note that for Factor Fields, we compress the basis 4D tensors and do not compress the coefficient 4D

tensors.

Table 7: Factor Fields experiments

¼ Values PSNR (dB) Rate (MB)

1e-3 26.19 1.12

1e-4 29.67 1.23

1e-5 31.35 1.82

Uncompressed 33.09 18.89

A.2.3. MORE QUALITATIVE RESULTS

We show qualitative results on all scenes from Synthetic-NeRF, Synthetic-NSVF, LLFF and Tanks&Temples datasets in

Figure 10, 11, 12 and 13.
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Neural NeRF Compression

Figure 10: Qualitative results on Tanks and Temples dataset. From left to right: TensoRF, ECTensoRF-L, ECTensoRF-H,

ECTensoRF-L difference and ECTensoRF-H difference.
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Neural NeRF Compression

Figure 11: Qualitative results on Synthetic-NeRF dataset. From left to right: TensoRF, ECTensoRF-L, ECTensoRF-H,

ECTensoRF-L difference and ECTensoRF-H difference.
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Neural NeRF Compression

Figure 12: Qualitative results on Synthetic-NSVF dataset. From left to right: TensoRF, ECTensoRF-L, ECTensoRF-H,

ECTensoRF-L difference and ECTensoRF-H difference.
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Neural NeRF Compression

Figure 13: Qualitative results on LLFF dataset. From left to right: TensoRF, ECTensoRF-L, ECTensoRF-H, ECTensoRF-L

difference and ECTensoRF-H difference.
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