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Abstract

Deep, overparameterized regression models are no-

torious for their tendency to overfit. This problem

is exacerbated in heteroskedastic models, which

predict both mean and residual noise for each data

point. At one extreme, these models fit all train-

ing data perfectly, eliminating residual noise en-

tirely; at the other, they overfit the residual noise

while predicting a constant, uninformative mean.

We observe a lack of middle ground, suggest-

ing a phase transition dependent on model reg-

ularization strength. Empirical verification sup-

ports this conjecture by fitting numerous models

with varying mean and variance regularization. To

explain the transition, we develop a theoretical

framework based on a statistical field theory, yield-

ing qualitative agreement with experiments. As a

practical consequence, our analysis simplifies hy-

perparameter tuning from a two-dimensional to

a one-dimensional search, substantially reducing

the computational burden. Experiments on diverse

datasets, including UCI datasets and the large-scale

ClimSim climate dataset, demonstrate significantly

improved performance in various calibration tasks.

1 INTRODUCTION

Homoskedastic regression models assume constant (e.g.,

Gaussian) output noise and amount to learning a function

f(x) that tries to predict the most likely target y for input x.

In contrast, heteroskedastic models assume that the output

noise may depend on the input features x as well, and try

to learn a conditional distribution p(y|x) with non-uniform

variance. The promise of this approach is to assign different

importances to training data and to train models that “know

where they fail” [Skafte et al., 2019, Fortuin et al., 2022].

Unfortunately, overparameterized heteroskedastic regres-

sion models (e.g., based on deep neural networks) are prone

to extreme forms of overfitting [Lakshminarayanan et al.,

2017, Nix and Weigend, 1994]. On the one hand, the mean

model is flexible enough to fit every training datum’s target

perfectly, while the standard deviation network learns to

maximize the likelihood by shrinking the predicted standard

deviations to zero. On the other hand, just the tiniest amount

of regularization on the mean network will make the model

prefer a constant solution. Such a flat prediction results from

the standard deviation network’s ability to explain all resid-

uals as random noise, thus overfitting the data’s empirical

prediction residuals. Fig. 1 shows both types of overfitting.

While several practical solutions to learning overparameter-

ized heteroskedastic regression models have been proposed

[Skafte et al., 2019, Stirn and Knowles, 2020, Seitzer et al.,

2022, Stirn et al., 2023, Immer et al., 2023], no comprehen-

sive theoretical study of the failure of these methods has

been offered so far. We conjecture this is because overpa-

rameterized models have attracted the most attention only

in the past few years, while most classical statistics have

focused on under-parameterized (e.g., linear) regression

models where such problems cannot occur [Huber, 1967,

Astivia and Zumbo, 2019].

This paper provides a theoretical analysis of the failure of

heteroskedastic regression models in the overparameterized

limit. To this end, it borrows a tool that abstracts away from

any details of the involved neural network architectures:

classical field theory from statistical mechanics [Landau

and Lifshitz, 2013, Altland and Simons, 2010]. Via our

field-theoretical description, we can recover the optimized

heteroskedastic regressors as solutions to partial differential

equations that can be derived from a variational principle.

These equations can in turn be solved numerically by opti-

mizing the field theory’s free energy functional.

Our analysis results in a two-dimensional phase diagram,

representing the coarse-grained behavior of heteroskedas-

tic noise models for every parameter configuration. Each

of the two dimensions corresponds to a different level of



regularization of either the mean or standard deviation net-

work. As encountered in many complex physical systems,

the field theory unveils phase transitions, i.e., sudden and

discontinuous changes in certain observables (metrics of

interest) that characterize the model, such as the smoothness

of its mean prediction network, upon small changes in the

regularization strengths. In particular, we find a sharp phase

boundary between the two types of behavior outlined in the

first paragraph, at weak regularization.

Our contributions are as follows:

• We provide a unified theoretical description of overparam-

eterized heteroskedastic regression models, which general-

izes across different models and architectures, drawing on

tools from statistical mechanics and variational calculus.

• In this framework, we derive a field theory (FT), which

can explain the observed types of overfitting in these models

and describe phase transitions between them. We show

qualitative agreement of our FT with experiments, both on

simulated and real-world regression tasks.

• As a practical consequence of our analysis, we dramat-

ically reduce the search space over hyperparameters by

eliminating one parameter. This reduces the number of hy-

perparameters from two to one, empirically resulting in

well-calibrated models. We demonstrate the benefits of our

approach on a large-scale climate modeling example.

2 PITFALLS OF OVERPARAMETERIZED

HETEROSKEDASTIC REGRESSION

Heteroskedastic Regression Consider the setting in

which we have a collection of independent data points

D := {(xi, yi)}
N
i=1

with covariates xi ∈ X ¢ R
d drawn

from some distribution xi ∼ p(x) and response values

yi ∈ Y ≡ R normally distributed with unique mean µi and

precision (inverse-variance) Λi > 0 (i.e., yi ∼ N (µi,Λi)).
We assume to be in a heteroskedastic setting, in which Λi

need not equal Λj for i ̸= j. Finally, we assume both the

mean and standard deviation of yi to be explainable via xi:

yi |xi ∼ N (µ(xi),Λ(xi)) for i = 1, . . . , N (1)

with continuous functions µ : X → R and Λ : X → R>0.

In a modeling setting, learning Λ can be seen as directly

estimating and quantifying the aleatoric (data) uncertainty.

Overparameterized Neural Networks There exist many

options for modeling µ and Λ. Of particular interest to many

is representing each of these functions as neural networks

[Nix and Weigend, 1994]—specifically ones that are overpa-

rameterized. These models are well-known universal func-

tion approximators, which makes them great choices for

estimating the true functions µ and Λ [Hornik, 1991].

Let the mean network µ̂θ : X → R and precision net-

work Λ̂φ : X → R>0 be arbitrary depth, overparameterized

feed-forward neural networks parameterized by θ and φ re-

spectively. For a given input xi, these networks collectively

represent a corresponding predictive distribution for yi:

p̂(yi |xi) := N (yi; µ̂θ(xi), Λ̂φ(xi)). (2)

Pitfalls of MLE Our assumed form of data naturally sug-

gests training µ̂θ and Λ̂φ, or rather learning θ and φ, by

minimizing the cross-entropy between the joint data dis-

tribution p := p(x, y) = p(y | x)p(x) and the induced

predictive distribution p̂ := p̂(y |x)p(x). This objective is

defined as

L(θ, φ) := H(p, p̂) = −Ep [log p̂(x, y)] (3)

=

∫
X

p(x)

∫
Y

p(y |x) logN (y; µ̂θ(x), Λ̂φ(x))dydx+ c,

where c is a constant with respect to θ and φ. This expec-

tation is often approximated using a Monte Carlo (MC)

estimate with N samples, yielding the following tractable

objective function:

L(θ, φ) ≈
1

2N

N∑
i=1

Λ̂φ(xi)r̂(xi)
2 − log Λ̂φ(xi), (4)

where r̂(xi) = µ̂θ(xi)− yi. Minimizing this cross-entropy

objective function with respect to parameters θ and φ us-

ing data samples is synonymous with maximum likelihood

estimation (MLE).

Unfortunately, given an infinitely flexible model, this objec-

tive function is ill-posed. Our first observation is that, for

any non-zero Λ̂φ, we can find a solution for the parameters

φ in the absence of any regularization since the first term

in Eq. (4) is minimized when Λ̂φ → 0, while the second

term is minimized when Λ̂φ → ∞. However, the interplay

between φ and θ leads to divergences in the absence of any

regularization on θ. Without such regularization, the mean

function µ̂θ will estimate y perfectly (or rather to arbitrary

precision) for at least a single data point (xi, yi). Once this

happens, the residual for this input µ̂θ(xi)− yi approaches

zero, and the implicit regularization for Λ̂φ vanishes, leading

Λ̂φ(xi) to diverge to infinity. Intuitively, the model becomes

infinitely (over-)confident in its prediction for this data point.

Once training has reached this point, the objective function

becomes completely unstable due to effectively containing

a term whose limit naïvely yields ∞−∞.1

1Note that this is predicated on the model being flexible enough

to allow for large changes in predictions µ̂θ(x) and Λ̂φ(x) after

iteratively updating parameters ¹ and ϕ while allowing for minimal

changes in neighboring predictions (i.e., µ̂θ(x
′) and Λ̂φ(x

′) for

some x′ ∈ X such that 0 < ||x− x′|| < ϵ).



Figure 1: Visualization of a typical phase diagram in Ä− µ regularization space for a heteroskedastic regression model (left).

Solid and dotted lines indicate sharp and smooth transitions in model behavior respectively. Example model mean fits shown

in red (with pointwise ± standard deviation in orange) from the FT for each key phase (middle and right).

Regularization Even though Λ̂φ is implicitly regularized

in the standard cross-entropy loss as mentioned earlier, we

posit that additional regularization on Λ̂φ, or rather ϕ, is

required to avoid this instability. It can be tempting to think

that one must regularize ¹ in order to avoid overfitting. And

while this is generally true, the objective function L will still

be unstable so long as at least one input xi yields a perfect

prediction (i.e., yi = µ̂θ(xi)). This situation is still fairly

likely to occur even in the most regularized mean predictors

and cannot be avoided, especially if {yi} is zero-centered.

