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ABSTRACT

Diffusion models achieve state-of-the-art generation quality across many applications, but
their ability to capture rare or extreme events in heavy-tailed distributions remains unclear.
In this work, we show that traditional diffusion and flow-matching models with standard
Gaussian priors fail to capture heavy-tailed behavior. We address this by repurposing the
diffusion framework for heavy-tail estimation using multivariate Student-t distributions.
We develop a tailored perturbation kernel and derive the denoising posterior based on
the conditional Student-t distribution for the backward process. Inspired by ~y-divergence
for heavy-tailed distributions, we derive a training objective for heavy-tailed denoisers.
The resulting framework introduces controllable tail generation using only a single scalar
hyperparameter, making it easily tunable for diverse real-world distributions. As specific
instantiations of our framework, we introduce t-EDM and ¢-Flow, extensions of existing
diffusion and flow models that employ a Student-t prior. Remarkably, our approach is
readily compatible with standard Gaussian diffusion models and requires only minimal
code changes. Empirically, we show that our -EDM and #-Flow outperform standard
diffusion models in heavy-tail estimation on high-resolution weather datasets in which
generating rare and extreme events is crucial.

1 INTRODUCTION

In many real-world applications, such as weather forecasting, rare or extreme events—like hurricanes or
heatwaves—can have disproportionately larger impacts than more common occurrences. Therefore, building
generative models capable of accurately capturing these extreme events is critically important (Griindemann
et al., 2022). However, learning the distribution of such data from finite samples is particularly challenging,
as the number of empirically observed tail events is typically small, making accurate estimation difficult.

One promising approach is to use heavy-tailed distributions, which allocate more density to the tails than
light-tailed alternatives. In popular generative models like Normalizing Flows (Rezende & Mohamed, 2016)
and Variational Autoencoders (VAEs) (Kingma & Welling, 2022), recent works address heavy-tail estimation
by learning a mapping from a heavy-tailed prior to the target distribution (Jaini et al., 2020; Kim et al., 2024).

While these works advocate for heavy-tailed base distributions, their application to real-world, high-
dimensional datasets remains limited, with empirical results focused on small-scale or toy datasets. In
contrast, diffusion models (Ho et al., 2020; Song et al., 2020; Lipman et al., 2023) have demonstrated
excellent synthesis quality in large-scale applications. However, it is unclear whether diffusion models with
Gaussian priors can effectively model heavy-tailed distributions without significant modifications.
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Figure 1: Toy Illustration. Our proposed diffusion model (z-Diffusion) captures heavy-tailed behavior more accurately
than standard Gaussian diffusion (see histogram comparisons in the top panel, x-axis). The framework allows for
controllable tail estimation using a hyperparameter v, which can be adjusted for each dimension. Lower v values model
heavier tails, while higher values approach Gaussian diffusion (Best viewed when zoomed in; see App. C.3 for details).
Brighter colors indicate high-density regions

In this work, we first demonstrate through extensive experiments that traditional diffusion models—even with
proper normalization, preconditioning, and noise schedule design (see Section 4)—fail to accurately capture
the heavy-tailed behavior in target distributions (see Fig. 1 for a toy example). We hypothesize that, in high-
dimensional spaces, the Gaussian distribution in standard diffusion models tends to concentrate on a spherical
narrow shell, thereby neglecting the tails. To address this, we adopt the multivariate Student-t distribution
as the base noise distribution, with its degrees of freedom providing controllability over tail estimation.
Consequently, we reformulate the denoising diffusion framework using multivariate Student-t distributions
by designing a tailored perturbation kernel and deriving the corresponding denoiser. Moreover, we draw
inspiration from the y-power Divergences (Eguchi, 2021; Kim et al., 2024) for heavy-tailed distributions to
formulate the learning problem for our heavy-tailed denoiser.

We extend widely adopted diffusion models, such as EDM (Karras et al., 2022) and straight-line flows
(Lipman et al., 2023; Liu et al., 2022), by introducing their Student-t counterparts: -EDM and t-Flow.
We derive the corresponding SDEs and ODEs for modeling heavy-tailed distributions. Through extensive
experiments on the HRRR dataset (Dowell et al., 2022), we train both unconditional and conditional versions
of these models. The results show that standard EDM struggles to capture tails and extreme events, whereas
t-EDM performs significantly better in modeling such phenomena. To summarize, we present,

* Heavy-tailed Diffusion Models. We repurpose the diffusion model framework for heavy-tail
estimation by formulating both the forward and reverse processes using multivariate Student-t
distributions. The denoiser is learned by minimizing the y-power divergence (Kim et al., 2024)
between the forward and reverse posteriors.

* Continuous Counterparts. We derive continuous formulations for heavy-tailed diffusion models
and provide a principled approach to constructing ODE and SDE samplers. This enables the
instantiation of r-EDM and t-Flow as heavy-tailed alternatives to standard diffusion and flow models.

* Empirical Results. Experiments on the HRRR dataset (Dowell et al., 2022), a high-resolution
dataset for weather modeling, show that -EDM significantly outperforms EDM in capturing tail
distributions for both unconditional and conditional tasks.

¢ Theoretical Connections. To theoretically justify the effectiveness of our approach, we present
several theoretical connections between our framework and existing work in diffusion models and
robust statistical estimators (Futami et al., 2018).
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2 BACKGROUND

As prerequisites underlying our method, we briefly summarize Gaussian diffusion models (as introduced in
(Ho et al., 2020; Sohl-Dickstein et al., 2015)) and multivariate Student-t distributions.

2.1 DIFFUSION MODELS

Diffusion models define a forward process (usually with an affine drift and no learnable parameters) to convert
data xo ~ p(xo),Xo € R? to noise. A learnable reverse process is then trained to generate data from noise.
In the discrete-time setting, the training objective for diffusion models can be specified as,

Eq | Dxr(g(xr|x0) | pxr)) + Y, Dxcr(a(xi— At|XtaXo) | po (x4 At|Xt))_10gp9(x0|XAt>]a ()

~ t>At
Lt Lt 1 Lo

where T denotes the trajectory length while At denotes the time increment between two consecutive time

points. Dy denotes the Kullback-Leibler (KL) divergence defined as, Dxy,(¢ | p) = §q(x)log p(’;g dx.
In the objective in Eq. 1, the trajectory length 7" is chosen to match the generative prior p(xr) and the
forward marginal ¢(x7|xo). The second term in Eqn. 1 proposes to minimize the KL divergence between the
forward posterior q(x;_a¢|X¢, Xo) and the learnable posterior pg(x¢—a¢|x;) which corresponds to learning
the denoiser (i.e. predicting a less noisy state from noise). The forward marginals, posterior, and reverse
posterior are modeled using Gaussian distributions, which exhibit an analytical form of the KL divergence.
The discrete-time diffusion framework can also be extended to the continuous time setting (Song et al.,
2020; 2021; Karras et al., 2022). Recently, Lipman et al. (2023); Albergo et al. (2023) proposed stochastic
interpolants (or flows), which allow flexible transport between two arbitrary distributions.

2.2  STUDENT-T DISTRIBUTIONS

The multivariate Student-t distribution ¢4(u, 3, v) with dimensionality d, location u, scale matrix 3 and
degrees of freedom v is defined as,

_vtd

1 )
ta(p,2,v) = C’l,,d[l + ;(x - u)TE*l(X — u)] , 2)

where C, 4 is the normalizing factor. Since the multivariate Student-t distribution has polynomially decaying
density, it can model heavy-tailed distributions. Interestingly, for v = 1, the Student-t distribution is
analogous to the Cauchy distribution. As v — o0, the Student-t distribution converges to the Gaussian
distribution. A Student-t distributed random variable x can be reparameterized as (Andrews & Mallows,
1974), x = p + 2122/ /K, withz ~ N(0, 1), k ~ x?(v)/v where x? denotes the Chi-squared distribution
(See Fig. 8 for an illustration of the pdf of the x? distribution).

3 HEAVY-TAILED DIFFUSION MODELS

We now repurpose standard diffusion models using multivariate Student-t distributions. The main idea
behind our design is the use of heavy-tailed generative priors (Jaini et al., 2020; Kim et al., 2024) for
learning a transport map towards a potentially heavy-tailed target distribution. From Eqn. 1 we note three key
requirements for training diffusion models: choice of the perturbation kernel ¢(x;|xp), form of the target
denoising posterior ¢(x;—a¢|X¢, Xo) and the parameterization of the learnable reverse posterior pg(x¢—1|X¢).
Therefore, we begin our discussion in the context of discrete-time diffusion models and later extend to the
continuous regime. This has several advantages in terms of highlighting these three key design choices, which
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might be obscured by the continuous-time framework of defining a forward and a reverse SDE (Karras et al.,
2022) while at the same time leading to a simpler construction. Lastly, without loss of generality, we assume
a scalar v for subsequent analysis due to mathematical convenience.

3.1 NOISING PROCESS DESIGN WITH STUDENT-T DISTRIBUTIONS.
Our construction of the noising process involves three key steps.

1. Firstly, given two consecutive noisy states x; and X;_a;, we specify a joint distribution
Q(Xtaxt—At|X0)-

2. Secondly, given ¢q(x¢,X:—at|Xg), we construct the perturbation kernel ¢(x:|xo) =
§ q(x¢, x¢—at|%0)dx;— A which can be used as a noising process during training.

3. Lastly, from Steps 1 and 2, we construct the forward denoising posterior ¢(x;—a¢|Xt,Xo) =
q(x¢,X¢—At|X0)

FCAETY RS We will later utilize the form of g(x;— a¢|X¢t, Xo) to parameterize the reverse posterior.

It is worth noting that our construction of the noising process bypasses the specification of the forward
transition kernel g(x;|x;—a¢). This has the advantage that we can directly specify the form of the perturbation
kernel parameters u; and oy as in Karras et al. (2022) unlike Song et al. (2020); Ho et al. (2020). We next
highlight the noising process construction in more detail.

Specifiying the joint distribution ¢(x;, x;_a¢|Xo). We parameterize the joint distribution g(x¢, X;—A¢|X0)
as a multivariate Student-t distribution with the following form,

op 75 (t)
q(x¢; X nelX0) = taa(p, B, v), = [pe; pre—nelxo, X =1{ ¢ 2 ® 14, (3)
o51(t) -
where pit, 0¢, 012(t), 021 (t) are time-dependent scalar design parameters. While the choice of the parameters
¢ and o determines the perturbation kernel used during training, the choice of o12(t) and o9 () can affect
the ODE/SDE formulation for the denoising process and will be clarified when discussing sampling.

Constructing the perturbation kernel ¢(x;|xg): Given the joint distribution g(x,x:—a¢|Xo) specified
as a multivariate Student-t distribution, it follows that the perturbation kernel distribution ¢(x|x¢) is also
a Student-t distribution (Ding, 2016) parameterized as, q(x¢|xo) = tq(1¢X0, 0214, v) (proof in App. A.1).
We choose the scalar coefficients p; and oy such that the perturbation kernel at time ¢ = 1" converges to a
standard Student-t distribution. Later, we will set our generative prior p(xr) = ¢(x7|Xo) = t4(0, I4,v) to
instantiate sample generation. We discuss practical choices of y; and oy in Section 3.5.

Estimating the reference denoising posterior. Given the joint distribution g(x;, X;—a¢|Xo) and the pertur-
bation kernel ¢(x:|xo), the denoising posterior can be specified as (see Ding (2016)),

_ v+dp _9
q(Xi—ae|Xe,X0) = td(#t»mUtId»V'Fd)» “4)
2 2 2
_ 051 (¢ _ 05,(t)ois(t
e = pi—AtXo + 212( )(Xt — [1¢X0), Ut2 = [Ut{m - M} 4)
lop Oy
where d; = ﬁ |x; — pex0]?. Next, we formulate the training objective for heavy-tailed diffusions.
t
3.2 PARAMETERIZATION OF THE REVERSE POSTERIOR
Following Eqn. 4, we parameterize the reverse (or the denoising) posterior distribution as:
pﬂ(xt—At‘Xt) = td(“e(xtat)76't2Id7V+d)7 (6)



Published as a conference paper at ICLR 2025

where the denoiser mean g (x¢, t) is further parameterized as follows:

o3, (t o2, (t
212( )xt + [Nt—At - Lg()ﬂt]De(Xt, o). @)
O o

Ho (Xt’ t) =

We discuss alternative posterior parameterizations in App. A.2. It is worth noting that while the noising process
defined in Eq. 3 is non-markovian, our parameterization of the posterior is still Markovian. However, similar
to Song et al. (2022a), this choice works well empirically (see Section 4). Moreover, when parameterizing the
reverse posterior scale, we drop the data-dependent coefficient (v + d1)/(v + d). This choice is primarily
inspired by simplicity in deriving preconditioners (Sec. 3.5) and developing continuous-time sampling
methods (Sec. 3.4) for heavy-tailed diffusions, resulting in models that require minimal implementation
overhead over standard diffusion models during training and sampling (see Fig. 2). However, heteroskedastic
modeling of the denoiser is possible in our framework and could be an interesting direction for future work.
Next, we reformulate the training objective in Eqn. 1 for heavy-tailed diffusions.

