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Abstract
We study the sample efficiency of domain randomization and robust control for the benchmark
problem of learning the linear quadratic regulator (LQR). Domain randomization, which synthe-
sizes controllers by minimizing average performance over a distribution of model parameters, has
achieved empirical success in robotics, but its theoretical properties remain poorly understood. We
establish that with an appropriately chosen sampling distribution, domain randomization achieves
the optimal asymptotic rate of decay in the excess cost, matching certainty equivalence. We further
demonstrate that robust control, while potentially overly conservative, exhibits superior perfor-
mance in the low-data regime due to its ability to stabilize uncertain systems with coarse parameter
estimates. We propose a gradient-based algorithm for domain randomization that performs well in
numerical experiments, which enables us to validate the trends predicted by our analysis. These
results provide insights into the use of domain randomization in learning-enabled control, and high-
light several open questions about its application to broader classes of systems.
Keywords: Learning-Enabled Control, Domain Randomization, Reinforcement Learning

1. Introduction
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Figure 1: Illustration of the sample efficinecy of various
synthesis methods.

The use of learned world models to syn-
thesize controllers via policy optimization
is becoming increasingly prevalent in rein-
forcement learning (Wu et al., 2023; Mat-
suo et al., 2022). The performance of
the resulting controller depends heavily
upon the synthesis procedure. Simple ap-
proaches that do not account for uncer-
tainty, known as certainty equivalence, can
overfit to errors in the learned model. Ro-
bust control approaches can tolerate some
error in the learned model, but may be
overly conservative and computationally demanding. Consequently, domain randomization has
emerged as a dominant paradigm in robotics for enabling transfer of policies optimized in simu-
lation on a learned or physics-based simulator to the real world by randomizing system parameters
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during policy optimization (Tobin et al., 2017; Akkaya et al., 2019). Despite the empirical success of
domain randomization, it remains poorly understood how to select the randomization distribution,
and how much of a discrepancy between the learned model and the real world can be tolerated.

We seek to address these issues by restricting attention to the benchmark problem of learning
the linear quadratic regulator (LQR). This problem consists of collecting experimental interaction
data from a linear dynamical system, and using this data to synthesize a controller that optimizes a
control objective. The linear dynamical system is described by

Xt+1 = A(ωω)Xt +B(ωω)Ut +Wt for t = 1, . . . , T, (1)

where Xt → RdX is the system state, Ut → RdU is the control input, Wt → RdX is i.i.d. mean zero
Gaussian noise, and ω

ω
→ Rdω is an unknown parameter. The goal is to design a controller K to

minimize the objective C(K, ω
ω), defined as

C(K, ω) ↭ lim sup
T→↑

EK
ε

[
1

T

T∑

t=1

(
↑Xt↑

2
Q + ↑Ut↑

2
R

)]
, (2)

for Q and R positive definite weight matrices. The subscript on the expectation denotes that the
states evolves according to Xt+1 = A(ω)Xt + B(ω)Ut +Wt, and the superscript denotes that the
inputs are selected according to the linear feedback Ut = KXt. This benchmark problem has been
used to study the sample efficiency of certainty equivalence (Mania et al., 2019) and robust control
(Dean et al., 2020) by quantifying how many experiments from the system (1) are sufficient to
achieve some level of control performance. In this work, we study the sample efficiency of domain
randomization, which chooses a control policy as

KDR(D) = argmin
K

Eε↓D[C(K, ω)], (3)

for a sampling distribution D determined using the dataset of experiments collected from (1).

1.1. Contributions

Our contribution is to study the sample efficiency of domain randomization and robust control to
establish the relationships visualized as a conceptual diagram in Figure 1. We achieve the following:
• Sample Effiency of Domain Randomization: We prove that with an appropriately chosen sam-

pling distribution D, domain randomization (3) achieves the optimal asymptotic rate of decay
with the number of samples, thereby matching the performance of certainty equivalence in the
large sample regime. We further conjecture that the burn-in time for domain randomization lies
between that of robust control and certainty equivalence, and verify this numerically.

