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Abstract

Early-exit neural networks (EENNs) enable adap-

tive and efficient inference by providing predic-

tions at multiple stages during the forward pass. In

safety-critical applications, these predictions are

meaningful only when accompanied by reliable

uncertainty estimates. A popular method for quan-

tifying the uncertainty of predictive models is the

use of prediction sets. However, we demonstrate

that standard techniques such as conformal pre-

diction and Bayesian credible sets are not suitable

for EENNs. They tend to generate non-nested sets

across exits, meaning that labels deemed improba-

ble at one exit may reappear in the prediction set of

a subsequent exit. To address this issue, we investi-

gate anytime-valid confidence sequences (AVCSs),

an extension of traditional confidence intervals

tailored for data-streaming scenarios. These se-

quences are inherently nested and thus well-suited

for an EENN’s sequential predictions. We explore

the theoretical and practical challenges of using

AVCSs in EENNs and show that they indeed yield

nested sets across exits. Thus our work presents

a promising approach towards fast, yet still safe,

predictive modeling.

1 INTRODUCTION

Modern predictive models are increasingly deployed to en-

vironments in which computational resources are either con-

strained or dynamic. In the constrained setting, the available

resources are fixed and often modest. For example, when

models are deployed on low-resource devices such as mo-

bile phones, they need to make fast yet accurate predictions

for the sake of the user experience. On the other hand, in

the dynamic setting, the available resources can vary due to
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external conditions. Consider an autonomous vehicle: when

it is moving at high speeds, the model must make rapid pre-

dictions. However, as the vehicle slows down, the model can

afford more time to process information or ‘think’. Early-

exit neural networks (EENNs) [Teerapittayanon et al., 2016,

Huang et al., 2018] present a promising solution to chal-

lenges arising in both of these settings. As the name implies,

these architectures have multiple exits that allow a predic-

tion to be generated at an arbitrary stopping time. This is

in contrast to traditional NNs that yield a single prediction

after processing all layers or model components.

To employ EENNs in safety-critical applications such as au-

tonomous driving, it is necessary to estimate the predictive

uncertainty at each exit [McAllister et al., 2017]. One promi-

nent approach to capture a model’s predictive uncertainty

is constructing prediction sets or intervals.1 Prediction sets

aim to cover the ground-truth label with high probability,

and their size measures the model’s certainty in its predic-

tion. Prediction sets based on Bayesian methods [Meronen

et al., 2024] and conformal prediction [Schuster et al., 2021]

have been explored for EENNs. However, no work that has

accounted for the fact that prediction sets computed at neigh-

boring exits are dependent. A prediction interval at a given

exit should be nested within the intervals at the preceding

exits (see Figure 1). In other words, if a candidate prediction

y0 is in the interval at exit t− 1 and drops out of the interval

at exit t, y0 should not re-enter the interval at exit t+ 1. An

even worse case would if the intervals at exit t and t + 1
are disjoint. Such non-nested behaviour limits the decisions

that can be made at the initial exits of an EENN, thereby

undermining their anytime properties [Zilberstein, 1996].

We address this open problem by applying anytime-valid

confidence sequences (AVCSs) [Robbins, 1967, 1970, Lai,

1976] to the task of constructing prediction sets across the

exits of an EENN. AVCSs extend traditional, point-wise

confidence intervals to streaming data scenarios [Maharaj

1We use the terms prediction sets and prediction intervals

interchangeably, unless otherwise specified.
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Figure 1: Illustrative example of a 1-dimensional regression

problem using an Early-Exit neural network (EENN) with

T = 5 exits. Upper: At each exit, the EENN produces a pre-

diction interval Ct nested within its previous estimates, i.e.,

Ct ⊆ Ct−1. Lower: An example of non-nested prediction

intervals across different exits, e.g., C2 contains candidate

labels y not included in C1 (area denoted with ( ) lines).

Such behavior often results from an EENN becoming over-

confident, i.e., exhibiting low uncertainty, too early.

et al., 2023]. Importantly, AVCSs are guaranteed to have

a non-increasing interval width [Howard et al., 2021] and

are therefore nested by definition. Our main insight is that

AVCSs can be applied (with assumptions) when only one

data point is observed, as is the case when constructing

the prediction set for a single test point. To achieve this

for EENNs, we consider the model parameters (e.g., the

output weights) to be ‘streaming’ across exits. We detail

the approximations necessary to make AVCSs applicable

for the sequential prediction setting of EENNs and provide

bounds on the errors introduced by our approximations. In

our experiments across various classification and regres-

sion tasks, we demonstrate that our AVCS-based procedure

yields nested estimates of predictive uncertainty across the

exits of EENNs.

2 BACKGROUND

Data Let X ⊆ R
D denote a D-dimensional feature space

and Y the response (output) space. In the case of regression,

we have Y ⊆ R, and for classification Y = {1, . . . ,K}.

We assume x and y are realizations of the random vari-

ables x and y, drawn from the unknown data distribution

P(x,y) = P(y|x) P(x). The training data consists of

N feature-response pairs D = {(xn, yn)}Nn=1. Lastly, let

(x∗, y∗) denote a test point, which may be drawn from a

different distribution than the one used for training.

Early-Exit Neural Networks EENNs [Teerapittayanon

et al., 2016, Huang et al., 2018] generate predictions at var-

ious depths by having several prediction heads branch out

from a shared backbone network. Specifically, an EENN de-

fines a sequence of predictive models: f(x;Wt,U1:t), t =
1, . . . , T , where Wt represents the parameters of the pre-

dictive head at exit t and Ut denotes the parameters of the

t-th block in the backbone architecture. EENNs are usually

trained by fitting all exits at once L(W1:T ,U1:T ;D) :=
∑N

n=1
1
T

∑T
t=1 ℓ

(
yn, f(xn;Wt,U1:t)

)
where ℓ is a suit-

able loss function such as negative log-likelihood.

At test time, we can utilize the intermediate predictions

of EENNs in various ways. For instance, if the model is

deemed sufficiently confident at exit t, we can halt com-

putation without propagating through blocks t+ 1, . . . , T ,

thus speeding up prediction time. Naturally, the merit of

such an approach relies on quality estimates of the EENN’s

uncertainty at every exit. EENNs can also be employed as

anytime predictors [Zilberstein, 1996, Jazbec et al., 2023]:

the aim is to quickly provide an approximate prediction—

ideally with its associated uncertainty—and continuously

improve upon it as long as the environment permits.

Prediction Sets Quantifying the uncertainty of a predic-

tive model fθ : X → Y is crucial for its robustness and

reliability. A popular approach, which is the focus of this

study, augments the model output in the form of a prediction

set (or interval, in the case of regression) Cθ : X → 2Y .

For a given test point, Cθ(x
∗) should include (or cover) the

ground-truth y∗ with high probability. The size of Cθ(x
∗)

can be interpreted as a proxy for the model’s confidence—a

smaller set indicates certainty, a larger set indicates uncer-

tainty. Conformal prediction [Vovk et al., 2005, Shafer and

Vovk, 2008] is a popular method to construct prediction

sets. Requiring only a calibration dataset Dcal, it can gen-

erate prediction sets for a given model post hoc and with

finite-sample, distribution-free guarantees on the coverage

of the ground-truth label. See Angelopoulos et al. [2023]

for an introduction to conformal prediction. Alternatively,

one can employ Bayesian modeling [Gelman et al., 1995]

to first obtain a posterior predictive distribution p(y|x∗,D)
and then construct a credible set/interval based on it.