To prevent this from happening, we can include L2 penalty

terms for both ¹ and ϕ in our loss function:

Lα,β(¹, ϕ) := L(¹, ϕ) + ³||¹||22 + ´||ϕ||22, (5)

where ³, ´ > 0 are penalty coefficients. Intuitively, the

primary purpose of regularizing ¹ is to prevent the mean

predictions from overfitting while the goal of regularizing ϕ
is to provide stability and control complexity in the predicted

aleatoric uncertainty. As ³ → ∞, the network models a

constant mean and, symmetrically, as ´ → ∞ the network

models a constant standard deviation. That is, we effectively

arrive at a homoskedastic regime as ´ → ∞.2

Reparameterized Regularization We introduce an alter-

native parameterization of the regularization coefficients:

Lρ,γ(¹, ϕ) := ÄL(¹, ϕ) + Ǟ
[

µ||¹||22 + µ̄||ϕ||22
]

, (6)

where we restrict Ä, µ ∈ (0, 1) and define Ǟ := 1 − Ä and

µ̄ := 1 − µ. This parameterization is one-to-one with the

³, ´ parameterization (with ³ = µǞ/Ä and ´ = µ̄Ǟ/Ä) and

it can be shown that ∇θ,φLρ,γ ∝ ∇θ,φLα,β , thus minimiz-

ing one objective is equivalent to minimizing the other. Be-

cause Ä and µ are bounded we are able to completely cover

2This is under the assumption that either the networks have

an unpenalized bias term in the final layer or that the data is

standardized to have zero mean and unit variance.

the space of regularization combinations by searching over

(0, 1)2 whereas in the ³, ´ parameterization ³, ´ ∈ R>0

are unbounded. Now, Ä determines the relative importance

between the likelihood and the total regularization imposed

on both networks. On the other hand, µ weights the propor-

tion of total regularization between the mean and precision

networks. Here, Ä = 1 corresponds to the MLE objective

while Ä → 0 could be interpreted as converging to the mode

of the prior in a Bayesian setting. Fixing µ = 1 leads to

an unregularized precision function while choosing µ = 0
results in an unregularized mean function.

Qualitative Description of Phases Model solutions

across the space of Ä and µ hyperparameters exhibit dif-

ferent traits and behaviors. Similar to physical systems, this

can be described as a collection of typical states or phases

that make up a phase diagram as a whole. We find that

these phase diagrams are typically consistent in shape across

datasets and methodologies. Fig. 1 shows an example phase

diagram along with model fits coming from specific (Ä, µ)
pairings. We argue that there are five primary regions of

interest and qualitatively characterize them as follows:

• Region UI: Both the mean and precision functions are

heavily regularized. The likelihood is so lowly weighted it

is as if the model had not seen the data. Regardless of the µ-

value, the likelihood plays a minor role in the objective. The

mean and standard deviation functions are constant through

zero and 1 (the values they were initialized to).

• Region UII: The mean function is still heavily regularized

and tends to be flat, underfitting the data as in Region UI .

Despite the constant mean function, the precision function

can still accommodate the residuals.

• Region OI: The mean is heavily overfit and the residuals

and corresponding standard deviations essentially vanish.

Increasing Ä → 1 yields true MLE fits (right side of the



Table 1: FT Limiting Cases. We provide intuition for Prop. 1 and match the limits to the phase diagram regions in Fig. 1.

Regularization Outcome

Ä → 1, µ ∈ [0, 1]
This is equivalent to MLE. Approaching Ä = 1, we observe overfit mean solutions (see OI and OII

in Fig. 1) across all µ. In theory, at Ä = 1, there is a contradiction implying no solution should exist.

Ä → 0, µ ∈ (0, 1)
The objective is dominated by the regularizers—the data is completely ignored. This corresponds

with region UI. In theory, the optimal solution at Ä = 0 is for both µ̂, Λ̂ to be constant (flat) functions.

Ä ∈ (0, 1), µ → 1
All regularization is placed on the mean function, leading to underfit mean. However, the precision

is unregularized and the residuals are perfectly matched. This is the top row of the phase diagrams.

Ä ∈ (0, 1), µ → 0
The mean is unregularized and the precision is strongly regularized. These fits are characterized by

severe overfitting and can be found along the bottom row of the phase diagrams.

phase diagram). This portion of the phase exists across a

wide range of µ-values. Low values of µ restrict the flexibil-

ity of the precision function, but due to the overfitting in the

mean, the flexibility is not needed to fit the residuals.

• Region OII: The mean function does not overfit due to reg-

ularization, leaving large residuals for the lowly regularized

precision function to overfit onto. The predicted standard

deviation matches each residual perfectly.

• Region S: The mean and precision functions adapt to the

data without overfitting. We conjecture that solutions in this

region will provide the best generalization.

3 THEORETIC CONSIDERATIONS

We proceed to develop a theoretical description of the inter-

play between regularization strengths and resulting model

behavior that captures the limiting behavior of heteroskedas-

tic neural networks in the completely overparameterized

regime. This tool allows us to analytically study edge cases

of combinations of regularization strengths and find nec-

essary conditions any pair of optimal mean and standard

deviation functions must satisfy, agnostic of any specific

model architecture. Furthermore, numerical solutions to our

field theory, explained below, show good qualitative agree-

ment with practical neural network implementations.

Field Theory Having discussed the effects of regulariza-

tion on a heteroskedastic model on a qualitative level, we ask

the following questions: How much do these effects depend

on any particular neural network architecture? Can we de-

scribe some of these effects on the function level, i.e., without

resorting to neural networks? To address these questions,

we will establish field theories from statistical mechanics.

Field theories are statistical descriptions of random func-

tions, rather than discrete or continuous random vari-

ables [Altland and Simons, 2010]. A field is a function

assigning spatial coordinates to scalar values or vectors.

Examples of physical fields are electric charge densities,

water surfaces, or vector fields such as magnetic fields. Low-

energy configurations of fields can display recurring patterns

(e.g., waves) or undergo phase transitions (e.g., magnetism)

upon varying model parameters. Since we can think of a

function as an infinite-dimensional vector, field theory re-

quires the usage of functional analysis over plain calculus.

For example, we frequently ask for the field that minimizes

a free energy functional that we obtain by calculating a

functional derivative that we set to zero. The advantage to

moving to a function-space description is that all details

about neural architectures are abstracted away as long as the

neural network is sufficiently over-parameterized.

Firstly, we propose abstracting the neural networks µ̂θ and

Λ̂φ with nonparametric, twice-differentiable functions µ̂ and

Λ̂ respectively. Since these functions no longer depend on

parameters, we cannot use L2 penalties. A somewhat compa-

rable substitute is to directly penalize the output “complex-

ity” of the models, which can be measured via the Dirichlet

energy: ³
∫

p(x)||∇µ̂(x)||22dx and ´
∫

p(x)||∇Λ̂(x)||22dx.

Note that these specific penalizations induce similar lim-

iting behaviors for resulting solutions (i.e., ³, ´ → 0 im-

plies overfitting while → ∞ implies constant functions). In

the case where µ̂θ and Λ̂φ are linear models, this gradient

penalty is equivalent to an L2 penalty. Further, networks

trained with an L2 weight regularization have empirically

been found to have lower geometric complexity, a variant of

Dirichlet energy [Dherin et al., 2022]. We also implement

neural networks with geometric complexity regularization

and present those results in Appendix E.

Using the assumptions outlined above and the same reparam-

eterization of (³, ´) to (Ä, µ) as with the neural networks,

the cross-entropy objective can be interpreted as an action

functional of a corresponding two-dimensional FT,

Lρ,γ(µ̂, Λ̂) =

∫

X

p(x)Ä

∫

Y

p(y |x) log p̂(y |x)dy (7)

+ p(x)Ǟ
[

µ||∇µ̂(x)||22 + µ̄||∇Λ̂(x)||22

]

dx,

where p̂(y | x) = N (y | µ̂(x), Λ̂(x)). This description as-
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Figure 2: Array plot of metrics (rows) across different data or fitting techniques (columns). Leftmost column: results from

our field theory (FT); remaining columns: results from fitting neural networks to data (data sets refer to test splits). Averaged

results of six runs are shown. Intermediate ticks mark µ = 0.5 and Ä = 0.5 on the lower-left plot. Our FT aligns qualitatively

well with empirical phase diagrams, with consistent phase transitions across models and datasets.

sumes a continuous data density p(x), a continuous distribu-

tion over regression noise p(y |x), and continuous functions

µ̂(x) and Λ̂(x) whose behavior we would like to study as a

function of varying the regularizers Ä and µ.