• Sample Effiency of Robust Control: We prove the tightest known bound on robust control,
improving the asymptotic rate of decay with the number of samples N from 1/

↓
N to 1/N . The

upper bounds indicate a gap between the asymptotic rate of decay for robust control, and the
rate of decay for domain randomization and certainty equivalence in terms of system-theoretic
quantities. We conjecture that this gap is fundamental, due to the conservative nature of robust
control. However, we establish that robust control can achieve a smaller burn-in time relative to
certainty equivalence, due to its ability to stabilize the system with a coarse estimate.
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• Algorithm for Domain Randomization: We propose a policy gradient algorithm to solve (3)
by finite sample approximation of objective (2), which proves effective in numerical experiments.
This enables verification of the trends predicted in the aforementioned results, and aligns with
the conceptual diagram in Figure 1. While the focus of this work is restricted to linear systems,
the proposed algorithm can in principle extend to general nonlinear systems, whereas extensions
for robust control face computational challenges. We test domain randomization on a pendulum
example in the extended manuscript (Fujinami et al., 2025),

By providing this characterization, our work demonstrates the potential of domain randomization in
learning-enabled control, and partially explains the empirical success that it has achieved in robotics
applications. We therefore conclude by highlighting several interesting open questions regarding the
use of domain randomization for learning-enabled control.

1.2. Related Work

Domain Randomization Domain randomization, introduced by Tobin et al. (2017), is widely
used for sim-to-real transfer. By randomizing simulator parameters during training, it aims to
produce policies robust to simulator variations, thereby enabling transfer to the real-world. This
approach has been applied in areas like autonomous racing (Loquercio et al., 2019) and robotic
control (Peng et al., 2018; Akkaya et al., 2019). However, its success depends heavily on selecting
an effective sampling strategy (Mehta et al., 2020), which is often challenging. While previous work
has explored generalization of domain randomization in discrete Markov Decision Processes (Chen
et al., 2021; Zhong et al., 2019; Jiang, 2018), formalizing generalization for continuous control
remains an open problem, which we address in this work.

Identification and Control The linear quadratic regulator problem has become a key benchmark
for evaluating reinforcement learning in continuous control (Abbasi-Yadkori and Szepesvári, 2011;
Recht, 2019). The offline setting has been extensively studied: Dean et al. (2020) analyzed the
sample efficiency of robust control, while Mania et al. (2019); Wagenmaker et al. (2021); Lee et al.
(2023) showed that certainty equivalence is asymptotically instance-optimal, achieving the best pos-
sible sample efficiency with respect to system-theoretic quantities. Extensions to smooth nonlinear
systems were made by Wagenmaker et al. (2024); Lee et al. (2024). However, certainty equivalence
can perform poorly with limited data. Alternative Bayesian approaches (von Rohr et al., 2022;
Chiuso et al., 2023) can mitigate such limitations. We therefore show that such uncertainty-aware
synthesis methods can match the asymptotic efficiency of certainty equivalence while achieving
better performance in low-data regimes.

Robust Control: The control community has traditionally addressed policy synthesis with im-
perfect models using methods like H↑ control, which focuses on worst-case uncertainty (Zhou
et al., 1996; Başar and Bernhard, 2008; Doyle, 1982; Fan et al., 1991). Randomized approaches
to robust control emphasizing high-probability guarantees have also been explored (Calafiore and
Campi, 2006; Stengel and Ray, 1991; Ray and Stengel, 1993). Vidyasagar (2001) proposed an
average performance metric similar to domain randomization but focused on a fixed distribution
rather than one informed by data. Early data-driven synthesis efforts combined classical system
identification (Ljung, 1998) with worst-case robust control (Gevers, 2005), while recent work has
developed robust synthesis methods that bypass explicit models (Berberich et al., 2020). To the best
of our knowledge, existing analyses of statistical efficiency in robust control yield suboptimal rates,
with excess control cost decreasing at 1/

↓
N (Dean et al., 2020), compared to the faster 1/N rate
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achieved by certainty equivalence. This work refines robust synthesis analysis, demonstrating the
1/N rate and a short burn-in period, highlighting its advantages with limited data.