Anytime-Valid Confidence Sequences Consider a

streaming setting in which new data arrives at every time

point t via sampling from an unknown (parametric) model

xt ∼ p(x|¹∗). Here ¹∗ ∈ R represents the parameter of

the data-generating distribution for which we want to per-

form statistical inference. An anytime-valid confidence se-

quence (AVCS) [Robbins, 1967, 1970, Lai, 1976] for ¹∗ is

a sequence of confidence intervals Ct = (lt, rt) ⊆ R that

have time-uniform and non-asymptotic coverage guarantees:

P(∀t, ¹∗ ∈ Ct) ≥ 1 − ³, where ³ ∈ (0, 1) represents

the level of significance. The anytime (i.e. time-uniform)

property allows the user to stop the experiment, ‘peek’ at
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the current results, and choose to continue or not, all while

preserving the validity of the statistical inference. This is

in contrast with standard confidence intervals based on the

central limit theorem (CLT), which are valid only pointwise

(i.e. for a fixed time / sample size). The stronger theoretical

properties of AVCSs come at a cost, as they are typically

larger than CLT-based intervals [Howard et al., 2021].

An AVCS is constructed by first specifying a family of

stochastic processes {Rt(¹) : ¹ ∈ Θ} that depends only

on observations x1, . . . ,xt available at time t. Next, we

require that when evaluated at the parameter of interest,

Rt(¹
∗) forms a discrete, non-negative martingale [Ramdas

et al., 2020]—a stochastic process that remains constant

in expectation:2 Ext+1
[Rt+1(¹

∗)|x1, . . . ,xt] = Rt(¹
∗), ∀t.

Additionally, R0(¹
∗) should have an initial value that is con-

stant (usually one). Once such a martingale is constructed,

the AVCS at a given t is implemented by computing Rt(¹)
for all ¹ ∈ Θ and adding to the set the values for which Rt

does not exceed 1/³: Ct := {¹ : Rt(¹) ≤ 1/³}. Strong

theoretical properties (i.e., time-uniformity) then follow

from Ville’s inequality for nonnegative (super)martingales:

P (∃t : Rt(¹
∗) ≥ 1/³) ≤ ³. One example of a random vari-

able Rt from which we can construct an AVCS is the prior-

posterior ratio: Rt(¹) = p(¹)/p(¹|x1, . . . ,xt) [Waudby-

Smith and Ramdas, 2020]. The time-uniform nature of

AVCSs enables one to consider the intersection of all previ-

ous intervals—Ct = ∩s≤tCs, at time t—without sacrificing

statistical validity [Shekhar and Ramdas, 2023]. This results

in nested intervals/sets, i.e., Ct ⊆ Ct−1. We wish to exploit

this pivotal property of AVCSs to ensure that the prediction

sets of EENNs remain nested across exits.

3 CONFIDENCE SEQUENCES FOR

EARLY-EXIT NEURAL NETWORKS

Our contribution is to apply AVCSs to perform inference

over the predictions generated by each exit of a EENN. As

we will see, this is not a straightforward synthesis: AVCSs

have been exclusively used in streaming-data settings, where

the goal at every time step is to produce a confidence interval

covering the parameter of the data generating distribution

¹. On the other hand, we want to apply them to EENNs

that see just one feature vector x∗ at test time. Moreover,

we are interested in obtaining a prediction set/interval at

every exit that contains the ground-truth label y∗ with high

probability. We overcome these differences by considering

the parameters of the EENN’s exits Wt as the sequence

of random variables for which the martingale is defined.

Below we first give a general recipe for constructing AVCSs

for EENNs and then describe practical implementations for

regression (Section 4) and classification (Section 5).

2It is also common to define AVCS in terms of supermartin-

gales, which are stochastic processes that decrease in expectation

over time: Ext+1
[Rt+1(¹

∗)|x1, . . . ,xt] ≤ Rt(¹
∗), ∀t.

Bayesian EENN We begin by positing a (last-layer)

Bayesian predictive model at every exit:3

pt(y|x∗,D) =

∫

p(y|x∗,Wt,U1:t) p(Wt|D,U1:t) dWt

(1)

for t = 1, . . . , T , with T representing the total number of

exits. p(y|x∗,Wt,U1:t) and p(Wt|D,U1:t) correspond to

the likelihood and (exact) posterior distribution, respectively.

To ensure minimal overhead of our approach at test time,

we treat the backbone parameters U1:t as point estimates

(e.g. found through pre-training) that are held constant when

constructing the AVCS. To reduce notational clutter, we

omit these parameters from here forward. While Bayesian

predictives pt(y|x∗,D) can be used ‘as is’ to get uncer-

tainty estimates at each exit (e.g., by constructing a credible

interval), we show in Section 7 that this results in a non-

nested sequence of uncertainty estimates. We next present

an approach based on AVCSs to rectify such behaviour.

Idealized Construction We first consider an idealized

construction that, while impossible to implement exactly,

will serve as the foundation of our approach. At test time,

upon seeing a new feature vector x∗, we wish to compute

an interval Ct for its label such that y∗ ∈ Ct ∀t with high

probability. Assume that we also have observed the true

label y∗. For the moment, ignore the circular reasoning that

this is the very quantity for which we wish to perform in-

ference. Furthermore, with (x∗, y∗) in hand, assume we

can compute (exactly) the posterior for any exit’s param-

eters: p(Wt|,D ∪ (x∗, y∗)). This distribution is the pos-

terior update we would perform after observing the new

feature-response pair. For notational brevity, we will denote

D∗ := D ∪ (x∗, y∗) from here forward.

To prepare for the proposition that follows, we define for a

given y ∈ Y the predictive-likelihood ratio

R∗
t (y) :=

t∏

l=1

pl(y|x∗,D)

p(y|x∗,Wl)
, Wl ∼ p(Wl|D∗) . (2)

Note that only the likelihood terms in the denominator de-

pend on the updated posterior (via samples Wl), whereas

the predictive terms in the numerator rely solely on train-

ing data (via p(Wl|D)). The above ratio in (2) is inspired

by the aforementioned prior-posterior martingale [Waudby-

Smith and Ramdas, 2020] yet modified for the predictive

setting. We next state our key proposition that will serve as

an inspiration for constructing AVCS for y∗ in EENNs:

3In this section, we work with Bayesian predictive models at

every exit for ease of exposition. Yet our approach is more general.

It can also accommodate models for which the ‘randomness’ does

not come from placing a distribution over weights Wt. We will

provide a concrete example of this later in Section 5, where we use

an evidential approach [Malinin and Gales, 2018, Sensoy et al.,

2018] instead of a Bayesian one.

3



Proposition 1. For a given test point (x∗, y∗), the

predictive-likelihood ratio R∗
t (y) in (2) is a non-negative

martingale with R∗
0 = 1 when evaluated at y = y∗. More-

over, the prediction sets of the form C∗
t := {y ∈ Y|R∗

t (y) ≤
1/³} are (1−³)-confidence sequences for y∗, meaning that

P(∀t, y∗ ∈ C∗
t ) ≥ 1− ³ .

The proof follows the standard procedure for deriving para-

metric confidence sequences; see Appendix B.1. We term

the resulting confidence sequence an EENN-AVCS.

Realizable Relaxation Now we return to the aforemen-

tioned circular reasoning: we are performing inference for

y∗ while assuming we have access to it. In practice, we do

not have access to y∗ at test time; hence we cannot com-

pute R∗
t (y) (and consequently C∗

t ). As a workaround, we

propose to approximate the updated posterior with the one

based on only the training data at every exit t = 1, . . . , T :

p(Wt|D∗) ≈ p(Wt|D). (3)

With Rt(y) and Ct, we denote the resulting predictive-

likelihood ratio and confidence sequence based on

p(Wt|D), respectively. While Ct is now computable in

a real-world scenario (since it is independent of y∗), it un-

fortunately does not inherit the statistical validity of C∗
t .

