
Published as a conference paper at ICLR 2025

IMPLICIT BIAS OF MIRROR FLOW FOR SHALLOW NEU-
RAL NETWORKS IN UNIVARIATE REGRESSION

Shuang Liang
UCLA
liangshuang@g.ucla.edu

Guido Montúfar
UCLA & MPI MIS
montufar@math.ucla.edu

ABSTRACT

We examine the implicit bias of mirror flow in least squares error regression with
wide and shallow neural networks. For a broad class of potential functions, we
show that mirror flow exhibits lazy training and has the same implicit bias as
ordinary gradient flow when the network width tends to infinity. For univariate
ReLU networks, we characterize this bias through a variational problem in function
space. Our analysis includes prior results for ordinary gradient flow as a special
case and lifts limitations which required either an intractable adjustment of the
training data or networks with skip connections. We further introduce scaled
potentials and show that for these, mirror flow still exhibits lazy training but is
not in the kernel regime. For univariate networks with absolute value activations,
we show that mirror flow with scaled potentials induces a rich class of biases,
which generally cannot be captured by an RKHS norm. A takeaway is that whereas
the parameter initialization determines how strongly the curvature of the learned
function is penalized at different locations of the input space, the scaled potential
determines how the different magnitudes of the curvature are penalized.

1 INTRODUCTION

The implicit bias of a parameter optimization procedure refers to the phenomenon where, among the
many candidate parameter values that might minimize the training loss, the optimization procedure
is biased towards selecting one with certain particular properties. This plays an important role in
explaining how overparameterized neural networks, even when trained without explicit regularization,
can still learn suitable functions that perform well on new data (Neyshabur et al., 2015; Zhang et al.,
2017). As such, the concrete characterization of the implicit biases of parameter optimization in
neural networks and how they affect the solution functions is one of the key concerns in deep learning
theory and has been subject of intense study in recent years (see, e.g., Ji & Telgarsky, 2019; Lyu & Li,
2020; Williams et al., 2019; Chizat & Bach, 2020; Sahs et al., 2022; Frei et al., 2023; Jin & Montúfar,
2023). In this work we consider an important class of parameter optimization procedures that have
remained relatively underexplored, namely mirror descent as applied to solving regression problems
with overparametrized neural networks.

Mirror descent is a broad class of first-order optimization algorithms that generalize ordinary gradient
descent (Nemirovskij & Yudin, 1983). It can be viewed as using a general distance-like function,
defined by the choice of a convex potential function, instead of the usual Euclidean squared distance
to determine the update direction in the search space (Beck & Teboulle, 2003). The choice of
the geometry of the parameter space of a learning system is crucial, as it can affect the speed of
convergence and the implicit bias of parameter optimization (Neyshabur et al., 2017). The implicit
bias of mirror descent has been studied theoretically for linear models (Gunasekar et al., 2018a; Sun
et al., 2023; Pesme et al., 2024), matrix sensing (Wu & Rebeschini, 2021), and also for nonlinear
models at least in a local sense (Azizan et al., 2022). However, we are not aware of any works
characterizing the implicit bias of mirror decent for neural networks describing more than the possible
properties of the parameters also the nature of the returned solution functions. This is the gap that we
target in this article. We focus on the particular setting of mirror flow applied to least squares error
regression with shallow and infinitely wide neural networks.

We show for networks with standard parametrization that, under a broad class of potential functions,
mirror flow displays lazy training, meaning that even though the loss converges to zero the parameters
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remain nearly unchanged. We show in turn that mirror flow has the same implicit bias as gradient flow
when the network width tends to infinity. This is surprising because, in contrast, for finite-dimensional
parameter models mirror flow has been observed to exhibit a different implicit bias than gradient
descent (see, e.g., Gunasekar et al., 2018a; Sun et al., 2023). We then proceed to characterize the
particular solution function that is returned by mirror flow for wide ReLU networks, by expressing the
difference between the network functions before and after training, g(x) = ftrained(x)→ finitial(x),
as the solution to a variational problem. By examining the function representation cost, we show
that mirror flow is biased towards minimizing a weighted L2 norm of the second-order derivative of
the difference function,

∫
p→1(x)(g↑↑(x))2dx, where the weight p→1 is determined by the network

parameter initialization, and two additional terms that control the first-order derivative. This includes
as a special case a previous result for gradient flow and ReLU activations by Jin & Montúfar (2023).
Our analysis also removes a key limitation of that result, which required either an intractable linear
adjustment of the training data or otherwise adding skip connections to the network. We observe that
other previous works on the implicit bias of gradient descent suggested that shallow ReLU networks
in the kernel regime could be well-approximated by a cubic spline interpolator of the training data
(Williams et al., 2019; Heiss et al., 2019; Sahs et al., 2022) but overlooked the need of linearly
adjusting the training data or adding skip connections. We illustrate that even a slight modification of
the training data by applying a constant shift to all training labels can lead to significantly different
solutions upon training which are biased not only in terms of curvature but also slopes.

To explore training algorithms capable of implementing different forms of regularization depending
on the parameter geometry, we introduce mirror descent with scaled potentials. These are separable
potentials !(ω) =

∑
k ε(ωk) whose input is scaled by the network width n as !(nω). We show that

for networks with standard parametrization, mirror flow with scaled potentials also exhibits lazy
training but is not in the kernel regime. In this case the training dynamics can become fundamentally
different from that of gradient flow, for which the lazy and kernel regimes fully overlap (see, e.g.,
Lee et al., 2019). For networks with absolute value activations, we show that mirror flow with
scaled potentials induces a rich class of implicit regularizations. The difference function minimizes
a functional of the form

∫
Dω(g↑↑(x)p→1(x), 0)p(x)dx, where Dω denotes the Bregman divergence

induced by ε. Notably, for non-homogeneous potential functions ε, the resulting regularization is not
homogeneous and therefore it cannot be expressed by an RKHS norm. Overall our results show that,
whereas the choice of parameter initialization distribution determines how strongly the curvature
is penalized at different locations in the input domain via p, the choice of the potential function ε
determines how the different magnitudes of the curvature are penalized.

1.1 CONTRIBUTIONS

The goal of this article is to provide insights into the implicit bias of mirror flow for shallow and wide
neural networks with standard parametrization. Our contributions can be summarized as follows.

• We show for a broad class of potential functions that, mirror flow, when applied to networks with
general input dimension, displays lazy training. We show that in this case the implicit bias of mirror
flow is equivalent to that of gradient flow when the number of hidden units tends to infinity.

• We characterize the implicit bias of mirror flow for univariate networks in function space. Con-
cretely, we express the difference of the trained and initialized network function as the solution to a
variational minimization problem in function space (Theorem 2).

• We introduce a class of scaled potentials for which we show that mirror flow, applied to networks
with general input dimension, falls in the lazy regime but not in the kernel regime. We characterize
the corresponding implicit bias for infinitely wide networks and observe it is strongly dependent on
the potential and thus different from ordinary gradient flow.

• Finally, we characterize the implicit bias of mirror flow with scaled potentials in function space for
univariate networks with absolute value activation function (Theorem 9). Our results show that the
choice of the potential biases the magnitude of the curvature of the solution function.

1.2 RELATED WORKS

Implicit bias of mirror descent The implicit bias of mirror descent has been studied for under-
determined linear models. In classification problems with linearly separable data, Sun et al. (2022)
show that mirror descent with homogeneous potentials converges in direction to a max-margin
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classifier with respect to a norm defined by the potential. Pesme et al. (2024) extend this work to
non-homogeneous potentials. For regression, Gunasekar et al. (2018a); Azizan & Hassibi (2019)
show that mirror descent is biased towards the minimizer of the loss that is closest to the initialization
with respect to the Bregman divergence defined by the potential. Azizan et al. (2022) extend this
result to nonlinear models, albeit placing a strong assumption that the initial parameter is sufficiently
close to a solution. For matrix sensing, Wu & Rebeschini (2021) show mirror descent with spectral
hypentropy potential tends to recover low-rank matrices. Li et al. (2022) connect gradient flow with
commuting reparameterization to mirror flow, and show that both have identical trajectories and
implicit biases. This connection is further studied by Chou et al. (2023) specifically for linear models.

Implicit bias of gradient descent for overparametrized networks A seminal line of works in
theoretical deep learning investigates the training dynamics of overparameterized neural networks
in the so-called lazy regime (Du et al., 2019; Lee et al., 2019; Lai et al., 2023). Gradient descent
training in this regime minimizes the training loss but, remarkably, the network parameters remain
nearly unchanged. In turn, the network becomes equivalent to a kernel model (Jacot et al., 2018).
A particular consequence is that in the lazy regime the implicit bias of gradient descent can be
described as the minimization of an RKHS norm (Zhang et al., 2020). Williams et al. (2019); Sahs
et al. (2022) derived the explicit form of this RKHS norm for univariate shallow ReLU networks.
However, Williams et al. (2019) implicitly constrain the computation to a subspace in the RKHS
consisting of functions with specific boundary conditions, and Sahs et al. (2022) placed an incorrect
assumption on the behavior of the initial breakpoints of the network in the infinite width limit. Jin &
Montúfar (2023) obtained a function description of the implicit bias of gradient descent for univariate
and multivariate shallow ReLU networks where they explicitly characterize the effect of parameter
initialization. However, their result requires either networks with skip connections or an intractable
linear data adjustment. The latter, noted by the authors, is also equivalent to computing the RKHS
norm in a function subspace. Beside the kernel regime, we observe that a complementary line of
works studies the dynamics and implicit bias in the active regime, also known as the rich or adaptive
regime, where the hidden features change during training and the networks do not behave like kernel
models (Mei et al., 2019; Williams et al., 2019; Chizat & Bach, 2020; Jacot et al., 2021; Mulayoff
et al., 2021; Shevchenko et al., 2022; Boursier et al., 2022; Chistikov et al., 2023; Qiao et al., 2024).