One can view the indexed set y(·) = {y(x)}x∈X as a

stochastic process (specifically a white noise process scaled

by true precision Λ(x) and shifted by true mean µ(x)). We

are interested in the statistical properties of the field theory

for any given realization of this stochastic process, y(x), and

ideally, we would average over multiple draws. However,

for computational convenience, we restrict our attention to

a single sample. This simplification is equivalent to con-

sidering a specific dataset and similar in spirit to fitting

a heteroskedastic model to real data. This approximation

yields the following simplified FT,

Lρ,γ(µ̂, Λ̂) ≈

∫

X

p(x)Ä

[

1

2
Λ̂(x)r̂(x)2 −

1

2
log Λ̂(x)

]

(8)

+ p(x)Ǟ
[

µ||∇µ̂(x)||22 + µ̄||∇Λ̂(x)||22

]

dx,

where r̂(x) := µ̂(x) − y(x). We are primarily interested

in solutions µ̂∗ and Λ̂∗ that minimize the FT Lρ,γ(µ̂, Λ̂)

as these are roughly analogous to models µ̂θ and Λ̂φ that

minimize penalized cross-entropy Lρ,γ(¹, ϕ). We can gain

insights into these solutions by taking functional derivatives

of the FT with respect to µ̂ and Λ̂ and setting them to zero.

The result of this procedure are stationary conditions in the

form of partial differential equations for µ̂∗ and Λ̂∗:

Λ̂∗(x)r̂∗(x) = 2
Ǟ

Ä
µ
∆µ̂∗(x)

p(x)

and r̂∗(x)2 =
1

Λ̂∗(x)
+ 4

Ǟ

Ä
µ̄
∆Λ̂∗(x)

p(x)
, (9)

where r̂∗(x) = µ̂∗(x)− y(x) and ∆ is the Laplace operator

[Engel and Dreizler, 2011]. Note that these equalities hold

true almost everywhere (a.e.) with respect to p(x).

Interestingly, both resulting relationships include a regular-

ization coefficient divided by the density of x. Intuitively,

while the functions as a whole have a global level of reg-

ularization dictated by Ä or µ, locally this regularization

strength is augmented proportional to how likely the input

is. This means that areas of high density in x permit more

complexity, while less likely regions are constrained to pro-

duce simpler outputs. Similarly, since ∆µ̂ and ∆Λ̂ measure

the curvature of these functions, we see that Ä and µ directly

impact the complexity of Λ̂ and Ä, as we expect.

Numerically Solving the FT Since the stationary condi-

tions in Eq. (9) are too complex to be solved analytically,

we discretize and minimize the FT to arrive at approximate

solutions—in theory, we can do so to arbitrary precision. Let

{xi}
ND

i=1 be a set of D fixed points in X that we assume are

evenly spaced. Define µ⃗, Λ⃗, y⃗ to be ND-dimensional vectors

where for each i, µ⃗i := µ̂(xi), Λ⃗i := Λ̂(xi), yi := y(xi).

We solve for the optimal µ⃗ and Λ⃗ using the discretized



approximation to Eq. (8) via gradient based optimization

methods:

Lρ,γ(µ⃗, Λ⃗) ≈
ND
∑

i=1

Ä

[

1

2
Λ⃗i (yi − µ⃗i)

2 −
1

2
log Λ⃗i

]

+ Ǟ
[

µ||∇µ⃗i||
2
2 + µ̄||∇Λ⃗i||

2
2

]

, (10)

and numerically approximate the gradients of µ̂, Λ̂ by finite-

difference methods [Fornberg, 1988].

FT Insights The pair of constraints in Eq. (9) allow us

to glean useful insights into the resulting regularized solu-

tions by looking at edge cases of specific combinations of

Ä and µ values. We summarize the theoretical properties

of the limiting cases of Ä and µ approaching extreme val-

ues in the proposition below and in Table 1. Please refer to

Appendix A.2 for the proofs of these claims.

Proposition 1. Under the assumptions of our FT (see

above), the following properties hold: (i) in the absence

of regularization (Ä = 1), there are no solutions to the FT;

(ii) in the absence of data (Ä = 0), there is no unique solu-

tion to the FT; and (iii) in order for there to exist a solution

to the FT there must be regularization on the mean function.

These limiting cases match our intuition conveyed ear-

lier that also apply to the neural network context. Further-

more, if we assume that there do exist valid solutions for

µ, Ä ∈ (0, 1), it follows that the solutions should either un-

dergo sharp transitions or smooth cross-overs between the

behaviors described in the limiting cases when varying the

regularization strengths. Section 4 shows that, empirically,

these phase diagrams resemble Fig. 1. We leave the analyti-

cal justification for the types of boundaries and their shapes

and placement in the phase diagram for future work.

4 EXPERIMENTS

The main focus of our experiments is to visualize the phase

transitions in two-dimensional phase diagrams and iden-

tify summary statistics ("observables") that display them.

We establish that these properties are independent of any

particular neural network architecture by showing qualita-

tive agreement with the field theory. Finally, through this

exploratory analysis we discovered a method for finding

well-suited combinations of (Ä, µ)-regularization strengths

that reduces a two-dimensional hyperparameter search to

one-dimension, allowing for the efficient identification of

heteroskedastic model fits that neither over- nor underfit.

Modeling Choices We chose µ̂θ, Λ̂φ to be fully-connected

networks with three hidden layers of 128 nodes and leaky

ReLU activation functions. The first half of training was

only spent on fitting µ̂θ, while in the second half of training,

both µ̂θ and Λ̂φ were jointly learned. This improves stability,

since the precision is a dependent on the mean µ̂θ, and is

similar in spirit to ideas presented in Skafte et al. [2019].

Complete training details can be found in Appendix B.2.

Datasets We analyze the effects of regularization on sev-

eral one-dimensional simulated datasets, standardized ver-

sions of the Concrete [Yeh, 2007], Housing [Harrison and

Rubinfeld, 1978], Power [Tüfekci, 2014], and Yacht [Ger-

ritsma, 1981] regression datasets from the UC Irvine Ma-

chine Learning Repository [Kelly et al.], and a scalar quan-

tity from the ClimSim dataset [Yu et al., 2023]. We fit neural

networks to the simulated and real-world data and addition-

ally solve our FT for the simulated data. Detailed descrip-

tions of the data are included in Appendix B.1. We present

the results for a simulated sinusoidal (Sine) dataset as well

as the four UCI regression datasets and have results for the

other simulated datasets in Appendix B.5.

4.1 QUALITATIVE ANALYSIS

Our qualitative analysis aims at understanding architecture-

independent aspects of heteroskedastic regression upon vary-

ing the regularization strength on the mean and variance

functions, resulting in the observation of phase transitions.

Metrics of Interest We are interested in how well-

calibrated the resulting models are as well as how expressive

the learned functions are. We compute two types of metrics

on our experiments to summarize these properties. Firstly,

we consider the mean squared error (MSE). We measure this

quantity between predicted mean µ̂θ(xi) and target yi, as

well as between predicted standard deviation (Λ−1/2(xi))
and absolute residual |µ̂θ(xi) − yi|. If the mean and stan-

dard deviation are well-fit to the data, both of these values

should be low. We opt for Λ− 1

2 MSE due to its similarities

to variance calibration [Skafte et al., 2019] and expected

normalized calibration error [Levi et al., 2022]. Secondly,

we evaluate the Dirichlet energy for the FT and its discrete

analogue, geometric complexity [Dherin et al., 2022], for

neural networks of the learned µ̂θ, Λ̂φ, µ⃗, Λ⃗. As previously

mentioned, the Dirichlet energy of a function f is defined as
∫

X
p(x)||∇f(x)||22 dx. Meanwhile, geometric complexity is

N−1
∑N

i=1 ||∇f(x)||22. Each quantity captures how expres-

sive a learned function is, with more expressive functions

yielding a higher value and is analogous (or equivalent) to

the quantity we penalize in the FT setting.

Plot Interpretation We present summaries of the fitted

models in grids with Ä on the x-axis and µ on the y-axis

in Fig. 2. The far right column (µ = 1) corresponds to

MLE solutions. The main focus is on qualitative traits of fits

under different levels of regularization and how they behave

in a relative sense, rather than a focus on absolute values.

Fig. 3 show the summary statistics along the slice where



Table 2: Comparison of a deep heteroskedastic regression model with diagonal regularization search with ´-NLL [Seitzer

et al., 2022] and two conformal prediction implementations. For details on the selection criteria of the heteroskedastic model

see Appendix D.2. The final two columns are comparisons against models selected in the same way as in our suggestion,

but trained on half of the data in a split conformal fashion. The third column has uniform bandwidth (homoskedastic)

assumptions while the fourth column has a locally adaptive [Lei et al., 2018] (heteroskedastic) bandwidth. Possibly due to

the reduced training size, performance suffers. In a conformal setting the "standard deviation" does not have an obvious

analogue. We calibrate the bandwidths to be set to the 0.682 quantile because ± 1 standard deviation covers ≈ 68.2%
of a standard normal distribution. Lowest mean value of for each quantity is bolded. We report the average and standard

deviations of µ- and Λ− 1

2 -MSE across six runs on test data.