Naturally, the degree to which Ct violates validity depends

on the quality of approximation in (3). If the posterior dis-

tribution p(Wt|D) is stable—meaning that adding a single

new data point (x∗, y∗) would have minimal effect—the

approximation is well-justified, and only minor validity vi-

olations can be expected. Such stability in the posterior is

likely when the training dataset D is large and the new test

datapoint originates from the same distribution. Conversely,

if the posterior is unstable, the approximation will likely be

poor, leading to larger violations of validity. This intuition

can be formalized via the following proposition:

Proposition 2. Assume C∗
t is a valid (1 − ³) confidence

sequence for a given test datapoint (x∗, y∗) (c.f. Proposi-

tion 1). Then the miscoverage probability of the confidence

sequence Ct := {y ∈ Y | Rt(y) ≤ 1/³} can be upper

bounded by

P (∃l ∈ {1, . . . , t}, y∗ /∈ Cl) ≤

³+

√

1− e−
∑

t
l=1

KL
(
p(Wl|D), p(Wl|D∗)

)

∀t = 1, . . . , T , where KL denotes the Kullback-Leibler di-

vergence between probability distributions.

See Appendix B.2 for the derivation. Based on the bound in

Proposition 2, it is clear that when the posteriors at different

exits are stable, i.e. the KL divergence between p(Wl|D)
and p(Wl|D∗) is small, the validity violation is minor. As a

result, Ct will be a good approximation of C∗
t .

Detecting Violations of Posterior Stability It is evident

from Proposition 2 that when the approximation in (3)

is poor—i.e. the KL divergence between p(Wl|D) and

p(Wl|D∗) is large—the validity of Ct will quickly degrade.

As aforementioned, this could happen for a particular x∗

if either (i) D is small and the posterior is not stable yet

or (ii) x∗ is not drawn from the training distribution. The

method should fail gracefully in such cases. Fortunately, the

behavior of invalid AVCSs—ones for which Rt(y) is not

a martingale for all y ∈ Y—has been previously studied

for change-point detection [Shekhar and Ramdas, 2023].

Based off of their theoretical and empirical results, our pro-

cedure should collapse to the empty interval if the approxi-

mation (3) is poor: ∃t0 such that Ct≥t0 = ∅. Encouragingly,

in Section 7.1, we experimentally validate that such col-

lapses occur for out-of-distribution points for a reasonably

small t0. However, there will be times at which the interval

width will be small—which the user might interpret as high

confidence—only to later collapse to the empty set (mean-

ing maximum uncertainty). In Section 7.1, we explore using

epistemic uncertainty as a measure of stability in our regres-

sion models, and we leave to future work a more general

method for diagnosing when an EENN-AVCS has not yet

collapsed but is likely to.

4 EENN-AVCS FOR REGRESSION

We next consider a concrete instantiation of our EENN-

AVCS procedure proposed in the previous section. We focus

on the case of one-dimensional Bayesian regression as it

allows for exact inference due to conjugacy. This allows us

to assess the quality of approximation (3) without introduc-

ing the additional challenge of approximate inference. We

summarize our approach for obtaining AVCSs in EENNs in

Algorithm 1.

Bayesian Linear Regression Recall from Section 3 that

since we require fast and exact Bayesian inference, we keep

EENN’s backbone parameters Ut fixed and give only the

weights Wt of the prediction heads a Bayesian treatment.

We define the predictive model at the tth exit as a linear

model f(x;Wt,U1:t) = ht(x)
TWt where ht(· ;U1:t) :

X → R
H represents the output of the first t backbone

layers or blocks. We use a Gaussian likelihood and prior:

y ∼ N
(
y;ht(x)

TWt, Ã
2
t

)
, Wt ∼ N

(

Wt; Ŵt, Ã
2
w,tIH

)

where Ã2
t is the observation noise, Ã2

w,t is the prior’s vari-

ance, and Ŵt are the prediction weights obtained during

(pre)training of the EENN. Due to conjugacy, we can obtain

a closed form for the posterior and predictive distributions:

p(Wt|D) = N
(
Wt; µ̄t, Σ̄t

)
,

pt(y|x∗,D) = N
(
y;ht(x

∗)T µ̄t, v∗ + Ã2
t

)
, (4)
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where v∗ := ht(x
∗)T Σ̄tht(x

∗). See Appendix B.3 for ex-

act expressions for posterior parameters µ̄t, Σ̄t. To estimate

Ã2
t and Ã2

w,t, we optimize the (exact) marginal likelihood

on the training data (type-II maximum likelihood). Combin-

ing the obtained Bayesian quantities, we can compute the

predictive-likelihood ratio in (2) at every exit.

Solving for Interval Endpoints To construct Ct, we next

have to evaluate Rt at every y ∈ Y and discard those where

the ratio exceeds 1/³, with ³ representing a significance

level (e.g., 0.05). However, in the case of regression, where

the output space is continuous, the method of evaluation is

not immediately clear. One possible approach would be

to define a grid of points over Y and then evaluate the

predictive-likelihood ratio using a finite number of labels.

Fortunately, the Bayesian linear regression model above al-

lows us to obtain the endpoints of the prediction interval, at

all exits, via a closed-form expression: Ct = [ytL, y
t
R]. This

is computationally valuable since it eliminates the overhead

of iterating over Y , which could be prohibitively expensive

in the low-resource settings in which EENNs typically op-

erate. To arrive at the analytical form, we first observe that

logRt represents a convex quadratic function in y:

logRt(y) = ³t(x
∗) · y2 + ´t(x

∗,W1:t) · y + µt(x
∗,W1:t) .

Expressions for the coefficients ³t, ´t, µt are provided in

Appendix B.4. To obtain the bounds ytL, y
t
R of the prediction

interval at the tth exit, we then simply need to find the

roots of the quadratic equation logRt(y)− log(1/³) = 0.

If the discriminant ´2
t − 4³t(µt + log³) is negative, the

equation has no real-valued roots, resulting in an empty

prediction interval. In such cases, we interpret x∗ as an

out-of-distribution sample, as mentioned in Section 3.

Epistemic Uncertainty as a Measure of Stability In

our assumed Bayesian linear regression scenario, both the

posterior and updated posterior are Gaussian. This allows

us to derive a closed-form expression for the KLD term

KL
(
p(Wt|D), p(Wt|D∗)

)
in the upper bound from Propo-

sition 2. See Appendix B.5 for the derivation. Recall that

v∗ represents the epistemic uncertainty (c.f. Eq. (4)), which

is the uncertainty that stems from observing limited data.

In turn, the KLD is small for a given x∗ when v∗ is small.

The uncertainty decreases as we collect more data4, which,

together with Proposition 2, implies that the statistical cov-

erage of our EENN-AVCS will improve as the dataset size

increases. Moreover, v∗ is independent of the test label y∗.

Thus, we can employ it as a measure of the stability of a

EENN-AVCS: for a given x∗, a higher v∗ can signal to

the user that the resulting confidence sequence may not be

reliable. We illustrate this in Section 7.1.

4limN→∞ v∗ = 0 where N represents the number of training

data points (c.f. Section 3.3.2 in Bishop and Nasrabadi [2006]).

5 EENN-AVCS FOR CLASSIFICATION

In this section, we propose a concrete instantiation of our

EENN-AVCS for classification. Unlike the regression sce-

nario in the previous section, an additional challenge is

presented by a lack of conjugacy. Specifically, we cannot

obtain a closed-form expression for the Bayesian predictive

posterior (see Eq. (1)) at every exit when using the usual

Gaussian assumption for the posterior over parameters. To

circumvent this, we depart from the Bayesian predictive

model and utilize instead Dirichlet Prior Networks [Malinin

and Gales, 2018], which enable analytically tractable predic-

tive distributions at each exit. Our EENN-AVCS approach

for classification is summarized in Algorithm 2.

Dirichlet Prior Networks Instead of positing a dis-

tribution over (last-layer) weights Wt at every exit,

we posit a distribution over categorical distributions

p(πt|D,x∗), πt ∈ ∆K 5 for a given test datapoint x∗.