3.3 TRAINING WITH POWER DIVERGENCES

The optimization objective in Eqn. 1 primarily minimizes the KL-Divergence between a given pair of
distributions. However, since we parameterize the distributions in Eqn. 1 using multivariate Student-t
distributions, using the KL-Divergence might not be a suitable choice of divergence. This is because
computing the KL divergence for Student-t distributions does not exhibit a closed-form expression. An
alternative is the y-Power Divergence (Eguchi, 2021; Kim et al., 2024) defined as,

Dy(qp) = %[@(q,p) “Hy(@)]. ve(-1.0) (0, 0)

1o)== ol = ([ 0607+ 7ax) T e - - oo (22 )de,

12l

where, like Kim et al. (2024), we set v = —ﬁ for the remainder of our discussion. Moreover, H., and C,
represent the y-power entropy and cross-entropy, respectively. Interestingly, the v-Power divergence between
two multivariate Student-t distributions, ¢, = t4(po, Xo,v) and p, = t4(p1,31,v), can be tractably
computed in closed form and is defined as (see Kim et al. (2024) for a proof),

Jiie oy
Dfallp) = 2057 (1+45%) 7 [ ISl T (14 5%)

+ |22 (1 + 5t (277 30) + 3 (o — 1) ST (ko — Nl))]-

Therefore, analogous to Eqn. 1, we minimize the following optimization objective,

—_0_
T+

®)

Eq [DW(Q(XTXo) | p(xr)) + 3 Dy (a(xe-aclxe, xo) | polxe-aclxt)) - 10gpe(Xo|X1)]- ©)

t>1

Here, we note a couple of caveats. Firstly, while replacing the KL-Divergence with the y-Power Divergence
in the objective in Eqn. 1 might appear to be due to computational convenience, the y-power divergence has
several connections with robust estimators (Futami et al., 2018) in statistics and provides a tunable parameter
~ which can be used to control the model density assigned at the tail (see Section 5). Secondly, while the
objective in Eqn. 1 is a valid ELBO, the objective in Eq. 9 is not. However, the following result provides a
connection between the two objectives (see proof in App. A.3),

Proposition 1. For arbitrary distributions g and p, in the limit of v — 0, D(q | p) converges to Dk1,(q | p).
Consequently, for a finite-dimensional dataset with xg € R and v = —V%rd, under the limit of v — 0, the
objective in Eqn. 9 converges to the objective in Eqn. 1.
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Component Gaussian Diffusion (Ours) t-Diffusion
Perturbation Kernel (q(x|x0)) N (pexo, 02 14) ta(pexo, oilq,v)
Forward Posterior (q(x:—a¢t|X¢, X0)) N (e, 521,) ta(fae, %63[4, v+d)
Reverse Posterior (pe (x:—at|x:))  N(pe(xe,t),6215)  ta(pe(xs,t),5¢14,v + d)
Divergence Measure Dxwu(q | p) D,(q | p)
Generative Prior (p(x7)) N(0, I4) ta(0,I4,v)

Table 1: Comparison between different modeling components for constructing Gaussian vs Heavy-Tailed diffusion
models. Under the limit of v — o0, our proposed t-Diffusion framework converges to Gaussian diffusion models.

Therefore, under the limit v — 0, the standard diffusion model framework becomes a special case of
our proposed framework. Moreover, for v = —2/(v + d), this also explains the tail estimation moving
towards Gaussian diffusion for an increasing v (See Fig. 1 for an illustration). Lastly, the divergence-based
interpretation of the ELBO loss in Eq. 1 has also been considered in prior work in generative models (Xiao
et al.; Kim et al., 2024) and is also commonplace in M-estimators (Futami et al., 2018) used in robust statistics.
Therefore, our choice of the training objective in Eq. 9 is quite principled.

Simplifying the Training Objective. Plugging the form of the forward posterior ¢(x;—a¢|X¢, Xo) in Eqn. 4,
the reverse posterior pg(x:—at|X:) in the optimization objective in Eqn. 9, we obtain the following simplified
training loss (proof in App. A.4),

10)

2
De(MtXO + O—tiv Ut) - XOH .

VE 2
Intuitively, the form of our training objective is similar to existing diffusion models (Ho et al., 2020; Karras
et al., 2022). However, the only difference lies in sampling the noisy state x; from a Student-t distribution
based perturbation kernel instead of a Gaussian distribution. Next, we discuss sampling from our proposed
framework under discrete and continuous-time settings.

L(O0) = Exompixo)Etnp)Eean0,10)Enn1y2(,)

3.4 SAMPLING

Discrete-time Sampling. For discrete-time settings, we can simply perform ancestral sampling from the
learned reverse posterior distribution pg(x;—a¢|x¢). Therefore, following simple re-parameterization, an
ancestral sampling update can be specified as,

Xi—at = Ho(Xe, t) + 0vze /R, 2 ~N(0,14), Kk~ X2(V +d)/(v +d),

Continuous-time Sampling. Due to recent advances in accelerating sampling in continuous-time diffusion
processes (Pandey et al., 2024a; Zhang & Chen, 2023; Lu et al., 2022; Song et al., 2022a; Xu et al., 2023a),
we reformulate discrete-time dynamics in heavy-tailed diffusions to the continuous time regime. More
specifically, we present a family of continuous-time processes in the following result (Proof in App. A.5).

Proposition 2. The posterior parameterization pg(x;—a¢|Xt) = ta(pe(x¢,t), 5214, v + d) induces the
following continuous-time dynamics,

1243 t

dxt = [&xt e I:f(O't,O.'t) ¢ %] (Xt — ﬂth(Xt,Jt))]dt + A\ ﬂ(t)g(at,dt)dst, (11)

where f : RT x RT™ — Rand g : RT x Rt — R* are user-specified functions, 3; € R" is a scaling
coefficient such that @ (o7 A, — B(t)g(or,60)At) — 1 = f(oy,64)At,, where fu, 6 denote the first-
order time-derivatives of the perturbation kernel parameters ; and oy respectively and the differential
dS; ~ t4(0,dt, v + d).
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Algorithm 1: Training (t-EDM) Algorithm 2: Sampling (t-<EDM) (u; = 1,04 = 1)
1: repeat 1: sample xo ~ t4(0, t31a,v)
2: xo ~ p(xo) 2: forie{0,...,N — 1} do
3: o ~ LogNormal(7mean, st 3. d; — (Xi 7 DH(Xi§ti))/ti
4: x=x0+n, n~tqy(0,0°I4v) b Xie1 e X+ (tis1 — )ds
o= oyy/v=2) 5. ifti1 # O then
o(x,0) = 6: d; — (Xi+1 - DG(Xi+1;ti+1))/ti+1

Cuip(9)x +QCON(O)F0(G"(U)X’ Cuaise (7)) 7: Xit1 < Xi + (tis1 — t:) (5di + 3d7)
7: )\(O’) — C(;“ (O’) 8 end;;f 7 1+ 7 o W 5 i
8:  Take gradient descent step on ’

9: end for

9: Ve [A(J) | Do(x,0) — x0\|2]
10: until converged

10: return x

Figure 2: Training and Sampling algorithms for t-EDM (v > 2). Our proposed method requires minimal code updates
(indicated with blue) over traditional Gaussian diffusion models and converges to the latter as v — 0.

Based on the result in Proposition 2, it is possible to construct deterministic/stochastic samplers for heavy-
tailed diffusions. It is worth noting that the SDE in Eqn. 11 implies adding Student-t stochastic noise during
inference (Bollerslev, 1987). This is intuitive since the denoising distribution py(x;_1|x;) is modeled as a
Student-t distribution. Next, we provide specific instantiations of the generic sampler in Eq. 11.

Sampler Instantiations. We instantiate the continuous-time SDE in Eqn. 11 by setting g(o¢, ;) = 0 and

012(t) = oro¢—a¢. Consequently, f (o, 0¢) = —Z—j. In this case, the SDE in Eqn. 11 reduces to an ODE,
dx ) o Y
L i |: - *t + Mt:| (Xt — ’[Lth(Xt,O't)). (12)
Ot 1243

—X; —

dt Mt
Summary. Overall, we compare between Gaussian diffusion and heavy-tailed diffusion models in Table 1.

3.5 SPECIFIC INSTANTIATIONS: T-EDM

Karras et al. (2022) highlight several design choices during training and sampling, which significantly
improve sample quality while reducing sampling budget for image datasets like CIFAR-10 (Krizhevsky,
2009) and ImageNet (Deng et al., 2009). With a similar motivation, we reformulate the perturbation kernel as
q(x¢|x0) = ta(s(t)xo, s(t)?c(t)?I,, v) and denote the resulting diffusion model as t-EDM.

Training. During training, we set the perturbation kernel, g(x:|x¢), parameters s(t) = 1, o(t) = 0 ~
LogNormal(Ppean, Psa). We parameterize the denoiser Dg(x;, 0+) similar to Karras et al. (2022) with the
difference that coefficients like cqy¢ additionally depend on v. We include full derivations in Appendix A.6.
Consequently, our denoising loss can be specified as follows:

E(é)) oC EXU~p(x0)]E0']En~td(0,0'2Id,l/) [)\(O’, I/)HDQ(XO +n, 0’) — Xo”%], (13)
where (o, /) is a weighting function set to A(o,v) = 1/cou (0, v)2.

Sampling. Interestingly, it can be shown that the ODE in Eqn. 12 is equivalent to the deterministic dynamics
presented in Karras et al. (2022) (See Appendix A.7 for proof). Consequently, we choose s(¢) = 1 and
o(t) = t during sampling, further simplifying the dynamics in Eqn. 12 to dx;/dt = (x; — Dg(x¢,1t))/t.
We adopt the timestep discretization schedule and the choice of the numerical ODE solver (Heun’s method
(Ascher & Petzold, 1998)) directly from EDM. Figure 2 illustrates the ease of transitioning from a Gaussian
diffusion framework (EDM) to t-EDM. Under standard settings, transitioning to t-EDM requires as few as
two lines of code change, making our method readily compatible with existing diffusion implementations.
Similarly, we can also construct heavy-tailed flows (Albergo et al., 2023; Lipman et al., 2023). We denote the
resulting model as t-Flow (see App. B for details).
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Figure 3: Sample 1-d histogram comparison between EDM and t-EDM on the test set for the Vertically Integrated
Liquid (VIL) channel. t-EDM captures heavy-tailed behavior more accurately than other baselines. INC: Inverse CDF
Normalization, PCP: Per-Channel Preconditioning

4 EXPERIMENTS

Next, we demonstrate the effectiveness of the proposed heavy-tailed diffusion models on real-world weather
data for both unconditional and conditional generation tasks. We include full experimental details in App. C.

Datasets. We adopt the High-Resolution Rapid Refresh (HRRR) (Dowell et al., 2022) dataset, which is an
operational archive of the US km-scale forecasting model. Among multiple dynamical variables in the dataset
that exhibit heavy-tailed behavior, based on their dynamic range, we only consider the Vertically Integrated
Liquid (VIL) and Vertical Wind Velocity at level 20 (denoted as w20) channels (see App. C.1 for more details).
It is worth noting that the VIL and w20 channels have heavier right and left tails, respectively (See Fig. 6).

Tasks and Metrics. We consider both unconditional and conditional generative tasks relevant to weather
and climate science. For unconditional modeling, we aim to generate the VIL and w20 physical variables
in the HRRR dataset. For conditional modeling, we aim to generatively predict the hourly evolution of the
target variable for the next lead-time (7 + 1) hour-ahead evolution of VIL and w20 based on information only
at the current state time 7; see more details in the appendix and see Pathak et al. (2024) for discussion of
why hour-ahead, km-scale atmospheric prediction is a stochastic physical task appropriate for conditional
generative models. To quantify the empirical performance of unconditional modeling, we rely on comparing
1-d statistics of generated and train/test set samples. More specifically, for quantitative analysis, we report the
Kurtosis Ratio (KR), the Skewness Ratio (SR), and the Kolmogorov-Smirnov (KS)-2 sample statistic (at the
tails) between the generated and train/test set samples. For qualitative analysis, we compare 1-d histograms
between generated and train/test set samples. For the conditional task, we adopt standard probabilistic
prediction score metrics such as the Continuous Ranked Probability Score (CRPS), the Root-Mean Squared
Error RMSE), and the skill-spread ratio (SSR); see, e.g., Mardani et al. (2024); Srivastava et al. (2023). A
more detailed explanation of our evaluation protocol is provided in App. C.

Methods and Baselines. In addition to standard diffusion (EDM (Karras et al., 2022)) and flow models
(Albergo et al., 2023) based on Gaussian priors, we introduce two additional baselines that are variants of
EDM. To account for the high dynamic-range often exhibited by heavy-tailed distributions, we include Inverse
CDF Normalization (INC) as an alternative data preprocessing step to z-score normalization. Using the
former reduces dynamic range significantly and can make the data distribution closer to Gaussian. We denote
this preprocessing scheme combined with standard EDM training as EDM + INC. Alternatively, we could
instead modulate the noise levels used during EDM training as a function of the dynamic range of the input
channel while keeping the data preprocessing unchanged. The main intuition is to use more heavy-tailed
noise for large values. We denote this modulating scheme as Per-Channel Preconditioning (PCP) and denote
the resulting baseline as EDM + PCP. We elaborate on these baselines in more detail in App. C.1.2
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| VIL (Train) VIL (Test) | w20 (Train) w20 (Test)
Method | v KR| SR| KS| KR| SR| KS||wv KR| SR| KS| KR| SR| KS|

EDM | oo 210.11 10.79 0997 4535 523 0991 | oo 1259 089 0991 501 038 0978

Baselines +INC | oo 1133 229 0987 170 0.74 095 |[oco 180 0.18 0909 0.23 0.13 0.763
+PCP | o0 212 072 0800 031 0.09 0522|c0 217 070 0.838 040 024 0.648

t-EDM | 3 1.06 043 0431 054 023 0114 | 3 244 065 0.683 052 021 0.286

Ours tEDM | 5 29.66 4.07 0955 573 168 0888 | 5 855 177 0.895 322 103 0.774
t-EDM | 7 2435 414 0959 457 172 0908 | 7 7.03 158 082 255 089 0.622

Table 2: t-EDM outperforms standard diffusion models for unconditional generation on the HRRR dataset. For all metrics,
lower is better. Values in bold indicate the best results in a column.

| VIL (Train) VIL (Test) | w20 (Train) w20 (Test)
Method | » KR| SR| KS, KR| SR| KS| |~» KR| SR| KS| KR| SR| KS|
Baselines G‘I‘:‘;Zf;a" 046 0.09 0897 067 052 0.704 ‘ o 203 036 0294 034 001 0.384
tFlow | 3 139 037 0711 047 027 0275| 5 108 021 0333 007 042 0512
Ours tFlow | 5 330 075 0857 005 007 0633| 7 324 036 0259 087 001 0300
tFlow | 7 336 084 0844 004 002 0603 | 9 547 041 0478 186 0034 0.289

Table 3: t-Flow outperforms standard Gaussian flows for unconditional generation on the HRRR dataset. For all metrics,
lower is better. Values in bold indicate the best results in a column.