Representation cost For a parameterized model and a given cost function, e.g., a norm, on the
parameter space, the representation cost of a target function refers to the minimal cost required to
implement that function. Existing work has revealed a close connection between representation cost
and the implicit bias of gradient-based optimization methods, as the latter can often be described by
specific parameter norm minimization problems. A number of works have studied the representation
cost for neural networks with varying architectures (Gunasekar et al., 2018b; Savarese et al., 2019;
Ongie et al., 2020; Boursier & Flammarion, 2023; Jacot, 2023; Parkinson et al., 2024). Among these,
Savarese et al. (2019); Ongie et al. (2020); Boursier & Flammarion (2023) have focused on infinitely
wide and shallow ReLU networks, similar to our work. While these works focused on the L1 norm on
the output weights as the cost function, we considered the L2 norm and encompasses a broad family
of cost functions induced by Bregman divergence. Moreover, instead of studying representation cost
in a static and optimization-free manner, we provide detailed analyses of the optimization dynamics
of mirror flow and characterize the implicit bias with concrete convergence guarantees.

2 PROBLEM SETUP

We focus on fully-connected two-layer neural networks with d input units, n hidden units and one
output unit, defined by:

f(x, ω) =
n∑

k=1

akϑ(w
T
k x→ bk) + d, (1)

where ϑ(z) is a nonlinear activation function. We write ω = vec(W , b,a, d) ↑ Rp, with p = n(d+
2) + 1, for the vector of all parameters, comprising the input weights W = (w1, . . . , wn)T ↑ Rn↓d,
input biases b = (b1, . . . , bn)T ↑ Rn, output weights a = (a1, . . . , an)T ↑ Rn, and output bias
d ↑ R. We assume the parameters of the network are initialized by independent samples of mutually
independent random variables W,B,A and D as follows:

wk ↓ W = Unif(Sd→1), bk ↓ B, ak ↓
1
↔
n
A, k = 1, . . . , n; d ↓ D. (2)
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We assume W is uniform on the unit sphere in Rd, and B, A, D are sub-Gaussian random variables.
Further, assume that B has a continuous density function pB and that the random vector (W,B) is
symmetric, i.e., (W,B) and (→W,→B) have the same distribution. We use µ for the distribution of
(W,B), and ω̂ = vec(Ŵ , b̂, â, d̂) for the initial parameter vector.

In Appendix C, we further discuss our settings on the network parametrization and initialization.
Specifically, we compare the parametrization in (1), which is known as the standard parametrization,
to the NTK parametrization (Jacot et al., 2018), and discuss the effect of the Anti-Symmetrical
Initialization (Zhang et al., 2020), which is a common technique to ensure zero function output at
initialization, on the implicit bias of mirror descent training.

Consider a finite training data set {(xi, yi)}mi=1
↗ Rd

↘ R. Consider the mean squared error
L(ω) = 1

2m

∑m
i=1

(f(xi, ω)→ yi)2. Given a strictly convex and twice differentiable potential function
! on the parameter space, the Bregman divergence (Bregman, 1967) with respect to ! is defined as
D!(ω, ω↑) = !(ω)→ !(ω↑)→ ≃⇐!(ω↑), ω → ω↑⇒. The mirror descent parameter update (Nemirovskij
& Yudin, 1983; Beck & Teboulle, 2003) for minimizing the loss L(ω) is defined by:

ω(t+ 1) = argmin
ε→

ϖ≃ω↑,⇐L(ω(t))⇒+D!(ω
↑, ω(t)), (3)

where the constant ϖ > 0 is the learning rate. When the learning rate takes infinitesimal values (we
consider ϖ = ϑ0

n for some constant ϖ0 > 0 and n ⇑ ⇓), (3) can be characterized by the mirror flow:

d

dt
ω(t) = →ϖ(⇐2!(ω(t)))→1

⇐L(ω(t)). (4)

The mirror flow (4) can be interpreted as a Riemannian gradient flow with metric tensor ⇐2!. For
convenience, we provide in Appendix F a brief introduction to the Riemannian geometry of the
parameter space endowed with metric ⇐

2!.

The dynamics for the predictions can be given as follows. Let y = [y1, . . . , ym]T ↑ Rm denote the
vector of the training labels and f(t) denote the vector of the network prediction on the training input
data points at time t, i.e., f(t) = [f(x1, ω(t)), . . . , f(xm, ω(t))]T ↑ Rm. By the chain rule,

d

dt
f(t) = →nϖH(t)(f(t)→ y),

where H(t) ↭ n→1Jεf(t)(⇐
2!(ω(t)))→1Jε(f(t))

T .
(5)

Here Jεf(t) = [⇐εf(x1, ω(t)), . . . ,⇐εf(xm, ω(t))]T ↑ Rm↓p denotes the Jacobian matrix of the
network output f(t) with respect to the network parameter ω. We see in (5) that different choices of
! induce different modifications of the Gram matrix Jεf(t)(Jεf(t))T .

To fix a few notations, we write [n] = {1, 2, . . . , n} for n ↑ N. We use Ck(”) for the space of k
times continuously differentiable real-valued functions on ” and C(”) for the space of continuous
real-valued functions on ”. We use supp(·) to denote the support set of a function or a distribution.
We say that a sequence of events {En}n↔N holds with high probability if P (En) ⇑ 1 as n ⇑ ⇓.

3 MAIN RESULTS

We present our main theoretical results, followed by an overview of the proof techniques.

3.1 IMPLICIT BIAS OF MIRROR FLOW WITH UNSCALED POTENTIALS

We consider the following assumptions on the potential function.
Assumption 1. The potential function ! : Rp

⇑ R satisfies: (i) ! can be written in the form
!(ω) =

∑p
k=1

ε(ωk → ω̂k), where ε is a real-valued function on R; (ii) ! is twice continuously
differentiable; (iii) ⇐2!(ω) is positive definite for all ω ↑ Rp.

Potentials that satisfy (i) are referred to as separable in the literature, as they operate independently on
each coordinate of the input. We consider separable potentials since they have a natural definition as
n grows and can be conveniently extended to infinitely dimensional spaces (see details in Section 3.3).
Items (ii) and (iii) are common in the mirror descent literature (Sun et al., 2023; Pesme et al.,
2024). Assumption 1 is quite mild and covers a broad class of potentials including: (1) ε(x) = x2
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(which recovers ordinary gradient descent); (2) ε(x) = cosh(x); and (3) the hypentropy function
ε(x) = ϱϖ(x) = x arcsinh(x/ς) →

√
x2 + ς2 for ς > 0 (Ghai et al., 2020). In particular and

significantly, we do not require homogeneity. Assumption 1 does not cover the unnormalized negative
entropy ε(x) = x log x→ x and the corresponding natural gradient descent (NGD). However, since
the second derivative of the hypentropy function, 1/

√
x2 + ς2, converges to that of the negative

entropy, 1/x, as ς ⇑ 0+, we can still obtain insights into NGD by applying our results to hypentropy
potentials. We refer to potentials that satisfy Assumption 1 as unscaled potentials in order to
distinguish them from the scaled potentials which we examine in Section 3.2.

The following theorem characterizes the implicit bias of mirror flow for least squares regression with
wide neural networks with ReLU activation ϑ(s) = max{0, s}.
Theorem 2 (Implicit bias of mirror flow for wide ReLU network). Consider a two layer ReLU
network (1) with d ⇔ 1 input units and n hidden units, where we assume n is sufficiently large.
Consider parameter initialization (2) and, specifically, let pB(b) denote the density function for
random variable B. Consider any finite training data set {(xi, yi)}mi=1

that satisfies xi ↖= xj when
i ↖= j and {↙xi↙2}

m
i=1

↗ supp(pB), and consider mirror flow (4) with a potential function !
satisfying Assumption 1 and learning rate ϖ = #(1/n). Then, there exist constants C1, C2 > 0 such
that with high probability over the random parameter initialization, for any t ⇔ 0,

↙ω(t)→ ω̂↙↗ ∝ C1n
→1/2, lim

n↘↗

↙H(t)→H(0)↙2 = 0, ↙f(t)→ y↙2 ∝ e→ϑ0C2t↙f(0)→ y↙2. (6)

Moreover, letting ω(⇓) = limt↘↗ ω(t), we have for any given x ↑ Rd, that limn↘↗ |f(x, ω(⇓))→
f(x, ωGF(⇓))| = 0, where ωGF(⇓) denotes the limiting point of gradient flow, i.e., mirror flow (4)
with !(ω) = ↙ω↙2

2
, on the same training data and initial parameter.

Assuming univariate input data, i.e., d = 1, we have for any given x ↑ R, that limn↘↗ |f(x, ω(⇓))→
f(x, ω̂)→ h̄(x)| = 0, where h̄(·) is the solution to the following variational problem:

min
h↔FReLU

G1(h) + G2(h) + G3(h) s.t. h(xi) = yi → f(xi, ω̂), ′i ↑ [m],

where






G1(h) =

∫

supp(pB)

(h↑↑(x))2

pB(x)
dx

G2(h) = (h↑(+⇓) + h↑(→⇓))2

G3(h) =
1

E[B2]

(∫

supp(pB)

h↑↑(x)|x|dx→ 2h(0)
)2

.

(7)

Here FReLU = {h(x) =
∫
φ(w, b)[wx → b]+dµ : φ ↑ C(supp(µ)),φ is uniformly continuous},

h↑(+⇓) = limx↘+↗ h↑(x), and h↑(→⇓) = limx↘→↗ h↑(x). In addition, if B is supported on
[→B,B] for some B > 0, then G3(h) =

1

E[B2]
(B(h↑(+⇓)→ h↑(→⇓))→ (h(B) + h(→B)))2.

To interpret the result, (6) means that mirror flow exhibits lazy training and the network behaves like
a kernel model with kernel H(0). The theorem indicates that mirror flow has the same implicit bias
as ordinary gradient flow, and the reason behind this is that, loosely speaking, since the parameters
stay nearly unchanged during training, the effect of the potential reduces to the effect of a quadratic
form, i.e., !(ω) ∞ ↙ω↙2

2
. Further below we discuss scaled potentials breaking outside this regime.

