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Abstract

Diffusion models have recently driven significant

breakthroughs in generative modeling. While state-

of-the-art models produce high-quality samples

on average, individual samples can still be low

quality. Detecting such samples without human

inspection remains a challenging task. To address

this, we propose a Bayesian framework for esti-

mating generative uncertainty of synthetic sam-

ples. We outline how to make Bayesian inference

practical for large, modern generative models and

introduce a new semantic likelihood (evaluated in

the latent space of a feature extractor) to address

the challenges posed by high-dimensional sample

spaces. Through our experiments, we demonstrate

that the proposed generative uncertainty effectively

identifies poor-quality samples and significantly

outperforms existing uncertainty-based methods.

Notably, our Bayesian framework can be applied

post-hoc to any pretrained diffusion or flow match-

ing model (via the Laplace approximation), and

we propose simple yet effective techniques to min-

imize its computational overhead during sampling.

1 INTRODUCTION

Diffusion (and flow-matching) models [Sohl-Dickstein

et al., 2015, Song et al., 2021a,c, Lipman et al., 2023] have

recently pushed the boundaries of generative modeling due

to their strong theoretical underpinnings and scalability.

Across various domains, they have enabled the generation

of increasingly realistic samples [Rombach et al., 2022,

Esser et al., 2024, Li et al., 2024]. Despite the impressive

progress, state-of-the-art models can still generate low

quality images that contain artefacts and fail to align

with the provided conditioning information. This poses a
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challenge for deploying diffusion models, as it can lead to

a poor user experience by requiring multiple generations

to manually find an artefact-free sample.

Bayesian inference has long been applied to detect

poor-quality predictions in predictive models [MacKay,

1992b, Gal et al., 2016, Wilson, 2020, Arbel et al., 2023].

By capturing the uncertainty of the model parameters due

to limited training data, each prediction can be assigned

a predictive uncertainty, which, when high, serves as a

warning that the prediction may be unreliable. Despite its

widespread use for principled uncertainty quantification

in predictive models, Bayesian methodology has been far

less commonly applied to detecting poor generations in

generative modeling. This raises a key question: How can

Bayesian principles help us detect poor generations?

In this work, we propose a Bayesian framework for esti-

mating generative uncertainty in modern generative models,

such as diffusion. To scale Bayesian inference for large

diffusion models, we employ the (last-layer) Laplace ap-

proximation [MacKay, 1992a, Ritter et al., 2018, Daxberger

et al., 2021a]. Additionally, to address the challenge posed

by the high-dimensional sample spaces of data such as nat-

ural images, we introduce a semantic likelihood, where we

leverage pretrained image encoders (such as CLIP [Radford

et al., 2021]) to compute variability in a latent, semantic

space instead. Through our experiments, we demonstrate

that generative uncertainty is an effective tool for detecting

low-quality samples and propose simple strategies to

minimize the sampling overhead introduced by Bayesian in-

ference. In particular, we make the following contributions:

1. We formalize the notion of generative uncertainty and

propose a method to estimate it for modern generative

models (Section 3). Analogous to how predictive

uncertainty helps identify unreliable predictions in

predictive models, generative uncertainty can be used

to detect low-quality generations in generative models.

2. We show that our generative uncertainty strongly

outperforms previous uncertainty-based approaches
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for filtering out poor samples [Kou et al., 2024, De Vita

and Belagiannis, 2025] (Section 4.2). Additionally, we

achieve competitive performance with non-uncertainty-

based methods, such as realism score [Kynkäänniemi

et al., 2019] and rarity score [Han et al., 2023], while

also highlighting the complementary benefits of

uncertainty (Appendix C.5).

3. We propose effective strategies to reduce the sampling

overhead of Bayesian uncertainty (Section 4.3) and

demonstrate the applicability of our framework beyond

diffusion models by applying it to a (latent) flow

matching model (Section C.7).

2 BACKGROUND

2.1 GENERATIVE MODELING

Sampling in Generative Models Modern deep generative

models like variational autoencoders (VAEs) [Kingma

et al., 2014], generative adversarial networks (GANs)

[Goodfellow et al., 2014], and diffusion models differ in

their exact probabilistic frameworks and training schemes,

yet share a common sampling recipe: start with random

noise and transform it into a new data sample [Tomczak,

2022]. Specifically, let x ∈ X denote a data sample and

z ∈ Z an initial noise. A new sample is generated by:

z ∼ p(z) , x̂ = gθ(z) ,

where p(z) is an initial noise (prior) distribution, typically

a standard Gaussian N (0, I), and gθ : Z → X is a

generator function with model parameters θ ∈ R
P . Here

and throughout the paper, we use z (with a slight abuse of

notation) to denote the entire randomness involved in the

sampling process.1

Diffusion Models The primary focus of this work is on

diffusion models [Sohl-Dickstein et al., 2015]. These mod-

els operate by progressively corrupting data into Gaussian

noise and learning to reverse this process. For a data sample

x0 ∼ q(x), the forward (noising) process is defined as

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I)

where ᾱt =
∏t

s=1(1− βs) and {βs}Ts=1, with βS ∈ (0, 1),
is a noise schedule chosen such that xT ∼ N (0, I)
(approximately). In the backward process, a denoising

network fθ is learned via a simplified regression objective

1This distinction matters for diffusion models. In DDIM [Song

et al., 2021a] and ODE sampling [Song et al., 2021c], randomness

is only present at the start of the sampling process (akin to VAEs

and GANs). In contrast, in DDPM [Ho et al., 2020] and SDE

sampling [Song et al., 2021c], randomness is introduced at every

step throughout the sampling process.

(among various possible parameterizations, see Song et al.

[2021c] or Karras et al. [2022]):

L(θ) = Et,x0,ϵ

[

∣

∣

∣

∣fθ(
√
ᾱtx0+

√
1−ᾱtϵ, t)− ϵ

∣

∣

∣

∣

2

2

]

. (1)

After training, diffusion models generate new samples via

a generator function, g
θ̂
, which consists of sequentially

applying the learned denoiser, f
θ̂
, and following specific

transition rules from samplers such as DDPM [Ho et al.,

2020] or DDIM [Song et al., 2021a].

2.2 BAYESIAN DEEP LEARNING

Bayesian neural networks (BNNs) go beyond point

predictions and allow for principled uncertainty quantifi-

cation [Neal, 1995, Kendall and Gal, 2017, Jospin et al.,

2022]. Let hψ : X → Y denote a predictive model with

parameters ψ ∈ R
O and D = {(xn,yn)}Nn=1 denote

training data. Instead of finding a single fixed set of

parameters, ψ̂ = argmaxL(ψ;D), that maximizes a

chosen objective function L, BNNs specify a prior p(ψ)
over model parameters and define a likelihood p(y|hψ(x)),
which together yield a posterior distribution via Bayes rule:

p(ψ|D) ∝ p(ψ)
∏N

n=1 p(yn|hψ(xn)). Under this Bayesian

view, a predictive model for a new test point x∗ is then

obtained via the posterior predictive distribution:

p(y|x∗,D) = Ep(ψ|D)

[

p(y|hψ(x∗))
]

.