Dataset Metric Heteroskedastic β-NLL Conformal Conformal (local)

Sine µ MSE 0.80 ± 0.00 0.69 ± 0.05 0.54 ± 0.09 0.82 ± 0.00

Λ
−

1

2 MSE 0.80 ± 0.00 0.52 ± 0.07 0.36 ± 0.13 0.33 ± 0.00

Concrete µ MSE 0.11 ± 0.02 0.55 ± 0.30 0.27 ± 0.01 0.80 ± 0.00

Λ
−

1

2 MSE 0.30 ± 0.51 1.09 ± 0.20 0.09 ± 0.00 0.43 ± 0.00

Housing µ MSE 1.22 ± 0.00 0.32 ± 0.05 0.31 ± 0.00 0.31 ± 0.00

Λ
−

1

2 MSE 0.76 ± 0.00 0.88 ± 0.03 0.13 ± 0.00 0.14 ± 0.00

Power µ MSE 0.04 ± 0.01 0.09 ± 0.01 0.18 ± 0.00 0.19 ± 0.00

Λ
−

1

2 MSE 0.03 ± 0.01 0.31 ± 0.37 0.03 ± 0.00 0.03 ± 0.00

Yacht µ MSE 0.01 ± 0.01 0.01 ± 0.01 0.04 ± 0.00 0.84 ± 0.00

Λ
−

1

2 MSE 0.01 ± 0.01 1.33 ± 0.02 0.01 ± 0.00 0.49 ± 0.00

Solar Flux µ MSE 0.29 ± 0.00 0.38 ± 0.00 0.05 ± 0.00 0.33 ± 0.00

Λ
−

1

2 MSE 0.12 ± 0.00 0.32 ± 0.00 0.01 ± 0.00 0.37 ± 0.01

Ä = 1− µ. Zero on these plots corresponds to the upper left

corner while one corresponds to the lower right corner. We

provide model fits arranged in grids of the same orientation

for the field theory and neural networks on the Sine dataset

in Figs. 10 and 11.

Observation 1: Our metrics show sharp phase transitions

upon varying Ä, µ, as in a physical system.

Fig. 2 and Fig. 3 show a sharp transition, both leading to

worsening and improving performance when moving along

the minor diagonal. In totality, across all metrics, the five

regions are apparent. But not all of the regions in Fig. 1

appear in the heatmaps of each metric. For example, region

OII does not always appear in the metrics related to the

mean. When using neural networks to approximate µ and Λ,

there are sharper boundaries between phases than in the FT’s

numerical solutions. The boundary between UII and OI is

sharply observed in the plots of
∫

||∇µ(x)||22 dx. However,

in terms of µ MSE, a smoother transition (i.e., region S) is

visible.

Observation 2: The FT insights and observed phases are

consistent with the numerically solved FT and the results

from fitting neural networks. Thus, our results are not tied

to a specific architecture or dataset.

In alignment with our theoretical insights, phases UI and OI

exhibit consistent behavior across µ-values (vertical slices

in Fig. 2). Qualitatively, we find the same types of phase

diagrams and phase transitions across all considered data

sets. Empirically, we observe that boundaries between re-

gions of interest are similar in shape across datasets but

not quantitatively the same, i.e., phase transitions occur at

differing levels of regularization for different data sets of

different dimensionality.

In the right-hand columns (Ä → 1), there is near-perfect

matching of the data by the mean function and this is also

visible in the lower rows (µ → 0). Within the metrics

we assess, the shapes of the regions vary with regulariza-

tion strength in a similar fashion on all datasets. In the

plots of
∫

||∇Λ(x)||22 dx, the region where Λ is flatter cov-

ers a larger area compared to the phase diagram showing
∫

||∇µ(x)||22 dx. That is, for the same proportion of regular-

ization as the mean, the precision remains flatter.

4.2 QUANTITATIVE ANALYSIS

Our quantitative analysis aims to demonstrate the practical

implications of our qualitative investigations that result in

better calibration properties.

Observation 3: We can search along Ä = 1 − µ to find a

well-calibrated (Ä, µ)-pair from region S.

Our FT indicates that a slice across the minor diagonal of

the phase diagram should always cross the S region (see

Fig. 1). Fig. 3 show that by searching along this diagonal,

we indeed find a combination of regularization strengths

where both µ̂θ and Λ̂φ generalize well to held-out test data.



This implies that there is no need to search all of the two-

dimensional space, but only a single slice which reduces the

number of models to fit from O(N2) to O(N), where N is

the number of Ä and µ values that are tested.

Fig. 3 shows that along the minor diagonal the performance

is initially poor, improves, and then drops off again. These

shifts from strong to weak performance are sharp. The regu-

larization pairings that result in optimal performance with

respect to µ- and Λ−1/2-MSE are near each other along this

diagonal for the real-world test data. As the theory predicts,

the performance becomes highly variable as we approach

the MLE solutions and the FT fails to converge in this region.

In practice, we propose searching along this line to find the

(Ä, µ)-combinations that minimize the µ- and Λ− 1

2 -MSEs

and averaging the regularization strengths to fit a model. We

compare models chosen by our diagonal line search to two

heteroskedastic modeling baselines in Appendix D on the

synthetic and UCI datasets as well as a scalar quantity from

the ClimSim dataset [Yu et al., 2023]. We present a subset of

the results below in Table 2. In most cases the model chosen

via the diagonal line search was competitive or better than

the baselines.

5 RELATED WORK

Uncertainty can be divided into epistemic (model) and

aleatoric (data) uncertainty [Hüllermeier and Waegeman,

2021], the latter of which can be further divided into ho-

moskedastic (constant over input space) and heteroskedastic

(varies over input space). Handling heteroskedastic noise

historically has been and continues to be an active area of

research in statistics [Huber, 1967, Eubank and Thomas,

1993, Le et al., 2005, Uyanto, 2022] and machine learning

[Abdar et al., 2021], but is less common in deep learning

[Kendall and Gal, 2017, Fortuin et al., 2022], probably due

to pathologies that we analyze in this work. Heteroskedastic

noise modeling can be interpreted as reweighting the impor-

tance of datapoints during training time, which Wang et al.

[2017] and Mandt et al. [2016] show to be beneficial in the

presence of corrupted data and Khosla et al. [2022] in active

learning.

To the best of our knowledge, Nix and Weigend [1994] were

the first to model a mean and standard deviation function

with neural networks and Gaussian likelihood. Skafte et al.

[2019] suggest changing the optimization loop to train the

mean and standard deviation networks separately, treating

the standard deviations variationally and integrating them

out as Takahashi et al. [2018] does in the context of VAEs,

accounting for the location of the data when sampling, and

setting a predefined global variance when extrapolating.

Stirn and Knowles [2020] also perform amortized VI on the

standard deviations and evaluate their model from the per-

spective of posterior predictive checks. Seitzer et al. [2022]

provide an in-depth analysis of the shortcomings of MLE es-

timation in this setting and adjust the gradients during train-

ing to avoid pathological behavior. Stirn et al. [2023] extend

the idea of splitting mean and standard deviation network

training in a setting where there are several shared layers

to learn a representation before emitting mean and standard

deviation. Finally, Immer et al. [2023] take a Bayesian ap-

proach to the problem and use Laplace approximation on

the marginal likelihood to perform empirical Bayes. This

allows for regularization to be applied through the prior and

for separation of model and data uncertainty. While these

works propose practical solutions, in contrast to our work,

none of them study the theoretical underpinnings of these

pathologies, let alone in a model- or data-agnostic way.

6 CONCLUSION

We have used field-theoretical tools from statistical physics

to derive a nonparametric free energy, which allowed us

to produce analytical insights into the pathologies of deep

heteroskedastic regression. These insights generalize across

models and datasets and provide a theoretical explanation

for the need for carefully tuned regularization in these mod-

els, due to the presence of sharp phase transitions between

pathological solutions.

We have also presented a numerical approximation to this

theory, which empirically agrees with neural network so-

lutions to synthetic and real-world data. Insights from the

theory have informed a method to tune the regularization to

arrive at well-calibrated models more efficiently than would

naïvely be the case. Finally, we hope that this work will

open an avenue of research for using ideas from theoretical

physics to study the collective effects and nonlinear phe-

nomena frequently encountered in large-scale deep learning

models [Bamler and Mandt, 2018].

Limitations Our FT and subsequent analysis are restricted

to regression problems. From an uncertainty quantification

perspective, the models we discuss only account for the

aleatoric uncertainty. Though our use of regularizers has a

Bayesian interpretation, we are not performing Bayesian in-

ference and do not account for epistemic uncertainty [Papa-

markou et al., 2024]. Solving the FT under a fully Bayesian

framework would result in stochastic PDE solutions. We

leave analysis of this setting to future work. Additionally,

our suggestion to search Ä = 1 − µ to find good hyper-

parameter settings appears to be valid, but requires fitting

many models. Ideally, one might hope to use the field theory

directly to find optimal regularization settings for real-world

models, but our numerical approach is currently not accurate

enough for this use case.

Acknowledgements Eliot Wong-Toi acknowledges sup-

port from the Hasso Plattner Research School at UC Irvine.