Assuming a categorical likelihood, the posterior is Dirichlet

via conjugacy:

p(y|πt) = Cat(y|πt), p(πt|x∗,D) = Dir(πt|αt(x
∗;D))

where αt ∈ R
K
>0 are the concentration parameters. The

predictive distribution also has a closed form:

pt(y = y|x∗,D) =
∫

p(y = y|πt) p(πt|x∗,D) dπt =
³t,y

∑

y′∈Y ³t,y′

.

Malinin and Gales [2018] propose to parameterize the

Dirichlet concentration parameters via the outputs of a neu-

ral network, αt(x
∗;D) = f(x∗;Wt,U1:t), and term this

model a Dirichlet Prior Network (DPN). In DPNs, the aim

is to capture the distributional uncertainty that arises due to

the mismatch between test and training distributions, in ad-

dition to the data uncertainty (often referred to as aleatoric

uncertainty). This is in contrast to Bayesian models, which

focus on the model uncertainty (or epistemic uncertainty).

We refer the reader to Malinin and Gales [2018] for an

in-depth discussion of the different sources of uncertainty.

Classification EENN-AVCS Having a closed-form pre-

dictive distribution, we can define the following predictive-

likelihood ratio for a given y ∈ Y:

R∗
t (y) :=

t∏

l=1

pl(y|x∗,D)

p(y|πl)
, πl ∼ p(πl|D∗) .

Our result from Proposition 1 applies here as well6, hence it

follows that C∗
t := {y ∈ Y | R∗

t (y) ≤ 1/³} is a valid

5∆K := {π ∈ R
K |

∑
K

k=1
Ãk = 1, Ãk ≥ 0}

6The only difference in the proof being that the martingale is

defined with respect to the sequence of categorical distributions

πt instead of the sequence of weights Wt.
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(1 − ³)-confidence sequences for y∗. As in the regres-

sion case, R∗
t can not be realized in practice as it depends

on the unknown label y∗. We again approximate this or-

acle posterior with the one based solely on the training

data p(πl|D∗) ≈ p(πl|x∗,D) and denote the resulting

predictive-likelihood ratio and confidence sequence as Rt

and Ct, respectively. To reason about the quality of this

approximation, we can again rely on Proposition 2.

Post-Hoc Implementation The original DPN formula-

tion [Malinin and Gales, 2018] requires a specialized train-

ing procedure to ensure that the NN’s outputs represent

meaningful concentration parameters. We instead opt for

a simpler post-hoc approach as we have found it to yield

satisfactory results. Specifically, to obtain the concentration

parameters, we start with a pretrained (classification) EENN

and pass the logits at each exit through an activation func-

tion a : R → R>0. We found that a simple choice of ReLU

activation at(x) = ReLU(x, Ät) with a different threshold

Ät ≥ 1 at each exit works well in practice.7 To obtain the

ReLU thresholds, we use a validation dataset and pick the

largest Ät such that (1−³)% of validation datapoints are still

contained in the resulting prediction sets at each exit. Lastly,

since Y has a finite support (unlike the regression case), we

iterate over all of Y when constructing a prediction set Ct.

6 RELATED WORK

Early-Exit Neural Networks (EENNs) enable faster infer-

ence in deep models by allowing predictions to be made

at intermediate layers [Teerapittayanon et al., 2016, Huang

et al., 2018, Laskaridis et al., 2021]. They have been exten-

sively explored for computer vision [Li et al., 2019, Kaya

et al., 2019, Yang et al., 2023] and natural language pro-

cessing [Schwartz et al., 2020, Zhou et al., 2020, Xu and

McAuley, 2023]. The majority of these studies aimed to im-

prove the accuracy-speed trade-off, i.e., ensuring the model

exits as early as possible while maintaining high accuracy.

However, uncertainty quantification (UQ) within EENNs

has so far received relatively little attention [Schuster et al.,

2021, Meronen et al., 2024, Regol et al., 2024]. When it

has, UQ has primarily been used to improve EENN termi-

nation criteria. Meronen et al. [2024] employ a Bayesian

predictive model at each exit to enhance the calibration of

EENNs. Schuster et al. [2021] propose a conformal predic-

tion scheme with the goal of generating sets/intervals that

are (marginally) guaranteed to contain the prediction of the

full EENN. Yet none of the preceding works address the fact

that uncertainty estimates at successive exits are dependent,

which is the main focus of our work. Perhaps the closest re-

lated work is by Jazbec et al. [2023], who adapt EENNs for

7We restrict concentration parameters to be larger than one

due to the Dirichlet concentrating towards the simplex’s edges for

parameter values smaller than one.

the anytime setting [Zilberstein, 1996]. Their method pro-

motes conditional monotonicity: the EENN’s performance

improves across exits for every test sample. Our idea of

nested prediction sets can be seen as an extension of condi-

tional monotonicity to EENNs that yield prediction sets, not

only point predictions as done by Jazbec et al. [2023].

Anytime-Valid Confidence Sequences (AVCSs) are se-

quences of confidence intervals designed for streaming data

settings, providing time-uniform and non-asymptotic cov-

erage guarantees [Robbins, 1967, Lai, 1976, Howard et al.,

2021]. They allow for adaptive experimentation that permits

one to ’peek’ at the data at any time, make decisions, yet

still maintain the validity of the statistical inferences. Re-

cently, AVCSs have found applications in A/B testing that

is resistant to ‘p-hacking’ [Maharaj et al., 2023], Bayesian

optimization [Neiswanger and Ramdas, 2021], and change-

point detection [Shekhar and Ramdas, 2023]. AVCSs have

not been previously considered for sequential estimation of

predictive uncertainty in EENNs.

7 EXPERIMENTS

We conduct three sets of experiments, which can be re-

produced using the code at https://github.com/

metodj/EENN-AVCS. Firstly, in Section 7.1, we explore

our method (EENN-AVCS) on synthetic datasets to empiri-

cally verify its correctness and assess its feasibility. In the

subsequent set of experiments, detailed in Section 7.2, we

check that our findings extend to practical scenarios, apply-

ing EENN-AVCS to a textual semantic similarity regression

task using a transformer backbone model [Zhou et al., 2020].

Lastly, in Section 7.3, we report results on image classifica-

tion tasks (CIFAR-10/100, ImageNet) using a multi-scale

dense net (MSDNet) [Huang et al., 2018].

Evaluation Metrics To assess the quality of the prediction

sets at each exit, we utilize the standard combination of

marginal coverage and efficiency, i.e. average interval size,

on the test dataset [Angelopoulos et al., 2023]:

size(t) :=
1

ntest

ntest∑

n=1

|Ct(xn)|,

coverage(t) :=
1

ntest

ntest∑

n=1

[
yn ∈ Ct(xn)

]
,

where Ct is a prediction set at the t-th exit and [·] is the

indicator function. Marginal coverage serves as a proxy

for the statistical validity of the approach, measuring how

frequently the ground-truth falls within the predicted inter-

val on average. Among two methods with similar marginal

coverage, the one with smaller interval sizes is preferred.

To assess the nestedness of prediction sets across exits, we

define a nestedness metric: at each exit t, we compute

N(t) = | ∩s≤t Cs|/|Ct|

6



and report its mean across test data points. A model with

perfectly nested prediction sets will have N(t) = 1, exactly.

Otherwise, N(t) will be less than one and zero only in the

case of disjoint sets.
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Figure 2: We compare our EENN-AVCS with EENN-Bayes

baseline based on average nestedness (top), marginal cov-

erage (middle), and average interval size (bottom). EENN-

AVCS is the only approach that yields perfect nestedness

while maintaining reasonably high marginal coverage across

exits. The nestedness comes at a price of larger intervals

in the initial exits, though. Note that in the top plot, the

nestedness curves of EENN-AVCS ( ) and EENN-Bayes-

intersection ( ) overlap at N(t) = 1.