Notation: The operator vec(A) stacks the columns of A into a vector, and its inverse
vec↔1(vec(A), n) returns a matrix with n rows by successively stacking chunks of n elements into
columns. The Kronecker product of A and B is A↔B. x ↗ y denotes the max of x and y.

2. Problem Formulation

Consider the linear dynamical system (1). We assume that(A(ωω), B(ωω)) is stabilizable. For ease

of exposition, we restrict attention to the case where
[
A(ω) B(ω)

]
= vec↔1(ω, dX), i.e. all entries

of the state and input matrices are unknown. We additionally assume that !w = I , and the cost
matrices Q ↘ I and R = I are known.1

When ω is known, the optimal controller that minimizes C(K, ω) is given by

P (ω) ↭ A(ω)↗P (ω)A(ω)≃A(ω)↗P (ω)B(ω)(B(ω)↗P (ω)B(ω) +R)↔1
B(ω)↗P (ω)A(ω) +Q

K(ω) ↭ ≃(B(ω)↗P (ω)B(ω) +R)↔1
B(ω)↗P (ω)A(ω),

where P (ω) is the positive definite solution to the discrete algebraic Ricatti equation, and K(ω) is
the LQR solution corresponding to a system with parameters ω.

To design a controller for the unknown system (1), we suppose that we have run N experiments
with control input Ut ⇐ N (0,!u) for !u ⇒ 0.2 From these experiments, we collect a dataset

{
(Xn

t , U
n
t , X

n
t+1)

}T,N
t=1,n=1 (4)

consisting of N trajectories of length T from (1). We use this dataset to design a controller K̂ such
that the cost, C(K̂, ω

ω), is small.3 In our analysis, we consider several approaches to achieve this
objective. The approaches will be contrasted by examining the rate at which this cost decays to the
optimal cost as the number of experiments in the dataset increases.

2.1. Controller Synthesis Approaches

All the synthesis approaches under consideration are model-based approaches which determine ω̂

from the dataset (4) via the following least squares problem:

ω̂ ↭ argmin
ε

N∑

n=1

T∑

t=1

∥∥∥∥∥∥
X

n
t+1 ≃

[
A(ω) B(ω)

]


X
n
t

U
n
t





∥∥∥∥∥∥

2

. (5)

The estimation error for ω̂ can be characterized using the Fisher information matrix:

FI(ωω) ↭ EUt↓N (0,!u)
εε




T∑

t=1



Xt

Ut







Xt

Ut





↗

↔ !↔1
W , (6)

1. Extension to !w → 0, Q → 0, and R → 0 is possible by scaling the cost and changing the state and input basis.
2. Our results extend to general exploration policies by modifying the identification bounds to display dependence on

the Fisher Information of the exploration policy, as in (Lee et al., 2024).
3. Note that we collect finite horizon trajectories, but evaluate infinite horizon cost.
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see, e.g. Lee et al. (2024). Since this depends on the unknown parameter, we define the estimate

F̂I ↭ 1

N

N∑

n=1

T∑

t=1



X
n
t

U
n
t







X
n
t

U
n
t





↗

↔ !↔1
w , (7)

which quantifies the uncertainty of the estimation procedure.
We consider three approaches to control synthesis using the estimates ω̂ and F̂I:

• Certainty Equivalence (CE) uses the estimate ω̂ to minimize the control objective (2) by treating
the estimate as though it were ground truth: KCE(ω̂) = argminK C(K, ω̂).