Alex Boyd acknowledges support from the National Sci-



−1
0
1

µ MSE

Housing

−2

0

Yacht

−1

0

Power

−1
0
1

Λ−

1

2 MSE
−2

0

0
2
4

−5

0
∫
‖∇µ‖2

−5

0

−5

0

10
−10

10
−5

1/2 10−5 10−10

ρ = 1− γ

0

10
∫
‖∇Λ‖2

10
−10

10
−5

1/2 10−5 10−10

ρ = 1− γ

0

10

10
−10

10
−5

1/2 10−5 10−10

ρ = 1− γ

0

10

Figure 3: Test metrics for six runs achieved along the Ä = 1− µ minor diagonal. Stars indicate minimum MSE values. All

metrics are reported on a log10 scale. Ä values are shown on a logit scale with 10k := 1− 10k. From left to right, note the

sharp decrease in test metric values, especially in the solutions to neural network models followed by a typical smoother

increase. This empirically supports the existence of the well-calibrated S phase shown in Fig. 1.

ence Foundation Graduate Research Fellowship grant DGE-

1839285. Vincent Fortuin was supported by a Branco Weiss

Fellowship. Stephan Mandt acknowledges support by the

IARPA WRIVA program, the National Science Founda-

tion (NSF) under the NSF CAREER Award 2047418; NSF

Grants 2003237 and 2007719, the Department of Energy,

Office of Science under grant DE-SC0022331, as well as

gifts from Intel, Disney, and Qualcomm.

References

Moloud Abdar, Farhad Pourpanah, Sadiq Hussain, Dana

Rezazadegan, Li Liu, Mohammad Ghavamzadeh, Paul

Fieguth, Xiaochun Cao, Abbas Khosravi, U. Rajendra

Acharya, Vladimir Makarenkov, and Saeid Nahavandi.

A review of uncertainty quantification in deep learning:

Techniques, applications and challenges. Information

Fusion, 76:243–297, December 2021. ISSN 1566-2535.

doi: 10.1016/j.inffus.2021.05.008.

Alexander Altland and Ben D. Simons. Condensed Matter

Field Theory. Cambridge University Press, Cambridge, 2

edition, 2010. ISBN 978-0-521-76975-4. doi: 10.1017/

CBO9780511789984.

Oscar Astivia and Bruno Zumbo. Heteroskedasticity in

Multiple Regression Analysis: What it is, How to Detect

it and How to Solve it with Applications in R and SPSS.

Practical Assessment, Research, and Evaluation, 24(1),

November 2019. ISSN 1531-7714. doi: https://doi.org/

10.7275/q5xr-fr95.

Robert Bamler and Stephan Mandt. Improving optimiza-

tion for models with continuous symmetry breaking. In

International Conference on Machine Learning, pages

423–432. PMLR, 2018.

Youngseog Chung and Willie Neiswanger. Beyond Pin-

ball Loss: Quantile Methods for Calibrated Uncertainty

Quantification. 2021.

Benoit Dherin, Michael Munn, Mihaela Rosca, and David

G T Barrett. Why neural networks find simple solutions:

the many regularizers of geometric complexity. 2022.

Eberhard Engel and Reiner M. Dreizler. Density Functional

Theory: An Advanced Course. Theoretical and Mathemat-

ical Physics. Springer, Berlin, Heidelberg, 2011. ISBN

978-3-642-14089-1 978-3-642-14090-7. doi: 10.1007/

978-3-642-14090-7.

R. L. Eubank and Will Thomas. Detecting Heteroscedastic-

ity in Nonparametric Regression. Journal of the Royal

Statistical Society: Series B (Methodological), 55(1):145–

155, 1993. ISSN 2517-6161. doi: 10.1111/j.2517-6161.

1993.tb01474.x.



Bengt Fornberg. Generation of Finite Difference Formulas

on Arbitrarily Spaced Grids. Mathematics of Computa-

tion, 51:699–706, October 1988.

Vincent Fortuin, Mark Collier, Florian Wenzel, James

Allingham, Jeremiah Liu, Dustin Tran, Balaji Laksh-

minarayanan, Jesse Berent, Rodolphe Jenatton, and Ef-

frosyni Kokiopoulou. Deep Classifiers with Label Noise

Modeling and Distance Awareness. Transactions on Ma-

chine Learning Research, 2022.

J. Gerritsma. Geometry, resistance and stability of the Delft

Systematic Yacht hull series. TU Delft, Faculty of Marine

Technology, Ship Hydromechanics Laboratory, Report No.

520-P, Published in: International Shipbuilding Progress,

ISP, Delft, The Netherlands, Volume 28, No. 328, also 7th

HISWA Symposium, Amsterdam, The Netherlands, 1981.

David Harrison and Daniel L Rubinfeld. Hedonic housing

prices and the demand for clean air. Journal of Environ-

mental Economics and Management, 5(1):81–102, March

1978. ISSN 0095-0696. doi: 10.1016/0095-0696(78)

90006-2.

Judy Hoffman, Daniel A. Roberts, and Sho Yaida.

Robust Learning with Jacobian Regularization, Au-

gust 2019. URL http://arxiv.org/abs/1908.

02729. arXiv:1908.02729 [cs, stat].

Kurt Hornik. Approximation capabilities of multilayer feed-

forward networks. Neural Networks, 4(2):251–257, Jan-

uary 1991. ISSN 0893-6080. doi: 10.1016/0893-6080(91)

90009-T.

Peter J. Huber. The behavior of maximum likelihood esti-

mates under nonstandard conditions. Proceedings of the

Fifth Berkeley Symposium on Mathematical Statistics and

Probability, Volume 1: Statistics, 5.1:221–234, January

1967.

Eyke Hüllermeier and Willem Waegeman. Aleatoric and

epistemic uncertainty in machine learning: an intro-

duction to concepts and methods. Machine Learning,

110(3):457–506, March 2021. ISSN 1573-0565. doi:

10.1007/s10994-021-05946-3.

Alexander Immer, Emanuele Palumbo, Alexander Marx,

and Julia E Vogt. Effective Bayesian Heteroscedastic

Regression with Deep Neural Networks. 2023.

Markelle Kelly, Rachel Longjohn, and Kolby Nottingham.

The UCI Machine Learning Repository. URL https:

//archive.ics.uci.edu.

Alex Kendall and Yarin Gal. What Uncertainties Do We

Need in Bayesian Deep Learning for Computer Vision?

In Advances in Neural Information Processing Systems,

volume 30. Curran Associates, Inc., 2017.

Savya Khosla, Chew Kin Whye, Jordan T. Ash, Cyril Zhang,

Kenji Kawaguchi, and Alex Lamb. Neural Active Learn-

ing on Heteroskedastic Distributions, November 2022.

Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon.

Accurate Uncertainties for Deep Learning Using Cali-

brated Regression. 2018.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles

Blundell. Simple and Scalable Predictive Uncertainty

Estimation using Deep Ensembles. In Neural Information

Processing Systems, 2017.

L. D. Landau and E. M. Lifshitz. Statistical Physics: Volume

5. Elsevier, October 2013. ISBN 978-0-08-057046-4.

Quoc V. Le, Alex J. Smola, and Stéphane Canu. Het-

eroscedastic Gaussian process regression. In Proceed-

ings of the 22nd international conference on Machine

learning - ICML ’05, pages 489–496, Bonn, Germany,

2005. ACM Press. ISBN 978-1-59593-180-1. doi:

10.1145/1102351.1102413.

Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J. Tibshi-

rani, and Larry Wasserman. Distribution-Free Predictive

Inference for Regression. Journal of the American

Statistical Association, 113(523):1094–1111, July 2018.

ISSN 0162-1459. doi: 10.1080/01621459.2017.1307116.

URL https://doi.org/10.1080/01621459.

2017.1307116. Publisher: Taylor & Francis _eprint:

https://doi.org/10.1080/01621459.2017.1307116.

Dan Levi, Liran Gispan, Niv Giladi, and Ethan Fetaya.

Evaluating and Calibrating Uncertainty Prediction in

Regression Tasks. Sensors (Basel, Switzerland), 22

(15):5540, July 2022. ISSN 1424-8220. doi: 10.3390/

s22155540. URL https://www.ncbi.nlm.nih.

gov/pmc/articles/PMC9330317/.

Stephan Mandt, James McInerney, Farhan Abrol, Rajesh

Ranganath, and David Blei. Variational tempering. In Ar-

tificial intelligence and statistics, pages 704–712. PMLR,

2016.

D.A. Nix and A.S. Weigend. Estimating the mean and vari-

ance of the target probability distribution. In Proceedings

of 1994 IEEE International Conference on Neural Net-

works (ICNN’94), volume 1, pages 55–60 vol.1, June

1994. doi: 10.1109/ICNN.1994.374138.

Theodore Papamarkou, Maria Skoularidou, Konstantina

Palla, Laurence Aitchison, Julyan Arbel, David Dunson,

Maurizio Filippone, Vincent Fortuin, Philipp Hennig, Ali-

aksandr Hubin, and others. Position Paper: Bayesian

Deep Learning in the Age of Large-Scale AI. In Interna-

tional Conference on Machine Learning, 2024.

Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic,

and Georg Martius. ON THE PITFALLS OF



HETEROSCEDASTIC UNCERTAINTY ESTIMATION

WITH PROBABILISTIC NEURAL NETWORKS. 2022.

Nicki Skafte, Martin Jørgensen, and Søren Hauberg. Reli-

able training and estimation of variance networks. 2019.

Andrew Stirn and David A. Knowles. Variational Variance:

Simple, Reliable, Calibrated Heteroscedastic Noise Vari-

ance Parameterization, October 2020.

Andrew Stirn, Hans-Hermann Wessels, Megan Schertzer,

Laura Pereira, Neville E Sanjana, and David A Knowles.