For large models, finding the exact posterior distribution is

computationally intractable, hence an approximate posterior

q(ψ|D) is used instead. Popular approaches for approximate

inference include deep ensembles [Lakshminarayanan et al.,

2017, Wilson and Izmailov, 2020], variational inference

[Blundell et al., 2015, Zhang et al., 2018], SWAG [Mandt

et al., 2017, Maddox et al., 2019], and Laplace approxi-

mation [Daxberger et al., 2021a]. Moreover, to alleviate

computational overhead, it is common to give a ‘Bayesian

treatment’ only to a subset of parameters [Kristiadi et al.,

2020, Daxberger et al., 2021b, Sharma et al., 2023].

Finally, the intractable expectation integral in the posterior

predictive is approximated via Monte-Carlo (MC) sampling:

p(y|x∗,D)≈ 1

M

M
∑

m=1

p(y|hψm
(x∗)), ψm∼q(ψ|D), (2)

with M denoting the number of MC samples. By measuring

the variability of the posterior predictive distribution, e.g.,

its entropy, one can obtain an estimate of the model’s pre-

dictive uncertainty for a given test point u(x∗). The utility

of such uncertainties has been demonstrated on a wide

range of tasks such as out-of-distribution (OOD) detection

[Daxberger et al., 2021a], active learning [Gal et al., 2017],

and detection of influential samples [Nickl et al., 2024].
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Figure 1: Generative uncertainty. Illustration of how we compute generative uncertainty for a fixed random noise z. For a

diffusion model gθ, we draw M parameter sets {θ1, . . . , θM} from the approximate posterior q(θ|D) over diffusion model’s

parameters (here: last-layer Laplace with M = 3). Each model gθm maps z to an image x̂m. Embedding all x̂m with a

frozen encoder cφ (e.g., CLIP) gives M semantic feature vectors em; the variability (e.g., entropy) of these vectors is the

final uncertainty u(z). Low-uncertainty (left) corresponds to consistent, high-quality images, whereas high-uncertainty

(right) reveals model disagreement and poor, discordant outputs.

3 GENERATIVE UNCERTAINTY

VIA BAYESIAN INFERENCE

While Bayesian neural networks (BNNs) have traditionally

been applied to predictive models to estimate predictive un-

certainty, in this section we demonstrate how to apply them

to diffusion to estimate generative uncertainty (see Figure 1

and Algorithm 1 for an overview of our method). Later in

Section 4, we show that generative uncertainty can be used

to detect poor-quality samples. Our focus is on generative

models for natural images, where x ∈ R
H×W×C . For ease

of exposition, we consider unconditional generation in

this section, though our methodology can also be applied

directly to conditional models (see Section 4.2).

3.1 GENERATIVE UNCERTAINTY

As in traditional Bayesian predictive models (cf. Sec-

tion 2.2), the central principle for obtaining a Bayesian

notion of uncertainty in diffusion models is the posterior

predictive distribution:

p(x|z,D) = Ep(θ|D)

[

p(x|gθ(z))
]

. (3)

Here, as before in Section 2.1 , we use z to denote the entire

randomness involved in the diffusion sampling process.

Generative uncertainty is then defined as the variability of

the posterior predictive:

u(z) := V(p(x|z,D)) (4)

where V(·) denotes the variability measure, such as entropy.

We propose a tractable estimator of the posterior predictive

later in Eq. 8.

In the same way that the predictive uncertainty u(x∗),
of a predictive model provides insight into the quality

of its prediction for a new test point x∗, the generative

uncertainty u(z) of a generative model gθ should offer

information about the quality of the generation gθ(z) for

a ‘new’ random noise sample z. We demonstrate this

relationship experimentally in Section 4. Next, we discuss

how to make Bayesian inference on (large) diffusion models

computationally tractable.

3.2 LAST-LAYER LAPLACE APPROXIMATION

State-of-the-art diffusion models are extremely large (100M

to 1B+ parameters) and can take weeks to train. Conse-

quently, the computational overhead of performing Bayesian

inference on such large models is of significant concern. For

instance, while deep ensembles are a convenient and popular

approach for predictive models [Lakshminarayanan et al.,

2017], the sheer size of diffusion models renders naive en-

sembling infeasible. To address this, we adopt the Laplace

approximation [MacKay, 1992a, Shun and McCullagh,
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1995] to find the approximate posterior q(θ|D). The Laplace

approximation is among the most computationally efficient

approximate inference methods while still offering compet-

itive performance [Daxberger et al., 2021a]. Moreover, a

particularly appealing feature of the Laplace approximation

is that it can be applied post-hoc to any diffusion model. We

leverage this property in Section 4, where we apply it to a

variety of popular diffusion and flow-matching models.

The Laplace approximation of the posterior is given by:

q(θ|D) = N (θ|θ̂,Σ), Σ =
(

∇2
θL(θ;D)

∣

∣

θ̂

)−1
, (5)

where θ̂ represents the parameters of a pre-trained diffusion

model, and Σ is the inverse Hessian of the diffusion training

loss from Eq. 1. To reduce the computational cost further,

we apply a ‘Bayesian’ treatment only to the last layer of

the denoising network fθ.

Note that for the Laplace approximation to be theoretically

valid, the loss function should correspond to (log-)likelihood

and (log-)prior terms. While the diffusion loss can be inter-

preted as a log-likelihood up to an additive constant—due

to its role as a surrogate for the KL divergence between the

noising and denoising processes—this interpretation holds

only under appropriate weighting of the loss terms across

different time steps [Song et al., 2021b]. Consequently,

applying the Laplace approximation directly, without such

reweighting, is not fully theoretically justified. Despite

this, we find in our experiments (Section 4.2) that applying

the Laplace approximation directly to the diffusion losses

used in practice (without modifying the loss weighting)

still yields meaningful uncertainty estimates that align

well with the visual quality of generated samples. That

said, we believe that better understanding the theoretical

requirements for applying approximate Bayesian inference

techniques like Laplace in modern generative models like

diffusion remains an important direction for future work that

could lead to even more informative uncertainty estimates.

It is also worth noting that the use of last-layer Laplace

approximation for diffusion models has been previously

proposed in BayesDiff [Kou et al., 2024]. While our

implementation of the Laplace approximation closely

follows theirs, there are significant differences in how we

utilize the approximate posterior, q(θ|D). Specifically, in

our approach, we use it within the traditional Bayesian

framework (Eq. 3) to sample new diffusion model parame-

ters, leaving the diffusion sampling process, gθ, unchanged.

In contrast, BayesDiff resamples new weights from q(θ|D)
at every diffusion sampling step t, which necessitates

substantial modifications to the diffusion sampling process

through their variance propagation approach. We later

demonstrate in Section 4.2 that modifications such as vari-

ance propagation are unnecessary for obtaining Bayesian

generative uncertainty and staying closer to the traditional

Bayesian setting leads to the best empirical performance.

Algorithm 1: Diffusion Sampling with Generative Unc.