To interpret the implicit bias described in (7), we discuss the effect of the different functionals on the
solution function: (1) G1 serves as a curvature penalty, which can be viewed as the p→1

B
-weighted

L2 norm of the second derivative of h. Note in our setting pB corresponds to the density of B/W ,
which is the breakpoint of a ReLU in the network. (2) G2 favors opposite slopes at positive and
negative infinity. (3) The effect of G3 is less clear under general sub-Gaussian initializations. In the
case where B is compactly supported, G3 can be interpreted as follows: if h is generally above the
x-axis (specifically, h(B) + h(→B) > 0), then G3 encourages h↑(+⇓) > h↑(→⇓) and thus favors a
U-shaped function; if on the contrary h is below the x-axis, G3 favors an inverted U-shaped function.

The functional G1 is familiar from the literature on space adaptive interpolating splines and in
particular natural cubic splines when pB is constant (see, e.g., Ahlberg et al., 2016). However, with G2

and G3, the solution to (7) has regularized boundary conditions. In Figure 1, we illustrate numerically
that gradient flow returns natural cubic splines only on very specific training data.
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Remark 3 (Relaxed potential assumption). Assumption 1 requires the potential ! to be “centered”
at the initial parameter ω̂. In Appendix A.4, we show Theorem 2 also holds for potentials of the form
!(ω) =

∑
k ε(ωk), given the initial input biases are sampled from a bounded distribution.

Remark 4 (Gradient flow with reparametrization). As observed by Li et al. (2022), mirror flow is
equivalent to gradient flow with commuting reparameterization. In Appendix D, we use our results to
characterize the implicit bias of gradient flow with particular reparametrizations.
Remark 5 (Absolute value activations). For networks with absolute value activation ϑ(s) = |s|, a
similar result to Theorem 2 holds, which we formally present in Theorem 24. The only change is that
G2 and G2 disappear in the objective functional.
Remark 6 (Skip connections). For networks with skip connections, i.e., fskip(x, (ω, u, v)) =
f(x, ω) + ux + v with u, v ↑ R, the skip connections can modify the value of G2(fskip) and
G3(fskip) without affecting G1(fskip). Therefore, if we assume that the skip connections have a much
faster training dynamics than the other parameters1, then the solution function is biased towards
solving minh↔FReLU,u,v↔R G1(h) subject to h(xi) + uxi + v = yi for i ↑ [m]. By this we recover
the result obtained by Jin & Montúfar (2023) for univariate networks with skip connections.
Remark 7 (Natural gradient descent). Theorem 2 holds for hypentropy potential ϱϖ for any ς > 0,
and in particular, in the limit as ς ⇑ 0+. This is consistent with a result by Zhang et al. (2019)
stating NGD converges to the same point as ordinary gradient descent.

3.2 IMPLICIT BIAS OF MIRROR FLOW WITH SCALED POTENTIALS

We introduce scaled potentials and show that these induce a rich class of implicit biases.
Assumption 8. Assume the potential function ! : Rp

⇑ R satisfies: (i) ! can be written in the form
of !(ω) = 1

n2

∑p
k=1

ε
(
n(ωk → ω̂k)

)
, where ε is a real-valued function on R; (ii) ε takes the form of

ε(x) = 1

1+ϱ

(
↼(x) + ↽x2

)
, where ↽ > 0 and ↼ ↑ C3(R) is a convex function on R.

In Assumption 8, the factor 1/n2 prevents the largest eigenvalue of the Hessian ⇐
2! from diverging

as n ⇑ ⇓. The form of ε can be interpreted as a convex combination of an arbitrary smooth, convex
function ↼ and the quadratic function x2. A further discussion is presented in Section 3.3.

The following result characterizes the implicit bias of mirror flow with scaled potentials for wide
networks with absolute value activations. We consider absolute value activations because, compared
to ReLU they yield a smaller function space that makes the problem more tractable.
Theorem 9 (Implicit bias of scaled mirror flow for wide absolute value network). Consider a
two layer network (1) with absolute value activation, d ⇔ 1 input units and n hidden units, where we
assume n is sufficiently large. Consider parameter initialization (2) and, specifically, let pB(b) denote
the density function for random variable B. Additionally, assume B is compactly supported. Given
any finite training data set {(xi, yi)}mi=1

with xi ↖= xj when i ↖= j and {↙xi↙2}
m
i=1

↗ supp(pB),
consider mirror flow (4) with a potential satisfying Assumptions 8 and learning rate ϖ = #(1/n).
Specifically, assume the potential is induced by a univariate function ε(z) = 1

1+ϱ (↼(z) + ↽z2).
There exists ↽0 > 0 (depending on ↼, the training data and the initialization distribution) such that
for any ↽ > ↽0, there exist constants C1, C2 > 0 such that with high probability over the random
parameter initialization, for any t ⇔ 0,

↙ω(t)→ ω̂↙↗ ∝ C1n
→1, ↙f(t)→ y↙2 ∝ e→ϑ0C2t↙f(0)→ y↙2 (8)

Moreover, assuming univariate input data, i.e., d = 1, and letting ω(⇓) = limt↘↗ ω(t), we have for
any given x ↑ R that limn↘↗ |f(x, ω(⇓))→ f(x, ω̂)→ h̄(x)| = 0, where h̄(·) is the solution to the
following variational problem:

min
h↔FAbs

∫

supp(pB)

Dω

( h↑↑(x)

2pB(x)
, 0
)
pB(x)dx s.t. h(xi) = yi → f(xi, ω̂), ′i ↑ [m]. (9)

Here Dω denotes the Bregman divergence on R induced by the univariate function ε, and FAbs =
{h(x) =

∫
φ(w, b)|wx→ b|dµ : φ ↑ C(supp(µ)),φ is even and uniformly continuous}.

1This is can achieved by setting the learning rate for skip connections significantly larger than the learning
rate of the other network parameters.
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Note, given any non-homogeneous function ε, the objective functional in (9) is not homogeneous
and therefore it cannot be expressed by any function norm (including RKHS norm). Also note, even
though mirror flow displays lazy training, the kernel matrix H(t) does not necessarily stay close to
H(0) due to the scaling factor n inside the potential. This implies that training may not be in the
kernel regime (see numerical illustration in Figure 5).

The implicit bias described in (9) can be interpreted as follows: the parameter initialization distribution
determines pB and thus the strength of the penalization of the second derivative of the learned function
at different locations of the input space; on the other hand, the potential function ε determines the
strength of the penalization of the different magnitudes of the second derivative. In particular, if
we choose ε = 1

2
(|x|p + x2), then a smaller p allows relatively extreme magnitudes for the second

derivative, whereas a larger p allows for more moderate values. This is illustrated in Figure 2.

Theorem 9 relies on the assumption that ↽ in ε = 1

1+ϱ (↼ + ↽x2) is larger than a threshold ↽0. In
Proposition 30, we give a closed-form formula for this threshold. Further, numerical experiments in
Section 4 indicate the theorem holds even when ↽ takes relatively small values, for instance, ↽ = 1.
Remark 10 (Scaled natural gradient descent). In Theorem 38, we show Theorem 9 also holds for
scaled hypentropy potentials !(ω) = 1

n2 ϱϖ(n(ωk → ω̂k)) when ς is sufficiently large, and it therefore
provides insights into scaled NGD. Empirically we observe that as ς ⇑ 0+, networks trained with
scaled hypentropy converge to the solution to problem (9) with ε(x) = |x|3 (see Figure 7).

3.3 GENERAL FRAMEWORK FOR THE PROOF OF THE MAIN RESULTS

We present a general framework to derive our main results, which builds on the strategy of Jin &
Montúfar (2023) with a few key differences. First, we examine the training dynamics of mirror
flow, for which the analysis is more intricate than that of gradient flow due to the need to account
for the evolution of the inverse Hessian of the potential throughout training. In particular, in the
scaled potential case, we carefully analyze how the Hessian’s properties, such as the decay rate of its
smallest eigenvalue, affect the parameter trajectories. Second, we solve the minimal representation
cost problem to derive the function description of the implicit bias. This allows us to remove a
previous requirement to linearly adjust the data when the network does not include skip connections.
The detailed proofs for Theorems 2 and 9 are presented in Appendix A and Appendix B, respectively.

Linearization The first step of the proof is to show that, under mirror flow, functions obtained
by training the network are close to those obtained by training only the output weights. Let ω̃(t) =
vec(W (0), b(0), ã(t), d(0)) denote the parameter under the update rule where W , b, d are kept at
their initial values and

d

dt
ã(t) = →ϖ(⇐2!(ã(t)))⇐ãL(ω̃(t)), ã(0) = a(0). (10)

Here, we write !(ã) for the potential function applied to the output weights. For unscaled potentials,
!(ã) =

∑n
k=1

ε(ãk → âk); for scaled potentials, !(ã) = n→2
∑n

k=1
ε(n(ãk → âk)). Let f̃(t) =

[f(x1, ω̃(t)), . . . , f(xm, ω̃(t))]T ↑ Rm. The evolution of f̃(t) can be given by

d

dt
f̃(t) = →nϖH̃(t)(f̃(t)→ y), f̃(0) = f(0),

where H̃(t) ↭ n→1Jãf̃(t)(⇐
2!(ã(t)))→1Jãf̃(t)

T .
(11)

We aim to show that for any fixed x ↑ Rd, limn↘↗ supt≃0 |f(x, ω(t)) → f(x, ω̃(t)| = 0. For
unscaled potentials, we adapt an established approach from gradient flow analysis (Du et al., 2019;
Lee et al., 2019). Specifically, we show ↙ω(t) → ω̂↙↗ and ↙ω̃(t) → ω̂↙↗ are bounded by O(n→1/2)
(Proposition 14). Then we bound ↙H(t)→ H̃(t)↙2 with the continuity of the Hessian map ⇐