Faithful Heteroscedastic Regression with Neural Net-

works. 2023.

Hiroshi Takahashi, Tomoharu Iwata, Yuki Yamanaka,

Masanori Yamada, and Satoshi Yagi. Student-t Varia-

tional Autoencoder for Robust Density Estimation. In

Proceedings of the Twenty-Seventh International Joint

Conference on Artificial Intelligence, pages 2696–2702,

Stockholm, Sweden, July 2018. International Joint Con-

ferences on Artificial Intelligence Organization. ISBN

978-0-9992411-2-7. doi: 10.24963/ijcai.2018/374.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi

Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier

Features Let Networks Learn High Frequency Functions

in Low Dimensional Domains. In Advances in Neural

Information Processing Systems, volume 33, pages 7537–

7547. Curran Associates, Inc., 2020.

Pınar Tüfekci. Prediction of full load electrical power output

of a base load operated combined cycle power plant using

machine learning methods. International Journal of Elec-

trical Power & Energy Systems, 60:126–140, September

2014. ISSN 0142-0615. doi: 10.1016/j.ijepes.2014.02.

027.

Stanislaus S. Uyanto. Monte Carlo power comparison of

seven most commonly used heteroscedasticity tests. Com-

munications in Statistics - Simulation and Computation,

51(4):2065–2082, April 2022. ISSN 0361-0918. doi:

10.1080/03610918.2019.1692031.

Yixin Wang, Alp Kucukelbir, and David M. Blei. Robust

probabilistic modeling with Bayesian data reweighting.

In Proceedings of the 34th International Conference on

Machine Learning - Volume 70, ICML’17, pages 3646–

3655, Sydney, NSW, Australia, August 2017. JMLR.org.

I-Cheng Yeh. Concrete Compressive Strength, 2007.

Sungduk Yu, Walter Hannah, Liran Peng, Jerry Lin, Mo-

hamed Aziz Bhouri, Ritwik Gupta, Björn Lütjens, Jus-

tus C. Will, Gunnar Behrens, Julius Busecke, Nora Loose,

Charles Stern, Tom Beucler, Bryce Harrop, Benjamin

Hillman, Andrea Jenney, Savannah L. Ferretti, Nana Liu,

Animashree Anandkumar, Noah Brenowitz, Veronika

Eyring, Nicholas Geneva, Pierre Gentine, Stephan Mandt,

Jaideep Pathak, Akshay Subramaniam, Carl Vondrick,

Rose Yu, Laure Zanna, Tian Zheng, Ryan Abernathey,

Fiaz Ahmed, David Bader, Pierre Baldi, Elizabeth Barnes,

Christopher Bretherton, Peter Caldwell, Wayne Chuang,

Yilun Han, Yu Huang, Fernando Iglesias-Suarez, Sanket

Jantre, Karthik Kashinath, Marat Khairoutdinov, Thorsten

Kurth, Nicholas Lutsko, Po-Lun Ma, Griffin Mooers,

J. David Neelin, David Randall, Sara Shamekh, Mark

Taylor, Nathan Urban, Janni Yuval, Guang Zhang, and

Mike Pritchard. ClimSim: A large multi-scale dataset for

hybrid physics-ML climate emulation. Advances in Neu-

ral Information Processing Systems, 36:22070–22084,

December 2023.



Understanding Pathologies of Deep Heteroskedastic Regression

(Supplementary Material)

Eliot Wong-Toi1 Alex Boyd1 Vincent Fortuin2 Stephan Mandt1,3

1Department of Statistics, University of California, Irvine, USA
2Helmholtz AI, Munich, Germany

3Department of Computer Science, University of California, Irvine, USA

A THEORETICAL DETAILS

A.1 FULL FUNCTIONAL DERIVATIVES

Our FT is:

Lρ,γ(µ̂, Λ̂) ≈

∫

X

p(x)Ä

[

1

2
Λ̂(x)r̂(x)2 −

1

2
log Λ̂(x)

]

+ p(x)Ǟ
[

µ||∇µ̂(x)||22 + µ̄||∇Λ̂(x)||22

]

dx

and its functional derivatives are

{

δL
δµ̂ = p(x)ÄΛ̂(x)r̂(x)− 2Ǟµ∆µ̂(x)
δL
δΛ̂

= p(x)ρ
2

[

r̂(x)2 − 1
Λ̂(x)

]

− 2Ǟµ̄∆Λ̂(x),
(11)

where r̂(x) = y(x)− µ̂(x) After setting equal to zero we arrive at







Λ̂∗(x)(µ̂∗(x)− y(x)) = 2 ρ̄
ρµ

∆µ̂∗(x)
p(x)

(y(x)− µ̂∗(x))2 = 1
Λ̂∗(x)

+ 4 ρ̄
ρ µ̄

∆Λ̂∗(x)
p(x) .

(12)

A.2 PROOFS

Proposition 1. Assuming there exists twice differentiable functions µ : Rd → R,Λ : Rd → R>0, the following properties

hold

i In the absence of regularization (Ä = 1), there are no solutions to the FT.

ii In the absence of data (Ä = 0), there is no unique solution to the FT.

iii In order for there to exist a solution to the FT there must be regularization on the mean function.

Proof. Without loss of generality, we consider a uniform p(x) and drop it from the equations.



(i) When Ä = 1 the necessary conditions for an optima are

{

Λ̂∗(x)(µ̂∗(x)− y(x)) = 0

(µ̂∗(x)− y(x))2 = 1
Λ̂∗(x)

(13)

=⇒

{

Λ̂∗(x)(µ̂∗(x)− y(x)) = 0

Λ̂∗(x)(µ̂∗(x)− y(x))2 = 1
(14)

=⇒

{

Λ̂∗(x)(µ̂∗(x)− y(x)) = 0

0× (µ̂∗(x)− y(x)) = 1
(15)

=⇒ 0 = 1 (16)

which is a contradiction and there cannot exist µ,Λ that are solutions.

(ii) When Ä = 0 the integral we seek to maximize is:

Lρ,γ(µ̂, Λ̂) =

∫

X

Ä

∫

Y

p(y |x) log p̂(y |x)dy + Ǟ
[

µ||∇µ̂(x)||22 + µ̄||∇Λ̂(x)||22

]

dx (17)

=

∫

X

[

µ||∇µ̂(x)||22 + µ̄||∇Λ̂(x)||22

]

dx (18)

where we p̂(y |x) = N (y | µ̂(x), Λ̂(x)). Each term in this integral is non-negative, so the minimum value it could be is

zero. Any pair of constant functions µ,Λ will minimize this integral, of which there are infinitely many.

(iii) In the (³, ´)-regularization, it is equivalent to say ³ > 0 is a necessary condition for there to exist a solution to the FT.

Recall that we seek to minimize

Lα,β(µ̂, Λ̂) =

∫

X

p(x)(− log p̂(y|x) + ³||∇µ̂(x)||22 + ´||∇Λ̂(x)||22)dx

where we p̂(y|x) = N (y|µ̂(x), Λ̂(x)). Suppose ³ = 0. Then the functional simplifies to

min
µ̂,Λ̂

Lα,β(µ̂, Λ̂) = min
µ̂,Λ̂

∫

X

p(x)(− log p̂(y|x) + ´||∇Λ̂(x)||22)dx (19)

f min
µ̂,Λ̂

∫

X

p(x)
1

2
(Λ̂(x)r̂(x)2 − log ˆΛ(x)) + p(x)´||∇Λ̂(x)||22dx (20)

= min
µ̂,Λ̂

(x)

∫

X

p(x)
1

2
(Λ̂(x)r̂(x)2 − log Λ̂(x)) dx (21)

where Λ̂ is a constant function and r̂(x) = y(x) − µ̂(x). This provides an upper bound on the integral as we are

looking at a restricted class of possible precision functions. Since the precision function is constant the gradient penalty,

||∇Λ̂(x)||22, is zero. There is no penalty on µ̂ so it can perfectly pass through every data point and the contribution of

Λ̂(x)(µ̂(x)− y(x))2 is zero while − log Λ̂(x) can become arbitrarily negative. Thus there is no solution if ³ = 0.

B EXPERIMENTAL DETAILS

B.1 DATASETS

We chose 64 datapoints in each of the simulated datasets. The generating processes for each simulated dataset is included in

Table 3 and can be seen in Fig. 4. The homoskedastic data is simulated in the same way, but with f(x) = 1. For testing,

we simulate a new dataset of 64 datapoints with the same process. Table 4 summarizes the UCI datasets. We provide a

description of the ClimSim climate data in Appendix D.4.
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Figure 4: Visualization of heteroskedastic and homoskedastic versions of simulated datasets. Specific details for the

functional form of these can be found in Table 3.

Table 3: Simulated datasets. Each dataset is defined by a true µ function and then a noise function f . All data is generated as

µ(x) + ϵ(x) where ϵ(x) ∼ N (0, f(x)2). After the datasets were generated they were scaled to have mean zero and standard

deviation one. The homoskedastic versions of each dataset fix f(x) = 1. The datasets are shown in Fig. 4.