• Robust Control (RC) constructs a high confidence ellipsoid around the nominal estimate ω̂ using
the estimated fisher information matrix F̂I as

G =

ω : (ω ≃ ω̂)↗(N F̂I)(ω ≃ ω̂) ⇑ 16(dε + log(2/ε))


. (8)

Such a set can be shown to contain the true parameter ωω with probability at least 1≃ ε as long as
the number of experiments, N , is sufficiently large (see Fujinami et al. (2025)). RC then uses the
confidence ellipsoid to determine a controller that minimizes the worst case value of the control
objective over all members of the confidence set as

KRC(G) = argmin
K

sup
ε↘G

(C(K, ω)≃ C(K(ω), ω)).

This formulation is nonstandard, as the controller minimizes the worst-case suboptimality gap,
rather than the worst case cost (Gevers, 2005). However, it simplifies the analysis.

• Domain Randomization (DR) constructs a sampling distribution D using the least squares esti-
mate ω̂ and the estimated Fisher Information F̂I. It then synthesizes a controller by minimizing the
average control cost as in (3).4 By ensuring good performance on average over a distribution, DR
serves as a middle ground between CE and RC. In particular, it can be interpreted as enforcing a
high probability robust stability constraint over the sampling region.5 Therefore, careful choice
of the distribution is critical for downstream performance, and our analysis informs this choice.

The goal of this paper is to study the sample efficiency of these three approaches. In particular,
we consider upper bounds on the gap C(K̂, ω

ω)≃C(K(ωω), ωω), where K̂ is a controller synthesized
with CE, RC, or DR. We express these bounds in terms of system-theoretic quantities, and the
number of experiments collected from the system. Doing so provides an indication of the types of
systems on which these methods perform well. We focus our attention on two key quantities: the
burn-in time required to ensure finite bounds, and the asymptotic rate of decay in these bounds.

3. Sample Efficiency Bounds for Controller Synthesis Approaches

Our sample efficiency bounds are summarized in Table 1, where they are compared with existing
bounds for CE. The leading term in the bound characterizes the asymptotic rate of decay. For all

4. Note that DR directly minimizes the average cost rather than the average sub-optimality gap, unlike RC. However,
doing so for DR leads to the same optimal solution by linearity of expectation.

5. If the controller is not stabilizing for a subset of systems with nonzero mass, the cost will be infinite.
6. Due to slight discrepancies in the setting (e.g. we consider multiple trajectories for identification), the exact version

of the certainty equivalent bound considered is presented in Fujinami et al. (2025).
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Method Leading Term Burn-in Time Scalable Alg. Source of Bounds

CE 1
N tr


H(ωω)FI(ωω)↔1


↑P (ωω)↑10 Yes Wagenmaker et al. (2021)6

RC 1
N dε

∥∥H(ωω)FI(ωω)↔1
∥∥ ↑P (ωω)↑4↗ 1

r2 No This paper

DR 1
N tr


H(ωω)FI(ωω)↔1


↑P (ωω)↑11ϑ16B(εε) Yes This paper

Table 1: Comparison of sample efficiency bounds for CE, RC, and DR. The leading term is stated up to uni-
versal constants. The burn-in time reports the components which are different between the three approaches.
We use the shorthand ϑB(ωω) = ↑B(ωε)↑ ↗ 1. We classify algorithms as scalable if they are possible to im-
plement via first order gradient-based approaches.

three synthesis approaches described in Section 2.1, the leading term depends on four quantities:
the parameter dimension dε, the number of experiments N , the Fisher Information matrix FI(ωω),
and a matrix H(ωω) capturing the sensitivity of synthesis to the identification error:

H(ωω) = ⇓
2
εC(K(ω), ωω)|ε=εε .