4.1 UNCONDITIONAL GENERATION

We assess the effectiveness of different methods on unconditional modeling for the VIL and w20 channels
in the HRRR dataset. Fig. 3 qualitatively compares 1-d histograms of sample intensities between different
methods for the VIL channel. We make the following key observations. Firstly, though EDM (with additional
tricks like noise conditioning) can improve tail coverage, t-EDM covers a broader range of extreme values
in the test set. Secondly, in addition to better dynamic range coverage, t-EDM qualitatively performs much
better in capturing the density assigned to intermediate intensity levels under the model. We note similar
observations from our quantitative results in Table 2, where t-EDM outperforms other baselines on the KS
metric, implying our model exhibits better tail estimation over competing baselines for both the VIL and
w20 channels. More importantly, unlike traditional Gaussian diffusion models like EDM, t-EDM enables
controllable tail estimation by varying v, which could be useful when modeling a combination of channels
with diverse statistical properties. Lastly, we note that while EDM combined with improved preprocessing
(INC) or preconditioning (PCP) outperforms t-EDM in some cases, these techniques can also be readily
integrated with t-EDM. Therefore, the main point of comparison in Table 2 should be primarily between
t-EDM and the standard EDM baseline (row 1). We present similar quantitative results for t-Flow in Table 3
where the advantages of t-Flow over Gaussian Flows for heavy-tailed modeling are quite apparent. We also
present additional results for unconditional modeling in App. C.1.7.

4.2 CONDITIONAL GENERATION

Next, we consider the task of conditional modeling, where we aim to predict the hourly evolution of a target
variable for the next lead time (7 + §7) based on the current state at time 7 with 7 = 1hr . Table 4 illustrates
the performance of EDM and t-EDM on this task for the VIL and w20 channels. We make the following
key observations. Firstly, for both channels, t-EDM exhibits better CRPS and SSR scores, implying better
probabilistic forecast skills and ensemble than EDM. Moreover, while t-EDM exhibits under-dispersion for
VIL, while it is well-calibrated for w20, with its SSR close to an ideal score of 1. On the contrary, the baseline
EDM model exhibits under-dispersion for both channels, thus implying overconfident predictions. Secondly,
in addition to better calibration, t-EDM is better at tail estimation (as measured by the KS statistic) for the
underlying conditional distribution. Lastly, we notice that different values of the parameter v are optimal for
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VIL (Test) w20 (Test)

Method | » CRPS| RMSE| SSR(—1) KS| | v CRPS| RMSE| SSR(—1) KS|

Baselines EDM | oo  1.696 4473 0203  0715| 0 0304  0.664 0865 0345
ous  VEDM |3 1649 4526 0255 04193 0295 0734 1045 0.111
tEDM | 5 1.609  4.361 0305  0665| 5 0301 0674 0901 0323

Table 4: t-EDM outperforms EDM for conditional next frame prediction for the HRRR dataset. Values in bold indicate
the best results in each column. We note that VIL has a higher dynamic range over w20, and thus, the gains for VIL are
more apparent (see hist plots in Fig. 6). (— 1) indicates values near 1 are better.

different channels, which suggests a more data-driven approach to learning the optimal v directly. We present
additional results for conditional modeling in App. C.2.

5 DISCUSSION AND THEORETICAL INSIGHTS

To conclude, we propose a framework for constructing heavy-tailed diffusion models and demonstrate their
effectiveness over traditional diffusion models on unconditional and conditional generation tasks for a high-
resolution weather dataset. Here, we highlight some theoretical connections that help gain insights into the
effectiveness of our proposed framework while establishing connections with prior work.

Exploring distribution tails during sampling. The ODE in
Eq. 12 can re-formulated as,

. | =4
dXt ﬂt o (V + dll /:Lt O"t g’ o° AN ﬁi?
B _ Bty ( ) B _ %ty 1 1), (14) & e,
dt NtXt O v1d e 0 x ng(xt ) (14) S £ =t

where d = (1/02)|x; — 111 Do(x¢, o¢)|2. By formulating the - [ —

ODE in terms of the score function, we can gain some intuition " 7 oisontmesiep " " oiffusion timestep (5
into the effectiveness of our model in modeling heavy-tailed
distributions. Figure 4 illustrates the variation of the mean and
variance of the multiplier (v +dy)/(v + d) along the diffusion = """ oo o sampling trajectory for the
trajectory across 1M samples generated from our toy quels. toy dataset. As v decreases, the mean ratio and
Interestingly, as the value of » decreases, the mean and variance ¢ sandard deviation increase, leading to large
of this multiplier increase significantly, which leads to large  score multiplier weights.

score multiplier weights. We hypothesize that this behavior

allows our proposed model to explore more diverse regions during sampling (more details in App. A.10).

Figure 4: Variation of the mean and standard
deviation of the ratio (v + di)/(v + d) with

Enabling efficient tail coverage during training. The optimization objective in Eq. 9 has several connections
with robust statistical estimators. More specifically, it can be shown that (proof in App. A.11),

VoD ) = = [ a0 ({24 ) (T o) — B [l 0] .

where ¢ and py denote the forward (q(x:—a¢|Xt, X0)) and reverse diffusion posteriors (pg(x:—at|X¢)), respec-
tively. Intuitively, the coefficient v weighs the likelihood gradient, Vg log pg(x), and can be set accordingly
to ignore or consider outliers when modeling the data distribution. Specifically, when v > 1, the model would
learn to ignore outliers (Futami et al., 2018; Fujisawa & Eguchi, 2008; Basu et al., 1998) since data points on
the tails would be assigned low likelihood. On the contrary, a negative value of +y (as is the case in this work
since we set v = —2/(v + d)), the model can assign more weights to capture these extreme values.

We discuss some other connections to prior work in heavy-tailed generative modeling and more recent work
in diffusion models in App. F.1 and some limitations of our approach in App. F.2.

10
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A PROOFS

A.1 DERIVATION OF THE PERTURBATION KERNEL

Proof. The proof is an adaptation from Ding (2016) and included here for completeness. We define the joint
state X = [x¢; X¢—a¢]. Consequently,

Ut2 U%z(t)
q(x|x0) = taa(p, B, v), = [pe; pi—ae]xo, X ={ o " ) ® Ig,
031 () Oy At

By re-parameterization of the joint Student-t distribution ¢(x|xg), we have,
X=p+323z/\/k, z~N(0,1;) and k~ x*(v)/v (15)

This implies that the conditional distribution q(x|xg, x) = N (i, X/x). Therefore, following properties of
Gaussian distributions, ¢(x;|xo, &) = N (40, 07 /k14). Therefore, from reparameterization,

X¢|k = wiXo + 012/ K (16)
which implies that q(x;|xo) = ta(u¢xo, 0714, v). This completes the proof. O

A.2 ON THE POSTERIOR PARAMETERIZATION

The perturbation kernel ¢(x;|xo) for Student-t diffusions is parameterized as,

q(x¢|x0) = ta(puxo,0714,v) (17)

17
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Using re-parameterization,

€
Xy :/ltXO+Utﬁa 6~N(O,Id),/€~x2(u)/u (18)

During inference, given a noisy state x;, we have the following estimation problem,

x¢ = mE[xo[x¢] + o, E[ (19)

€ x|
—x
NC
Therefore, the task of denoising can be posed as either estimating E[x¢|x;] or E [ﬁ |x; . With this motivation,
the posterior pg(Xx;—a¢|X:) can be parameterized appropriately. Recall the form of the forward posterior

_ v+d_
q(Xt—at|Xt,X0) = ta(fie, D d oilq,v + d) (20)
_ o2 (t _ 02, (t)ody(t
Kt = pi—AtXo + 212( )(Xt — 1tX0), Ut2 = [Utz—At - Lgm()] @n
O O
where d; = % |x; — pexo|?. Further simplifying the mean fi;,
_ o2 (t
e (X¢, X0, 1) = pe—AeXo + 2012( )(Xt — X0) (22)
i
o2 (t o2, (t
— poarxo + 21Dy, o0l (23)
0} 0y
o3, (¢ o3, (t
= (ltt—At — Mt 212( ))XO + 212( )Xt (24)
O Ot

Therefore, the mean pg(x;,t) of the reverse posterior pg(x:—a¢|X¢) can be parameterized as,

_ o3 (t o3 (t
o (x¢,t) = (Htht — 212( )>E[X0|Xt] + 212( )Xt (25)
O O
o2 (t o2 (t
X (ut—At — Mt 212( ))De(Xt,Ut) + 212( )Xt (26)
O O

where E[x(|x;] is learned using a parametric estimator Dg(x;, o). This corresponds to the x(-prediction
parameterization presented in Eq. 7 in the main text. Alternatively, From Eqn. 19,

_ o3 (t o3 (t
fo(xs,t) = (Mtht — Mt 2;2( ))E[X0|Xt] + 2;2( >Xt (27)
t t
1 o3, (t € o3 (t
_ ;(umt o 2;5 )) (x - UtE[ﬁ|xt]) + 2;2( )%, (28)
t t t
He—At o o5, (t) €
= TXt - /7 <Mt—At — Mt o2 )E[ﬁb(t] (29)
t t i
_ o o3 (t
i Mxt - = (,Mt—At — Mt 212( ))Ge(xt70t) (30)
ot Ht O

where ]E[ﬁ |xt] is learned using a parametric estimator eg(x¢, 0¢). This corresponds to the e-prediction
parameterization (Ho et al., 2020).

18
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A.3 PROOF OF PROPOSITION 1

We restate the proposition here for convenience,

Proposition 1. For arbitrary distributions q and p, in the limit of v — 0, D(q | p) converges to Dk1,(q | p).
Consequently, the objective in Eqn. 9 converges to the DDPM objective stated in Egn. 1.

Proof. We present our proof in two parts:

1. Firstly, we establish the following relation between the y-Power Divergence and the KL-Divergence
between two distributions ¢ and p.

D,(q | p) = Dxu(q | p) +O) (31

2. Next, for the choice of v = —Viﬂl, we show that in the limit of v — 0, the optimization objective in
Eqn. 9 converges to the optimization objective in Eqn. 1

Relation between Dx1,(¢ || p) and D, (q || p). The y-Power Divergence as stated in (Kim et al., 2024)
assumes the following form:

1
Dy(allp) = 2 [C(a:p) = Hy (a)] (32)
where v € (—1,0) u (0, 00), and,

o) =~ o, == ( | p<x>1”dx)“l” 0.0 =~ [ a0 (42 )7dx (33

Pl

For subsequent analysis, we assume v — 0. Under this assumption, we simplify 7/~ (q) as follows. By
definition,

1) = =l = ([ a0+ 7ax) - (34)
( de) - (35)
(Jq x) exp(7log ¢(x))dx )iw (36)
(fq [1+ylogg(x )+0<v2)]dx)l+1” 37
- ([ atrax s j ) ogatax + (7)) (38)
(1 +7 | a(x)log g(x)dx + O(vz)) m (39)
Using the approximation (1 + 62)® ~ 1 + adz for a small & in the above equation, we have,
1) = =l ~ = (14 1= [ [a0owatax + 00 (@0)
(1 +7(1— Jq(X) log g(x)dx + 0(7)]) (41)
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where we have used the approximation ﬁ ~ 1 — v in the above equation. This is justified since 7 is
assumed to be small enough. Therefore, we have,

Ho(a) =~ lalher, ~ (149 a0 oz a(ax + 0% ) @)
Similarly, we now obtain an approximation for the power-cross entropy as follows. By definition,
v
X
C,(a.p) ——Jq(x)( ) ) dx (43)
Pl 4y
= —Jq(x) (1 + vlog ( p(x) > + 0(72)>dx (44)
1Pl 44
b4
= [atwax 4 [atoos (57 ) + 062) @s)
Ipl4q
__ (1 oy J ¢(x) log p(x)dx — J g(x) log [pl, ., dx + 0(72)) (46)
From Eqn. 42, it follows that,
Il = (149 [0 10800100 + 002 @
Therefore,
log |pll; ., = log (1 +7 fp(X) log p(x)dx + 0(72)) (48)
<7 [ 0 o ()i (49)

where the above result follows from the logarithmic series and ignores the terms of order O(+?) or higher.
Plugging the approximation in Eqn. 49 in Eqn. 46, we have,

C)(p) = — (1 + [[atotogpx)ax — [ aotog ol dx + cW)) (50)
~ - <1 + qu(X) log p(x)dx + 0(72)) 1y
Therefore,

D.(q|p) = %[Cv(q,p) —H4(q)] (52)
- ih( [t rosatiax - [ atx)tog i + ow%)] 53)