Dataset Mean (µ) Noise Pattern (f ) Domain

Sine µ(x) = 2 sin(4Ãx) f(x) = sin(6Ãx) + 1.25 x ∈ [0, 1]

Cubic µ(x) = x3 f(x) =



















0.1 for x < −0.5

1 for x ∈ [−0.5, 0.0)

3 for x ∈ [0.0, 0.5)

10 for x g .5

x ∈ [−1, 1]

Curve µ(x) = x− 2x2 + 0.5x3 f(x) = x+ 1.5 x ∈ [−1.5, 1.5]

Table 4: UCI dataset.

Dataset Train Size Test Size Input Dimension

Concrete 687 343 8

Housing 337 168 13

Power 6379 3189 4

Yacht 204 102 6



B.2 TRAINING DETAILS

We take 22 values of µ, Ä that range from 10−10 up to 1− 10−5 on a logit scale for all of the experiments run on neural

networks. The exact values were (Ä, µ ∈ {0.9999, 0.999, 0.99, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001,

0.00001, 0.000001, 0.0000001, 0.00000001, 0.000000001, 0.0000000001, 0.00000000001}). For the FTs we take 20 values

from 10−6 up to 1− 10−7 also on a logit scale (Ä, µ ∈ {0.999999, 0.99999, 0.99999, 0.9999, 0.999, 0.99, 0.9, 0.8, 0.7, 0.6,

0.5, 0.4, 0.3, 0.2, 0.1, 0.01, 0.001, 0.0001, 0.00001, 0.000001}). This scaling increases the absolute density of points evaluated

near the extreme cases of 0 and 1 where the theoretical analysis of the FT focused. The ranges differ slightly due to numerical

stability during the fitting. The limiting cases of µ, Ä ∈ {0, 1} were omitted for numerical stability and the ranges of values for

the FTs vs neural networks vary slightly for the same reason. The values of Ä, µ that were taken along the Ä = 1−µ line were

Ä, µ ∈ {0.0, 1.0×10−11, 1.0×10−10, 1.0×10−9, 1.0×10−8, 1.0×10−7, 1.0×10−6, 1.0×10−5, 1.0×10−4, 1.0×10−3,
0.01, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.30,

0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.40, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.50, 0.51, 0.52,

0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.60, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.70, 0.71, 0.72, 0.73,

0.74, 0.75, 0.76, 0.77, 0.78, 0.79, 0.80, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.9, 0.99, 0.999, 0.9999, 1.0}.

All experiments were run on Nvidia Quadro RTX 8000 GPUs. Approximately 500 total GPU hours were used across all

experiments.

B.3 METRICS

• Geometric complexity: For the one-dimensional datasets the function is evaluated on a dense grid and then the gradients

are approximated via finite differences and a trapezoidal approximation to the integral is taken. In the case of the FT,

we only assess the function on the solved for, discretized points while with the neural networks we interpolate between

points. For the higher-dimensional UCI datasets the gradients are also numerically approximated in the same way but

only at the points in the train/test sets.

• MSE: In the fully non-parametric, unconstrained setting, the maximum likelihood estimates at each xi are µ̂(xi) = y(xi)
and Λ̂(xi) = (y(xi) − µ(xi))

−2 =⇒ Λ̂−1/2(xi) = |y(xi) − µ(xi)|, serving as motivation for checking these

differences.

Variability over runs The experiments were each run six times with different seeds. The standard deviations over the

metrics displayed in Fig. 2 are shown in Fig. 5. The Sobolev norms show that there is the most variability in the overfitting

regions OI and parts of OII. This indicates that the functions themselves vary across runs. However, when turning to quality

of fits, the MSEs show a different pattern of regions of instability, and OI has low variability in terms of actual performance.

B.4 FIELD THEORY

For the discretized field theory we take nft = 4096 evenly spaced points on the interval [−1, 1]. There are two datapoints

placed beyond [−1, 1] because the method we use to estimate the gradients requires the datapoints to have left and

right neighbors. These datapoints were not included when computing our metrics. Of these 4096 datapoints 64 were

randomly selected to be used for training neural networks µ̂θ, Λ̂φ. The field theory results were consistent across choices of

nft ∈ {256, 512, 1024, 2048, 4096}. We present results for nft = 4096 in the main paper. We train for 100000 epochs and

use the Adam optimizer with a basic triangular cycle that scales initial amplitude by half each cycle on the learning rate. The

minimum and maximum learning rates were 0.0005 and 0.01. The cycles were 5000 epochs long. We clip the gradients at

1000. A subset of the fits can be seen in Fig. 10.

B.5 SIMULATED DATA WITH NEURAL NETWORKS

For all of the simulated datasets except for Sine we train for 600000 epochs and use the Adam optimizer with a basic

triangular cycle that scales initial amplitude by half each cycle on the learning rate. The minimum and maximum learning

rates were 0.0001 and 0.01. The cycles were 50000 epochs. The first 250000 epochs are only spend on training µ̂θ while the

remaining 350000 epochs are spent training both µ̂θ, Λ̂φ. We clip the gradients at 1000. The training for the Sine dataset was

the same, except trained for 2500000 epochs. A subset of the fits for the Sine dataset can be seen in Fig. 11.



Sine (FT)

Figure 5: The standard deviation over the six runs of each metric shown in Fig. 2

B.6 UCI DATA WITH NEURAL NETWORKS

For the concrete, housing and yacht datasets we train for 500000 epochs and use the Adam optimizer with a basic triangular

cycle that scales initial amplitude by half each cycle on the learning rate. The minimum and maximum learning rates were

0.0001 and 0.01. The cycles were 50000 epochs. The first 250000 epochs are only spend on training µ̂θ while the remaining

250000 epochs are spent training both µ̂θ, Λ̂φ. Meanwhile on the power dataset, we had to use minibatching due to the size

of the dataset. We used minibatches of 1000 and trained for 50000 total epochs with the first 25000 dedicated solely to µ̂θ

and the remainder training both µ̂θ, Λ̂φ. The same cyclic learning rate was used but with cycle length 5000. We clip the

gradients at 1000.

B.7 PRACTICAL SUGGESTION

We can also view the Ä = 1− µ line that we search from the perspective of the ³, ´ parameterization of the regularizers. Let

Ä, µ ∈ (0, 1) such that Ä = 1− µ. Furthermore, we know that ³ = 1−ρ
ρ µ and that ´ = 1−ρ

ρ (1− µ). If we are interested in

the model settings for (Ä(t) = t, µ(t) = 1− t) for t ∈ (0, 1), it then follows that we are equivalently interested in

(³(t), ´(t)) =

(

1− Ä(t)

Ä(t)
µ(t),

1− Ä(t)

Ä(t)
(1− µ(t))

)

=

(

1− t

t
(1− t),

1− t

t
t

)

=

(

(1− t)2

t
, 1− t

)

=⇒

{

t = 1− ´(t)

³(t) = β(t)2

t

or
√

t³(t) = ´(t).
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Figure 6: Same configuration as Fig. 2, except all results here pertain to minimizing the FT on six different synthetic datasets

described in Table 3. Dataset names with an ∗ are the homoskedastic counterparts.

C ADDITIONAL RESULTS

C.1 ALL SYNTHETIC DATASET RESULTS

Both FT and neural networks were fit to the heteroskedastic and homoskedastic synthetic datasets described in Table 3. The

main results for these displayed as phase diagrams of various metrics can be seen in Fig. 6 and Fig. 7 respectively. We

largely see the same trends as were exhibited by the real-world datasets seen in Fig. 2.

C.2 EFFECT OF NEURAL NETWORK SIZE

We used the same training methods to fit models with one and two hidden layers and fit them to the concrete dataset. The

results in the phase diagram were consistent with the other experiments, as can be seen in Fig. 8.

D COMPARISON TO BASELINES

We compare the performance of our diagonal Ä+ µ = 1 search against two baselines, ´-NLL [Seitzer et al., 2022] and an

ensemble of six MLE-fit heteroskedastic regression models [Lakshminarayanan et al., 2017]. We use µ MSE, Λ− 1

2 MSE,

and expected calibration error (ECE) to evaluate the models. In all cases lower values are better. Note that the method of

ensembling multiple individual MLE-fit models from Lakshminarayanan et al. [2017] could be implemented on our method

or ´-NLL as well.
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concrete dataset.

D.1 MODEL ARCHITECTURE

All (individual) models have the same architecture: fully connected neural networks with three hidden layers of 128 nodes

and leaky ReLU activations for the synthetic and UCI datasets and fully connected neural networks with three hidden layers

of 256 nodes for the ClimSim data [Yu et al., 2023]. Note that both baselines model the variance while our approach models

the precision (inverse-variance). In all cases we use a softplus on the final layer of the variance/precision networks to ensure

the output is positive.

For the ´−NLL implementation we take ´ = 0.5 as suggested in Seitzer et al. [2022]. The ensemble method we use fits 6

individual heteroskedastic neural networks and combines their outputs into a mixture distribution that is approximated with

a normal distribution. We do not add in adversarial noise as the authors state it does not make a significant difference. We fit

six ´−NLL models and six MLE-ensembles.