2!(·)
in Assumption 1, which gives the desired bound on |f(x, ω(t)) → f(x, ω̃(t)| (Proposition 16). For
scaled potentials, we use a similar strategy to show ↙ω(t)→ ω̂↙↗ and ↙ω̃(t)→ ω̂↙↗ are bounded by
O(n→1) (Proposition 27). Then we show ↙nω(t)→ nω̃(t)↙↗ can be bounded when the smallest and
largest eigenvalues of ⇐2!(ω) have mild decay and growth rates, respectively, as ↙ω↙2 increases,
which allows us to control |f(x, ω(t))→ f(x, ω̃(t))| (Proposition 29).
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Implicit bias in parameter space The second step is to characterize the implicit bias for wide
networks in their parameter space. In view of the previous step, it suffices to characterize the bias for
networks where only the output weights are trained. Since the network is linear with respect to the
output weights, we can use the following result on the implicit bias of mirror flow for linear models.
Theorem 11 (Gunasekar et al., 2018a). If mirror flow (10) converges to zero loss, then the final
parameter is the solution to following constrained optimization problem:

min
ã↔Rn

D!(ã, â) s.t. f(xi, ω̃) = yi, ′i ↑ [m]. (12)

We reformulate (12) in a way that allows us to consider the infinite width limit, i.e., n ⇑ ⇓. Let
µn denote the empirical distribution on Rd

↘ R induced by the sampled input weights and biases
{(ŵk, b̂k)}nk=1

.2 Consider a function φ : supp(µ) ⇑ R whose value encodes the difference of the
output weight from its initialization for a hidden unit given by the argument, i.e., φ(ŵk, b̂k) =
n(ãk → âk), ′k ↑ [n]. Then the difference of the network output at a given x ↑ Rd from its
initialization is gn(x,φ) = f(x, ω̃)→ f(x, ω̂) =

∫
φ(w, b)ϑ(wTx→ b)dµn. Noticing µn converges

weakly to µ, we write the difference between the infinitely wide networks before and after training as:

g(x,φ) =

∫
φ(w, b)ϑ(wTx→ b)dµ, φ ↑ #. (13)

Here # ↗ C(supp(µ)) is chosen as the parameter space for the model (13). Our goal is to identify a
cost functional on the parameter space C! : # ⇑ R such that, as the width of the network goes to
infinity, the solution to (12) converges to the solution to the following problem:3

min
ς↔”

C!(φ) s.t. g(xi,φ) = yi → f(xi, ω̂), ′i ↑ [m]. (14)

For unscaled potentials, noticing the final output weight returned by mirror flow, i.e., the minimizer of
(12), has O(n→1/2) bounded difference from its initialization, we have the following approximation
for the objective function of (12) when n tends to infinity:4

D!(ã, â)
n↘↗
=

n∑

k=1

ε↑↑(0)

2
(ãk → âk)

2 =
ε↑↑(0)

2n

∫
(φ(w, b))2dµn, (15)

where we consider the Taylor approximation of ε at the origin. Based on this, for unscaled potentials
we show that in the infinite width limit, problem (12) can be described by problem (14) with
C!(φ) =

∫
(φ(w, b))2dµ, regardless of the choice of ! (Proposition 17).

In the case of scaled potentials, the objective function in (12) can be reformulated as

D!(ã, â) =
1

n2

n∑

k=1

(
ε(n(ãk → âk))→ ε(0)→ nε↑(0)(ãk → âk)

)
=

1

n

∫
Dω(φ(w, b), 0) dµn.

(16)
Based on this, for scaled potentials we show that, as n tends to infinity, problem (12) can be described
by problem (14) with C!(φ) =

∫
Dω(φ(w, b), 0)dµ (Proposition 32).

Function space description of the implicit bias The last step of our proof is to translate the
implicit bias in parameter space, as described by problem (14), to the function space of univariate
networks, F = {h(x) =

∫
φ(w, b)ϑ(wx → b)dµ : φ ↑ #}. We do so by “pulling back” the cost

functional C! from the parameter space to the function space, via the map R! : F ⇑ # defined by
R!(h) = argmin

ς↔”

C!(φ) s.t. g(x,φ) = h(x), ′x ↑ R. (17)

The optimization problem in (17) is known as the minimal representation cost problem, as it seeks
the parameter φ with the minimal cost C!(φ) such that g(·,φ) represents a given function h. In
the following result, we show that for general cost functionals, the map R! allows one to translate
problem (14) to a variational problem on the function space. The proof is presented in Appendix A.3.

2µn(A) = 1
n

∑n
k=1 IA((ŵk, b̂k)) for any measurable set A → Rd ↑ R, where IA is the indicator of A.

3The convergence is in the following sense: let ā be the solution to (12) and ω̄n ↓ ! be a continuous
function satisfying ω̄n(ŵk, b̂k) = n(āk ↔ âk) for all k ↓ [n]. Let ω̄ be the solution to (14). Then for any given
x ↓ Rd, gn(x, ω̄n) converges in probability to g(x, ω̄) as n ↗ ↘.

4Here we write xn
n→↑
= yn to signify that limn→↑ xn ↔ yn = 0.
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Proposition 12. Assume that # is a vector subspace in C(supp(µ)) and C! is strictly convex
functional on #. Consider the map R! defined in (17). If φ̄ is the solution to problem (14), then
g(·, φ̄) solves the following variational problem:

min
h↔F

C! ∈R!(h) s.t. h(xi) = yi → f(xi, ω̂), ′i ↑ [m]. (18)

With Proposition 12, to obtain function description of the implicit bias, it suffices to characterize the
exact form of the map R!, which is equivalent to solving the minimal representation cost problem.
For unscaled potentials and ReLU networks, we set #ReLU as the space of uniformly continuous
functions on supp(µ) and our approach builds on the following key observations:

(1) every φ ↑ #ReLU has a unique even-odd decomposition, φ = φ+ + φ→ where φ+
↑ #Even =

{φ ↑ #ReLU : φ is even} and φ→
↑ #Odd = {φ ↑ #ReLU : φ is odd};5

(2) under the cost functional C!(φ) =
∫
(φ(w, b))2dµ, the Pythagorean-type equality holds: C!(φ) =

C!(φ+) + C!(φ→), ′φ ↑ #ReLU.
(3) the even-odd decomposition in the parameter space is equivalent to decomposing any infinitely

wide ReLU network as the sum of an infinitely wide network with absolute value activation and an
affine function (this has been previously observed by Ongie et al., 2020):

∫
φ(w, b)[wx→ b]+dµ =

∫
φ+(w, b)

|wx→ b|

2
dµ+

∫
φ→(w, b)

wx→ b

2
dµ. (19)

Based on these, we solve the minimal representation cost problem (17) for h ↑ FReLU by decompos-
ing h as in (19) and then solving two simpler problems on FAbs and FA#ne (Proposition 21), where
FA#ne is the space of affine functions on R. We show C!∈R! = G1 on FAbs and C!∈R! = G2+G3

on FA#ne and thus the implicit bias on FReLU can be described by G1 + G2 + G3 (Proposition 22).

For the case of scaled potentials, where the cost functional is C!(φ) =
∫
Dω(φ(w, b), 0)dµ, the

decomposition technique discussed above no longer applies since the Pythagorean equality generally
does not holds. Therefore, solving the minimal representation cost problem remains challenging (see
more details in Appendix E.1). To mitigate this, we restricted our attention to networks with absolute
value activation functions, and solve problem (17) on the subspace FAbs (Proposition 36).

4 EXPERIMENTS

Figure 1: Illustration of Theorem 2. Left: ReLU networks with 4860 hidden neurons, uniformly
initialized input biases and zero initialized output weights and biases, trained with mirror flow on a
common data set using unscaled potentials: ε1 = x2, ε2 = |x|3 + x2, and ε3 = x4 + x2. Middle:
L↗-error between the solution to the variational problem and the networks trained using mirror
descent with ε1, ε2 and ε3, against the network width. Right: ReLU networks trained with gradient
descent on five different data sets, each obtained by translating the same data set along the y-axis.

We numerically illustrate Theorem 2 in Figure 1. In agreement with the theory, the left panel shows
that mirror flow with different unscaled potentials have the same implicit bias. The middle panel
verifies that the solution to the variational problem captures the networks obtained by mirror descent
training, with decreasing error as the number of neurons increases. Notice the errors across different

5Recall a function ω on {↔1, 1} ↑ [↔Bb, Bb] is called an even function if ω(w, b) = ω(↔w,↔b) for all
(w, b) in its domain; and an odd function if ω(w, b) = ↔ω(↔w,↔b) for all (w, b) in its domain.
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potentials are nearly equal. In fact, we find that the parameter trajectories for different potentials
also overlap (see Figure 3). The right panel demonstrates that applying vertical translations to the
training data results in much different training outcomes. Only on specific training data, the trained
network is equal to the natural cubic spline interpolation of the data (shown as a dashed gray curve).
Meanwhile, networks have opposite slopes at positive and negative infinity, which illustrates the
effect of functional G2, and that when the data lies above the x-axis, networks have a U-shape and
when the data is below the x-axis, they have an inverted U-shape, which illustrates the effect of G3.

Figure 2: Illustration of Theorem 9. Left: absolute value networks with 4860 hidden neurons,
uniformly initialized input biases and zero initialized output weights and biases, trained with mirror
descent on a common data set using scaled potentials: ε1 = x2, ε2 = |x|3 + x2, and ε3 = x4 + x2.
For comparison we also plot a network with Gaussian initialized input biases, trained with gradient
descent. Middle: L↗-error between the solution to the variational problems and networks trained
using mirror descent for scaled potentials ε1, ε2 and ε3, against the network width. Right: the
distribution of the magnitude of the second derivative of the solutions to the variational problems for
ε1 (blue), ε2 (orange), and ε3 (green). The inset shows the second derivatives over the input domain.