Baselines We compare EENN-AVCS against standard UQ

techniques—namely Bayesian methods and conformal pre-

diction. As a Bayesian baseline, we use the same underlying

Bayesian EENN but without applying the AVCS. We term

this approach EENN-Bayes since it uses the Bayesian predic-

tive distribution at each exit to perform UQ. EENN-Bayes

can be seen as an adaptation of the last-layer Laplace ap-

proach for early-exiting [Meronen et al., 2024]. For the

conformal baselines, we perform conformal inference inde-

pendently at every exit. Specifically, we use the Regularized

Adaptive Predictive Sets algorithm [RAPS; Angelopoulos

et al., 2021] for the classification experiments (c.f., 7.3)

and Conformalized Quantile Regression [CQR; Romano

et al., 2019] for the NLP regression experiments (c.f., Sec

7.2). The primary difference between our approach and the

baselines should be that EENN-AVCS has nested intervals,

without sacrificing coverage, whereas the baselines have no

such guarantee.

t=
1

EENN-Bayes EENN-AVCS

t=
5

t=
1
5

t=
1

t=
5

t=
1
5

Figure 3: Prediction intervals ( ) for EENN-Bayes (left) and

our EENN-AVCS (right) on two simulated regression tasks

Antorán et al. [2020]: wiggle (up) and 3-clusters (bottom).

Blue points denote training data. In cases where the EENN-

AVCS collapses to an empty set (out-of-distribution), we

do not depict anything, which explains the gaps in EENN-

AVCS predictions. We set the significance level to ³ = 0.05
for EENN-AVCS, while for EENN-Bayes, we plot intervals

that capture 2 standard deviations away from the predicted

mean ( ). With different background colors we denote

different regions of data distribution, see Section 7.1.

7.1 SYNTHETIC REGRESSION DATA

We use two non-linear regression simulations [Antorán et al.,

2020]: wiggle and 3-clusters. The EENN used in this exper-

iment has a backbone architecture of T = 15 feed-forward

layers with residual connections. Each layer consists of

M = 20 hidden units, and we attach an output layer on top

of it to enable early-exiting. We fit the (last-layer) Bayesian

linear regression model at each exit using the training data

and construct S = 10 confidence sequences in parallel at

test time for each datapoint (see Appendix A.1 for more

details on the parallel construction). We set the significance

level to ³ = 0.05 for EENN-AVCS, while for EENN-Bayes,

we plot intervals that capture two standard deviations away

from the predicted mean. Further details regarding data gen-
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eration, the model architecture, and the training can be found

in Appendix C.1.

In the top row of Figure 2, we compare our EENN-AVCS

( ) against the EENN-Bayes ( ) baseline on the test

dataset based on how nested the prediction intervals are

across exits. We observe that, due to their theoretical foun-

dation, EENN-ACVSs attain perfect nestedness. In contrast,

EENN-Bayes’s nestedness deteriorates over time on both

datasets considered, indicating that there are labels that re-

enter the EENN-Bayes prediction intervals after being ruled

out at some earlier exit(s). In the top row, we additionally

observe that perfect nestedness can be achieved in EENN-

Bayes by considering a running intersection of all previous

prediction intervals at each exit (denoted with ( ) line),

similar to EENN-AVCS (the two nestedness lines of both

intersection methods overlap at N(t) = 1). However, as

shown in the middle row, this approach leads to a decrease

in marginal coverage, indicating that fewer data points are

covered by the intersection of EENN-Bayes intervals as

more exits are evaluated. In contrast, EENN-AVCS main-

tains high marginal coverage despite utilizing an intersection

of intervals at each exit. This is a direct consequence of the

time-uniform nature of AVCS. The nestedness of EENN-

AVCS comes at a price, though, as the interval size tends

to be larger than that of EENN-Bayes at the initial exits

(bottom plot). This observation is in line with existing work

on AVCSs [Howard et al., 2021].

To better understand our method’s behavior on in-

distribution (ID) vs out-of-distribution (OOD) points, we

construct a new test dataset by considering equidistantly

spaced points across the entire X space8. We report results

for both datasets considered in Figure 3. Initially, we ob-

serve that for ID datapoints (with ID regions of X depicted

using background), our method satisfactorily covers the

data distribution, especially at later exits. Encouragingly,

AVCSs are also observed to quickly collapse to empty in-

tervals outside of the data distribution (OOD regions are

depicted with a white background). Whenever the AVCS

collapses to an empty interval, we omit plotting the EENN-

AVCS’s predictions, showing the collapse via gaps in Figure

3. Recall that in our setting, an empty interval represents

that a distribution shift has been detected (i.e. maximal pre-

dictive uncertainty), which is exactly the desired behavior

in OOD regions.

On the wiggle dataset, we also have the opportunity to study

the behavior on the so-called in-between (IB) datapoints

that reside between ID and OOD regions. We depict the IB

region with a background. We observe that our method en-

counters challenges in this regime to some extent, as the pre-

diction intervals are, counterintuitively, smaller compared

to those in the ID region despite the density of observed

8Specifically, for X = [L,R], we construct Xtest =
np.linspace(L− ϵ, R+ ϵ,Ntest) for ϵ > 0.

training datapoints being lower in the IB area. A partial

remedy is provided by the epistemic uncertainty v∗ (see Eq.

(4)), which in our framework can be interpreted as a proxy

for the stability of posterior distributions at different exits

as explained in Section 4. As depicted in Figure 4, v∗ is

larger for IB points compared to the ID ones (as expected).

Thus, a higher v∗ can serve as a warning that the resulting

confidence sequence should not be blindly relied upon.9

Wiggle 3-Clusters

v∗

Figure 4: Average epistemic uncertainty v∗ ( ) across

Bayesian linear regression models at different exits. As

expected, v∗ is larger in the regions where we observe less

training data: out-of-distribution (denoted with a white back-

ground) and in-between (denoted with a grey background

). Hence, v∗ can serve as an indicator for assessing the

reliability of EENN-AVCSs.

7.2 SEMANTIC SIMILARITY USING ALBERT

In this experiment, we examine the STS-B dataset from the

GLUE Benchmark [Wang et al., 2019] and the SICK dataset

[Marelli et al., 2014]. For both, the task is predicting the

degree of semantic similarity between two input sentences.

The similarity score is a continuous label ranging between

0 and 5, denoted as Y = [0, 5]. As the backbone model,

we employ ALBERT with 24 transformer layers [Lan et al.,

2020], providing the model an option to early exit after ev-

ery layer. Bayesian linear regression models are fitted on the

development set. At test time, we construct a single AVCS

(S = 1) with ³ = 0.05. We observed that constructing mul-

tiple AVCSs in parallel leads to a quicker decay of marginal

coverage on this dataset. Since we know that the true label is

within [0, 5], we clip the resulting prediction intervals for all

approaches to this region (if they should extend beyond it).

Refer to Appendix C.2 for additional details on data, model,

and training for this experiment.

Results are presented in Figure 5. Encouragingly, the obser-

vations here align qualitatively with those made on synthetic

datasets in Section 7.1. In the top plot, considering only the

current Bayesian ( ) or conformal ( ) interval at each

exit again results in non-nested uncertainty estimates. As

shown in the middle plot, using the running intersection of

EENN-Bayes ’s ( ) and CQR’s ( ) intervals rectifies this

9The IB region also poses challenges for other UQ methods; a

similar behavior was reported for Gaussian processes [Lin et al.,

2023], with the in-between region being referred to as the extrapo-

lation region.
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non-nestedness. However, using the running intersection re-

sults in a larger decay in marginal coverage. EENN-AVCS’s

( ) coverage does not suffer nearly to the same extent.

The marginal coverage in the case of the STS-B dataset is

worse across all approaches when compared to the cover-

age observed on synthetic data experiments, c.f. Figure 2.

We attribute this to there being a larger shift between train-

ing, development, and test data splits for the STS-B dataset,

as evidenced by the difference in model performance on

each of those splits (see Appendix C.2 for further details).