D.2 DIAGONAL SELECTION CRITERIA

After conducting our diagonal search we found the model that minimized µ MSE and the model that minimized Λ− 1

2 MSE

on the training data. In some cases these models coincided. We then used the model that was on the midpoint (on a logit

scale) of the Ä + µ = 1 line between these two models to compare. The results are reported in Table 5. In all cases our

method is competitive with or exceeds the performance of these two baselines–particularly on real-world data. Note that our

goal is to show that we are able to find models that model the mean and standard deviation of the data well, that is, lie in our

proposed region S of the phase diagram. We do not claim that this method will always provide optimal model within S.

D.3 TRAINING DETAILS

Training for our method was conducted as described in sections B.2 and B.6 of the appendix.

For the baselines, on all of the simulated datasets we train for 600000 epochs and use the Adam optimizer with a basic



triangular cycle that scales initial amplitude by half each cycle on the learning rate. The minimum and maximum learning

rates were 0.0001 and 0.01. The cycles were 50000 epochs. We clip the gradients at 1000. The same optimization scheme is

performed for the UCI datasets but for 500000 epochs for the Housing, Concrete, and Yacht datasets. The Power dataset was

trained for 50000 epochs with batches of 1000.

D.4 CLIMSIM DATASET

The ClimSim dataset [Yu et al., 2023] is a largescale climate dataset. Its input dimension is 124 and output dimension is 128.

We use all 124 inputs to model a single output, Visible direct solar flux, SOLS [W/m2 ]. We train on 10,091,520 of the

approximately 100 million points for training and we use a randomly selected 7,209 points to evaluate our models.

D.5 DEFICIENCY OF ECE

Shortcomings of ECE (in isolation) are well documented [Kuleshov et al., 2018, Levi et al., 2022, Chung and Neiswanger,

2021]. The main issue with ECE is it measures average calibration, while individual calibration is more desirable. On our

diagonal search we found that often times the models that achieved the best ECE were those that were severely underfit and

belonged to region UI . In Table 5 we see that the MLE-ensemble is able to achieve low scores while being uncompetitive

with respect to the two MSE metrics. The MLE-ensembles were unstable on several of the datasets with respect to the

variance network which is consistent with Proposition 1. In particular this can be seen for the synthetic datasets the Λ− 1

2

MSE diverges to infinity.

E FOURIER FEATURE MAPPINGS AND GEOMETRIC COMPLEXITY

As a preprocessing step we apply Fourier feature mapping Tancik et al. [2020] before passing our data into MLPs. That is,

we map inputs x → µ(x) where µ(·) is defined as follows

µ(x) = [cos(2ÃbT
1
x), . . . , cos(2ÃbTk x)]

and the {bi}
k
i=1

are independently sampled from a N (0, 1) distribution. This method has been shown to allow MLPs to

learn high frequency data and to reduce training time. The motivation for this additional step is to encourage the mean

and precision networks to overfit and hopefully, mimic some of the behaviors of the FT more faithfully. We try this in two

different settings. In the first we add in the Fourier Features layers with an L2 penalty and then again with the Dirichlet

energy/geometric complexity as the regularizer similar in spirit to Hoffman et al. [2019]. Just as in the earlier experiments

we penalize the mean and precision networks separately and weigh the regularizers in the same (Ä, µ)-scheme.

In the case where we penalize the geometric complexity the regularizer now matches exactly the regularizer of the field

theory setting. We find even greater correspondence between results. However, there is a heavy computational burden where

training takes on the order of 10 times slower in wall clock time.

We use 2-layer MLPs with width 128 and set the Fourier features mapping to be 64-dimensional, with Ã = 2 when sampling

the weights for both the µ and Λ networks. We remove one layer from the MLPs (compared to the earlier experiments) to

accommodate the fact that we add in the Fourier feature mapping. We train the models to 128 samples from the generated in

the same way as the Sine dataset with 5000 epochs warmup for the mean network and 150000 epochs total and have batch

size of 32. Despite fewer training epochs than the earlier neural network experiments, we still achieve overfitting behavior.

We use the same set of (µ, Ä)-pairings as in the neural network experiments described in section B.5. Summary plots of µ-

and Λ−1/2-MSE as well as Dirichlet energies can be found in Fig. 9. A subset of resulting fits can be seen in Figs. 12 and 13.



Table 5: Comparison of a deep heteroskedastic regression model with diagonal regularization search against two baselines

[Seitzer et al., 2022, Lakshminarayanan et al., 2017]. For details on the selection criteria of the heteroskedastic model see

Appendix D.2. We report the average and standard deviations of expected calibration error (ECE), µ MSE and Λ− 1

2 MSE

on test data. Lowest mean value for each metric is bolded. In several cases the MLE ensemble failed to properly converge

(yielding inf ±nan results when the standard deviation function diverges to infinity). Individually, there are many pitfalls

to using MLE to train heteroskedastic regression models, and it only takes one member of the ensemble to fail to diverge

to yield these results. In particular, note that these numerical issues occur most commonly for the quantities relating to

the standard deviation. This highlights the instability of MLE training in this setting. Note that the method of ensembling

multiple individual MLE-fit models could be performed on our method or ´-NLL as well.

Dataset Heteroskedastic ´-NLL MLE Ensemble

Metric Seitzer et al. [2022] Lakshminarayanan et al. [2017]

Cubic

ECE 0.2380 ± 0.03 0.2385 ± 0.02 0.2411 ± 0.02

µ MSE 0.2339 ± 0.01 0.1500 ± 0.01 1.1809 ± 1.88

Λ− 1

2 MSE 0.2397 ± 0.02 0.1397 ± 0.01 inf ± nan

Curve

ECE 0.1804 ± 0.02 0.1754 ± 0.02 0.2432 ± 0.00

µ MSE 0.4318 ± 0.12 0.4877 ± 0.16 1.0067 ± 0.19

Λ− 1

2 MSE 0.4655 ± 0.09 0.4187 ± 0.20 inf ± nan

Sine

ECE 0.2499 ± 0.00 0.2082 ± 0.03 0.2313 ± 0.05

µ MSE 0.7968 ± 0.00 4.4107 ± 6.90 0.9716 ± 0.06

Λ− 1

2 MSE 0.7968 ± 0.00 4.3524 ± 6.89 inf ± nan

Concrete

ECE 0.2471 ± 0.01 0.2552 ± 0.00 0.0655 ± 0.01

µ MSE 0.1055 ± 0.02 0.5461 ± 0.30 2.2454 ± 1.74

Λ− 1

2 MSE 0.3028 ± 0.51 1.0867 ± 0.20 1.3× 105 ± 1.2× 105

Housing

ECE 0.0653 ± 0.00 0.2631 ± 0.01 0.1332 ± 0.02

µ MSE 1.2236 ± 0.00 0.3175 ± 0.06 155.4494 ± 128.27

Λ− 1

2 MSE 0.7610 ± 0.00 0.8820 ± 0.03 218.8269 ± 195.38

Power

ECE 0.2233 ± 0.01 0.2370 ± 0.00 0.0285 ± 0.01

µ MSE 0.0350 ± 0.01 0.1013 ± 0.01 0.0177 ± 0.00

Λ− 1

2 MSE 0.0343 ± 0.01 0.3081 ± 0.37 0.0091 ± 0.00

Yacht

ECE 0.3038 ± 0.04 0.2882 ± 0.02 0.0463 ± 0.02

µ MSE 0.0077 ± 0.01 0.0137 ± 0.01 6.2670 ± 13.96

Λ− 1

2 MSE 0.0076 ± 0.01 1.3275 ± 0.02 8.0599 ± 19.18

Solar Flux

ECE 0.1503 ± 0.00 0.3007 ± 0.00 0.1924 ± 0.04

µ MSE 0.2887 ± 0.00 0.3771 ± 0.00 1.0067 ± 0.19

Λ− 1

2 MSE 0.1175 ± 0.00 0.3217 ± 0.00 4.6× 109 ± 9.9× 109
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Figure 9: Phase diagrams for the field theory (left), and MLPs with Fourier feature mappings with Dirichlet energy

regularization (middle) and L2 regularization (right) fit to the Sine dataset.
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Field Theory Fits

Figure 10: Subsample of fits of the field theory. Moving right to left increases Ä while moving up and down to up increases

µ. Training data is shown in orange, the mean function is shown in red, and ± 1 SD is shaded. Note: FT was fit to 4096

datapoints, but here we display a thinned subset of the points for visual clarity.
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MLP (L2) Fits

Figure 11: Subsample of fits of the neural networks on the Sine dataset. Training data is shown in orange, the mean function

is shown in red, and ± 1 SD is shaded. Notice the abrupt phase transition from overfitting to underfitting in the mean

function (in the lower right corner) and similarly in the precision function (in the upper right corner). Moving right to left

increases Ä while moving up and down to up increases µ.
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Fourier Feature (DE) Fits

Figure 12: Subsample of fits of neural networks with Fourier Feature layers and Dirichlet energy/geometric complexity

regularization. Training data is shown in orange, the mean function is shown in red, and ± 1 SD is shaded. Moving right to

left increases Ä while moving up and down to up increases µ.



ρ

γ

Fourier Feature (L2) Fits

Figure 13: Subsample of fits of neural networks with Fourier Feature layers and L2 complexity regularization. Training data

is shown in orange, the mean function is shown in red, and ± 1 SD is shaded. Moving right to left increases Ä while moving

up and down to up increases µ.