Input :random noise z, pretrained diffusion model

g
θ̂
, Laplace posterior q(θ|D) (Eq. 5), number

of MC samples M , semantic feature extractor

cφ, semantic likelihood noise σ

Output :generated sample x̂0, generative uncertainty

estimate u(z)
1 Generate a sample x̂0 = g

θ̂
(z)

2 Get semantic features e0 = cφ(x̂0)
3 for m = 1 →M do

4 θm ∼ q(θ|D)
5 x̂m = gθm(z)
6 em = cφ(x̂m)

7 end

8 Compute p(x|z,D) using {em}Mm=0 (Eq. 8)

9 Compute the entropy u(z) = H(p(x|z,D))
10 return x̂0, u(z)

3.3 SEMANTIC LIKELIHOOD

We next discuss the choice of likelihood for estimating gen-

erative uncertainty in diffusion models. Since the denoising

problem in diffusion is modeled as a (multi-output) regres-

sion problem, the most straightforward approach is to place

a simple Gaussian distribution over the generated sample:

p(x|gθ(z)) = N (x | gθ(z), σ2I), (6)

where σ2 represents the observation noise.

However, as we will demonstrate in Section 4, this likeli-

hood leads to non-informative estimates of generative un-

certainty (Eq. 4). The primary issue is that the sample space

of natural images is high-dimensional (i.e., |X | = HWC).

Consequently, placing the likelihood directly in the sample

space causes the variability of the posterior predictive

distribution to be based on pixel-level differences. This is

problematic because it is well-known that two images can

appear nearly identical to the human eye while exhibiting a

large L2-norm difference in pixel space X (see, for example,

the literature on adversarial examples [Szegedy et al.,

2013]). To get around this, we propose to map the generated

samples to a ‘semantic’ latent space, S, via a pre-trained

feature extractor, cφ : X → S (e.g., an inception-net

[Szegedy et al., 2016] or a CLIP encoder [Radford et al.,

2021]). The resulting semantic likelihood has the form

p(x|gθ(z);φ) = N (e(x) | cφ
(

gθ(z)
)

, σ2I) (7)

where e(x) ∈ S is the (random) vector of semantic features.

By combining the (last-layer) Laplace approximate poste-

rior and the semantic likelihood, we can now approximate
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Figure 2: Illustration of how generative uncertainty can be effective for filtering our poor generations on a simple 2D

Gaussian dataset. Left: training data consisting of 25 separate Gaussian modes. Middle: generated samples using a trained

diffusion model and a DDPM sampler (T = 1000). Right: same set of generated samples after removing 50% of generations

with the highest estimated generative uncertainty.

the posterior predictive (Eq. 3) as

p(x|z,D) ≈ N
(

e(x)
∣

∣ ē, Diag
( 1

M

M
∑

m=1

e
2
m − ē

2
)

+ σ2I
)

,

ē =
1

M

M
∑

m=1

em, em= cφ
(

gθm(z)
)

, θm∼ q(θ|D), (8)

where M denotes the number of Monte Carlo samples.

Additionally, we approximate the posterior predictive with

a single Gaussian via moment matching here, a common

practice in Bayesian neural networks for regression prob-

lems [Lakshminarayanan et al., 2017, Antorán et al., 2020].

A more detailed derivation is provided in Appendix B.1.

Unlike in the posterior predictive for predictive models

(Eq. 2), where it is used to obtain both the prediction and the

associated uncertainty, the generative posterior predictive

(Eq. 8) is used solely to estimate the generative uncertainty

u(z). The actual samples x̂ are still generated using the pre-

trained diffusion model g
θ̂

(see Algorithm 1). As a variabil-

ity measure V(·) in our generative uncertainty framework,

we propose to use entropy (denoted with H(·) in Algo-

rithm 1) due to its simplicity and widespread use in quantify-

ing predictive uncertainty. However, we note that alternative

measures of variability, such as pairwise-distance estimators

(PAiDEs) [Berry and Meger, 2023], can also be employed.

4 EXPERIMENTS

In our experiments, we begin by demonstrating that

generative uncertainty serves as an effective method for

identifying poor samples in diffusion models, using a

simple synthetic dataset (Section 4.1). We then show that

our proposed approximations (Sections 3.2 and 3.3) enable

the estimation of generative uncertainty in large, modern

diffusion models applied to high-dimensional natural

images (Section 4.2). Additionally, we discuss the sampling

overhead introduced by our Bayesian approach and show

that it can be effectively reduced (Section 4.3). Finally,

we extend our Bayesian framework beyond diffusion by

applying it to detect low-quality samples in a (latent) flow

matching model (Appendix C.7). Our code is available at

https://github.com/metodj/DIFF-UQ.

4.1 TOY DEMONSTRATION

To illustrate the potential of generative uncertainty for

detecting poor generations, we adopt the setting from Aithal

et al. [2024]. Specifically, we use a 2D synthetic dataset

with 25 distinct modes (Figure 2, left) to train a small

diffusion model. We then generate 50K samples using a

DDPM sampler (Figure 2, middle). While the generated

samples cover the 25 modes well, many ‘hallucinated’

samples also appear between the modes of the training data.

Following Aithal et al. [2024], we consider such samples

to be poor generations, as they are highly unlikely under

the true data-generating distribution.

Next, we train an ensemble of diffusion models (M = 5)

and use it to estimate the generative uncertainty of each

of the 50K generated samples. We then filter out the 50%

of samples with the highest estimated uncertainty and

plot the remaining ones in Figure 2, right. As shown

in the plot, this uncertainty-based filtering effectively

removes all poor generations between modes, indicating

that generative uncertainty can serve as a reliable indicator

of sample quality. Note that in this simple toy setting, we

use neither the Laplace approximation (relying instead on

a diffusion deep ensemble) nor the semantic likelihood. In

the following section, we show how both can be employed

to extend generative uncertainty estimation to the more

realistic setting of natural images.

1841



4.2 DETECTING LOW-QUALITY GENERATIONS

To demonstrate that our proposed generative uncertainty

is effective for detecting low-quality generations also on

high-dimensional data such as natural images, we follow the

experimental setup from prior work on uncertainty-based

filtering [Kou et al., 2024, De Vita and Belagiannis, 2025].

Specifically, we generate 12K samples using a given dif-

fusion model and compute the uncertainty estimate for each

sample. We then select n ∈ {6K, 7K, . . . , 11K} samples

with the lowest uncertainty. If uncertainty reliably reflects

the visual quality of generated samples, filtering based on

it should yield greater improvements in population-level

metrics (such as FID) compared to selecting a random

subset of n images.

Implementation Details To ensure a fair comparison

with BayesDiff [Kou et al., 2024], we adopt their proposed

implementation of the last-layer Laplace approximation.

Specifically, we use an Empirical Fisher approximation

of the Hessian with a diagonal factorization [Daxberger

et al., 2021a]. When computing the posterior predictive

distribution (Eq. 8), we use M = 5 Monte Carlo samples.

For the semantic feature extractor cφ, we leverage a

pretrained CLIP encoder [Radford et al., 2021]. We set

the observation noise to σ2 = 0.001 (Eq. 7). Additional

implementation details are provided in Appendix D.