Finally, the bottom plot reaffirms that the nestedness of

EENN-AVCS comes at the expense of larger intervals.
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Figure 5: Comparison of our EENN-AVCS with CQR [Ro-

mano et al., 2019] and EENN-Bayes baselines on the NLP

regression datasets. Similar to findings on the synthetic data

(c.f., Figure 2), EENN-AVCS attains perfect nestedness

(upper plot) while maintaining reasonably high marginal

coverage across exits (middle plot). However, the intervals

generated by EENN-AVCS at each exit are larger compared

to the baseline (bottom row). Note that in the upper plot,

the nestedness curves of EENN-AVCS ( ), EENN-Bayes-

intersection ( ), and EENN-CQR-intersection ( ) overlap

at N(t) = 1.

7.3 IMAGE CLASSIFICATION WITH MSDNET

In the last experiment, we quantify uncertainty at every exit

on an image classification task. We consider CIFAR-10/100,

[Krizhevsky et al., 2009], and ILSVRC 2012 (ImageNet;

Deng et al. [2009]). As our backbone EENN, we employ a

Multi-Scale Dense Network [MSDNet; Huang et al., 2018],

which consists of stacked convolutional blocks. At each

exit, we map the logits to concentration parameters of the

Dirichlet distribution using the ReLU activation function, as

discussed in Section 5. To find the exact ReLU thresholds at

each exit, we allocate 20% of the test dataset as a validation

dataset and evaluate the performance on the remaining 80%.

We construct a single AVCS (S = 1) at each exit. We use

significance level ³ = 0.05 for EENN-AVCS as well as for

both baselines.
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Figure 6: Comparison of our EENN-AVCS with RAPS [An-

gelopoulos et al., 2021] and EENN-Bayes baselines based

on average nestedness (top), marginal coverage (middle),

and average interval size (bottom) for our image classifi-

cation experiments using MSDNet as a backbone. EENN-

AVCS is the only approach that attains perfect nestedness

(top) while maintaining high marginal coverage across dif-

ferent exits (middle). Nestedness comes at a price, though,

as EENN-AVCS sets are larger compared baseline ones

(bottom). Note that in the top plot, the nestedness curves

of EENN-AVCS ( ), RAPS-intersection ( ), and EENN-

Bayes -intersection ( ) overlap at N(t) = 1.

In Figure 6, we observe that constructing conformal RAPS

( ) or Bayesian credible ( ) sets at every exit indepen-

dently leads to non-nested behavior (see top row). Taking

the intersection of RAPS sets ( ) corrects this; however, as

expected this leads to a violation of conformal marginal cov-

erage guarantees (see middle row). The same observations

hold for the intersection of EENN-Bayes sets ( ). Encour-

agingly, as in our regression experiments, our EENN-AVCS

based on the Dirichlet Prior Network ( ) yields perfect nest-

edness while maintaining high marginal coverage. In the

bottom row, we also see that EENN-AVCS sets are roughly

two times (or less) larger than the sets from both baselines,

which might be a reasonable price to pay for the nestedness.

8 CONCLUSION

We proposed using anytime-valid confidence sequences for

predictive uncertainty quantification in EENNs. We showed

that our approach yields nested prediction sets across exits—

a property that is lacking in prior work, yet is crucial when

deploying EENNs in safety critical applications. We de-

scribed the theoretical and practical challenges associated

with using AVCSs for predictive tasks. Moreover, we empir-

9



ically validated our approach across a range of EENNs and

datasets. Our work is an important step towards models that

are not only fast but also safe.

Limitations and Future Work For future work, it is

paramount to improve the efficiency of EENN-AVCSs, aim-

ing for smaller intervals. This is especially crucial for the

initial exits, which are of the highest practical interest for

resource-constrained settings. While we explored ways to

reduce the set size (c.f., Appendix A.1), further efforts are

necessary to ensure faster convergence without sacrificing

marginal coverage in the process. Additionally, studying

alternatives to the predictive-likelihood ratio (c.f., Eq. (2))

for constructing confidence sequences might be a promis-

ing way to improve efficiency. Finally, from a theoretical

standpoint, it would be interesting to study the behaviour

of EENN-AVCS as the number of exits goes to infinity. Im-

plicit deep models [Chen et al., 2018, Bai et al., 2020] could

be used to this end.
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A ADDITIONAL RESULTS

A.1 SPEEDING UP CONVERGENCE OF EENN-AVCS

In our original formulation in Section 3, we draw a single sample of the weighs Wt (or predictive distribution µt in the

case of classification) at each exit. This invariably leads to large prediction intervals/sets at the initial exits - a phenomenon

analogous to AVCSs being large for the initial few observed data points in the conventional data streaming scenario [Howard

et al., 2020]. In this section, we explore two distinct approaches to mitigate this issue, aiming to attain more efficient

confidence estimates right from the initial exits.

In the first approach, we simply take multiple samples St > 1 at each exit. Consequently, the predictive likelihood ratio for a

given test point x∗ takes the following form:

Rt(y) :=

t∏

l=1

Sl∏

s=1

pl(y|x∗,D)

p(y|x∗,W
(s)
l )

, W
(s)
l ∼ p(Wl|D) .

We term this approach Multiple-Samples AVCS. As an alternative, we construct multiple AVCSs {C(s)
t }St

s=1 based on a

single sample in parallel. At each exit, we then consider their intersection C∩
t =

⋂St

s=1 C
(s)
t and pass it on to the next exit.

We refer to this method as Parallel AVCS.

We present the results for both approaches in Figure 7 using synthetic datasets from Section 7.1. While both methods yield

more efficient, i.e., smaller, intervals in the initial exits (top row), it is interesting to observe that the Multiple-Samples

approach leads to a much faster decay in marginal coverage compared to the Parallel one (see bottom row). We attribute

this to the fact that by sampling multiple samples within a single confidence sequence at each exit, we are essentially

‘committing’ more to our approximation of the updated posterior (c.f., Eq. (3)), which results in larger coverage violations.

Hence, we recommend using the Parallel approach when attempting to speed up the convergence of our EENN-AVCS .

Nonetheless, we acknowledge that this area warrants further investigation, and we consider this an important direction for

future work.
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Figure 7: Average interval size and marginal coverage for regression synthetic datasets. While both of the considered

approaches yield more efficient intervals (top row), the Parallel method is better at preserving high marginal coverage

(bottom row). AVCS(S) denotes a confidence sequence based on S samples at each exit in the case of Multiple-Samples,

and the sequence based on S parallel ones in the case of Parallel.
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B SUPPORTING DERIVATIONS

B.1 PROOF OF PROPOSITION 1

The proof can be divided into two steps. In the first step, we demonstrate that the predictive-likelihood ratio R∗
t (y) in (2) is a

non-negative martingale when evaluated at the true value y∗, with an initial value of one. In the second step, we utilize Ville’s

inequality to construct AVCS. Throughout this process, we closely adhere to the proof technique outlined in Waudby-Smith

and Ramdas [2020] (refer to Appendix B.1 in that work).

We begin the first step by showing that the expectation of the predictive-likelihood ratio evaluated at y∗ remains constant

over time:

EWt+1
[R∗

t+1(y
∗) |W1, . . . ,Wt] =

∫

R∗
t+1(y

∗) p(Wt+1|D ∪ (x∗, y∗)) dWt+1
(i)
=

∫

R∗
t+1(y

∗)
p(y∗|x∗,Wt+1)p(Wt+1|D)

pt+1(y∗|x∗,D)
dWt+1 =

∫ t+1∏

l=1

pl(y
∗|x∗,D)

p(y∗|x∗,Wl)

p(y∗|x∗,Wt+1)p(Wt+1|D)

pt+1(y∗|x∗,D)
dWt+1 =

∫ t∏

l=1

pl(y
∗|x∗,D)

p(y∗|x∗,Wl)
︸ ︷︷ ︸

R∗

t (y
∗)

(
(
(
(
(
((

pt+1(y
∗|x∗,D)

(
(
(

(
(
(
(

p(y∗|x∗,Wt+1)
(

(
(
(
(
(
(

p(y∗|x∗,Wt+1) p(Wt+1|D)

(
(
(

(
(

((

pt+1(y
∗|x∗,D)

dWt+1 =

∫

R∗
t (y

∗) p(Wt+1|D) dWt+1 =

R∗
t (y

∗)

∫

p(Wt+1|D) dWt+1 =

R∗
t (y

∗) ,

where the step (i) follows from the (sequential) Bayesian updating of the current posterior p(Wt+1|D) based on the new

data-point (x∗, y∗).