Wagenmaker et al. (2021) show that 1
N tr


H(ωω)FI(ωω)↔1


is the optimal asymptotic rate achiev-

able by any algorithm mapping a dataset (4) to a controller.7 Accordingly, both CE and DR can be
classified as sample-efficient, as they achieve this optimal rate of decay with respect to system-
theoretic quantities. The bound on RC instead has a leading term of dε

∥∥H(ωω)FI(ωω)↔1
∥∥ ⇔

tr

H(ωω)FI(ωω)↔1


, and therefore cannot be classified as efficient.8

Table 1 also highlights the burn-in time, the number of samples that suffice for the sample effi-
ciency bounds to hold. The reported values omit terms common to all three methods. Among the dif-
fering quantities, the burn-in for CE scales with ↑P (ωω)↑10, for DR it scales with ↑P (ωω)↑11 ϑ16B(εε),
and for RC it scales with the max of ↑P (ωω)↑4 and 1

r2 , a term quantifying the robust stabilizability
of ωω. Although 1

r2 can be as large as ↑P (ωω)↑10, it is often much smaller (see Section 3.2), sug-
gesting that RC can achieve a much lower burn-in than the alternative approaches for many system
instances.9 Experiments further suggest that DR’s burn-in can fall between that of CE and DR.

Finally, Table 1 highlights that CE and DR give rise to scalable gradient-based policy optimiza-
tion algorithms, which can easily be extended to nonlinear and high dimensional systems. In con-
trast, solving the RC problem requires computationally challenging LMI-based approaches, even
for fully observed linear systems.

3.1. Sample Efficiency of Domain Randomization

We now establish the characterization of DR in the final row of Table 1. To this end, we first define
a burn-in time which enables a bound on the the least squares error:

NID ↭ poly


T↔1∑

t=0

∥∥∥A(ωω)t
[
I B(ωω)

]∥∥∥ , ↑!u↑ , ↑!w↑ , ↑FI(ω
ω)↑ ,

1

ϖmin(FI(ωω))


. (9)

A bound on least squares using this quantity and proofs for the remainder of the results in this
section may be found in Fujinami et al. (2025). We first state a bound on the performance of DR
that holds for general sampling distributions centered at ω̂.

7. This lower bound is specified to our setting in Fujinami et al. (2025).
8. While we lack a formal lower bound proving the inefficiency of RC, experiments support this conclusion (see Fig. 2).
9. We emphasize that these burn-in conditions are sufficient but not necessary; refining them is left to future work.
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Lemma 1 Suppose the dataset
{
(Xn

t , U
n
t , X

n
t+1)

}T,N
t=1,n=1 is collected from N trajectories of the

system (1) via a random control input Ut ⇐ N (0,!u). Let ω̂ be the least square estimate computed
by (5). Let D be any distribution with mean ω̂, and which is supported on a set with diameter
bounded by 1

256 ↑P (ωω)↑↔5. It holds with probability at least 1≃ ε that

C(KDR(D), ωω)≃ C(K(ωω), ωω) ⇑
8tr(H(ωω)FI(ωω)↔1)

N
+ 2 tr(V(D)H(ωω))

+ 16

∥∥H(ωω)FI(ωω)↔1
∥∥

N
log

2

ε
+ LDR(ω

ω)

∥∥FI(ωω)↔1
∥∥3/2

N3/2
, (10)

where LDR(ωω, ε) = poly(dε,max{1, ↑B(ωω↑}, ↑P (ωω)↑ , log 1
ϑ ), as long as the number of experi-

ments N satisfies N ⇔ max


NID,

c≃P (εε)≃11(≃B(εε)≃⇐1)16(dω+log 2
ϑ )

ϖmin(FI(εε))


for a universal constant c.

To minimize the above upper bound, choosing a sampling distribution with a variance of zero
would be best and would lead to completely canceling the term with V(D). However, this would
eliminate any benefits that we hope to see in the low data regime. Instead, to maximize the po-
tential robustness benefits, we should choose the distribution with the most spread, which does not
significantly degrade the performance achieved for large N (the regime where the above bound
is valid). We therefore propose choosing D as a uniform distribution over the confidence ellip-
soid constructed for RC (8). Computing the variance of this quantity demonstrates that the term
tr(V(D)H(ωω)) scales as 1

N tr
(
F̂I

↔1
H(ωω)

)(
1 + 1

dω
log 2

ϑ

)
, leading to the following bound.10

Theorem 1 Under the setting of Lemma 1, let D be a uniform distribution over the confidence
ellipsoid G defined in Equation (8). Then it holds with probability at least 1≃ ε that

C(KDR(D), ωω)≃ C(K(ωω), ωω) ⇑
40

1 + log


2
ϑ


/dε


tr(H(ωω)FI(ωω)↔1)

N

+ 16

∥∥H(ωω)FI(ωω)↔1
∥∥

N
log

2

ε
+ LDR(ω

ω
, ε)

∥∥FI(ωω)↔1
∥∥3/2

N3/2
, (11)

as long as N satisfies the burn-in time of Lemma 1.