= x)lo @ b'4
- a0z S ax-+ 0 (54
= Dkwr(qllp) + O(v) (55)

This establishes the relationship between the KL and y-Power divergence between two distributions. Therefore,
for two distributions ¢ and p, the difference in the magnitude of Dkr,(¢ | p) and D.,(q || p) is of the order of
O(7). In the limit of ¥ — 0, the D~ (¢ || p) — Dxr.(g¢ | p). This concludes the first part of our proof.
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Equivalence between the objectives under v — 0. For v = —% and a finite-dimensional dataset

with x¢ € R%, it follows that v — 0 implies v — oo. Moreover, in the limit of v — oo, the multivariate
Student-t distribution converges to a Gaussian distribution. As already shown in the previous part, under this
limit, D.,(q || p) converges to Dx1,(g¢ || p). Therefore, under this limit, the optimization objective in Eqn. 9
converges to the standard DDPM objective in Eqn. 1. This completes the proof. O

A.4 DERIVATION OF THE SIMPLIFIED DENOISING LOSS

Here, we derive the simplified denoising loss presented in Eq. 10 in the main text. We specifically consider
the term D., (q(x¢—a¢|Xs,X0) || po(xi—at|x¢)) in Eq. 9. The y-power divergence between two Student-t
distributions is given by,

e .
Dy[allpy] = _%Cl,ljiw (1 + yiz) e [—\Eorﬁ (1 + #12)

(56)
+ ‘21|72(11'y) (]_ + itr (21_120) + %(HO — ul)TEf(uo — /Ll))]
where v = —%M. Recall, the definitions of the forward denoising posterior,
q(Xi—at]Xt, X0) = ta(a vt G214, + d) (57)
t—At| Aty &0 ty U+ d t )
_ o (t o2, (t)o?,(t
He = fhy—aAtXo + 212( )(Xt — {tXo), o7 = [02627At - Lgu()] (58)
0i Ot
and the reverse denoising posterior,
pG(Xt—At|Xt) = td(‘u,g(xt,t),a_'f.ld,l/‘i’d) (59)
where the denoiser mean g (x¢, t) is further parameterized as follows:
a2 (t a2 (t
Mo(Xs,t) = %2()& + [Mtht — ilig)ﬂt]De(Xt’ ot) (60)
t t

Since we only parameterize the mean of the reverse posterior, the majority of the terms in the y-power
divergence are independent of § and can be ignored (or treated as scalar coefficients). Therefore,

Do (q(xi—at|xe,%0) || po(xe—aelxs))oc(fe — Me(Xt»t))T(ﬂt — po(x¢, 1)) (61)
ol e — po(xe,t)[3 (62)
2 t 2
OC[/Lt—At - 0212( )#t] Ixo — Do(x¢,0¢)|3 (63)
0%

For better sample quality, it is common to ignore the scalar multiple in prior works (Ho et al., 2020; Song
et al., 2020). Therefore, ignoring the time-dependent scalar multiple,

D'y(Q(thAt|xt7 xo) | PG(thAt|Xt)) o|xg — Deo(x¢, Ut)Hg (64)

Therefore, the final loss function L4 can be stated as,

Dy (utXQ + o (65)

€ 2
L(0) = Exg~p(xo) Etnpt) Eer v (0,1) Exn 252 (1) ﬁ7at) - X0H2
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A.5 PROOF OF PROPOSITION 2

We restate the proposition here for convenience,

Proposition 2. The posterior parameterization in Eqn. 6 induces the following continuous-time dynamics,

dx; = thXt - [f(at’fft) + Zi] (x¢ — MtDO(Xtat))]dt +4/B(t)g(ot,0¢)dS:

t

(66)

where f : Rt x RT — Rand g : RT x RY — R" are scalar-valued functions, 3; € RY is a scaling

coefficient such that the following condition holds,

2t (0% 80— 000 6)A) ~1 = Jlov, 1)

(67)

where [1;, 01 denote the first-order time-derivatives of the perturbation kernel parameters p; and o, respec-

tively and the differential dS; ~ t4(0,dt,v + d).

Proof. We start by writing a single sampling step from our learned posterior distribution. Recall
po(xe—atlxe) = ta(po(xs,t),671a,v + d)
where (using the e-prediction parameterization in App. A.2),
_ Hi—At

1|, Ht—At 2]
o(X¢, t) = xt + —|05,(f) — o; |€eg(Xe, 0
poloest) = P24 Lo (1) - =202 o)

From re-parameterization, we have,
o
Xe—At = po(Xe,t) + \/%Zt 2, ~ N(0,1,), w ~x*(v+d)/(v+d)

O

T

XAt = Zt

_ 1 _
Ht—At [ 2 (t) o Ht—At 2
Mt

Xt + — |05 Ut]eg(xt,at) +
Mt ot

Moreover, we choose the posterior scale to be the same as the forward posterior g(x¢—1|X¢, Xg) i.e.

_ o3, (t)od,(t
2 [UffAt_ 51 (1) 12()]Id

o; = o2
This implies,
2 af 2 _9
o5 (t) = 0%2(]5) (Utht - Ut)
Substituting this form of 03, (¢) into Eqn. 71, we have,
He—At 1 o} 2 ) Ht—At o Ot
At = + ==t ~57) — ,04) + —
AT Y g [a%2<t> (7t =) ot |eoloxes 00)
Mi—At [ 1 9 _o Ht—At] Ot
= Xt + 0| —5—<0_pr —0; ) — €9(Xt,0¢) + —2
pe tﬁfz(t)( = 0) = L el o) N
He—At [ 1 2 _9 MtAt] Ot
= X+ 0| <0 py—07) —1+1— €o(xX¢,01) + —2z
Ht ' t_”%z(t)( At t) Ht (xt, 00) NG !
Ht—At [ 1 9 _o [t ] Ot
= Xe +0i| 50y —0F) — 1+ —At|eg(x4,0¢) + ——2z
w0 o a7 i R

where in the above equation we use the first-order approximation ji; = %

following design choices:
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1. Firstly, we assume the following form of the reverse posterior variance 52:

o7 = B(t)g(os, 61) At (78)

where g : RT x R™ — R and 8(¢t) € R* represents a time-varying scaling factor chosen
empirically which can be used to vary the noise injected at each sampling step. It is worth noting
that a positive o, (as indicated in the definition of g) is a consequence of a monotonically increasing
noise schedule o; in diffusion model design.

2. Secondly, we make the following design choice:
1 2 _2 .
—— — —-1= At 79
o2 (1) (Gt—At Ut) flot,04) (79)
where f : RT x RT - R

With these two design choices, Eqn. 77 simplifies as:

ft— At [ 1 2 ) £t ot
Xi_Ap = Xt + 0| 5—< (07 Ay — T —1+At]egx,a + —z (80)
t t L1t t t_o_%2(t)( t—At t) 1L ( t t) \/ﬁt
Hi—At

= Xy + O

- F(o0, 60) AL+ fZAt]ee(xt,at) n «/5@)9(@,@)\/&% 81)

= 'ut/;AtXt +o¢| f(os,0¢) + Zt]@(xmat)At +/B(t)g(os,0¢) VAL
t I ¢

(82)

Z
v Kt

Xi—At — Xt = (M —1)x¢ + 0y [f(amf'ft) + /:Lt:|69(xtvo't)At +/B(t)g(ow, o) v At (83)
Mt Mt VEt

XAt — Xp = — l/ltxt — 0 [f(fft, o¢) + M]EG(Xt,Ut) At ++/B(t)g(o, 1)V At-—2L (84)
e e VRt

In the limit of At — 0:

dx; = [Z':xt — 0 [f(at,dt) + Zi]eg(xt,at)]dt + \/B(t)g(Ut,[T,g)il/vlii;5 (83)

- [Zx - [f(ot, &)+ Z] (e — utDe(xt,am}dt . \/ﬂ(wg(at,m)% (86)

Moreover, since dW; ~ N(0,dt) and k¢ ~ x?(v + d)/(v + d), the term dS; = dW;/,/k, is distributed as
a Student-t random variable with dS; ~ t4(0, dt, v + d). Therefore,

dXt = lllZXt — Ot |:f(0't, O't) + :Z:|€9(Xt,0't)‘|dt + \/ B(t)g(at, O't)dSt (87)

which gives the required SDE formulation for the diffusion posterior sampling. Next, we discuss specific
choices of f(o¢,d¢) and g(oy, &¢).

On the choice of f (o, ;) and g(o;, 5,): Recall our design choices:
o7 = B(t)g(or, 64) At (88)
1

@(af_m —067) — 1= f(oy,00)At (89)
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Substituting the value of &7 from the first design choice to the second yields the following condition:
1
0
This concludes the proof. It is worth noting that the above equation provides two degrees of freedom, i.e.,
we can choose two variables among o12(t), g, f and automatically determine the third. However, it is more

convenient to choose o12(t) and g, since both these quantities should be positive. Different choices of these
quantities yield different instantiations of the SDE in Eqn. 87 as illustrated in the main text. O

o7 ny — Bt)g(or, 61)AL) — 1 = f(o4,0¢)At (90)

A.6 DERIVING THE DENOISER PRECONDITIONER FOR T-EDM
Recall our denoiser parameterization,

Dy (X; U) = Cskip(o'a V)X + Cout(0'7 V)FG (Cin(07 V)X; Cnoise(U)) 1
Karras et al. (2022) highlight the following design choices, which we adopt directly.

1. Derive ¢, based on constraining the input variance to 1

2. Derive cip and coy; to constrain output variance to 1 and additionally minimizing ¢,y to bound
scaling errors in Fp(x, o).

The coefficient cj, can be derived by setting the network inputs to have unit variance. Therefore,

Varg, n[cin(0)(x0 +m)] = 1 (92)
cin(0,v)? Varg, n[xo +n] = 1 (93)
v
Cin(0, V) (030 + EOQ) =1 (94)
v
cn(ov) = 1/ — 202 + 020 (95)

The coefficients cqjp and oy can be derived by setting the training target to have unit variance. Similar to
Karras et al. (2022) our training target can be specified as:

Vars, o[ Farger (X0, m0) | = 1 o7
Varxo’n[m(xo csk,p o,v)(x0 +n )] = 1 (98)
m\/arxo,n[xo — Csip(o,v) (%0 +m)] = 1 (99)
Cou(o,v)? = Vary, .n[%0 — csip(0, ) (%0 + 1) | (100)

Cout(0,v)? = Varxo’n[(l — Ckip (0, 1/)) X0 + Ckip(0, V) n] (101)

coul(o,v)? = (1= cuiplo, V))2 Ot + Cskip(0, v)? ” i 202(102)

Lastly, setting cyip (o, ) to minimize cou (0, ), we obtain,

14
cSkiP(U7 I/) = Ugala/(y_20-2 + Ugata) . (103)
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Consequently cou (0, ) can be specified as:

v
Cout(o, V) = o- O‘da[a/ — 202 + 02 (104)

A.7 EQUIVALENCE WITH THE EDM ODE

Similar to Karras et al. (2022), we start by deriving the optimal denoiser for the denoising loss func-
tion. Moreover, we reformulate the form of the perturbation kernel as q(x¢|xo) = tq(pxo,0214,v) =
ta(s(t)xo, s(t)?0(t)%14,v) by setting 1y = s(t) and oy = s(t)o(t). The denoiser loss can then be specified
as follows,

L(D,0) = Exyupixo)Enmta(0,0212,0) [ Ao, V)| D(s(t)[x0 + n], o) — x0]}3] (105)
= Exomp(r0) Exmta(s(t)x0,5(1)2021,.0) [N, ) [ D (%, 0) = xo[3] (106)

= Exow(xo)[Jtd(X? s(t)xi, s(t)*0°I4,v)[Mo,v)|D(x,0) — xoﬂg]dx] (107)
_ ]1[;Jtd(x;s(t)xi,s(t)QazId,y)[/\(a, V)ID(x,0) - x.[3]dx (108)

where the last result follows from assuming p(x() as the empirical data distribution. Thus, the optimal
denoiser can be specified by setting VpL(D, o) = 0. Therefore,

VpL(D,o) =0 (109)
Consequently,
VD%ZJtd(& s(t)x;, s(t)2021d7 v) [)\(U, v)|D(x,0) — XiH%]dX =0 (110)
%thd(x; s(t)xi, s(t)?0° 14, v)[Mo,v)(D(x,0) —x;)|dx = 0 (111)
JEtd(x; s5(t)xq, s(t)202 14, v)(D(x,0) — x;)dx = 0 (112)

The optimal denoiser D(x, o), can be obtained from Eq. 112 as,

D% ta(xs s()xq, s(t)20? T4, v)x;

7 ) 113
(X; U) Zl td(X, S(t)xia s(t)QO-QId7 1/) ( )
We can further simplify the optimal denoiser as,
D(x,0) = S ta(x; s(t)xs, s() 2021y, v)x; »
7T St s(Ox 50207 L)
Zi td(%? Xi, U2Id7 V>Xi
) : (115)

T Yt %0 0%, v)

= D(%,a) (116)

Next, recall the ODE dynamics (Eqn. 12) in our formulation,

dXt ﬂt [ é’t Mt]
—_— = —Xy— | —— 4+ — | (xy — DX,O’t 117
dt e t o0 (x¢t — p Do (%1, 0(1))) (117)
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Reparameterizing the above ODE by setting u; = s(t) and oy = s(t)o(¢),

% - %xt - [_ o ZZ](Xt — s(t)De(xs, 0 (t))) (118)
s[5 s+ o0 D o
o [S@ (0 2050 0 Dot o 1) (119)
= S| = 20 e s Dot o) (120)
= é—t)x ﬂ Xy — S Xt O
=50 ¢ + a(t)( + — s(t) Do (x¢,0(t))) 121

Lastly, since Karras et al. (2022) propose to train the denoiser Dy using unscaled noisy state, from Eqn. 116,
we can re-write the above ODE as,

ax, [é(t) N @]Xt _a(t)s(t) Do(ﬁ (t)) (122)

a s o o (t) sty

The form of the ODE in Eqn. 122 is equivalent to the ODE presented in Karras et al. (2022) (Algorithm 1
line 4 in their paper). This concludes the proof.