Baselines We compare our proposed generative uncertainty

to existing uncertainty-based approaches for detecting low-

quality samples: BayesDiff and the aleatoric uncertainty

(AU) approach proposed by De Vita and Belagiannis [2025].

BayesDiff estimates epistemic uncertainty in diffusion

models using a last-layer Laplace approximation and tracks

this uncertainty throughout the entire sampling process.

In contrast, in AU, uncertainty is computed by measuring

the sensitivity of intermediate diffusion scores to random

perturbations. Unlike our approach, both methods estimate

uncertainty directly in pixel space.

Evaluation Metrics In addition to the widely used

Fréchet Inception Distance (FID) [Heusel et al., 2017] for

evaluating the quality of a filtered set of images, we also

report precision and recall metrics [Sajjadi et al., 2018,

Kynkäänniemi et al., 2019]. To compute these quantities

we fit two manifolds in feature space: one for the generated

images and another for the reference (training) images.

Precision is the proportion of generated images that lie in

the reference image manifold, while recall is the proportion

of reference images that lie in the generated image manifold.

Precision measures the quality (or fidelity) of generated

samples, whereas recall quantifies their diversity (or

coverage over the reference distribution).

Results We present our main results on the ImageNet

dataset in Figure 3 for UViT model [Bao et al., 2023]

and in Figure 7 for ADM model [Dhariwal and Nichol,

2021]. We first observe that existing uncertainty-based

approaches (BayesDiff and AU) result in little to no

improvement in metrics that assess sample quality (FID and

precision). In contrast, our generative uncertainty method

leads to significant improvements in terms of both FID and

precision. For example, on the UViT model, a subset of

n = 10K images selected based on our uncertainty measure

achieves an FID of 7.89, significantly outperforming both

the Random baseline (9.45) and existing uncertainty-based

methods (BayesDiff 9.16, AU 9.20).

Next, in order to qualitatively demonstrate the effectiveness

of our approach, we show 25 samples with the highest and

lowest generative uncertainty (out of the original 12K sam-

ples) according to our method in Figure 4. High-uncertainty

samples exhibit numerous artefacts, and in most cases, it

is difficult to determine what exactly they depict. Combined

with the quantitative results in Figures 3&7, this supports

our hypothesis that (Bayesian) generative uncertainty is

an effective metric for identifying low-quality samples.

Conversely, the lowest-uncertainty samples are of high

quality, with most appearing as ‘canonical’ examples of

their respective (conditioning) class.

For comparison, in Figure 8 we also depict the 25 ‘worst’

and ‘best’ samples according to the uncertainty estimate

from BayesDiff. It is evident that their uncertainty is less

informative for sample quality than ours. Moreover, their

uncertainty measure appears to be very sensitive to the

background pixels. Most images with the highest uncer-

tainty have a ‘cluttered’ background, whereas most images

with the lowest uncertainty have a ‘clear’ background.

We attribute this issue to the fact that in BayesDiff the

uncertainty is computed directly in the pixel space, unlike

in our approach where we use the semantic likelihood (Sec-

tion 3.3) to move away from the (high-dimensional) sample

space. To further verify the importance of the semantic

likelihood, we perform an ablation where we compute

the generative uncertainty directly in the pixel-space (see

lines). As seen in Figures 3&7, this leads to worse

FID/precision numbers in most cases compared to using the

proposed semantic likelihood. Moreover, based on samples

in Figure 10, it is clear that without semantic likelihood,

our uncertainty becomes overly sensitive to the background

pixels in the same way as in BayesDiff.

Lastly, we observe that filtering based on our generative

uncertainty results in some loss of sample diversity,

as evidenced by lower recall scores (see right plots in

Figures 3&7). We attribute this to the fact that, in our main

experiment, 12K images are generated such that all 1000

ImageNet classes are represented.2 Since certain classes

produce images with higher uncertainty (see Appendix C.6

2Following Kou et al. [2024], we use class-conditional dif-

fusion models but randomly sample a class for each of the 12K

generated samples.
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Figure 3: Image generation results for n ∈ {6K, 7K, . . . , 11K} filtered samples (out of 12K) for UViT diffusion model [Bao

et al., 2023]. Our generative uncertainty outperforms previously proposed uncertainty-based approaches (AU [De Vita and

Belagiannis, 2025], BayesDiff [Kou et al., 2024]) in terms of image quality, as indicated by higher FID (left) and precision

(middle) scores. We report mean values along with standard deviations over 5 runs with different random seeds.

Figure 4: Images with highest (left) and lowest (right) generative uncertainty amongst 12K generations using a UViT

diffusion model [Bao et al., 2023]. Generative uncertainty correlates with visual quality: high-uncertainty samples exhibit

numerous artefacts, whereas low-uncertainty samples resemble canonical images of their respective conditioning class.

for a detailed analysis), filtering based on uncertainty

inevitably alters the class distribution among the selected

samples. Moreover, the trade-off between improving

sample quality (precision) and reducing diversity (recall)

has been observed before, see for example the literature on

classifier(-free) guidance [Ho and Salimans, 2022].

Comparison with realism and rarity scores Lastly, we

compare our proposed method with non-uncertainty-based

approaches, such as the realism score [Kynkäänniemi et al.,

2019] and the rarity score [Han et al., 2023]. These metrics

work by measuring the distance of a generated sample

from the data manifold (derived from a reference dataset)

in a semantic space spanned by the inception-net features

[Szegedy et al., 2016]. Notably, prior work [Kou et al., 2024,

De Vita and Belagiannis, 2025] has not considered such

comparisons, which we believe are essential for assessing

the practical utility of uncertainty-based filtering.
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Figure 5: Images with the highest (bottom) and the lowest (top) generative uncertainty among 128 generations using a UViT

diffusion model for 2 classes: black swan (left) and Tibetan terrier (right).

For realism, we retain the n images with the highest scores,

whereas for rarity, we keep those with the lowest scores.

As shown in Figures 13&14, our generative uncertainty

performs on par with realism and rarity in terms of FID.

However, compared to our method, realism and rarity scores

result in sharper precision-recall trade-offs—yielding larger

precision gains at the expense of a greater drop in recall.

Furthermore, Table 1 shows that our score can be effectively

combined with realism or rarity scores. Specifically for

n = 10K, combining our score with realism yields an

FID of 7.60 on UViT, compared to 8.26 when combining

realism and rarity. We attribute higher benefits from

ensembling our score to the fact that, while realism and

rarity exhibit a strong negative Spearman correlation

(-0.85), our uncertainty measure is less correlated with them

(-0.27 with realism, 0.38 with rarity), as shown in Figure 15.

Taken together, these results indicate that our uncertainty

score captures (somewhat) different desirable properties of

images compared to realism and rarity.

4.3 IMPROVING SAMPLING EFFICIENCY

We next examine the sampling costs associated with

Bayesian inference in diffusion sampling. As shown in

Algorithm 1, obtaining an uncertainty estimate u(z) for

a generated sample x̂0 = gθ(z) requires generating M

additional samples, resulting in MT additional network

function evaluations (NFEs). For the results presented in

Section 4.2, we use M = 5 and the default number of

sampling steps T = 50 ( ), leading to an additional 250

NFEs for uncertainty estimation—on top of the 50 NFEs

required to generate the original sample. Since this overhead

may be prohibitively expensive in certain deployment

scenarios, we next explore strategies to reduce the sampling

cost associated with our generative uncertainty.