We illustrate Theorem 9 numerically in Figure 2. The left panel illustrates the effect of the scaled
potentials and parameter initialization on the implicit bias of mirror descent. When fixing the
potential, a network with Gaussian initialization (dashed blue curve) learns a function whose curvature
is more concentrated around the origin, compared to a network with uniform initialization (solid
blue curve). When fixing the initialization, different potentials result in functions with different
curvature magnitudes (solid curves in different colors). The middle plot verifies that the solution
to the variational problem captures the trained network solutions as the network width increases.
The right panel further illustrates how the potentials in the left panel lead to functions with different
curvature magnitudes. We see ε1 allows occurrences of more extreme small and large magnitudes,
whereas ε3 allows the second derivative to concentrate more on moderate values.

5 CONCLUSION

We obtained a function space description of the implicit bias of mirror descent in wide neural networks.
In the infinite width limit, the implicit bias becomes independent of the potential and thus equivalent
to that of gradient descent. On the other hand, for scaled potentials we found that the implicit bias
strongly depends on the potential and in general cannot be captured as a minimum norm in a RKHS.
A takeaway message is that the parameter initialization distribution determines the strength of the
curvature penalty over different locations of the input space and the potential determines the strength
of the penalty over different magnitudes of the curvature.

Limitations and future work Our variational characterization of the implicit bias only applies to
univariate, shallow networks with unit-norm initialized input weights. Characterizing the implicit
bias for deep nonlinear networks remains an open challenge even for ordinary gradient descent.
Extending the results to multivariate networks with general input weights initialization requires
stronger theoretical tools (see Appendix E.2 for details). We considered separable potentials which
allow for a convenient definition in the infinite width limit and we did not cover potentials defined on
a proper subset of the parameter space, such as the negative entropy. Extending our results to more
general potentials could be an interesting direction for future work. Other future research directions
include deriving closed-form solutions for the variational problems and investigating the rate of
convergence as the number of neurons increases.
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Reproducibility statement Code to reproduce our experiments is made available at https:
//github.com/shuangliang15/implicit-bias-mirror-descent.
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APPENDIX

The appendix is organized into the following sections.

• Appendix A: Proof of Theorem 2
• Appendix B: Proof of Theorem 9
• Appendix C: Discussion on parametrization and initialization
• Appendix D: Gradient flow with reparametrization
• Appendix E: Minimal representation cost problem in general settings
• Appendix F: Riemannian geometry of the parameter space (#,⇐2!)

• Appendix G: Experiment details
• Appendix H: Additional numerical experiments

A PROOF OF THEOREM 2

In this section, we present the proof of Theorem 2. We follow the strategy that we introduced in
Section 3.3 and break down the main theorem into several intermediate results. Specifically, in
Proposition 14 we show mirror flow training converges to zero training error and is in the lazy regime.
In Proposition 17, we show mirror flow with unscaled potentials has the same implicit bias as ordinary
gradient flow as the network width tends to infinity. In Proposition 22, we obtain the function space
description of the implicit bias.

We use plimn↘↗
Xn = X or Xn

P
⇑ X to denote that random variables Xn converge to X in

probability as n ⇑ ⇓. We use the notations Op and op to denote the standard mathematical
orders in probability, i.e., Xn = Op(an) if for every ⇀ > 0, there exist Mφ, Nφ > 0 such that
P (|Xn| ∝ Mφan) > 1→ ⇀ for every n > Nφ; and Xn = op(an) if for every ⇀ > 0, there exists nφ

such that P (|Xn| < ⇀an) > 1→ ⇀ for every n > nφ.

A.1 LINEARIZATION

We show that under mirror flow with unscaled potentials, the network obtained by training all
parameters can be well-approximated by that obtained by training only the output weights.

We first show that the initial kernel matrices H(0), H̃(0) converge to a positive definite matrix as the
width of the network increases.
Lemma 13. Consider network (1) with ReLU or absolute value activation function and initialization
(2). Assume that the potential function satisfies Assumption 1, and that the training data {xi}i↔[m]

satisfies xi ↖= xj when i ↖= j, and {↙xi↙2}
m
i=1

↗ supp(pB). Then there exists a constant ⇁0 > 0,
which is determined by the activation function, the training data, and the initialization distribution,
such that plimn↘↗

⇁min(H(0)) = plimn↘↗
⇁min(H̃(0)) = (ε↑↑(0))→1⇁0.

Proof. [Proof of Lemma 13] Note for i, j ↑ [m], we have

Hij(0) =
1

n

3n+1∑

k=1

⇐εkf(xi; ω̂)
1

ε↑↑(0)
⇐εkf(xj ; ω̂)

=
1

nε↑↑(0)

n∑

k=1

ϑ(ŵT
k xi → b̂k)ϑ(ŵ

T
k xj → b̂k) +

1

nε↑↑(0)

+
1

nε↑↑(0)

n∑

k=1

â2kϑ
↑(ŵT

k xi → b̂k)ϑ
↑(ŵT

k xj → b̂k)(x
T
i xj + 1).

Noticing {ak}k↔[n] are independent samples from the random variable 1
⇐
n
A and by sub-Gaussian

concentration bound, we have that maxk↔[n] |âk| ∝ C
√

(log n)/n holds with high probability for
some constant C > 0. It then follows that:

plimn↘↗
Hij(0) =

1

ε↑↑(0)
E
[
ϑ(WTxi → B)ϑ(WTxj → B)

]
.
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Define H↗ = (ε↑↑(0))→1G where Gij = E[ϑ(WTxi → B)ϑ(WTxj → B)]. Then we have
plimn↘↗

H(0) = H↗. In the meantime, we have

H̃ij(0) =
1

n

n∑

k=1

⇐akf(xi; ω̂)
1

ε↑↑(âk)
⇐akf(xj ; ω̂)

P
⇑ H↗

ij ,

which means H̃(0) also converges to H↗ in probability. Now it suffices to show G is positive definite
and let ⇁0 = ⇁min(G). Consider the Hilbert space of squared integrable functions:

H = {h : supp(µ) ⇑ R : E[(h(W,B))2] < ⇓}

with inner-product ≃h, h↑
⇒H = E[h(W,B)h↑(W,B)]. For each xi ↑ R, define hi(w, b) = ϑ(wTxi→

b). Since (W,B) is sub-Gaussian and hi is uniformly continuous, hi ↑ H. Note G is the Gram
matrix of {hi}

m
i=1

. Hence, G ∋ 0 is equivalent to {hi}
m
i=1

are linearly independent in H.

Assume
∑m

i=1
cihi = 0 in H, which means

∑m
i=1

cihi(w, b) = 0 almost everywhere. Without loss
of generality, assume ↙x1↙2 ⇔ ↙x2↙2 ⇔ . . . ⇔ ↙xm↙ ⇔ 0. We aim to show c1 = 0. Notice that, for
any i ↑ [m], hi is not differentiable at (w, b) if and only if wTxi → b = 0. In particular, h1 is not
differentiable at (x1/↙x1↙2, ↙x1↙2). Now for all j > 1, by noticing that ↙xj↙ ∝ ↙x1↙ and x1 ↖= xj

we have,
(

x1

↙x1↙2
)Txj → ↙x1↙2 = ↙xj↙ cos(↫(x1, xj))→ ↙x1↙2 < 0

where ↫(x1, xj) denotes the angle between x1 and xj . This implies that hj is differentiable at
(x1/↙x1↙2, ↙x1↙2) and so is

∑
j ⇒=1

cjhj . Therefore, to make
∑

i cihi differentiable everywhere, we
have c1 = 0. With the same strategy, we can show cj = 0 for j = 2, 3, . . . ,m→ 1, since ↙xj↙ > 0.
It then follows that all coefficients are zero, which completes the proof.

In the next proposition, we show that the model output f(t) converges exponentially fast to y and the
parameters have Op(n→1/2) bounded ,↗ distance from the initialzation.
Proposition 14. Consider a single-hidden-layer univariate network (1) with ReLU or absolute
value activation function and initialization (2). Assume the number of hidden neurons is sufficiently
large. Given any finite training data set {(xi, yi)}mi=1

that satisfies xi ↖= xj when i ↖= j, and
{↙xi↙2}

m
i=1

↗ supp(pB), consider mirror flow (4) with the potential satisfying Assumptions 1 and
learning rate ϖ = ϖ0/n with ϖ0 > 0. Then there exist constants C1, C2 > 0 such that with high
probability over initialization the following holds:

sup
t≃0

↙ω(t)→ ω̂↙↗ ∝ C1n
→1/2, lim

n↘↗

sup
t≃0

↙H(t)→H(0)↙2 = 0, inf
t≃0

⇁min(H(t)) > C2.

Moreover,
↙f(t)→ y↙2 ∝ exp(→ϖ0C2t)↙f(0)→ y↙2, ′t ⇔ 0.

Specifically, the constants C1 and C2 can be chosen as

C1 =
8ε↑↑(0)ς

↔
m(Bx + 1)K↙f(0)→ y↙2

⇁0

, C2 =
⇁0

4ε↑↑(0)
, (20)

where ⇁0 = plimn↘↗
⇁min(

1

nJεf(0)Jεf(0)
T ), ς = maxz↔[→1,1](ε

↑↑(z))→1, m is the size of the
training data set, Bx = maxi↔[m] ↙xi↙2, and K is a constant determined by B and A.

Proof. [Proof of Proposition 14] To ease the notation, we let J(t) = Jεf(t) and Q(t) =
(⇐2!(ω(t)))→1. For i ↑ [m] and k ↑ [n], let ϑik(t) = ϑ(wk(t)Txi → bk(t)) and ϑ↑

ik(t) =
ϑ↑(wk(t)Txi → bk(t)).

By Lemma 13, for sufficiently large n and with high probability, we have ⇁min(H(0)) >
⇁0/(2ε↑↑(0)). According to Assumption 1, we have 0 < ς < ⇓.

Consider

τ(t) = max
↔

n↙a(t)→ a(0)↙↗, nmax
k↔[n]

↙wk(t)→wk(0)↙↗, n↙b(t)→ b(0)↙↗, n|d(t)→ d(0)|

,

and
S = {t ↑ [0,⇓) : τ(t) > C1}.
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Let t1 = inf S. Clearly, 0 < t1. We now aim to prove that t1 = +⇓. Assume, for the sake of
contradiction, that t1 < +⇓. Since τ(t) is continuous, we have τ(t1) = C1.