A.8 CONDITIONAL VECTOR FIELD FOR T-FLOW

Here, we derive the conditional vector field for the #-Flow interpolant. Recall, the interpolant in #-Flow is
derived as follows,

Xy =tx0+(17t)ﬁ, e~N(0,1),k ~ x*(v) /v (123)
It follows that,
€
x; = tE[xo|x;] + (1 — t)E[ﬁb{t] (124)

Moreover, following Eq. 2.10 in Albergo et al. (2023), the conditional vector field b(x;, t) can be defined as,

b(xy,t) = B[k |x] = E[xo[x:] — E[ﬁm] (125)
From Eqns. 124 and 125, the conditional vector field can be simplified as,
Xt — E|l & |Xt
b, 1) = i tial (126)

t

This concludes the proof.

A.9 CONNECTION TO DENOISING SCORE MATCHING
We start by defining the score for the perturbation kernel ¢(x¢|xo). The pdf for the perturbation kernel
q(x¢|x0) = ta(pexo, 0214, v) can be expressed as (ignoring the normalization constant):

—(v+d)

1
q(x¢|x0) o |1+ F(Xt — ,utXO)T(Xt — o) (127)
t
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Therefore,
v+d 1
Vi, log g(x4|x0) = Y Vi, log [1 + —5 % — utx0||%] (128)
vo?
v+d 1 2 ( )
= — — | x¢ — Xo (129)
2 14 Lk —paxofra? U T

Denoting d; = 0—13||xt — uXol|% for convenience, we have,

Vi, log q(x¢|x0) = — <::(Z> Ui? <xt — utx0> (130)
In Denoising Score Matching (DSM) (Vincent, 2011), the following objective is minimized,
Lpsm = Eip(t) xo~p(x0)xi ~a(x: |x0) [V(t)vxt log q(x¢|x0) — so(x, t)|§] (131)
for some loss weighting function ~(¢). Parameterizing the score estimator sg(x¢, t) as:
se(x¢,t) = —(ﬂ);?(xt —uth(xt,at)> (132)

With this parameterization of sy (x;,¢) and some choice of (t), the DSM objective can be further simplified
as follows,

Losy = E E,E f [(V+d>2Hx — Do (puxo + 01— )HQ] (133)
DSM = Lxg~p(xg)EtEe~N(0,1),k~x2(v)/v v+ d 0 AVRE20] o—t\/gaa—t )
€ 2

= E’XO~p(x0)]EtE5~N(O,I),K~X2(l/)/y |:)‘(Xta v, t)HXO - DO(/J/tXO + Utﬁ7 Ut)H2] (134)

v+di
10. This concludes the proof. As an additional caveat, the score parameterization in Eq. 132 depends on
dy = U%Q |x¢ — peXo|3, which can be approximated during inference as, d; ~ 0—1?||xt — peDg(x¢, 0¢) |3

2
where \(xq,v,t) = ( vid ) , which is equivalent to a scaled version of the simplified denoising loss Eq.

A.10 ODE REFORMULATION AND CONNECTIONS TO INVERSE PROBLEMS.

Recall the ODE dynamics in terms of the denoiser can be specified as,

dx; i or it
P - B (% — D 135
I ,utXt [ + " ](Xt pe Do (x¢,0¢)) (135)

From Eq. 132, we have,

v+d
x¢ — ptDo(Xt,0¢) = —0t2< » +d1>vxt log p(x¢,t) (136)

where d; = ﬁ |x; — pexo|3. Substituting the above result in the ODE dynamics, we obtain the reformulated
t

ODE in Eq. 14.
dxy [ 2(V+d1> Ly Oy
e _ M Bt Tt t 137
- utxt-i-at vrd) | m o Vi log p(xy, t) (137)
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Since the term d; is data-dependent, we can estimate it during inference as d; ~ d} = %th -
t
ptDg(x¢, 0¢)|3. Thus, the above ODE can be reformulated as,
dXt /.J,t 2<l/+d/1) ‘[.Lt (j't
— == — — —|Vxlo )t 138
dt Mt Xt Ut v+ d ot ot x gp(Xt ) ( )

Tweedie’s Estimate and Inverse Problems. Given the perturbation kernel q(x;|xo) = tq(usxo, 0714, v),
we have,

€
Xt =utx0+atﬁ, e~ N(0,I),k ~ X2 (v)/v (139)
It follows that,

€

x; = uE[xo|x,] + atE[ﬁ|xt] (140)
1 €

Efxoba] = - (xt - crt]E[\/Ext]) (141)

1 o (v +di
X E (Xt + [ (m)vx logp(xt, t) (142)

which gives us an estimate of the predicted x at any time t. Moreover, the framework can also be extended
for solving inverse problems using diffusion models. More specifically, given a conditional signal y, the goal
is to simulate the ODE,

dXt ‘[.Lt 2<V+d/1) [Lt C.)'t
axy M9ty 143
TR S | bt og p(x¢|y) (143)
/:l,t 2 V+dll) ,[Lt é’t [ ]
_ A ot 1 N 144
0 +Ut<1/+d o wiVx log p(y[x:) + Vx log p(x:) (144)

where the above decomposition follows from p(x;|y)ocp(y|x:)“*p(x;) and the weight w; represents the
guidance weight of the distribution p(y|x;). The term log p(y|x:) can now be approximated using existing
posterior approximation methods in inverse problems (Chung et al., 2022; Song et al., 2022b; Mardani et al.,
2023; Pandey et al., 2024b)

A.11 CONNECTIONS TO ROBUST STATISTICAL ESTIMATORS
Here, we derive the expression for the gradient of the y-power divergence between the forward and the

reverse posteriors (denoted by ¢ and py, respectively for notational convenience) i.e., VoD, (q | ps). By the
definition of the y-power divergence,

Dy (g po) = %[Cy(qme) —H ()], vE(=1,0)u (0,50) (145)

o) = =l =~ ( | p<x>”wx>”l” 0.0 = - [ a0 (42 )de (146)

Ipll1+
Therefore,

1
VoD, (q | po) = ;Vecw(qype) (147)
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Consequently, we next derive an expression for VC., (g, pg).

8!
X
V0c (0) =~ [ a0 (L2 ) (149
p9H1+'y
y—1
- —qu(X)( Po (x) ) o [ 225 ) g (149)
Ipollys Ipolly 4
vl Vopo(x) — po(x)V
_ —WJC](X)< Po(x) ) ol Vope(x) 2p0( )WVo HpoHlﬂdx (150)
”p0”1+7 HPGHHW
From the definition of ps |, .,
T4y
Ipolly 4, = (fpe(x)””dx> (151)
et
Vo lpely., = V9<Jp9(x)1+7dx> (152)
1 1+ T 1+
= 1o | po Vo (po(x)" ") dx (153)
1 1+ T v
144 po(x) " dx (L+7) | pa(x)"Veps(x)dx (154)
Ty
Vool = < f pa(x)1+7dx> f po(x) Vope(x)dx (155)
Ipe|
- < E [ 60 Vo) x (156)
Spg(x)Hde)
Hp9H1+'y 14+~
= < po(x) T7Vg log po(x)dx (157)
Spg(x)Hde)
<)+
= Ipolh oy [ 2yt ()i (158)
(Sw(x)md")
=po (%)
= [polli 1~ Epyx0)[Vo log po(x)] (159
where we denote pp(x) = po () ™ for notational convenience. Substituting the above result in Eq.
{po(x)t+7dx

150, we have the following simplification,
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Algorithm 3: Training (t-Flow) Algorithm 4: Sampling (t-Flow)

: repeat

DXt~ p(x1)
t ~ Uniform({1,...,T})
Mt = t,O’t =1-—1t

1 : sample xo ~ t4(0, Iq,v)
2

3

4:

5. x¢=x1+om, n-~tq0,Iq,v)

6.

7

8

1
2: forie {0,...,N — 1} do

3 di — (Xi—EB(Xi;Uti))/ti
4: Xip1 — X + (tig1 — ti)ds
5 ifti+1 #* 0 then

6

7

Take gradient descent step on
di — (xit1— €o(Xir150t,,,))/tis

2
n— x

: until Cofveer”ged colxe, 1)l : Xit1 < Xi + (ig1 — ti)(%di + %d{)

8: end if

9: end for

10: return xy

Figure 5: Training and Sampling algorithms for t-Flow. Our proposed method requires minimal code updates (indicated
with blue) over traditional Gaussian flow models and converges to the latter as v — 0.

\Y v
Vol (a.70) _qu ( ) lpelly 4, Vope(x) — po(x) oPollvey (160)
Hpe||1+fy Ipoll;
“Hpolyy., Vore(x) — po(x) [polly 1 Epy [ Vo log pa(x)]
=7 | alx 2 dx
Hpelllﬂ Ipelly s,
(161)
v Es x| Vgl
_ —VJQ ( > 010 (x) — po(X)E,(x)[Vo nge(x)]dx (162)
Hpelllﬂ Ipoll; -,
Vol — po(X)E;5 0 [Vl
—wfq ( ) ooV log o) — P B0 (Vo o8B0 gy 163,
p9”1+7 Hp9H1+'y
(164)

V00 a0 = = [0 (21 ) (Tatog ot~ Bp Vo logm(xl)dx— (165)

Ipolly sy

Plugging this result in Eq. 147, we have the following result,

VD (a1 p0) = 290 0.00) = [0 (2L ) (Vo000 B [V log o)

Ipolly iy
(166)
This completes the proof. Intuitively, the second term inside the integral in Eq. 166 ensures unbiasedness of
the gradients. Therefore, the scalar coefficient vy controls the weighting on the likelihood gradient and can be
set accordingly to ignore or model outliers when modeling the data distribution.

B EXTENSION TO FLOWS

Here, we discuss an extension of our framework to flow matching models (Albergo et al., 2023; Lipman et al.,
2023) with a Student-t base distribution. More specifically, we define a straight-line flow of the form,

X; = tx3 —|—(1—t)i ~N(0,1), 5 ~ x*(v)/v (167)

7
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where x; ~ p(x1). Intuitively, at a given time ¢, the flow defined in Eqn. 167 linearly interpolates between
data and Student-t noise. Following Albergo et al. (2023), the conditional vector field which induces this
interpolant can be specified as (proof in App. A.8)

Xt — E[ﬁb(t]

Xt iy t) = — (168)

dt
We estimate ]E[ﬁ |x; | by minimizing the objective

0= 7zl
VE' VE 2l
We refer to this flow setup as #-Flow. To generate samples from our model, we simulate the ODE in Eq. 168
using Heun’s solver. Figure 5 illustrates the ease of transitioning from a Gaussian flow to t-Flow. Similar to

Gaussian diffusion, transitioning to t-Flow requires very few lines of code change, making our method readily
compatible with existing implementations of flow models.

L) = Exo~p(x0)Et~M[0,1]E6~N(O,Id)]En~x2(z/)/u[ eg(txo + (1 —1) (169)

C EXPERIMENTAL SETUP

C.1 UNCONDITIONAL MODELING

C.1.1 HRRR DATASET

We adopt the High-Resolution Rapid Refresh (HRRR) (Dowell et al., 2022) dataset, which is an operational
archive of the US km-scale forecasting model. Among multiple dynamical variables in the dataset that
exhibit heavy-tailed behavior, based on their dynamic range, we only consider the Vertically Integrated Liquid
(VIL) and Vertical Wind Velocity at level 20 (denoted as w20) channels. How to cope with the especially
non-Gaussian nature of such physical variables on km-scales, represents an entire subfield of climate model
subgrid-scale parameterization (e.g., Guo et al. (2015)). We only use data for the years 2019 — 2020 for
training (17.4k samples) and the data for 2021 (8.7k samples) for testing; data before 2019 are avoided
owing to non-stationaries associated with periodic version changes of the HRRR. Lastly, while the HRRR
dataset spans the entire US, for simplicity, we work with regional crops of size 128 x 128 (corresponding
to 384 x 384 km over the Central US). Unless specified otherwise, we perform z-score normalization using
precomputed statistics as a preprocessing step. We do not perform any additional data augmentation.

C.1.2 BASELINES

Baseline 1: EDM. For standard Gaussian diffusion models, we use the recently proposed EDM (Karras et al.,
2022) model, which shows strong empirical performance on various image synthesis benchmarks and has
also been employed in recent work in weather forecasting and downscaling (Pathak et al., 2024; Mardani
et al., 2024). To summarize, EDM employs the following denoising loss during training,

E(G) ocC Ex0~p(xo)EGEn~N(O7U2Id) [)\(O’) HD@ (X() +n, J) — Xng] (170)
where the noise levels o are usually sampled from a LogNormal distribution, p(c’) = LogNormal(mmean, T24)

Baseline 2: EDM + Inverse CDF Normalization (INC). It is commonplace to perform z-score normalization
as a data pre-processing step during training. However, since heavy-tailed channels usually exhibit a high
dynamic range, using z-score normalization for such channels cannot fully compensate for this range,
especially when working with diverse channels in downstream tasks in weather modeling. An alternative
could be to use a more stronger normalization scheme like Inverse CDF normalization, which essentially
involves the following key steps:
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Figure 6: Inverse CDF Normalization. Using Inverse CDF Normalization (INC) can help reduce channel dynamic range
during training while providing accurate denormalization. (Top Panel) INC applied to the Vertically Integrated Liquid
(VIL) channel in the HRRR dataset. (Bottom Panel) INC applied to the Vertical Wind Velocity (w20) channel in the
HRRR dataset.