To show that initial value is equal to one, we proceed similarly:

EW1
[R∗

1(y
∗)] =

∫

R∗
1(y

∗) p(W1|D ∪ (x∗, y∗)) dW1 =

∫

R∗
1(y

∗)
p(y∗|x∗,W1)p(W1|D)

p1(y∗|x∗,D)
dW1 =

∫

p(W1|D) dW1 = 1 =: R∗
0 .

In the second step, we make use of Ville’s inequality, which provides a bound on the probability that a non-negative

supermartingale exceeds a threshold ´ > 0.

P (∃t : R∗
t (y

∗) ≥ ´) ≤ E[R∗
0(y

∗)] / ´ .

Since every martingale is also a supermartingale, Ville’s inequality is applicable in our case. Then, for a particular threshold

³ ∈ (0, 1) and since we have a constant initial value (one), Ville’s inequality implies: P (∃t : R∗
t (y

∗) ≥ 1/³) ≤ ³. If we

define the sequence of sets as C∗
t := {y ∈ Y |R∗

t (y) ≤ 1/³}, their validity can be shown as

P(∀t, y∗ ∈ C∗
t ) = P(∀t, R∗

t (y
∗) ≤ 1/³) =

1− P(∃t : R∗
t (y

∗) ≥ 1/³) ≥ 1− ³ ,

which concludes the proof.
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B.2 PROOF OF PROPOSITION 2

We first note that due to C∗
t being a valid (1− ³) confidence sequence, we have

P (∃l ∈ [t], y∗ /∈ C∗
l ) ≤ P (∃l ∈ [T ], y∗ /∈ C∗

l ) ≤ ³ , (5)

where we adopt the notation [t] := {1, . . . , t} for brevity. Additionaly we observe that randomness in P (∃l ∈ [t], y∗ /∈ Cl)
and P (∃l ∈ [t], y∗ /∈ C∗

l ) comes from p(W1, . . . ,Wt|D) and p(W1, . . . ,Wt|D∗), respectively. Hence, we can use total

variation distance (TV) to upper bound the difference

P (∃l ∈ [t], y∗ /∈ Cl)− P (∃l ∈ [t], y∗ /∈ C∗
l ) ≤

∣
∣P (∃l ∈ [t], y∗ /∈ Cl)− P (∃l ∈ [t], y∗ /∈ C∗

l )
∣
∣ ≤

TV
(
p(W1, . . . ,Wt|D), p(W1, . . . ,Wt|D∗)

)
.

Next, we apply Bretangnolle and Huber inequality [Bretagnolle and Huber, 1979] to upper bound the TV distance in terms

of KL divergence and use the fact that weights at different exits are independent which gives rise to a factorized joint

distribution

TV
(
p(W1, . . . ,Wt|D), p(W1, . . . ,Wt|D∗)

)
≤

√

1− e−KL
(
p(W1,...,Wt|D), p(W1,...,Wt|D∗)

)

≤
√

1− e−
∑

t
l=1

KL
(
p(Wl|D), p(Wl|D∗)

)

Rearranging the terms and using (5), the proposition follows

P (∃l ∈ [t], y∗ /∈ Cl) ≤
P (∃l ∈ [t], y∗ /∈ C∗

l ) +
√

1− e−
∑

t
l=1

KLl ≤
³+

√

1− e−
∑

t
l=1

KLl

where KLl := KL
(
p(Wl|D), p(Wl|D∗)

)
.

B.3 BAYESIAN LINEAR REGRESSION

In Section 4, we define the predictive model at the tth exit as a linear model f(x;Wt,U1:t) = h(x;U1:t)
TWt. For

notational brevity, we omit U1:t and denote h(x;U1:t) as ht(x) in this section. Additionally, let y = [y1, . . . , yN ]T ∈ R
N

and Ht = [ht(x1), . . . , ht(xN )]T ∈ R
N×H represent a concatenation of training labels and (deep) features, respectively.

Assuming a Gaussian likelihood N
(
y;ht(x)

T
Wt, Ã

2
t

)
and a prior N

(
Wt;0, Ã

2
w,tIH

)
, the posterior over weights Wt has

the following form [Bishop and Nasrabadi, 2006]:

p(Wt|D) = N
(
Wt; µ̄t, Σ̄t

)
,

µ̄t =
1

Ã2
t

Σ̄tH
T
t y ,

Σ̄
−1
t =

1

Ã2
t

HT
t Ht +

1

Ã2
w,t

IH .

Similarly, for a new test point x∗, the posterior predictive can be obtained in a closed-form:

pt(y|x∗,D) = N
(
y;ht(x

∗)T µ̄t, ht(x
∗)T Σ̄tht(x

∗) + Ã2
t

)
.

For the exact derivation of both distributions above, we refer the interested reader to the Section 3.3 in Bishop and Nasrabadi

[2006].
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B.4 SOLVING FOR INTERVAL ENDPOINTS

Due to the assumed Bayesian linear regression model at each exit t, logRt is a convex quadratic function in y:

logRt(y) =

t∑

l=1

log pl(y|x∗,D)− log p(y|x∗,Wl) =

³t(x
∗) · y2 + ´t(x

∗,W1:t) · y + µt(x
∗,W1:t) .

Coefficients have the following form:

³t(x
∗) =

1

2

t∑

l=1

(
1

Ã2
l

− 1

v∗,l + Ã2
l

)

,

´t(x
∗,W1:t) =

t∑

l=1

hl(x
∗)T µ̄l

v∗l + Ã2
l

− hl(x
∗)TWl

Ã2
l

,

µt(x
∗,W1:t) =

1

2

t∑

l=1

(
(hl(x

∗)TWl)
2

Ã2
l

− (hl(x
∗)T µ̄l)

2

v∗l + Ã2
l

+ log
Ã2
l

v∗l + Ã2
l

)

where v∗l := hl(x
∗)T Σ̄lhl(x

∗), and we provide expressions for hl, µ̄l, Σ̄l in Appendix B.3. It is easy to show that ³t ≥ 0,

from which the convexity follows.

To find AVCS Ct = {y ∈ Y |Rt(y) ≤ 1/³}, we look for the roots of the equation logRt(y)− log(1/³) = 0. This yields

an analytical expression for Ct = [ytL, y
t
R] :

ytL,R =
−´t ±

√

´2
t − 4³tµ̃t

2³t

where µ̃t = µt + log³. See Figure 8 for a concrete example of log-ratios.

B.5 EPISTEMIC UNCERTAINTY AND KL DIVERGENCE

To compute the KL divergence between the posterior and update posterior in the Bayesian linear regression model (c.f.

Appendix B.3), we first use the Bayes rule to rewrite the latter as:

p(Wt|D∗) =
p(y∗|x∗,Wt) p(Wt|D)

pt(y∗|x∗,D)
.

Using the definition of the KL divergence together with the formulas for posterior predictive and posterior distributions from

Appendix B.3, we proceed as

KL
(
p(Wt|D), p(Wt|D∗)

)
=

Ep(Wt|D)

[

log
p(Wt|D)

p(Wt|D∗)

]

=

log pt(y
∗|x∗,D)− Ep(Wt|D)

[
log p(y∗|x∗,Wt)

]
=

0.5

(

log
( Ã2

t

Ã2
t + v∗t

)
+
( 1

Ã2
t + v∗t

− 1

Ã2
t

)
r2∗ +

v∗t
Ã2
t

)

where r∗ = y∗ − µ̄T
t ht(x

∗) represents a residual, v∗ = ht(x
∗)T Σ̄tht(x

∗) denotes epistemic uncertainty, and Ã = Ãy,t.