The most straightforward approach is to reduce the number

of Monte Carlo samples M . Encouragingly, reducing M

to as few as 1 still achieves highly competitive performance

(see Figure 6). Further efficiency gains can be achieved

by reducing the number of sampling steps T , leveraging

the flexibility of diffusion models to adjust T on the fly.

Importantly, we lower T only for the additional M samples

used for uncertainty assessment while keeping the default

T for the original sample x̂0 to ensure that the generation

quality is not compromised. Taken together, reducing M

and T significantly improves the efficiency of our generative

uncertainty. Using the ADM model [Dhariwal and Nichol,

2021], our generative uncertainty method with M = 1 and

T = 25 ( ) achieves an FID of 10.36, which still strongly

outperforms both the Random (11.31) and BayesDiff

(11.20) baselines while requiring only 25 additional NFEs.

5 RELATED WORK

Uncertainty quantification in diffusion models has

recently gained significant attention. Most related to our

work are BayesDiff [Kou et al., 2024], which uses a Laplace

approximation to track epistemic uncertainty throughout

the sampling process, and De Vita and Belagiannis [2025],

which captures aleatoric uncertainty via the sensitivity

of diffusion score estimates. Our work extends both by

introducing an uncertainty framework that is more general

(applicable beyond diffusion), simpler (requiring no sam-

pling modifications), and more effective (see Section 4.2).

Also related is DECU [Berry et al., 2024], which employs

an efficient variant of deep ensembles [Lakshminarayanan

et al., 2017] to capture the epistemic uncertainty of condi-

tional diffusion models. However, DECU does not consider

using uncertainty to detect poor-quality generations, as its

framework provides uncertainty estimates at the level of the

conditioning variable, whereas ours estimates uncertainty

at the level of initial random noise. Similarly, in Chan

et al. [2024] the use of hyper-ensembles is proposed to

capture epistemic uncertainty in diffusion models for

inverse problems such as super-resolution, but, as in DECU,

their approach does not provide uncertainty estimates

in unconditional settings or in conditional settings with

low-dimensional conditioning (such as class-conditional

generation). Moreover, both DECU [Berry et al., 2024]

and Chan et al. [2024] require modifying and retraining

diffusion model components, whereas our approach oper-
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ates post-hoc with any pretrained diffusion model via the

Laplace approximation [Daxberger et al., 2021a]. A recent

approach, PUNC [Franchi et al., 2025], focuses only on

text-to-image models. The uncertainty of image generation

with respect to text conditioning is measured through the

alignment between a caption generated from a generated

image and the original prompt used to generate said image.

Additionally, a large body of work explores conformal

prediction for uncertainty quantification in diffusion models

[Angelopoulos et al., 2022, Sankaranarayanan et al., 2022,

Teneggi et al., 2023, Belhasin et al., 2023]. However, these

approaches are primarily designed for inverse problems

(e.g., deblurring), and cannot be directly applied to detect

low-quality samples in unconditional generation.

Bayesian inference in generative models has been

explored previously outside the domain of diffusion

models. Prominent examples include Saatci and Wilson

[2017] where a Bayesian version of a GAN is proposed,

showing improvements for semi-supervised learning,

and Daxberger and Hernández-Lobato [2019], where a

Bayesian VAE [Tran et al., 2023] is shown to provide

more informative likelihood estimates for the unsupervised

out-of-distribution detection compared to the non-Bayesian

counterparts [Nalisnick et al., 2019]. Since diffusion models

can be interpreted as neural ODEs [Song et al., 2021c],

another relevant work is Ott et al. [2023], which employs a

Laplace approximation to quantify uncertainty when solving

neural ODEs [Chen et al., 2018]. However, Ott et al. [2023]

focuses solely on low-dimensional regression problems.

Non-uncertainty based approaches for filtering out

poor generations include the realism [Kynkäänniemi et al.,

2019], rarity [Han et al., 2023], and anomaly scores [Hwang

et al., 2024]. Our work is the first to establish a connection

between these scores and uncertainty-based methods,

which we hope will inspire the development of even better

sample-level metrics in the future. Additionally, a large

body of work focuses on specially designed sample-quality

scoring models [Gu et al., 2020, Zhao et al., 2024] or,

alternatively, on leveraging large pretrained vision-language

models (VLMs) [Zhang et al., 2025] for scoring generated

images. However, these approaches require either access to

sample-quality labels or rely on (expensive) external VLMs.

In contrast, our uncertainty-based method requires neither,

making it a more accessible and scalable alternative.

6 LIMITATIONS

While we have demonstrated in Section 4 that semantic like-

lihood is essential for addressing the over-sensitivity of prior

work to background pixels [Kou et al., 2024], our reliance

on a pretrained image encoder like CLIP [Radford et al.,

2021] limits the applicability of our diffusion uncertainty

framework to natural images. Removing the dependence on

Figure 6: FID results for n = 10K ImageNet filtered images

using our generative uncertainty on ADM model [Dhariwal

and Nichol, 2021]. We vary the number of Monte Carlo sam-

ples M and diffusion sampling steps T (see Algorithm 1).

By default, we use M=5 with T=50 ( ), incurring an addi-

tional 250 NFEs for uncertainty estimation. Encouragingly,

setting M=1 and T=25 ( ) still achieves competitive perfor-

mance while reducing the sampling overhead by 10x. Lower

left is best: better FID and greater computational efficiency.

such encoders would unlock the application our Bayesian

framework to other modalities where diffusion models are

used, such as molecules [Hoogeboom et al., 2022, Cornet

et al., 2024] or text [Gong et al., 2023, Yi et al., 2024]. Ex-

ploring whether insights from the literature on uncovering

semantic features in diffusion models [Kwon et al., 2023,

Luo et al., 2024, Namekata et al., 2024] could help achieve

this represents a promising direction for future work.

Moreover, the large size of modern diffusion models neces-

sitates the use of cheap and scalable Bayesian approximate

inference techniques, such as the (diagonal) last-layer

Laplace approximation employed in our work (following

[Kou et al., 2024]). A more comprehensive comparison of

available approximate inference methods could be valuable,

as improving the quality of the posterior approximation

may further enhance the detection of low-quality samples

based on Bayesian generative uncertainty.

7 CONCLUSION

We introduced generative uncertainty and demonstrated how

to estimate it in modern generative models such as diffusion.

Our experiments showed the effectiveness of generative

uncertainty in filtering out low-quality samples. For future

work, it would be interesting to explore broader applications

of Bayesian principles in generative modeling beyond

detecting poor-quality generations. Promising directions

include guiding synthetic data generation and detecting

memorized samples. It would also be worthwhile to further

investigate the connection between uncertainty-based

filtering and classifier(-free) guidance [Ho and Salimans,

2022], as both exhibit similar precision-recall trade-offs.
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APPENDIX

The supplementary material is organized as follows:

• In Appendix A, we provide additional figures.