Compute channel-wise 1-d histograms of the training data.
Compute channel-wise empirical CDFs from the 1-d histograms computed in Step 1.

Use the empirical CDFs from Step 2 to compute the CDF at each spatial location.

N

For each spatial location with a CDF value p, replace its value by the value obtained by applying the
Inverse CDF operation under the standard Normal distribution.

Fig. 6 illustrates the effect of performing normalization under this scheme. As can be observed, using such
a normalization scheme can greatly reduce the dynamic range of a given channel while offering reliable
denormalization. Moreover, since our normalization scheme only affects data preprocessing, we leave the
standard EDM model parameters unchanged for this baseline.

Baseline 3: EDM + Per Channel-Preconditioning (PCP). Another alternative to account for extreme values
in the data (or high dynamic range) could be to instead add more heavy-tailed noise during training. This
can be controlled by modulating the 7.y and 7gq parameters based on the dynamic range of the channel
under consideration. Recall that these parameters control the domain of noise levels ¢ used during EDM
model training. In this work, we use a simple heuristic to modulate these parameters based on the normalized
channel dynamic range (denoted as d). More specifically, we set,

Tmean = —1.2 + o = RBF(d, 1.0, B) (171)
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where RBF denotes the Radial Basis Function kernel with radius=1.0, parameter /5 and a magnitude scaling
factor a.. We keep myq = 1.2 fixed for all channels. Intuitively, this implies that a higher normalized dynamic
range (near 1.0) corresponds to sampling the noise levels ¢ from a more heavy-tailed distribution during
training. This is natural since a signal with a larger magnitude would need more amount of noise to convert
it to noise during the forward diffusion process. In this work, we set « = 3.0, 8 = 2.0, which yields
il = 1.8 and m¥20 = (0.453 for the VIL and w20 channels, respectively. It is worth noting that, unlike the
previous baseline, we use z-score normalization as a preprocessing step for this baseline. Lastly, we keep

other EDM parameters during training and sampling fixed.

Baseline 4. Gaussian Flow. Since we also extend our framework to flow matching models (Albergo et al.,
2023; Lipman et al., 2023), we also compare with a linear one-sided interpolant with a Gaussian base
distribution. More specifically,

x; = tx1 + (1 —t)e, €~ N(0,1,) (172)

Similar to t-Flow (Section B), we train the Gaussian flow with the following objective,
2
L(O) = Exyepixo)Errafo,11Een(o,1.) [H€9(txo + (1 —t)e,t) — 6H2]~ (173)

C.1.3 EVALUATION

Here, we describe our scoring protocol used in Tables 2 and 3 in more detail.

Kurtosis Ratio (KR). Intuitively, sample kurtosis characterizes the heavy-tailed behavior of a distribution and
represents the fourth-order moment. Higher kurtosis represents greater deviations from the central tendency,
such as from outliers in the data. In this work, given samples from the underlying train/test set, we generate
20k samples from our model. We then flatten all the samples and compute empirical kurtosis for both the
underlying samples from the train/test set (denoted as kg,,) and our model (denoted as k). The Kurtosis
ratio is then computed as,

ksim
KR = ‘1 ~ Lsim
k

data

(174)

Lower values of this ratio imply a better estimation of the underlying sample kurtosis.

Skewness Ratio (SR). Intuitively, sample skewness represents the asymmetry of a tailed distribution and

represents the third-order moment. In this work, given samples from the underlying train/test set, we generate

20k samples from our model. We then flatten all the samples and compute empirical skewness for both the

underlying samples from the train/test set (denoted as squ,) and our model (denoted as sgjp,). The Skewness
ratio is then computed as,

SR = [1 - 2

Sdata

Lower values of this ratio imply a better estimation of the underlying sample skewness.

(175)

Kolmogorov-Smirnov 2-Sample Test (KS). The KS (Massey, 1951) statistic measures the maximum
difference between the CDFs of two distributions. For heavy-tailed distributions, evaluating the KS statistic
at the tails could provide a useful measure of the efficacy of our model in estimating tails reliably. To evaluate
the KS statistic at the tails, similar to prior metrics, we generate 20k samples from our model. We then flatten
all samples in the generated and train/test sets, followed by retaining samples lying above the 99.9th percentile
(quantifying right tails/extreme region) or below the 0.1th percentile (quantifying the left tail/extreme region).
Lastly, we compute the KS statistic between the retained samples from the generated and the train/test sets
individually for each tail and average the KS statistic values for both tails to obtain an average KS score. The
final score estimates how well the model might capture both tails. As an exception,. for the VIL channel,
we report KS scores only for the right tail due to the absence of a left tail in the underlying samples for this
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Parameters EDM (+INC, +PCP) t-EDM Flow/t-Flow

) 2 2 2 2 v 2 2
Cskip O daa (U + Udi|li|) Udula/( v—30° t gdulu) 0

Preconditioner 2 2 2 v 2 v__2 2
Cout 0 Oga/r 0?2 + ol \ v—29" Ta/ A 75502 + oGy, 1
/2 2 v_ 2 2
Cin 1/ 0%+ T data 1/ v—27 + 9 data 1

Cnoise i log o i log o o
o log o ~ N (Tmean; T2q) log o ~ N (Tmean; T2q) oc=1—t1t~U(0,1)
Training He ! ! ¢
(o) 1/cau(o) cgu(o,v) . 1E o
. t-Flow - Eq.
Loss Eq. 170 Eq. 13 Gaussian Flow - Eq. 173
Solver Heun’s (2nd order) Heun’s (2nd order) Heun’s (2nd order)
t-Flow: Eq. 168, xg ~ t4(0, I4, V)
Sampling ODE Eq. 12,x7 ~ N(0, Is) Eq. 12,7 ~ £a(0, Ia, v) Flow: Eq. 168, xg ~ N(0, I4)
1 ) 1 1 1 1 ) 1 1 1 1 ) 1 1 1
Discretization  (onx + 57 [0.5, — oma]) P (ohw + g [0f, — omx]) P (ohw + g [02 — odx]) P
Scaling: p+
Schedule: o t t 1-t
| Odata 1.0 1.0 N/A
Flow: oo
Hyperparameters y . VIL: {3,5,7} t-Flow ({)
w20: {3,5,7} VIL={3,5, 7}
w20={5, 7,9}
EDM: -1.2,1.2
EDM (+INC) : -1.2, 1.2
Tmean» Tstd EDM (+PCP) ({) -1.2,1.2 N/A
VIL: 1.8, 1.2
w20: 0.453, 1.2
Omaxs Omin 80, 0.002 80, 0.002 1.0, 0.01
NFE 18 18 25
P 7 7 7

Table 5: Comparison between design choices and specific hyperparameters between EDM (Karras et al., 2022) (+ related
baselines) and t-EDM (Ours, Section 3.5) for unconditional modeling (Section 4.1). INC: Inverse CDF Normalization
baselines, PCP: Per-Channel Preconditioning baseline, VIL: Vertically Integrated Liquid channel in the HRRR dataset,
w20: Vertical Wind Velocity at level 20 channel in the HRRR dataset, NFE: Number of Function Evaluations

channel (see Fig. 6 (first column) for 1-d intensity histograms for this channel). Lower values of the KS
statistic imply better density assignment at the tails by the model.

Histogram Comparisons. As a qualitative metric, comparing 1-d intensity histograms between the generated
and the original samples from the train/test set can serve as a reliable proxy to assess the tail estimation
capabilities of all models.

C.1.4 DENOISER ARCHITECTURE

We use the DDPM++ architecture from (Karras et al., 2022; Song et al., 2020). We set the base channel
multiplier to 32 and the per-resolution channel multiplier to [1,2,2,4,4] with self-attention at resolution 16.
The rest of the hyperparameters remain unchanged from Karras et al. (2022), which results in a model size of
around 12M parameters.

C.1.5 TRAINING

We adopt the same training hyperparameters from Karras et al. (2022) for training all models. Model training
is distributed across 4 DGX nodes, each with 8 A100 GPUs, with a total batch size of 512. We train all
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Parameter Model Levels Height Levels (m)
Zonal Wind (u) 1,2,3,4,5,6,7,8,9,10,11,13,15,20 10
Meridonal Wind (v) 1,2,3,4,5,6,7,8,9,10,11,13,15,20 10
Geopotential Height (z) 1,2,3,4,5,6,7,8,9,10,11,13,15,20 None
Humidity (q) 1,2,3,4,5,6,7,8,9,10,11,13,15,20 None
Pressure (p) 1,2,3,4,5,6,7,8,9,10,11,13,15,20 None
Temperature (t) 1,2,3,4,5,6,7,8,9,10,11,13,15,20 2
Radar Reflectivity (refc) N/A Integrated

Table 6: Parameters in the HRRR dataset used for conditional modeling tasks.

models for a maximum budget of 60Mimg and select the best-performing model in terms of qualitative 1-D
histogram comparisons.

C.1.6 SAMPLING

For the EDM and related baselines (INC, PCP), we use the ODE solver presented in Karras et al. (2022). For
the t-EDM models, as presented in Section 3.5, our sampler is the same as EDM with the only difference
in the sampling of initial latents from a Student-t distribution instead (See Fig. 2 (Right)). For Flow and
t-Flow, we numerically simulate the ODE in Eq. 168 using the 2nd order Heun’s solver with the timestep
discretization proposed in Karras et al. (2022). For evaluation, we generate 20k samples from each model.

We summarize our experimental setup in more detail for unconditional modeling in Table 5.

C.1.7 EXTENDED RESULTS ON UNCONDITIONAL MODELING

Sample Visualization. We visualize samples generated from the t-EDM and t-Flow models for the VIL and
w20 channels in Figs. 9-12

Visualization of 1-d histograms. Similar to Fig. 3, we present additional results on histogram comparisons
between different baselines and our proposed methods for the VIL and w20 channels in Figs. 13 and 14.

Is PCP enough for capturing heavy tails? In Table 2, we observe that the EDM + PCP baseline outperforms
t-EDM in some scenarios. A natural question is whether a dynamic preconditioning scheme based on the
dynamic range of a channel is enough for modeling heavy-tailed data. To present some insight into this
observation, we train an unconditional EDM + PCP model on 10 channels in the HRRR dataset selected on
the basis of the top 10 channels with the highest dynamic range and heavier tails. Our EDM training setup is
the same as other experiments presented in Section 4 with the exception that the input has 10 channels instead
of a single channel. The updated 7., for all 10 channels is computed based on the formulation in Eqn. 171.
Consequently, this is a more difficult modeling task than presented in the main text in Table 2. We compare
the generated histograms between the 10-channel run with PCP and the single-channel run with PCP for the
VIL and w20 channels in Fig. 7. As can be observed, when scaling in terms of the number of channels, the
performance of EDM + PCP takes a big hit. This suggests that merely adjusting the noise schedule during
training using heuristics like PCP is not sufficient to resolve the fundamental limitation of Gaussian diffusion
models to estimate heavy tails accurately.

C.2 CONDITIONAL MODELING
C.2.1 HRRR DATASET FOR CONDITIONAL MODELING
Similar to unconditional modeling (See App. C.1.1), we use the HRRR dataset for conditional modeling

at the 128 x 128 resolution. We train the model on HRRR forecast fields 1-hour post-analysis to allow for
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Figure 7: Sample 1-d histogram comparison between EDM + PCP with 10 channels and single-channel training on the
test set for the Vertically Integrated Liquid (VIL) channel and Vertical Wind Velocity (w20) channel. Tail estimation
suffers when scaling up training in terms of the number of channels in the input. PCP: Per-Channel Preconditioning

some model spin-up following data assimilation. More specifically, for a lead time of 1hr, we sample (input,
output) pairs at time 7 and 7 + 1, respectively. For the input, at time 7, we use a state vector consisting
of a combination of 86 atmospheric channels (including the channel to be predicted at time 7), which are
summarized in Table 6. For the output, at time 7 + 1, we use either the Vertically Integrated Liquid (VIL)
or Vertical Wind Velocity at level 20 (w20) channels, depending on the prediction task. Unless specified
otherwise, we perform z-score normalization using precomputed statistics as a preprocessing step without any
additional data augmentation.

C.2.2 BASELINES

We adopt the standard EDM (Karras et al., 2022) for conditional modeling as our baseline.

C.2.3 DENOISER ARCHITECTURE

We use the DDPM++ architecture from (Karras et al., 2022; Song et al., 2020). We set the base channel
multiplier to 32 and the per-resolution channel multiplier to [1,2,2,4,4] with self-attention at resolution
16. Additionally, our noisy state x is channel-wise concatenated with an 86-channel conditioning signal,
increasing the total number of input channels in the denoiser to 87. The number of output channels remains 1
since we are predicting only a single VIL/w20 channel. However, the increase in the number of parameters is
minimal since only the first convolutional layer in the denoiser is affected. Therefore, our denoiser is around
12M parameters. The rest of the hyperparameters remain unchanged from Karras et al. (2022).

C.2.4 TRAINING

We adopt the same training hyperparameters from Karras et al. (2022) for training all conditional models.
Model training is distributed across 4 DGX nodes, each with 8 A100 GPUs, with a total batch size of 512.
We train all models for a maximum budget of 60Mimg.