The burn-in time from Lemma 1 provides the powers of ↑P (ωω)↑ and ϑB(εε) listed in Table 1. The
leading term follows from the fact that LDR(ωω) is multiplied by N

↔3/2, thus decays faster. The
deviation terms (quantities multiplied by log 2

ϑ ) are not considered leading terms, because they are
dominated by the term 1

N tr

H(ωω)FI(ωω)↔1


when the bounds are converted from high probability

bounds to bounds in expectation. This leaves a universal constant multiplied by tr

H(ωω)FI(ωω)↔1


,

leading to the characterization of DR with the chosen distribution as sample efficient.
The bound above fails to demonstrate a clear advantage of DR over CE in the low-data regime,

despite empirical evidence suggesting such benefits (Figure 2). By designing the sampling distribu-
tion to have support on the confidence ellipsoid (8), we ensure that the true system ω

ω has positive
density in the sampling distribution with high probability. This design raises the hope that DR could
reduce the burn-in time. However, we have not been able to prove this property, as we cannot ex-
clude the possibility that for distributions with large support, the DR controller (3) might incur very
high costs near ωω while performing well elsewhere. In contrast, we show in the sequel that RC can
provide such benefits, albeit at the expense of sacrificing asymptotic efficiency.

10. Note that any bounded distribution with a variance decaying faster than 1
N FI(ωε) achieves the same leading term.
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3.2. Sample Efficiency of Robust Control

We now analyze the efficiency of RC. Our goal is to demonstrate how RC addresses the limitations
of CE with limited data. To achieve this, we introduce a formal definition of robust stabilizability.
In this definition, we denote the state covariance of system ω under controller K by !K(ω).

Definition 2 (Robust Stabilizability) Let M → R and G be a set. G is M -robustly stabilizable by
CE if ↖ω → G such that for all ω⇒ → G,

∥∥!K(ε)(ω⇒)
∥∥ ⇑ M . Let also r → R. ω is (M, r)-robustly

stabilizable by CE if ↙A ∝ B(ω, r), A is M -robustly stablizable by CE.

The above definition captures the idea that a CE controller synthesized for a some parameter in a set
can stabilize every member of that set. This is stronger than merely assuming the existence of an
arbitrary controller that stabilizes all members, and plays a key role in our analysis of RC. Relaxing
this condition is left for future work. Nevertheless, for any stabilizable system, we can choose r

sufficiently small to satisfy the condition. Specifically, by Theorem 3 of Simchowitz and Foster
(2020), if r ⇑

1
256 ↑P (ω)↑↔5, then ω is (M, r)-robustly stabilizable by CE with M = 2 ↑P (ω)↑.

However, the given condition is system-specific and can often be satisfied with larger r.

Example 1 Consider a scalar linear dynamical system: Xt+1 = a
ω
Xt + b

ω
Ut + Wt ↙t ⇔ 0,

where a
ω = 1.05 and b

ω = 1. Suppose that only a
ω is unknown. Consider the LQR problem

defined by Q = 1, and R = 1000. Computing ↑P (ωω)↑, it holds by Simchowitz and Foster (2020)
that the instance is (M, r) stabilizable with M = 225 and r = 2 ′ 10↔13. However, we can
achieve a better characterization for this instance by noting that for any subset G of the interval
[0.3, 1.8], synthesizing an LQR controller k using the largest value of the parameter in G ensures
that a + b

ω
k < 0.97 for all a → G, thereby ensuring that

∥∥!k(a)
∥∥ ⇑

1
1↔.972 ⇑ 20 for all a → G.