• In Appendix B.1, we provide more details on our approximation of generative uncertainty (Eq. 8).

• In Appendix C.1, we qualitatively compare our method with BayesDiff [Kou et al., 2024].

• In Appendix C.2, we perform qualitative ablations on our semantic likelihood (Section 3.3).

• In Appendix C.3, we demonstrate how to use our generative uncertainty for pixel-wise uncertainty.

• In Appendix C.4, we show that diffusion’s own likelihood is not useful for filtering out poor samples.

• In Appendix C.5, we compare our generative uncertainty to realism [Kynkäänniemi et al., 2019] and rarity [Han et al.,

2023] scores.

• In Appendix C.6, we investigate the drop in sample diversity by looking at the average generative uncertainty per

conditioning class.

• In Appendix C.7, we apply our generative uncertainty to detect low-quality samples in a latent flow matching model

[Dao et al., 2023].

• In Appendix D, we provide implementation and experimental details.

A ADDITIONAL FIGURES

Figure 7: Image generation results for n ∈ {6K, 7K, . . . , 11K} filtered samples (out of 12K) for ADM diffusion model

[Dhariwal and Nichol, 2021]. Our generative uncertainty outperforms previously proposed uncertainty-based approaches

(AU [De Vita and Belagiannis, 2025], BayesDiff [Kou et al., 2024]) in terms of image quality, as indicated by higher FID

(left) and precision (middle) scores. We report mean values along with standard deviations over 5 runs with different random

seeds.
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B DERIVATIONS

B.1 GENERATIVE UNCERTAINTY APPROXIMATION

To ensure maximal clarity of exposition, we first derive a tractable estimator of u(z) (Eq. 4) based on ‘pixel-space’

likelihood (Eq. 6):

p(x|z,D)
Eq.3
= Ep(θ|D)

[

p(x|gθ(z)
] (1)≈ 1

M

M
∑

m=1

p(x|gθm(z))
Eq.6
=

1

M

M
∑

m=1

N (x|gθm(z), σ2I)
(2)≈

N
(

x|ḡ,Diag
( 1

M

M
∑

m=1

gθm(z)2 − ḡ
2
)

+ σ2I
)

=: qpixel(z)

where θm ∼ q(θ|D) (Eq. 5) and ḡ = 1
M

∑M

m=1 gθm(z). Note that in step (1) we make use of the usual Monte Carlo (MC)

approximation of the Bayesian posterior predictive (Eq. 2) using M samples and in step (2) we approximate a mixture

of Gaussian with a single Gaussian using moment-matching. Moreover, we consider only the diagonal of the resulting

covariance which we do for efficiency reasons (e.g., for ImageNet 256x256 the full covariance has ∼ 4 · 1010 parameters

rendering the diagonal approximation necessary).

A pixel-space generative uncertainty is then obtained by taking the entropy of the resulting Gaussian distribution:

u(z) ≈ H(qpixel(z)). However, as we show qualitatively in Appendix C.2, uncertainty based on pixel-space likelihood is

not particularly informative about the visual quality of the samples as it is overly sensitive to the background pixels—images

with simple backgrounds exhibit low uncertainty, whereas images with ‘cluttered’ background exhibit high uncertainty.

This motivates our use of ‘semantic-likelihood’ (Eq. 7) to arrive at the Eq. 8:

p(x|z,D)
(1)≈ 1

M

M
∑

m=1

p(x|gθm(z);φ)
Eq. 7
=

1

M

M
∑

m=1

N (e(x)|cφ(gθm(z)), σ2I)
(2)≈

N
(

e(x)
∣

∣

∣
ē,Diag

( 1

M

M
∑

m=1

e
2
m − ē

2
)

+ σ2I
)

=: qsemantic(z)

where ē = 1
M

∑M

m=1 em, em = cφ(gθm(z)), θm ∼ q(θ|D) and cφ is a pre-trained feature extractor of choice (e.g., CLIP).

With step (1) we again denote the MC approximation (Eq. 2) and step (2) denotes moment-matching (with a diagonal

covariance approximation). While the resulting posterior predictive based on the semantic likelihood can not be used to

generate samples (since the likelihood is over CLIP features e(x) ∈ S and not data x ∈ X ), we can still compute its entropy

which we use as our final estimate of generative uncertainty u(z) ≈ H(qsemantic(z)). As described in Section 3.3 and in

Algorithm 1, we first generate a sample using a pretrained model g
θ̂

and then use the semantic posterior predictive qsemantic

solely for uncertainty estimation.

At this point it is important to acknowledge that by changing the likelihood to the semantic one we depart from the traditional

Bayesian framework where the same likelihood is used both for finding the posterior q(θ|D) as well as in the approximation

of the posterior predictive. However, we would like to emphasize that image generation using modern diffusion models

poses specific challenges, which to the best of our knowledge, have not been addressed within the Bayesian framework yet.

One such challenge is due to (extremely) high-dimensional sample spaces. For example, in the case of ImageNet 256x256

the dimensionality is ∼ 2 · 105. Our use of feature extractor cφ via the semantic likelihood reduces the dimensionality

(down to 512), potentially making the MC approximation using few samples (M ) ‘easier’. Another challenge is that using

a larger number of MC samples is computational prohibitive, since every additional sample corresponds to generating

a new sample with a diffusion model which is costly.

We hope that our promising experimental results based on the semantic likelihood (using a few MC samples only) will en-

courage the Bayesian community to further investigate the choice of the suitable likelihood in high-dimensional spaces (such

as those of natural images) and fill-in the potentially missing theoretical gaps (e.g., due to changing the likelihood ‘post-hoc’).
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C ADDITIONAL RESULTS

C.1 QUALITATIVE COMPARISON WITH BAYESDIFF

To further highlight the differences between our generative uncertainty and BayesDiff [Kou et al., 2024], we present

samples with the highest and lowest uncertainty according to BayesDiff in Figure 8. These samples are drawn from the

same set of 12K ImageNet images generated using the UViT model [Bao et al., 2023] as in Figure 4. Notably, BayesDiff’s

uncertainty score appears highly sensitive to background pixels—images with high uncertainty tend to have cluttered

backgrounds, while those with low uncertainty typically feature clear backgrounds. Furthermore, as reflected in BayesDiff’s

poor performance in terms of FID and precision (see Figures 3&7), some low-uncertainty examples exhibit noticeable

artefacts, whereas certain high-uncertainty samples are of rather high-quality. For example, the image of a dog in the

bottom-right corner of the high-uncertainty grid in Figure 8 looks quite good despite being assigned (very) high uncertainty.

Similarly, in Figure 9, we show low- and high-uncertainty samples according to BayesDiff for the same set of 128 images

per class as in Figure 5. Once again, we observe that BayesDiff’s uncertainty metric is less informative regarding a sample’s

visual quality compared to our generative uncertainty.

Figure 8: Images with the highest (left) and the lowest (right) BayesDiff uncertainty among 12K generations using a UViT

diffusion model [Bao et al., 2023]. BayesDiff uncertainty correlates poorly with visual quality and is overly sensitive to the

background pixels. Same set of 12K generated images is used as in Figure 4 to ensure a fair comparison.