C.2.5 SAMPLING

For both EDM and t-EDM models, we use the ODE solver presented in Karras et al. (2022). For the t-EDM
models, as presented in Section 3.5, our sampler is the same as EDM with the only difference in the sampling
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of initial latents from a Student-t distribution instead (See Fig. 2 (Right)). For a given input conditioning state,
we generate an ensemble of predictions of size 16 by randomly initializing our ODE solver with different
random seeds. All other sampling parameters remain unchanged from our unconditional modeling setup (see
App. C.1.6).

C.2.6 EVALUATION

Root Mean Square Error (RMSE). is a standard evaluation metric used to measure the difference between
the predicted values and the true values Chai & Draxler (2014). In the context of our problem, let x be the
true target and & be the predicted value. The RMSE is defined as:

RMSE = /E[[z — #[2].

This metric captures the average magnitude of the residuals, i.e., the difference between the predicted and true
values. A lower RMSE indicates better model performance, as it suggests the predicted values are closer to
the true values on average. RMSE is sensitive to large errors, making it an ideal choice for evaluating models
where minimizing large deviations is critical.

Continuous Ranked Probability Score (CRPS). is a measure used to evaluate probabilistic predictions
Wilks (2011). It compares the entire predicted distribution F'(&) with the observed data point x. For a
probabilistic forecast with cumulative distribution function (CDF) F', and the true value x, the CRPS can be
formulated as follows:

o0

CRPS(F.2) = | (Fy) -1y > @)” do.

—00

where I(+) is the indicator function. Unlike RMSE, CRPS provides a more comprehensive evaluation of
both the location and spread of the predicted distribution. A lower CRPS indicates a better match between
the forecast distribution and the observed data. It is especially useful for probabilistic models that output a
distribution rather than a single-point prediction.

Spread-Skill Ratio (SSR). is used to assess over/under-dispersion in probabilistic forecasts. Spread measures
the uncertainty in the ensemble forecasts and can be represented by computing the standard deviation of
the ensemble members. Skill represents the accuracy of the mean of the ensemble forecasts and can be
represented by computing the RMSE between the ensemble mean and the observations.

Scoring Criterion. Since CRPS and SSR metrics are based on predicting ensemble forecasts for a given
input state, we predict an ensemble of size 16 for 4000 samples from the VIL/w?20 test set. We then enumerate
window sizes of 16 x 16 across the spatial resolution of the generated sample (128 x 128). Since the VIL
channel is quite sparse, we filter out windows with a maximum value of less than a threshold (1.0 for VIL)
and compute the CRPS, SSR, and RMSE metrics for all remaining windows. As an additional caveat, we
note that while it is common to roll out trajectories for weather forecasting, in this work, we only predict the
target at the immediate next time step.

C.2.7 EXTENDED RESULTS ON CONDITIONAL MODELING

Sample Visualization. We visualize samples generated from the t-EDM and t-Flow models for the VIL and
w20 channels in Figs. 9 and 10

On t-EDM stability for Autoregressive Rollouts. While we demonstrate the effectiveness of t-EDM for
the conditional task of predicting the next frame, in practice, it is more useful to perform autoregressive
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Parameters EDM t-EDM
2 2 2 2 2 2
Cskip Gdata/ <U + Udala) Udata/(ﬁg + Udata)

Preconditioner 2 B) 3 v 2 v o 2
Cout g Udata/ VO™ + O 29" Jdala/ 720" 1 O
. 2 2 v 2 2
Cin 1/ VO t Odaa 1/ \/ v—29 + O

Cnoise i 108; g % IOg g
o log o ~ N (Ttmean, Tod) log o ~ N (Ttmean, Tod)
Training 5(t) ! !
Ao) 1/cau(0) 1/cau(o,v)
Loss Eq. 2 in Karras et al. (2022) Eq. 13
Solver Heun’s (2nd order) Heun’s (2nd order)
ODE Eq. 12, x7 ~ N(0, I,) Eq. 12, x7 ~ t4(0, Iz, v)
; 1 ) 1 11 1 ) 1 i1
Sampling Discretization (0 + 57 [T — O ]) ? (O + 77 [Tutin — Triax]) #
Scaling: s(t) 1 1
Schedule: o (t) t t
O data 1.0 1.0
v o0 x1 = 20,x2 € {4,7,10}
T'mean, 7Tstd -1.2,1.2 -1.2,1.2
Hyperparameters =" = 80, 0.002 80, 0.002
NFE 18 18
p 7 7

Table 7: Comparison between design choices and specific hyperparameters between EDM (Karras et al., 2022) and
t-EDM (Ours, Section 3.5) for the Toy dataset analysis in Fig. 1. NFE: Number of Function Evaluations

rollouts for downstream applications like forecasting. Therefore, we include qualitative results to showcase
the stability of t-EDM when performing autoregressive rollouts in Fig. 15

C.3 Toy EXPERIMENTS

Dataset. For the toy illustration in Fig. 1, we work with the Neals Funnel dataset (Neal, 2003), which is
commonly used in the MCMC literature (Brooks et al., 2011) due to its challenging geometry. The underlying
generative process for Neal’s funnel can be specified as follows:

p(x1,x2) = N(x1;0, 3)N(x2;0, expx1/2). (176)

For training, we randomly generate 1M samples from the generative process in Eq. 176 and perform z-score
normalization as a pre-processing step.

Baselines and Models. For the standard Gaussian diffusion model baseline (2nd column in Fig. 1), we use
EDM with standard hyperparameters as presented in Karras et al. (2022). Consequently, for heavy-tailed
diffusion models (columns 3-5 in Fig. 1), we use the -EDM instantiation of our framework as presented in
Section 3.5. Since the hyperparameter v is key in our framework, we tune v for each individual dimension
in our toy experiments. We fix v to 20 for the x; dimension and vary it between v € {4, 7,10} to illustrate
controllable tail estimation along the x2 dimension.

Denoiser Architecture. For modeling the underlying denoiser Dy(x, ), we use a simple MLP for all toy
models. At the input, we concatenate the 2-dimensional noisy state vector x with the noise level o. We use
two hidden layers of size 64, followed by a linear output layer. This results in around 8.5k parameters for the
denoiser. We share the same denoiser architecture across all toy models.
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Toy Dataset (Neal’s Funnel)
Method | v KR| SR| KS|
Baselines EDM \ o 0909 2334 0.234

t-EDM | 4 0.393 1.584 0.051
Ours t-EDM | 7 0.795 3.671 0.194
t-EDM 10 0.863 2.198  0.261

Table 8: Quantitative comparison between EDM and t-EDM on the Neals Funnel 2-d toy dataset. For all metrics, lower is
better. Values in bold indicate the best results in a column.

Training. We optimize the training objective in Eq. 13 for both t-EDM and EDM (See Fig. 2 (Left)). Our
training hyperparameters are the same as proposed in Karras et al. (2022). We train all toy models for a fixed
duration of 30M samples and choose the last checkpoint for evaluation.

Sampling. For the EDM baseline, we use the ODE solver presented in Karras et al. (2022). For the t-EDM
models, as presented in Section 3.5, our sampler is the same as EDM with the only difference in the sampling
of initial latents from a Student-t distribution instead (See Fig. 2 (Right)). For visualization of the generated
samples in Fig. 1, we generate 1M samples for each model.

Overall, our experimental setup for the toy dataset analysis in Fig. 1 is summarized in Table 7.

Quantitative Results on Neals Funnel. We present quantitative results on the Neals funnel dataset in Table
8. t-EDM outperforms EDM on all three metrics, indicating better tail estimation, which also supports our
qualitative findings in Fig. 1.

D OPTIMAL NOISE SCHEDULE DESIGN

In this section we discuss a strategy for choosing the parameter on.x (denoted by o in this section for
notational brevity) in a more principled manner as compared to EDM (Karras et al., 2022). More specifically,
our approach involves directly estimating o from the empirically observed samples which circumvents the
need to rely on ad-hoc choices of this parameter which can affect downstream sampler performance.

The main idea behind our approach is minimizing the statistical mutual information between datapoints from
the underlying data distribution, Xg ~ Pgat, and their noisy counterparts x, ~ p(X,). While a trivial (and
non-practical) way to achieve this objective could be to set a large enough o i.e. ¢ — 00, we instead minimize
the mutual information I (xg, X,,) while ensuring the magnitude of o to be as small as possible. Formally, our
objective can be defined as,

mino®  subjectto I(xo,X,) =0 (177)

As we will discuss later, minimizing this constrained objective provides a more principled way to obtain o
from the underlying data statistics for a specific level of mutual information desired by the user. Next, we first
simplify the form of I(x¢, X, ), followed by a discussion on the estimation of ¢ in the context of EDM and
t-EDM. We also extend to the case of non-i.i.d noise.
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Simplification of (%, X, ). The mutual information I(xg, X, ) can be stated and simplified as follows,

I(x0,%,) = Dxr(p(%0,%s) || p(%0)P(%s)) (178)
_ p(Xo, Xo)
= fp(xo, X, ) log mdxodx(7 (179)
- f p(x0,%,) log PXol%0) )i (180)
p(Xg)
= [ oo xo)ptx0) o fmdxmg (s1)
= ]Ex0~p(x0) ljp(XJ|XO) 10g p(p);;t()o)dxal (182)
= By | DL (P [x0) | P(x1) | (183)

D.1 DESIGN FOR EDM

Given the simplification in Eqn. 183, the optimization problem in Eqn. 177 reduces to the following,
min o? subjectto  Ey-p(xy) [DKL(p(xg\xo) | p(xg))] =0 (184)

Since at o, We expect the marginal distribution p(x, ) to converge to the generative prior (i.e. completely
destory the structure of the data), we approximate p(x,) ~ N(0,021I,). With this simplification, the
Lagrangian for the optimization problem in Eqn. 177 can be specified as,

02 = arg min o+ AEy, ~p(x0) [DKL (N (x03%0,0%) | N(x450,07)) ] (185)
Setting the gradient w.r.t 62 = 0,
A
L= B [x{x0] =0 (186)

which implies,

0? = A/ AEy, [xd x0] (187)

5
— ), Ixil3
N =1

This allows us to choose a o, from the underlying data statistics during training or sampling. It is worth
noting that the choice of the multiplier A impacts the magnitude of oy,,x. However, this parameter can be
chosen in a principled manner. At o2, = o2, the estimate of the mutual information is given by:

max

For an empirical dataset,

(188)

1 E, [x]x
I (%0,%5) = —5Ex, [x4%0] = Fxo (%0 %0] (189)
o A
which implies,
Ex, [%4 %o0]
A\ = X0 L0 190
T, (%0 %, )? (o)

The above result provides a way to choose \. Given the dataset stastistics, Ey, [x] Xo], the user can specify an
acceptable level of mutual information I (X, X, ) to compute the correponding A, which can then be used to
find the corresponding minimum o, required to achieve that level of mutual information. Next, we extend
this analysis to t-EDM.
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D.2 EXTENSION TO T-EDM
In the case of t-EDM, we pose the optimization problem as follows,
o* = argmin o + N, (o) [DW (ta(x0, 02 L4, v) | ta(0, 0% L4, v)) ] (191)

where D.,(q | p) is the Gamma-power Divergence between two distributions q and p. From the definition of
the y-Power Divergence in Eqn. 8, we have,

D, (ta(x0,0%I4,v) | ta(0,0%I4,v)) = —%Cﬁ@ + %)—ﬁ(ﬁ)*z(%*%xo[xgxg] (192)
) =f(v.d)
where C), 4 = (()(7:;2 and v = —ﬁ Solving the optimization problem yields the following optimal o,
2 R Ece
[)\f(V d)(Ter) [%o XO]] (193)

For an empirical dataset, we have the following simplification,
N ) ]2(” S 194
L= Mo (5 2k (194)

D.3 EXTENSION TO CORRELATED GAUSSIAN NOISE

We now extend our formulation for optimal noise schedule design to the case of correlated noise in the
diffusion perturbation kernel. This is useful, especially for scientific applications where the data energy is
distributed quite non-uniformly across the (data) spectrum. Let R = By < (xo) [xoxoT] e R%*4 denote the
data correlation matrix. Let also consider the perturbation kernel A/(0, ) for the postitve-defintie covaraince
matrix X € R?*9, Following the steps in equation 185, the Lagrangian for noise covariance estimation can
be formulated as follows:

min trace(E) + ABx () [DKL(N (x0, %) | N(0, ) ] (195)
min trace(3) + Ay, ~p(xo) [xg 2—1x0] (196)
mzin trace(X) + AEy~p(xo) [trace(Eflxoxg)] (197)
rrgn trace(X) + Atrace(X ™ Ex, < p(xo) [X0X( ]) (198)
mgi;n trace(X) + A trace(S7'R) (199)

It can be shown that the optimal solution to this minimization problem is given by, £* = v/AR!Y?2, where
R!/2 denotes the matrix square root of R. This implies that the noise energy must be distributed along the
singular vectors of the correlaiton matrix, where the energy is proportional to the noise singular values. We
include the proof below.

Proof. We define the objective:
f(2) = trace(X) + Atrace(S'R). (200)
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We compute the gradient of f(X) with respect to X:

Vsf(X) = %trace(ﬁ) + )\%trace(E*IR). (201)

The gradient of the first term is straightforward:

0
a—ztrace(E) =1 (202)

For the second term, using the matrix calculus identity, the gradient is:

aiz (Atrace(X7'R)) = —AZ 'R (203)

Combining these results, the total gradient is:
Vsf(Z)=I-AZ'RZ (204)

Setting the gradient to zero to find the critical point:

I- )\ 'R =0. (205)
SR = %I. (206)
which implies,
R = \X2. (207)
> = VARY2 (208)

which completes the proof.