In the following let t denote any point in [0, t1]. Noticing that τ(t) ∝ C1 implies ↙ω(t)→ ω(0)↙↗ ∝

C1n→1/2, we have for large enough n,

↙Q(t)↙2 = ↙Diag(
1

ε↑↑(ωk(t)→ ωk(0))
)↙2 = max

k↔[3n+1]

1

ε↑↑(ωk(t)→ ωk(0))
∝ max

z↔[→1,1]

1

ε↑↑(z)
= ς.

(21)

Next we bound the difference between H(t) and H(0). By concentration inequality for sub-Gaussian
random variables (see e.g., Wainwright, 2019), there exists K > 1 such that with high probability,

↙b(0)↙↗ ∝ ↙b(0)↙2 ∝ K
↔
n, ↙a(0)↙↗ ∝ ↙a(0)↙2 ∝ K.

Then we have for any i, j ↑ [m], k ↑ [n],

|ϑik(t)| ∝ |wk(t)
Txi|+ |bk(t)| ∝ (Bx + 1)2K

↔
n,

and

|ϑik(t)→ ϑjk(t)| ∝ ↙wk(t)→ wk(0)↙2↙xi↙2 + |bk(t)→ bk(0)| ∝
↔

d(Bx + 1)C1n
→1.

For i, j ↑ [m] we have
|Hij(t)→Hij(0)| ∝ I1 + I2 + I3 + I4, (22)

where 




I1 =
1

n

n∑

k=1


ϑik(t)ϑjk(t)

ε↑↑(ak(t)→ ak(0))
→

ϑik(0)ϑjk(0)

ε↑↑(0)

;

I2 =
1

n

n∑

k=1

d∑

r=1

|xi,rxj,r|


ak(t)2ϑ↑

ik(t)ϑ
↑

jk(t)

ε↑↑(wk,r(t)→ wk,r(0))
→

ak(0)2ϑ↑

ik(0)ϑ
↑

jk(0)

ε↑↑(0)

;

I3 =
1

n

n∑

k=1


ak(t)2ϑ↑

ik(t)ϑ
↑

jk(t)

ε↑↑(bk(t)→ bk(0))
→

ak(0)2ϑ↑

ik(0)ϑ
↑

jk(0)

ε↑↑(0)

;

I4 =
1

n


1

ε↑↑(d(t)→ d(0))
→

1

ε↑↑(0)

.

(23)

Notice that according to Assumption (1), 1

ω→→(·) is continuous and hence is uniformly continuous on
[→1, 1]. Then by noticing ↙ω(t)→ ω(0)↙↗ = O(n→1/2), we have for large enough n,

max
k↔[3n+1]


1

ε↑↑(ωk(t)→ ωk(0))
→

1

ε↑↑(0)

 = op(1). (24)

It immediately follows that I4 = op(1).

For I1, notice that, according to the law of large numbers,

plimn↘↗

1

n

∑

k↔[n]

|ϑikϑjk| = E[ϑ(WTxi → B)ϑ(WTxj → B)].

Therefore, we have 1

n

∑
k↔[n] |ϑikϑjk| = Op(1). Then we have

I1 ∝
1

n

n∑

k=1

(
|ϑik(t)→ ϑik(0)||ϑjk(t)|ς + |ϑik(0)||ϑjk(t)→ ϑjk(0)|ς

+ |ϑik(0)||ϑjk(0)|


1

ε↑↑(ak(t)→ ak(0))
→

1

ε↑↑(0)


)

∝
1

n

∑

k↔[n]

(
Op(n

→1)Op(
↔
n)ς +Op(n

→1)Op(
↔
n)ς

)
+ op(1) ·

1

n

∑

k↔[n]

|ϑikϑjk|

= op(1).
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For I2, notice that z △⇑ z2 is Lipschitz continuous on [→2K, 2K]. Therefore, we have

max
k↔[n]

|ak(t)
2
→ ak(0)

2
| ∝ Op(1)↙a(t)→ a(0)↙↗ = op(1).

Then we have

I2 ∝
B2

x

n

∑

k,r

(
ak(0)

2ς|ϑ↑

ik(t)ϑ
↑

jk(t)→ ϑ↑

ik(0)ϑ
↑

ik(0)|

+ ak(0)
2


1

ε↑↑(wk,r(t)→ wk,r(0))
→

1

ε↑↑(0)

+ |ak(t)
2
→ ak(0)

2
|ς
)

=
B2

xd

n

(
2ς↙a(0)↙2

2
+ op(1)↙a(0)↙

2

2
+ ςn · op(1)

)

= op(1).

Using a technique similar to that applied for I2 above, we have I3 = op(1). Therefore, with a union
bound, we have

↙H(t)→H(0)↙2 ∝ ↙H(t)→H(0)↙F ∝

∑

i,j↔[m]

|Hij(t)→Hij(0)| = op(1). (25)

Then with large enough n we can bound the least eigenvalue of H(t) as

⇁min(H(t)) ⇔ ⇁min(H(0))→ ↙H(t)→H(0)↙2 >
⇁0

4ε↑↑(0)
. (26)

Therefore we have
d

dt
↙f(t)→ y↙2

2
∝ →

ϖ0⇁0

2ε↑↑(0)
↙f(t)→ y↙2

2

and it follows that
↙f(t)→ y↙2 ∝ exp(→

ϖ0⇁0

4ε↑↑(0)
t)↙f(0)→ y↙2. (27)

Notice that

↙Jakf(t)↙2 ∝
↔
m↙Jakf↙↗ ∝

↔
m(Bx↙wk(t)↙2 + |bk(t)|) ∝ 2K(Bx + 1)

↔
mn. (28)

Then with large enough n and for all k ↑ [n], we have

|
d

dt
ak(t)| ∝

ϖ0
n
↙Q(t)↙2↙Jakf(t)↙2↙f(t)→ y↙2

∝
ϖ0
n
ς · 2K(Bx + 1)

↔
mn · exp(→

ϖ0⇁0

4ε↑↑(0)
t)↙f(0)→ y↙2.

(29)

Hence,

|ak(t)→ ak(0)| ∝

∫ t

0

|
d

dt
ak(s)|ds <

8ε↑↑(0)ς
↔
m(Bx + 1)K↙f(0)→ y↙2

⇁0

n→1/2 = C1n
→1/2.

(30)

Note that with large enough n,





↙Jwk,rf(t)↙2 ∝
↔
mBx|ak(t)| ∝ 2K

↔
mBx, ′k ↑ [n], r ↑ [d];

↙Jbkf(t)↙2 ∝
↔
m|ak(t)| ∝ 2K

↔
m, ′k ↑ [n];

↙Jdf(t)↙2 =
↔
m.

(31)

Comparing (31) to (28) and using a similar computations as in (29) and (30), we conclude that
τ(t1) < C1, which yields a contradiction. Thus t1 = ⇓ and τ(t) ∝ C1 for all t ⇔ 0. Meanwhile,
notice that (26) and (27) hold for all t ⇔ 0, which gives all the claimed results.

We point out that Proposition 14 can be extended to the case where only output weights are trained,
without requiring additional efforts. We present the results in the following proposition and omit the
proof for brevity.
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Proposition 15. Assume the same assumptions in Proposition 14 and consider the mirror flow of
training only the output weights of the networks, as described in (10). Let C1, C2 be the constants
defined in (20). Then with high probability over initialization the following holds:

sup
t≃0

↙ω̃(t)→ ω̂↙↗ ∝ C1n
→1, lim

n↘↗

sup
t≃0

↙H̃(t)→ H̃(0)↙2 = 0,

and
↙f̃(t)→ y↙2 ∝ exp(→ϖ0C2t)↙f(0)→ y↙2, ′t ⇔ 0.

Next we show that the network obtained by training only the output weights can be well-approximated
by the network obtained by training all parameters.
Proposition 16. Under the same assumption in Proposition 14, given any x ↑ Rd, with high
probability over initialization,

lim
n↘↗

sup
t≃0

|f(x, ω(t))→ f(x, ω̃(t))| = 0.

Proof. [Proof of Proposition 16] For i ↑ [m] and k ↑ [n], let ϑ↑

ik(t) = ϑ↑(wk(t)Txi→ bk(t)). Under
initialization 2, we have ↙a(0)↙2 = Op(1) and thus

|Hij(0)→ H̃ij(0)| ∝
1

nε↑↑(0)

∑

k↔[n]

|ak(0)|
2
|ϑ↑

ik(0)ϑ
↑

jk(0)||x
T
i xj + 1|+

1

nε↑↑(0)

∝
B2

x + 1

nε↑↑(0)
↙a(0)↙2 +Op(n

→1)

= Op(n
→1).

(32)

Note the size of H(0) and H̃(0) is independent of n. Therefore, ↙H(0)→H̃(0)↙2 = op(1). According
to Proposition 14 and Proposition 15, we have

sup
t≃0

↙H(t)→ H̃(t)↙2 ∝ sup
t≃0

↙H(t)→H(0)↙2 + sup
t≃0

↙H̃(t)→ H̃(0)↙2 + ↙H(0)+ H̃(0)↙2 = op(1).

(33)

In the following, we use the notation $ = supt≃0 ↙H(t) → H̃(t)↙2. Now we show f(t) remains
close to f̃(t). Let r(t) = f(t)→ f̃(t) and C2 be the constant in Proposition 14. Consider the function
u(t) = ↙r(t)↙2 defined on t ⇔ 0. Clearly, u(t) is continuous. Since u(t) = 0 if and only if r(t) = 0,
we have that u(t) is differentiable whenever u(t) ↖= 0. Note by Proposition 14, we have that, with
high probability, ⇁min(H(t)) ⇔ C2 for all t ⇔ 0. Then when u(t) ↖= 0, we have

d

dt
(eC2ϑ0tu(t))2 =

d

dt
↙eC2ϑ0tr(t)↙2

2

= 2eC2ϑ0tr(t)T
d

dt
(eC2ϑ0tr(t))

= 2e2C2ϑ0tr(t)T
(
C2ϖ0r(t)→ ϖ0H(t)(f(t)→ y) + ϖ0H̃(t)(f̃(t)→ y)

)

= 2ϖ0e
2C2ϑ0t

(
r(t)T (H̃(t)→H(t))(f̃(t)→ y)→ r(t)T (H(t)→ C2In)r(t)

)

∝ 2ϖ0e
2C2ϑ0tr(t)T (H̃(t)→H(t))(f̃(t)→ y)

∝ 2ϖ0e
2C2ϑ0tu(t)↙H̃(t)→H(t)↙2↙f̃(t)→ y↙2.