Then the instance is (20, 0.75)-robustly stabilizable by CE.
To illustrate the impact on control performance, suppose we have an estimate â = 1.01. The

CE controller derived from this estimate is k = ≃0.0424, which fails to stabilize the true system. In
contrast, if we apply RC over any uncertainty set within the interval [0.3, 1.8] that includes aω, we
could synthesize a controller that stabilizes the system, thereby avoiding infinite cost.

With the definition of robust stabilizability by CE in hand, we proceed to state an upper bound
on the excess cost incurred by the robust controller.

Theorem 3 Suppose the dataset
{
(Xn

t , U
n
t , X

n
t+1)

}T,N
t=1,n=1 is collected from N trajectories of the

system (1) via a random control input Ut ⇐ N (0,!u). Let ω̂ be the least square estimate computed
by (5), and G be the confidence ellipsoid of (8). Choose r > 0. Let M be the smallest real number
such that ωω is (M, r)-robustly stabilizable. It holds that with probability at least 1≃ ε

C(KRC(G), ωω)≃C(K(ωω), ωω)⇑
64

dε+log 2

ϑ

 ∥∥H(ωω)FI(ωω)↔1
∥∥

N
+LRC(ω

ω
,ε,M)

∥∥FI(ωω)↔1
∥∥3/2

N3/2
,

where LRC(ωω, ε,M) = poly(dε,max{1, ↑B(ωω)↑}, ↑P (ωω)↑ , log 1
ϑ ,M), as long as N ⇔

max


NID,

c≃P (εε)≃4(dω+log 2
ϑ )

ϖmin(FI(εε))
,

c(dω+log 2
ϑ )

r2ϖmin(FI(εε))


for a universal constant c.

A proof of this result is provided in Fujinami et al. (2025). Similar to Theorem 1, the leading term
in Table 1 is obtained by omitting the deviation term (log 2

ϑ ) and the lower-order term scaling with
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N
↔3/2. While we lack a lower bound for RC, we conjecture that the leading term is tight. The

reasoning behind this is that RC selects the worst-case perturbation of the parameter within the
confidence set, which naturally leads to dependence on the operator norm, as opposed to the trace
observed in alternative approaches. The burn-in time from the theorem demonstrates how the robust
stabilizability condition combined with the RC approach leads to the value reported in Table 1.

4. Numerical Experiments

Figure 2: Excess cost of controllers found via
three methods using models fit with various
amounts of data.

We validate the trends predicted in Table 1 through a
case study on the linear system

A =




1.01 0.01 0
0.01 1.01 0.01
0 0.01 1.01



 ,

B = I,Q = 10↔3
I, R = I. (12)

We first estimate A and B using least squares identi-
fication, then synthesize CE, DR, and RC controllers
based on the identified models using the confidence
parameter ε = 0.5. Further details are provided in Fujinami et al. (2025).

In Figure 2, we plot the median and shade 25% to 75% quantile over 500 random seeds. This
result reveals two key observations. First, both DR and RC stabilize the system with fewer ex-
periments than CE. While the improved performance of DR in the low-data regime lacks concrete
theoretical justification, Theorem 3 supports this trend for RC. Second, after an initial period, DR
converges faster than RC, eventually matching the convergence rate of CE. This aligns with the
conclusion of Theorem 1 and is consistent with the conceptual illustration in Figure 1.