Figure 9: Images with the highest (bottom) and the lowest (top) BayesDiff uncertainty among 128 generations using a UViT

diffusion model for 2 classes: black swan (left) and Tibetan terrier (right). Same set of 128 generated images

per class is used as in Figure 5 to ensure a fair comparison.
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C.2 ABLATION ON SEMANTIC LIKELIHOOD

To highlight the importance of using a semantic likelihood (Section 3.3) when leveraging uncertainty to detect low-quality

generations, we conduct an ablation study in which we replace it with a standard Gaussian likelihood applied directly in

pixel space (Eq. 6). Figure 10 presents the highest and lowest uncertainty images according to this ‘pixel-space’ generative

uncertainty. Notably, pixel-space uncertainty is overly sensitive to background pixels, mirroring the issue observed in

BayesDiff (see Appendix C.1). This highlights the necessity of using semantic likelihood to obtain uncertainty estimates

that are truly informative about the visual quality of generated samples.

Figure 10: Images with the highest (left) and the lowest (right) ‘pixel-space’ generative uncertainty among 12K generations

using a UViT diffusion model. Pixel-space uncertainty correlates poorly with visual quality and is overly sensitive to the

background pixels. Same set of 12K generated images is used as in Figure 4 to ensure a fair comparison.

C.3 PIXEL-WISE UNCERTAINTY

While not the primary focus of our work, we demonstrate how our generative uncertainty framework (Algorithm 1) can be

adapted to obtain pixel-wise uncertainty estimates. This is achieved by replacing our proposed semantic likelihood (Eq. 7)

with a standard ‘pixel-space’ likelihood (Eq. 6). Figure 11 illustrates pixel-wise uncertainty estimates for 5 generated samples.

Although pixel-wise uncertainty received significant attention in past work [Kou et al., 2024, Chan et al., 2024, De Vita

and Belagiannis, 2025], there is currently no principled method for evaluating its quality. Most existing approaches rely on

qualitative inspection, visualizing pixel-wise uncertainty for a few generated samples (as we do in Figure 11). This further mo-

tivates our focus on sample-wise uncertainty estimates, where more rigorous evaluation frameworks—such as improvements

in FID and precision on a set of filtered images—enable more meaningful comparisons between different approaches.

C.4 COMPARISON WITH LIKELIHOOD

We compare our generative uncertainty filtering criterion with a likelihood selection approach on the 12K images generated

by ADM trained on ImageNet 128x128. Here retain the n = 10K generated images with highest likelihood. We utilize the im-

plementation in Dhariwal and Nichol [2021] to compute the bits-per-dimension of each sample (one-to-one with likelihood).

The 25 samples with lowest and highest likelihood are shown in Figure 12. Visually, the likelihood objective heavily prefers

simple images with clean backgrounds and not necessarily image quality. Note that this is consistent with other works that

have reported likelihood to be an inconsistent identifier of image quality [Theis et al., 2016, Theis, 2024]. Quantitative results

for image quality were consistent with our qualitative observations. The FID, precision, and recall for the best 10K images ac-

cording to bits-per-dimension were 11.86±0.0026, 58.23±0.02160, and 70.45±0.0237 over three runs. By point estimate,
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Figure 11: Pixel-wise uncertainty based on our generative uncertainty for 5 generated samples using UViT diffusion.

all three metrics are worse or indistinguishable from the Random baseline (11.31± 0.07, 58.90± 0.36, 70.68± 0.38).

Figure 12: The 25 ‘worst’ (left) and ‘best’ (right) samples generated by ADM trained on ImageNet 128x128 selected by

lowest and highest likelihood among 12K generations.
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C.5 COMPARISON WITH REALISM & RARITY

Figure 13: Image generation results for n ∈ {6K, 7K, . . . , 11K} filtered samples (out of 12K) for ADM diffusion model

[Dhariwal and Nichol, 2021]. Our generative uncertainty performs on par with realism [Kynkäänniemi et al., 2019] and

rarity scores [Han et al., 2023] in terms of FID (left), while exhibiting a weaker precision-recall trade-off (middle and right).

We report mean values along with standard deviations over 5 runs with different random seeds.

Figure 14: Image generation results for n ∈ {6K, 7K, . . . , 11K} filtered samples (out of 12K) for UViT diffusion model

[Bao et al., 2023]. Our generative uncertainty performs on par with realism [Kynkäänniemi et al., 2019] and rarity scores

[Han et al., 2023] in terms of FID (left), while exhibiting a weaker precision-recall trade-off (middle and right). We report

mean values along with standard deviations over 5 runs with different random seeds.

To better understand the relationship between our generative uncertainty and non-uncertainty-based approaches such as

realism [Kynkäänniemi et al., 2019] and rarity [Han et al., 2023] scores, we compute the Spearman correlation coefficient

between different sample-level metrics on a set of 12K generated images from the experiment in Section 4.2. As shown

in Figure 15, realism and rarity scores exhibit a strong correlation (< −0.8). This is unsurprising, as both scores are derived

from the distance of a generated sample to a data manifold obtained using a reference dataset (e.g., a subset of training

data or a separate validation dataset).3

In contrast, our generative uncertainty exhibits a weaker correlation (< 0.4) with both realism and rarity scores. We

attribute this to the fact that our uncertainty primarily reflects the limited training data used in training diffusion models

3Such distance-based approaches are also commonly used to estimate prediction’s quality in predictive models; see, for example,

Van Amersfoort et al. [2020].
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(i.e., epistemic uncertainty), rather than the distance to a reference dataset, as is the case for realism and rarity scores.

Next, we investigate whether combining different scores can improve the detection of low-quality generations. When

combining two scores, we first rank the 12K images based on each score individually, then compute the combined ranking

by summing the two rankings and re-ranking accordingly. The results, shown in Table 1, indicate that combining realism and

rarity leads to minor or no improvements in FID (9.81 compared to 9.76 for realism alone on ADM. However, combining our

generative uncertainty with either realism or rarity achieves the best FID performance (9.54 on ADM). These results suggest

that ensembling scores that capture different aspects of generated sample quality is a promising direction for future research.

Figure 15: Spearman correlation coefficient between different sample quality metrics for 12K ImageNet images generated

using ADM (left) and UViT (right).

Table 1: Image generation results for n = 10K filtered samples (out of 12K) based on combined metrics. Combining our

generative uncertainty outperforms combining realism and recall in terms of FID. We report mean values along with standard

deviation over 5 runs with different random seeds.

ADM (DDIM), ImageNet 128×128 UViT (DPM), ImageNet 256×256

FID (³) Precision (↑) Recall (↑) FID (³) Precision (↑) Recall (↑)
Realism + Rarity 9.81± 0.06 67.06± 0.29 66.73± 0.37 8.26± 0.07 69.01± 0.33 69.86± 0.36
Ours+ Realism 9.54± 0.04 66.41± 0.15 67.04± 0.47 7.60± 0.10 68.33± 0.09 69.75± 0.42
Ours + Rarity 9.56± 0.06 65.44± 0.26 67.36± 0.54 7.56± 0.12 67.48± 0.18 70.18± 0.40
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C.6 CLASS-AVERAGED GENERATIVE UNCERTAINTY

Figure 16: A histogram of class-averaged generative uncer-

tainties for 12K generated samples using UViT.