Based on the obtained expression, it is evident that a small v∗, implies small KL-divergence.
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Figure 8: Plot of logRt(y) at various exits t for a randomly selected test data point (x∗, y∗) from the 3-clusters dataset. As

described in Appendix B.4, we observe that the log-ratios exhibit a quadratic shape, allowing for an analytical solution for

the endpoints of prediction intervals Ct.

C IMPLEMENTATION DETAILS

C.1 SYNTHETIC DATA EXPERIMENTS

Data Generation We closely follow data generation process from Antorán et al. [2020]. Specifically, for wiggle dataset

we sample N points from

y = sin(Ãx) + 0.2 cos(4Ãx)− 0.3x+ ϵ

where ϵ ∼ N (0, 0.25) and x ∼ N (5, 2, 5). For 3-clusters dataset, we simulate data via

y = x− 0.1x2 + cos(xÃ/2)

where ϵ ∼ N (0, 0.25) and we sample N/3 points from [−1, 0], [1.5, 2.5] and [4, 5], respectively. For both datasets, we

sample a total of N = 900 points and allocate 80% of the data for training, while the remaining 20% constitutes the test

dataset.

Model Architecture Our EENN is composed of an input layer and T = 15 residual blocks. The residual blocks consist

of a Dense layer (with M = 20 hidden units), followed by a ReLU activation and BatchNorm (with default PyTorch

parameters). We attach an output layer at each residual block to facilitate early exiting.

Training We train our EENN for 500 epochs using SGD with a learning rate of 1 × 10−3, a momentum of 0.9, and a

weight decay of 1× 10−4. For the loss function, we use the average mean-square error (MSE) across all exits.
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C.2 SEMANTIC TEXTUAL SIMILARITY EXPERIMENT
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Figure 9: Mean Absolute Error (MAE) performance of the

ALBERT-large model across different datasets: train, devel-

opment (dev), and test. A large performance gap between the

train and dev/test datasets is observed. Note that in our work,

we reuse the exact model and training setup from previous

approaches [Zhou et al., 2020].

Datasets We use the STS-B dataset, the only regression

dataset in the GLUE benchmark [Wang et al., 2019], as

well as the SICK dataset [Marelli et al., 2014]. The task

is to measure the semantic similarity y ∈ [0, 5] between

the two input sentences. For STS-B, the training, devel-

opment, and test datasets consist of 5.7K, 1.5K, and 1.4K

datapoints, respectively. For SICK, , the training, devel-

opment, and test datasets consist of 4.4K, 2.7K, and 2.7K

datapoints, respectively.

Model Architecture and Training For the model ar-

chitecture and training we reuse the code from Zhou et al.

[2020]. Specifically, we work with ALBERT-large

which is a 24-layers transformer model. To facilitate early

exiting, a regression head is attached after every trans-

former block.

EENN-AVCS In the results presented in the main text,

we construct a single (S = 1) AVCS at test time with ³ =
0.05. To fit the Bayesian linear regression models (i.e.,

empirical Bayes) at every exit, we use the development

set. Note that this contrasts with our experiments on the

synthetic dataset (c.f., Section 7.1) where we utilized the

training dataset for this purpose. We observed that when fitting the regression model on the training dataset for STS-B,

the noise parameters Ã̂t get underestimated, resulting in a rapid decay of marginal coverage for both EENN-AVCS and

EENN-Bayes . We attribute this to a distribution shift present in the STS-B dataset, which is evident based on the different

performances (MAE) that the ALBERT model achieves on different datasets, as seen in Figure 9.
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D EENN-AVCS ALGORITHM

Here, we outline in detail the implementation of our EENN-AVCS model. In Algorithm 1, we present EENN-AVCS

for regression tasks. We start by fitting a Bayesian posterior model p(Wt|D) at every exit using the training data D (c.f.

Appendix B.3). To estimate the observation noise Ã̂t at every exit, we perform empirical Bayes (type-II maximum likelihood).

Then, for a given test point x∗, we first sample the weights from the posterior and compute the epistemic uncertainty v∗t at

every exit. Next, we use the obtained quantities to update the coefficients of the (logarithm of) predictive-likelihood ratio Rt

(c.f. Appendix B.4). To get the prediction interval at a given exit, we then solve the quadratic equation based on the updated

coefficients from the previous step (c.f. Appendix B.4). Finally, we take the running intersection with the intervals obtained

at the previous exits. In case the intersection results in an empty interval, we stop evaluating exits and label the given test

point x∗ as an out-of-distribution (OOD) example (c.f. Detecting Violations of Posterior Stability in Section 3).

In Algorithm 2, we present EENN-AVCS for classification tasks. To determine the concentration parameters αt of the

Dirichlet distribution at each exit for a given test point x∗, we apply a ReLU activation to the logits from the backbone

EENN, retaining only the classes that "survive" the ReLU. We then sample from the Dirichlet distribution to obtain the

denominator part of the predictive-likelihood ratio Rt (refer to Section 5). For the numerator part of Rt , we calculate the

(closed-form) posterior distribution using the concentration parameters at a specific exit. To create a predictive set at a given

exit, we iterate over classes and include only those classes in the set for which the predictive-likelihood ratio Rt is less than

1/³S . Finally, as in the regression case, we consider the running intersection with all sets computed at previous exits. We

label the test example v∗ as out-of-distribution (OOD) if the set collapses to an empty set.

Algorithm 1: EENN-AVCS Regression

input :Backbone EENN {h(·|U1:t)}Tt=1, Regression

models {p(Wt|D), Ã̂2
t }Tt=1,

test datapoint x∗, significance level ³S

output :AVCS for x∗

C0 = Y
³, ´, µ = 0, 0, log³S

for t = 1, ..., T do

Wt ∼ p(Wt|D) = N (Wt|µ̄t, Σ̄t)

v∗t := ht(x
∗)T Σ̄tht(x

∗)

# update coefficients of logRt(y)

³ += 1
2 ( 1

σ̂2
t

− 1
v∗

t +σ̂2
t

)

´ += ht(x
∗)T µ̄t

v∗

t +σ̂2
t

− ht(x
∗)TWt

σ̂2
t

µ += 1
2

( (ht(x
∗)TWt)

2

σ̂2
t

− (ht(x
∗)T µ̄t)

2

v∗

t +σ̂2
t

+log
σ̂2
t

v∗

t +σ̂2
t

)

# find the roots of quadratic equation

ytL,R =
−β±

√
β2−4αγ

2α

Ct = Ct−1 ∩ [ytL, y
t
R]

if Ct = ∅ then

return ∅ # OOD
return {Ct}Tt=1

Algorithm 2: EENN-AVCS Classification

input :Backbone EENN {f(·|U1:t,Wt)}Tt=1, ReLU

thresholds {Ät}Tt=1,

test datapoint x∗, significance level ³S

output :AVCS for x∗

C0 = Y
R = [1, . . . , 1]

for t = 1, ..., T do
# get concentration parameters, only keep classes

that "survive" ReLU

αt = ReLU(f(x∗|U1:t,Wt), Ät)

α̃t = αt[αt > 0]

πt ∼ Dir(α̃t)

St =
∑

k ³t,k

Ct = [ ]

# update the predictive-likelihood ratio

for k = 1, . . . ,K do

if ³t,k > 0 then

R[k] ∗= αt,k/St

πt,k

else

R[k] = ∞
if R[k] ≤ 1

αS
then

Ct.append(k)

Ct = Ct ∩ Ct−1

if Ct = ∅ then

return ∅ # OOD
return {Ct}Tt=1
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