(34)
Meanwhile, we have

d

dt
(eC2ϑ0tu(t))2 = 2eC2ϑ0tu(t)

d

dt
(eC2ϑ0tu(t))

and hence by (34)

d

dt
(eC2ϑ0tu(t)) ∝ ϖ0e

C2ϑ0t↙H̃(t)→H(t)↙2↙f̃(t)→ y↙2.
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Now for any t ⇔ 0, consider t↑ = inf{s ↑ [0, t] : r(s) ↖= 0}. Then we have

eC2ϑ0tu(t) ∝

∫ t

t→
ϖ0e

C2ϑ0s↙H̃(s)→H(s)↙2↙f̃(s)→ y↙2ds.

Hence for all t ⇔ 0, we have

↙r(t)↙2 ∝ e→C2ϑ0t

∫ t

t→
ϖ0e

C2ϑ0s↙H̃(s)→H(s)↙2↙f̃(s)→ y↙2ds

∝ ϖ0e
→C2ϑ0t$

∫ t

t→
↙f(0)→ y↙2ds

∝ ϖ0e
→C2ϑ0t↙f(0)→ y↙2t$.

(35)

Given x ↑ Rd, by the chain rule we have:

d

dt
f(x, ω(t)) = →ϖ0H(t, x)(f(t)→ y),

where H(t, x) ↭ 1

n
Jεf(x, ω(t))(⇐

2!(ω(t)))→1Jεf(t)
T

(36)

and

d

dt
f(x, ω̃(t)) = →ϖ0H̃(t, x)(f̃(t)→ y),

where H̃(t, x) ↭ 1

n
Jaf(x, ω̂)(⇐

2!(ã(t)))→1Jaf(0)
T .

(37)

Similar to (22) and (23), one can show supt≃0 ↙H(t, x)→H(0, x)↙2 = op(1) and supt≃0 ↙H̃(t, x)→

H̃(0, x)↙2 = op(1). Meanwhile, similar to (32), one can show ↙H(0, x) → H̃(0, x)↙2 = op(1).
Therefore, we have

$x ↭ sup
t≃0

↙H(t, x)→ H̃(t, x)↙2 = op(1). (38)

Notice that for both ReLU and absolute value activation, we have |ϑ(z)| ∝ |z| and |ϑ↑(z)| ∝ 1. Then
for large enough n we have

↙Jεf(0)↙
2

F =
m∑

i=1

(
1 +

n∑

k=1

|ϑ(wk(0)
Txi → bk(0))|

2

+
n∑

k=1

|ak(0)|
2
|ϑ↑(wk(0)

Txi → bk(0))|
2(↙xi↙

2

2
+ 1)

)

∝ m+
m∑

i=1

n∑

k=1

(
2↙wk(0)↙

2

2
↙xi↙

2

2
+ 2|bk(0)|

2 + |ak(0)|
2(↙xi↙

2

2
+ 1)

)

∝ m(1 + 2B2

x + 2↙b(0)↙2
2
+ (B2

x + 1)↙a(0)↙2
2
).

(39)

Using a concentration inequality for sub-Gaussian random variables, we have ↙b(0)↙2 and
↙
↔
na(0)↙2 can be bounded by C

↔
n with some constant C > 0. Therefore, by (39) we have

↙Jεf(0)↙2 = Op(
↔
n). Note a similar bound applies to ↙Jεf(x, ω̂)↙2. Then for large enough n we

have

↙H(0, x)↙2 ∝
1

n
↙Jεf(x, ω̂)↙2 ·

1

ε↑↑(0)
· ↙Jεf(0)↙2 = Op(1).
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Then using (35) and (38) for t ⇔ 0 we have that

|f(x, ω(t))→ f(x, ω̃(t))| ∝

∫ t

0


d

ds
(f(x, ω(s))→ f(x, ω̃(s)))

ds

∝

∫ t

0

ϖ0H(s, x)(f(s)→ y)→ ϖ0H̃(s, x)(f̃(s)→ y)
ds

∝

∫ t

0

ϖ0(↙H(0, x)↙2 + ↙H(s, x)→H(0, x)↙2)↙r(s)↙2ds

+

∫ t

0

ϖ0↙H(s, x)→ H̃(s, x)↙2↙f̃(s)→ y↙2ds

∝ Op(1)$

∫ t

0

e→C2ϑ0ssds+$xOp(1)

∫ t

0

e→C2ϑ0sds

∝ Op(1)$+Op(1)$x

= op(1),

which gives the claimed results.

A.2 IMPLICIT BIAS IN PARAMETER SPACE

As we discussed in Section 3.3, the final parameter of the networks whose only output weights are
trained is the solution to the following problem:

min
ã↔Rn

D!(ã, ã(0)) s.t.
∑

k↔[n]

ãk[wk(0)
Txi → bk(0)]+ = yi, ′i ↑ [m]. (40)

In the following result, we characterize the limit of the solution to (40) when n tends to infinity.
Proposition 17. Let gn and g defined as follows:






gn(x,φ) =

∫
φ(w, b)[wTx→ b]+ dµn

g(x,φ) =

∫
φ(w, b)[wTx→ b]+ dµ.

(41)

Assume ā is the solution to (40) where the potential ! satisfies Assumption 1. Let #ReLU = {φ ↑

C(supp(µ)) : φ is uniformly continuous}. Assume φ̄n ↑ #ReLU satisfies that φ̄n(wk(0), bk(0)) =
n(āk → ak(0)) for all k ↑ [n]. Assume φ̄ is the solution of the following problem:

min
ς↔”ReLU

∫
(φ(w, b))2dµ, s.t. g(xi,φ) = yi → f(xi, ω̂), ′i ↑ [m]. (42)

Then given any x ↑ Rd, with high probability over initialization, limn↘↗ |gn(x, φ̄n)→ g(x, φ̄)| = 0.

Proof. [Proof of Proposition 17] Recall {wk(0), bk(0)}nk=1
denote the sampled initial input weights

and biases, and µn denotes the associated empirical measure. We use the notation ↙ · ↙n for the
L2(µn)-seminorm in #ReLU, i.e., for φ ↑ #ReLU,

↙φ↙2n =
1

n

n∑

k=1

(
φ(wk(0), bk(0))

)2
.

We write #ReLU/⇑·⇑n
for the quotient space of #ReLU by the subspace of functions φ with ↙φ↙n = 0.

In the sequel, we will use the notation φ to represent the corresponding element (equivalence class)
in #ReLU/⇑·⇑n

, if there is no ambiguity. Let ≃·, ·⇒n denote the inner-product in #ReLU/⇑·⇑n
defined

as: for φ,φ↑
↑ #ReLU/⇑·⇑n

,

≃φ,φ↑
⇒n =

1

n

n∑

i=1

φ
(
wk(0), bk(0)

)
φ↑
(
wk(0), bk(0)

)
.
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Note equipped with ≃·, ·⇒n, #ReLU/⇑·⇑n
becomes a finite dimensional Hilbert space and is isometric

to Rn.

Notice that for any a ↑ Rn and φ that satisfies φ(wk(0), bk(0)) = n(ak → ak(0)) for k ↑ [n], we
have

D!(a,a(0)) =
∑

k↔[n]

(
ε(ak → ak(0))→ ε(0)→ ε↑(0)(ak → ak(0))

)

= n

∫
ε(

φ(w, b)

n
)→ ε(0)→ ε↑(0)

φ(w, b)

n
dµn.

Define ϑi(w, b) = [wTxi → b]+ ↑ #ReLU. Since ā is the solution to (40), we have that φ̄n solves

minς↔”ReLULn(φ) s.t. ≃φ,ϑi⇒n = yi → f(xi, ω̂), i ↑ [m],

where Ln(φ) ↭ n2

∫
ε(

φ(w, b)

n
)→ ε(0)→ ε↑(0)

φ(w, b)

n
dµn.

(43)

At the same time, let φ̄↑

n be the solution to the following problem:

minς↔”ReLUL
↑

n(φ) s.t. ≃φ,ϑi⇒n = yi → f(xi, ω̂), i ↑ [m],

where L↑

n(φ) ↭ n2

∫
ε↑↑(0)

2

(φ(w, b)
n

)2
dµn.

(44)

Note the objectives and constraints in problem (43) and problem (44) are essentially defined in
#ReLU/⇑·⇑n

. Specifically, for any φ,φ↑
↑ #ReLU, if ↙φ → φ↑

↙n = 0, then φ and φ↑ are equivalent
with respect to feasibility and objective function value in both problems. Therefore, we shall address
these two problems in #ReLU/⇑·⇑n

. Note Ln and L↑

n are strictly convex in #ReLU/⇑·⇑n
. Hence, φ̄n

and φ̄↑

n are unique in the L2(µn) sense.

Consider the Taylor expansion with Peano remainder: ε(z) = ε(0) + ε↑(0)z + ω→→
(0)

2
z2 +R(z)z2

where limz↘0 R(z) = 0. Then we have

|Ln(φ)→ L↑

n(φ)| = |

∫
R(

φ(w, b)

n
)φ2(w, b)dµn|

∝ max
k↔[n]

R


φ(wk(0), bk(0))

n


↙φ↙2n.