To better understand the drop in sample diversity (recall)

when using our generative uncertainty to filter low-quality

samples in Figures 3&7, we analyze the distribution of

average entropy per conditioning class. Specifically, for

each of the 12K generated images, we randomly sample a

conditioning class to mimic unconditional generation. As

a result, all 1,000 ImageNet classes are represented among

the 12K generated samples. Next, we compute our gen-

erative uncertainty for each sample and then average the

uncertainties within each class. A plot of class-averaged

uncertainties is shown in Figure 16. Since class-averaged

uncertainties exhibit considerable variance, the class dis-

tribution in the 10K filtered samples deviates somewhat

from that of the original 12K images, thereby explaining

the reduction in diversity (recall).

While our primary focus in this work is on providing per-

sample uncertainty estimates u(z), we can also obtain uncertainty estimates for the conditioning variable u(y) (e.g., a class

label), by averaging over all samples corresponding to a particular y ∈ Y as done in Figure 16. These estimates resemble

the epistemic uncertainty scores proposed in DECU [Berry et al., 2024] and could be used to identify conditioning variables

for which generated samples are likely to be of poor quality. We leave further exploration of generative uncertainty at the

level of conditioning variables for future work.

C.7 FLOW MATCHING

To demonstrate that our generative uncertainty framework (Section 3) extends beyond diffusion models, we apply it here to

the recently popularized flow matching approach [Lipman et al., 2023, Liu et al., 2023, Albergo et al., 2023]. Specifically, we

consider a latent flow matching formulation [Dao et al., 2023] with a DiT backbone [Peebles and Xie, 2023]. For sampling,

we employ a fifth-order Runge-Kutta ODE solver (dopri5). In Figure 17, we illustrate the samples with the highest and

lowest generative uncertainty among 12K generated samples. On a filtered set of 10K images, our generative uncertainty

framework achieves an FID of 10.48 and a precision of 64.71, significantly outperforming a random baseline, which yields

an FID of 11.80 and a precision of 61.04.

Figure 17: Images with the highest (left) and the lowest (right) generative uncertainty among 12K generations using a latent

flow matching model [Dao et al., 2023]. Uncertainty correlates with visual quality, as high-uncertainty samples exhibit

numerous artefacts, whereas low-uncertainty samples resemble canonical images of their respective conditioning class.
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D IMPLEMENTATION DETAILS

All our experiments can be conducted on a single A100 GPU, including the fitting of the Laplace posterior (Section 3.2).

Our code is publicly available at https://github.com/metodj/DIFF-UQ.

All Params. LL Params. LL Name

ADM ∼ 421× 106 ∼ 14× 103 out.2

UViT ∼ 500× 106 ∼ 18× 103 decoder_pred

DiT ∼ 131× 106 ∼ 1.2× 106 final_layer

Table 2: Details of our last-layer (LL) Laplace approximation.

The first column presents the total number of model parame-

ters, while the second and third columns indicate the number

of parameters in the last layer and its name, respectively

Laplace Approximation When fitting a last-layer

Laplace approximation (Section 3.2), we closely follow

the implementation from BayesDiff [Kou et al., 2024].

Specifically, we use the empirical Fisher approximation

with a diagonal factorization for Hessian computation. As

the prior, we adopt a simple isotropic Gaussian distribu-

tion, p(θ) = N (0, γ−1I). The prior precision parameter

and observation noise are fixed at γ = 1 and σ = 1,

respectively. We report ablations for both parameters in

Tables 3 and 4, finding that neither has a significant im-

pact on the results. For Hessian computation, we utilize

1% of the training data for ImageNet 128×128 and 2% for

ImageNet 256×256. Further details about the last layer of each diffusion model are provided in Table 2, where we observe

that fewer than 1% of the parameters receive a ‘Bayesian treatment’. We utilize laplace4 library in our implementation.

As discussed in Section 6, improving the quality of the Laplace approximation—such as incorporating both first and last

layers instead of only the last layer [Daxberger et al., 2021b, Sharma et al., 2023] or optimizing Laplace hyperparameters

(e.g., prior precision and observation noise) [Immer et al., 2021]—could further enhance the quality of generative uncertainty

and represents a promising direction for future work.

Sampling with Generative Uncertainty For our main experiment in Section 4.2, we generate 12K images using the

pretrained ADM model [Dhariwal and Nichol, 2021] for ImageNet 128×128 and the UViT model [Bao et al., 2023] for

ImageNet 256×256. Following BayesDiff [Kou et al., 2024], we use a DDIM sampler [Song et al., 2021a] for the ADM

model and a DPM-2 sampler [Lu et al., 2022] for the UViT model, both with T = 50 sampling steps.

To compute generative uncertainty (Algorithm 1), we first sample M = 5 sets of weights from the posterior q(θ|D). Then,

for each of the initial 12K random seeds, we generate M additional samples. The same set of model weights {θm}Mm=1 is

used for all 12K samples for efficiency reasons. For semantic likelihood (Eq. 7), we use a pretrained CLIP encoder [Radford

et al., 2021] and set the semantic noise to σ2 = 0.001 .

Baselines For all baselines, we use the original implementation provided by the respective papers, except for [De Vita

and Belagiannis, 2025], which we reimplemented ourselves since we were unable to get their code to run. Moreover, we

use the default settings (e.g., hyperparameters) recommended by the authors for all baselines. For realism [Kynkäänniemi

et al., 2019] and rarity [Han et al., 2023] we use InceptionNet [Szegedy et al., 2016] as a feature extractor and a subset of

50K ImageNet training images as the reference dataset. For samples where the rarity score is undefined (i.e., those that lie

outside the estimated data manifold), we set it to inf.

Table 3: Ablation on prior precision parameter γ. Results

for ADM model on ImageNet 128x128 dataset based on

n = 10K filtered images (out of 12K).

γ FID (³) Precision (↑) Recall (↑)
1.0 10.04± 0.14 61.28± 0.23 69.55± 0.49
0.01 10.04± 0.12 61.14± 0.25 69.59± 0.52
0.1 10.05± 0.09 61.19± 0.21 69.75± 0.45
10. 10.01± 0.15 60.95± 0.28 69.71± 0.54
100. 10.06± 0.11 61.12± 0.26 69.62± 0.50

Table 4: Ablation on likelihood noise σ2 parameter. Results

for ADM model on ImageNet 128x128 dataset based on

n = 10K filtered images (out of 12K).

σ2 FID (³) Precision (↑) Recall (↑)
0.1 10.30± 0.11 60.62± 0.31 69.99± 0.43
0.01 10.18± 0.04 61.18± 0.38 69.61± 0.59
0.001 10.04± 0.14 61.28± 0.23 69.55± 0.49
0.0001 10.01± 0.14 61.34± 0.23 69.50± 0.39
0.00001 10.10± 0.06 61.40± 0.28 69.53± 0.57

4https://github.com/aleximmer/Laplace
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