E LOG-LIKELIHOOD FOR T-EDM

Here, we present a method to estimate the log-likelihood for the generated samples using the ODE solver for
t-EDM (see Section 3.5). Our analysis is based on the likelihood computation in continuous-time diffusion
models as discussed in Song et al. (2020) (Appendix D.2). More specifically, given a probability-flow ODE,

dx

dt = f@(xt7t)7 (209)

with a vector field fg(x,t), Song et al. (2020) propose to estimate the log-likelihood of the model as follows,
T
log p(x0) = logp(xT) + f V - fo(xs, t)dt. (210)
0

The divergence of the vector field fg(xy, t) is further estimated using the Skilling-Hutchinson trace estimator
(Skilling, 1989; Hutchinson, 1990) as follows,

V- fo(xi,t) = Eye)[e' Vo(xe, t)e] (211)
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where usually, € ~ N (0, I;). For t-EDM ODE, this estimate can be further simplified as follows,

V- fo(xt,t) = Epe)[€7V fo(xe, )e] (212)
S
— e [e ( V"tD" Xt,t )e] (214)
= %Ep(e) [eTe —€ thDg Xy, t e] (215)
- %]Ep(e) [eTe — €'V, Do(xs, 1 e] (216)
[d Eye) (€ Vx, Do(x1, e | 217)
where d is the data dimensionality. Thus, the log-likelihood can be specified as,
log p(x¢) = log p(x7) + JOT %[d —E,e)(e" VDo (x4, t)e)]dt. (218)
When € ~ N (0,021,), the above result can be re-formulated as,
T

1 1
log p(xg) = log p(x7) + f E[d — ;Ep(e) (eTVDg(xt,t)e)]dt. (219)
0

Moreover, using the first-order taylor series expansion

Dy(x + €) = Dg(x) + VDge + O([e|?) (220)
For a sufficiently small o, higher-order terms in O(|€|?) can be ignored since E[||¢?|] = o?d. Therefore,
Dy(x + €) ~ Dy(x) + VDye (221)
€' VDge ~ €' [Dy(x + €) — Dy(x)] (222)
E.[e"VDge] ~ Ec[e" (Dg(x + €) — Dy(x))] (223)
E.[e" VDge] ~ Ec[e Dg(x + €)] (224)
Therefore, the log-likelihood expression can be further simplified as,
T
log p(xo) = log p(xr) + L %[d - %Ep(e) (€7VDp(x:, t)e)]dt (225)
1 1
log p(xo) = log p(x7) + J;) n [d — ?Ep(e) (€"Dy(x: + €, t))]dt (226)

The advantage of this simplification is that we don’t need to rely on expensive jacobian-vector products in Eq.
218. However, since the denoiser now depends on €, monte-carlo approximation of the expectation in the
above equation could be computationally expensive for many samples e

F DISCUSSION AND LIMITATIONS

F.1 RELATED WORK

Connections with Denoising Score Matching. For the perturbation kernel q(x;|xq) = tq(pix0, 07214, v),
the denoising score matching (Vincent, 2011; Song et al., 2020) loss, Lpsm, can be formulated as,

€ 2
LDSM(H) o Exg~p(xo)EtE6~N(0,Id)IEI{NXZ(D)/l/ [A(Xta v, t)HDB (,LLtXO + Utﬁ7 Ut) - XOH2] (227)
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with the scaling factor \(x;,v,t) = [(v + d)/(v + d1)]? where di = (1/0?)|x: — uXo|3 (proof in App.
A.9). Therefore, the denoising score matching loss in our framework is equivalent to the simplified training
objective in Eq. 10 scaled by a data-dependent coefficient. However, in this work, we do not explore this loss
formulation and leave further exploration to future work.

Prior work in Heavy-Tailed Generative Modeling. The idea of exploring heavy-tailed priors for modeling
heavy-tailed distributions has been explored in several works in the past. More specifically, Jaini et al. (2020)
argue that a Lipschitz flow map cannot change the tails of the base distribution significantly. Consequently,
they use a heavy-tailed prior (modeled using a Student-t distribution) as the base distribution to learn Tail
Adaptive flows (TAFs), which can model the tails more accurately. In this work, we make similar observations
where standard diffusion models fail to accurately model the tails of real-world distributions. Consequently,
Laszkiewicz et al. (2022) assess the tailedness of each marginal dimension and set the prior accordingly.
On a similar note, we note that learning the tail parameter v spatially and across channels can provide
greater modeling flexibility for downstream tasks and will be an important direction for future work on this
problem. More recently, Kim et al. (2024) introduce heavy-tailed VAEs (Kingma & Welling, 2022; Rezende
& Mohamed, 2016) based on minimizing y-power divergences (Eguchi, 2021). This is perhaps the closest
connection of our method with prior work since we rely on y-power divergences to minimize the divergence
between heavy-tailed forward and reverse diffusion posteriors. However, VAEs often have scalability issues
and tend to produce blurry artifacts (Dosovitskiy & Brox, 2016; Pandey et al., 2022). On the other hand, we
work with diffusion models, which are known to scale well to large-scale modeling applications (Pathak et al.,
2024; Mardani et al., 2024; Esser et al., 2024; Podell et al., 2023).

Within diffusion models, Deasy et al. (2021) show that denoising score matching can be extended to
Generalized Normal distributions and refer to the resulting training as heavy-tailed denoising score matching
(HTDSM). Moreover, Deasy et al. (2021) rely on annealed Langevin dynamics for sampling. However, an
exact formulation of the reverse process is non-trivial and would involve Levy formulations of Kolmogorov’s
forward and reverse equations, which can be quite complex. In contrast, due to the conditional properties of
multivariate Student-t distributions, our method circumvents such complex formulations and enables a simple
framework for designing samplers for Student-t based diffusion models (see Proposition 2 in the main text).
Similarly, Yoon et al. (2023) present a framework for modeling heavy-tailed distributions using a-stable Levy
processes while Shariatian et al. (2024) simplify the framework proposed in Yoon et al. (2023) and instantiate
it for more practical diffusion models like DDPM. In contrast, our work deals with Student-t noise, which in
general (with the exceptions of Cauchy and the Gaussian distribution) is not a-stable and, therefore, a distinct
category of diffusion models for modeling heavy-tailed distributions. Moreover, prior works like Yoon et al.
(2023); Shariatian et al. (2024) rely on empirical evidence from light-tailed variants of small-scale datasets
like CIFAR-10 (Krizhevsky, 2009) and their efficacy on actual large-scale scientific datasets like weather
datasets remains to be seen.

Prior work in Diffusion Models. Our work is a direct extension of standard diffusion models in the literature
(Karras et al., 2022; Ho et al., 2020; Song et al., 2020). Moreover, since it only requires a few lines of
code change to transition from standard diffusion models to our framework, our work is directly compatible
with popular families of latent diffusion models (Pandey et al., 2022; Rombach et al., 2022) and augmented
diffusion models (Dockhorn et al., 2022; Pandey & Mandt, 2023; Singhal et al., 2023). Our work is also
related to prior work in diffusion models on a more theoretical level. More specifically, PFGM++ (Xu et al.,
2023b) is a unique type of generative flow model inspired by electrostatic theory. It treats d-dimensional data
as electrical charges in a D + d-dimensional space, where the electric field lines define a bijection between a
heavy-tailed prior and the data distribution. D is a hyperparameter controlling the shape of the electric fields
that define the generative mapping. In essence, their method can be seen as utilizing a perturbation kernel:

_Ditd
p(xe|x0)oc(llxe — xol[3 + 07 D))" = ta(x0,07 14, D)

When setting v = D, the perturbation kernel becomes equivalent to that of t-EDM, indicating the Student-t
perturbation kernel can be interpreted from another physical perspective — that of electrostatic fields and
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Figure 8: Illustration of the pdf for a x? distribution with varying degrees of freedom.

charges. The authors demonstrated that using an intermediate value for D (or /) leads to improved robustness
compared to diffusion models (where D — 0), due to the heavy-tailed perturbation kernel.

F.2 LIMITATIONS AND FUTURE WORK

While our proposed framework works well for modeling heavy-tailed data, it is not without its limitations.

On tuning v. Firstly, while the parameter v offers controllability for tail estimation using diffusion models, it
also increases the tuning budget by introducing an extra hyperparameter. Moreover, for diverse data channels,
tuning v per channel could be key to good estimation at the tails. This could result in a combinatorial
explosion with manual tuning. We think there might be several ways to learn v from the data.

* Firstly, it is worth noting that the parameter v directly influences training in heavy-tailed diffusions.
This is because the noising process x; = pyXg + ﬁ where k ~ x%(v)/v. Since the x?-squared
distribution is a special case of a Gamma distribution, we can perhaps use reparameterization (Ruiz
et al., 2016) to estimate the parameters (i.e. /) of this distribution using a neural network to learn this
parameter end-to-end. One important caveat in learning v end-to-end is that the optimization process
could just select a divergence which reduces the loss while not fitting © on the data. Therefore,
exploring these caveats for learning v are an important direction for further research.

* Alternatively, one can also estimate v from the data in a separate stage and use it as a perturbation
kernel parameter. We highlight one simple way to do this in Appendix D where we attempt to derive
the optimal noise schedule for EDM and t-EDM by minimizing the mutual information between the
X and the noisy data point x, w.r.t . In principle, for t-EDM, we can also solve this minimization
problem jointly over v and o to learn an initial v from the data.

On Evaluation metrics. Secondly, our evaluation protocol relies primarily on comparing the statistical

properties of samples obtained by flattening the generated or train/test set samples. One disadvantage of
this approach is that our current evaluation metrics ignore the structure of the generated samples. On this
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note, it may be tempting to use metrics like FID (Heusel et al., 2018), precision/recall (Sajjadi et al., 2018) to
assess the performance between the generated and dataset samples. However, a key caveat in using these
metrics is the reliance on a pre-trained feature extractor, which is commonly trained on natural images (like
ImageNet). However, in this work, we focus on weather data, which has a much different structure than
natural images. Due to this distribution shift, it is unclear if a feature extractor pre-trained on natural images
can extract meaningful structural features from weather datasets. Therefore, computing metrics like FID
using a pre-trained network trained on natural images for weather modeling is dubious at best. In this spirit,
training these feature extractors on large-scale weather data using classification or self-supervised losses so
that downstream metrics like FID can be reported reliably can be an interesting direction for future work.

Applications in other domains. In this work, while we explore the application of heavy-tailed diffusion
models like t-EDM in the context of weather forecasting, the methods developed in this work are quite
generic, and it will be interesting to apply these in the context of other domains like finance, which rely on
heavy-tailed modeling of assets. Lastly, our conditional synthesis experiments are limited to the next step
prediction and do not perform autoregressive rollouts like in the forecasting setup. Extending t-EDM with
improved preconditioning and automatic v tuning for forecasting would be an interesting research direction.
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Figure 9: Random samples generated from t-EDM (Top Panel) and EDM (Bottom Panel) for the Vertically Integrated
Liquid (VIL) channel. KS: Kolmogorov-Smirnov 2-sample statistic. Samples have been scaled logarithmically for better
visualization
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Figure 10: Random samples generated from t-Flow (Top Panel) and Gaussian Flow (Bottom Panel) for the Vertically
Integrated Liquid (VIL) channel. KS: Kolmogorov-Smirnov 2-sample statistic. Samples have been scaled logarithmically
for better visualization
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Figure 11: Random samples generated from t-EDM (Top Panel) and EDM (Bottom Panel) for the Vertical Wind Velocity
(w20) channel. KS: Kolmogorov-Smirnov 2-sample statistic
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Figure 12: Random samples generated from t-Flow (Top Panel) and Gaussian Flow (Bottom Panel) for the Vertical Wind
Velocity (w20) channel. KS: Kolmogorov-Smirnov 2-sample statistic
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Figure 13: 1-d Histogram Comparisons between samples from the generated and the Train/Test set for the Vertically
Integrated Liquid (VIL, see Top Pandel) and Vertical Wind Velocity (w20, see Bottom Panel) channels using t-EDM (with

varying v).
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Figure 14: 1-d Histogram Comparisons between samples from the generated and the Train/Test set for the Vertically
Integrated Liquid (VIL, see Top Pandel) and Vertical Wind Velocity (w20, see Bottom Panel) channels using t-Flow (with

varying v).
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Figure 9: Qualitative visualization of samples generated from our conditional modeling for predicting the next state for
the Vertically Integrated Liquid (VIL) channel. The ensemble mean represents the mean of ensemble predictions (16
in our case). Columns 2-3 represent two samples from the ensemble. The last column visualizes an animation of all
ensemble members (Best viewed in a dedicated PDF reader). For each sample, the rows correspond to predictions from
EDM, t-EDM (v = 3), and t-EDM (v = 5) from top to bottom, respectively. Samples have been scaled logarithmically
for better visualization
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Figure 10: Qualitative visualization of samples generated from our conditional modeling for predicting the next state for
the Vertical Wind Velocity (w20) channel. The ensemble mean represents the mean of ensemble predictions (16 in our
case). Columns 2-3 represent two samples from the ensemble. The last column visualizes an animation of all ensemble
members (Best viewed in a dedicated PDF reader). For each sample, the rows correspond to predictions from EDM,
t-EDM (v = 3), and t-EDM (v = 5) from top to bottom, respectively.
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Figure 15: Qualitative illustration of autoregressive rollouts using t-EDM (v = 3) and EDM on the w20 channel. The
conditional diffusion models were initialized using HRRR validation data and predictions were made with an interval of
1 hour up to a lead time of 10 hours. We do not observe any instabilities when generating trajectories using t-EDM. 7
represents lead-time with 7 = 0 denoting initial state.
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