5. Discussion
Algorithmic considerations: Our numerical experiments use a gradient-based algorithm for DR,
detailed in Algorithm 1. This algorithm builds on the scenario approach of Vidyasagar (2001)
and the policy gradient method introduced for the LQR by Fazel et al. (2018). It initially samples a
number of scenarios from the distribution. At each iteration, the gradient update is performed on the
cost summed over all scenarios. Since the control cost gradient becomes infinite if the current iterate
does not stabilize a system, we incorporate only the gradients for system which the current iterate
stabilizes. Such rejection sampling only kicks in when the uncertainty set is large (i.e. when data is
scarce). Thus it does not affect the asymptotic behavior of the method. We lack formal convergence
guarantees for this algorithm; however, numerical experiments indicate that it converges with a
sufficiently small step size. This raises questions which may be fruitful directions for future work.
• Convergence analysis of Algorithm 1: Extending the convergence analysis of policy gradient

methods for LQR by Fazel et al. (2018); Hu et al. (2023) to the proposed algorithm could provide
theoretical guarantees for convergence to the solution of (3). Such an analysis would offer strong
evidence of the algorithm’s applicability beyond the toy numerical example presented here.

• Alternative choices of distribution: We proposed sampling from a uniform distribution over
the confidence ellipsoid (8) to maximize the spread of the sampling distribution without sacri-
ficing asymptotic efficiency (Theorem 1). Exploring alternative distributions, such as truncated

9
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Algorithm 1 Domain Randomized Policy-Gradient for the Linear Quadratic Regulator

1: Input: Randomization distribution D, estimate ω̂, stepsize ϱ, # iterations M , # scenarios N
2: Initialize: K̂1 ∞ KCE(ω̂),
3: Sample: N scenarios ω1, . . . , ωN ⇐ D

4: for i = 1, 2, . . . ,M do \\ Gradient descent on stable scenarios
5: K̂i+1 = K̂i ≃ ϱ

N
j=1⇓C(K̂i, ωj)1(ς(A(ωj) +B(ωj)K̂i) < 1)

6: Return: K̂M .

normal distributions, is an interesting direction. Such alternatives could yield improved empirical
performance, and also refine the analysis of Theorem 1, particularly with respect to burn-in time.

• Extension to nonlinear systems: Algorithm 1 can, in principle, be extended to nonlinear sys-
tems, provided that gradients of the control objective can be obtained via Monte Carlo sampling.
The least-squares analysis for CE in Table 1 also extends nonlinear systems (Lee et al., 2024),
suggesting that the proposed DR approach could also be effective for such systems. This may
yield sample efficiency guarantees analogous to those studied here.

Theoretical extensions: There are several ways to tighten the analysis and generalize the setting.
• Improved burn-in time for domain randomization: While this work empirically demonstrates

that DR can stabilize the system even in the low-data regime, the burn-in time derived in Lemma 1
does not reflect this advantage, as it is larger than that of CE. The only known way to improve the
burn-in time is by adopting a robustly stabilizable condition, which considers the worst case but
results in a conservative upper bound on the excess cost, as shown in Theorem 3. A promising
direction for future work is to tighten the analysis for burn-in requirements and higher order terms
of DR while maintaining its asymptotic efficiency.

• Robust control lower bound: Our upper bounds feature a gap between the asymptotic conver-
gence rate of RC and that of CE and DR. We conjecture that this gap is fundamental; however, a
lower bound on the sample efficiency of RC would be required to formalize this.

• Misspecification: This work has focused on the use of DR to address model uncertainty arising
from variance in model fitting. Specifically, the assumption of the dynamics in (1) imposes a
realizability condition, ensuring that a suitably constructed distribution D contains ωω in its sup-
port with high probability. However, a key explanation for the empirical success of DR in many
robotics applications is its robustness to model misspecification (Tobin et al., 2017). Investigating
this theoretically represents a promising direction for future work.

6. Conclusion

By analyzing the sample efficiency of learning the linear quadratic regulator via domain random-
ization and robust control, our work provides insights into the tradeoffs present for approaches to
incorporate uncertainty quantification into learning-enabled control. Our analysis demonstrates that
if one is strategic about the design of the sampling distribution, then the benefits of domain ran-
domization over robust control may extend beyond computational considerations, and to the sample
efficiency. This is particularly exciting due to the prominence of domain randomization in prac-
tice for robot learning. We believe that this line of analysis exposes a wide spread of interesting
questions regarding the use of domain randomization for learning-enabled control.
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