By Theorem 11 and Proposition 15, φ̄n and φ̄↑

n are determined by the limit points of mirror flow (10)
with potential !(ω) =

∑
k ε(ωk→ ω̂k) and !(ω) =

∑
k(ωk→ ω̂k)2, respectively. Specifically, we have

that maxk↔[n] φ̄n(wk(0), bk(0))/n = maxk↔[n] āk →ak(0) = Op(n→1/2) and that ↙φ̄n↙
2
n = n↙ā→

a(0)↙2
2
= Op(1). Similarly, we have maxk↔[n] φ̄

↑

n(wk(0), bk(0))/n = Op(n→1) and ↙φ̄↑

n↙
2
n =

Op(1). Therefore, we have

|Ln(φ̄n)→ L↑

n(φ̄n)|, |Ln(φ̄
↑

n)→ L↑

n(φ̄
↑

n)| = op(1). (45)

Using (45) and noting the optimality of φ̄n and φ̄↑

n, we have

L↑

n(φ̄n) ∝ Ln(φ̄n) + op(1) ∝ Ln(φ̄
↑

n) + op(1) ∝ L↑

n(φ̄
↑

n) + op(1). (46)

Notice that, in the sense of Fréchet differentialbility, L↑

n is twice differentiable and ε↑↑(0)-strongly
convex. Thus we have

L↑

n(φ̄n) ⇔ L↑

n(φ̄
↑

n) + ≃⇐L↑

n(φ̄
↑

n), φ̄n → φ̄↑

n⇒n +
ε↑↑(0)

2
↙φ̄n → φ̄↑

n↙
2

n, (47)

where ⇐L↑

n denotes the Fréchet differential. Note ⇐L↑

n(φ̄
↑

n) = ε↑↑(0)φ̄↑

n. Then combining (46) and
(47) gives

≃ε↑↑(0)φ̄↑

n, φ̄n → φ̄↑

n⇒n +
ε↑↑(0)

4
↙φ̄n → φ̄↑

n↙
2

n ∝ op(1).
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By the first-order optimality condition for problem (44), φ̄↑

n can be written as linear combination of
{ϑi}

m
i=1

. On the other hand, by the constraints we have for all i ↑ [m],

≃φ̄n → φ̄↑

n,ϑi⇒n = yi → f(xi, ω(0))→ (yi → f(xi, ω(0))) = 0.

Therefore, ≃φ̄↑

n, φ̄n → φ̄↑

n⇒n = 0 and hence

↙φ̄n → φ̄↑

n↙n = op(1).

For a given data x ↑ Rd, notice that

↙ϑ(wTx→ b)↙2n ∝
1

n

n∑

k=1

|wk(0)
Tx→ bk(0)|

2
∝ ↙x↙+

1

n
↙b(0)↙2

2
= Op(1).

Therefore, we have
gn(x, φ̄n)→ gn(x, φ̄

↑

n)
 =

≃φ̄n(w, b)→ φ̄↑

n(w, b),ϑ(w
Tx→ b)⇒n



∝ ↙φ̄n → φ̄↑

n↙n↙ϑ(w
Tx→ b)↙n

= op(1).

(48)

Now it remains to show that |gn(x, φ̄↑

n)→ g(x, φ̄)| = op(1). By the optimality condition for problem
(44), φ̄↑

n can be chosen as follows

φ̄↑

n(w, b) =
m∑

i=1

⇁(n)
i ϑi(w, b), ′(w, b) ↑ supp(µ),

where the Lagrangian multipliers (⇁(n)
i )mi=1

are determined by the following random linear system

 m∑

i=1

⇁(n)
i ϑi, ϑj


n
= yj , j = 1, . . . ,m. (49)

Note that φ̄↑

n is uniformly continuous.

Similarly, by the optimality condition for problem (42), φ̄ can be given by

φ̄(w, b) =
m∑

i=1

⇁iϑi(w, b),

where the Lagrangian multipliers (⇁i)mi=1
are determined by the following determinant linear system

 m∑

i=1

⇁iϑi, ϑj


= yj , j = 1, . . . ,m. (50)

Here ≃·, ·⇒ denotes the usual inner product in L2(µ), i.e. ≃f, g⇒ =
∫
fg dµ. Note that {ϑi}i↔[m]

are all continuous functions and that µ is compactly supported. Then by law of large number, we
have ≃ϑi,ϑj⇒n converges in probability to ≃ϑi,ϑj⇒ for all i, j ↑ [m], which means the coefficients in
system (49) converges in probability to the coefficients in system (50). It then follows that

↙⇁(n)
→ ⇁↙↗ = op(1). (51)

Given a fixed x ↑ Rd, recall that





gn(x, φ̄) =

∫
φ̄(w, b)[wTx→ b]+dµn;

g(x, φ̄) =

∫
φ̄(w, b)[wTx→ b]+dµ.

Noting that φ̄ and the ReLU activation function is uniformly continuous and that µ is sub-Gaussian,
by law of large number we have

|gn(x, φ̄)→ g(x, φ̄)| = op(1). (52)
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On the other side, we have

|gn(x, φ̄)→ gn(x, φ̄
↑

n)| ∝

∫ 
m∑

i=1

|⇁i → ⇁(n)
i |ϑi(w, b)


[wTx→ b]+dµn

∝ ↙⇁→ ⇁(n)
↙↗

∫ 
m∑

i=1

ϑi(w, b)


[wTx→ b]+dµn.

Again by law of large number,
∫
[wTx→ b]+

m∑

j=1

ϑj(w, b) dµn
P
⇑

∫
[wTx→ b]+

m∑

j=1

ϑj(w, b) dµ.

Hence, with large enough n and with high probability,
∫
[wTx → b]+

∑m
j=1

ϑj(w, b) dµn can be
bounded by a finite number independent of n. Therefore, by (51) we have

|gn(x, φ̄)→ gn(x, φ̄
↑

n)| = op(1).

Finally, according to (48) and (52), we obtain

|g(x, φ̄)→ gn(x, φ̄n)| ∝ |g(x, φ̄)→ gn(x, φ̄)|+ |gn(x, φ̄)→ gn(x, φ̄
↑

n)|+ |gn(x, φ̄
↑

n)→ gn(x, φ̄n)|

= op(1),

which concludes the proof.

Note the above proof can be directly applied to networks with absolute value activations. Then
Proposition 17 for networks with absolute value activations is stated as follows.
Proposition 18 (Proposition 17 for networks absolute value activations). Let gn and g defined as
follows: 





gn(x,φ) =

∫
φ(w, b)|wTx→ b| dµn

g(x,φ) =

∫
φ(w, b)|wTx→ b| dµ.

(53)

For a potential ! that satisfies Assumption 1, assume ā is the solution to the following problem:

min
ã↔Rn

D!(ã, ã(0)) s.t.
∑

k↔[n]

ãk|wk(0)
Txi → bk(0)| = yi, ′i ↑ [m].

Let #Abs = {φ ↑ C(supp(µ)) : φ is even and uniformly continuous} and φ̄n ↑ #Abs be any
continuous function that satisfies φ̄n(wk(0), bk(0)) = n(āk → ak(0)). Assume φ̄ is the solution of
the following problem:

min
ς↔”Abs

∫
(φ(w, b))2dµ, s.t. g(xi,φ) = yi → f(xi, ω̂), ′i ↑ [m],

Then given any x ↑ Rd, with high probability over initialization, limn↘↗ |gn(x, φ̄n)→ g(x, φ̄)| = 0.

A.3 FUNCTION DESCRIPTION OF THE IMPLICIT BIAS

Assume the input dimension is one, i.e., d = 1. Next we aim to characterize the solution to (42) in
the function space:

FReLU =


g(x,φ) =

∫
φ(w, b)[wx→ b]+dµ : φ ↑ #ReLU


.

Recall the following result from classical analysis.
Lemma 19. Assume that (1) f is a continuous function defined on a neighborhood U of x0 ↑ R;
(2) f is continuously differentiable on U → {x0}; and (3) limx↘x+

0
f ↑(x) = limx↘x↑

0
f ↑(x) = k for

some constant k ↑ R. Then f is differentiable at x0 and f ↑(x0) = k.
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Proof. [Proof of Lemma 19] Consider x > x0 and x ↑ U . Since f is continuous on [x0, x] and
continuously differentiable on (x0, x), by mean value theorem there exists x↑

↑ (x0, x) such that

f(x)→ f(x0)

x→ x0

= f ↑(x↑).

Considering the limit process x ⇑ x0, we know f is right differentiable at x0 and

f ↑

+
(x0) = lim

x→↘x+
0

f ↑(x↑) = k.

Similarly, we know f is left differentiable at x0 as well and

f ↑

→
(x0) = f ↑

+
(x0) = k.

This implies f is differentiable at x0 and f ↑(x0) = k.

In the following result, we characterize the analytical properties of functions in FReLU.
Proposition 20. Assume h ↑ FReLU. Then (1) h is continuously differentiable on R; (2)
h↑(→⇓) = limx↘→↗ h↑(x) and h↑(⇓) = limx↘+↗ h↑(x) are well-defined; (3) h is twice con-
tinuously differentiable almost everywhere on R; (4) supp(h↑↑) ↗ supp(pB); and (5)

∫
R h↑↑(b)|b|db

is well-defined.

Proof. [Proof of Lemma 20] Assume h(x) takes the form of h(x) =
∫
φ(w, b)[wx→ b]+dµ. Notice

that φ and ReLU activation function are uniformly continuous and that µ is sub-Gaussian. Hence,
h(x) is well-defined for all x ↑ R.

By our assumption (W,B) is symmetric and B has continuous density function. Hence, we have

pB(b) = pW,B(1, b) + pW,B(→1, b) = pW,B(→1,→b) + pW,B(1,→b) = pB(→b),

which implies pB is an even function.

Since pB is a continuous on R, (supp(pB))o, i.e., the interior of supp(pB), is an open set. Hence,
(supp(pB))o can be represented by a countable union of disjoint open intervals. Without loss of
generality, we assume supp(pB) = [m,M ] where m,M ↑ {⇓,→⇓} ▽ R. We have

h(x) =
1

2

∫ M

m
φ(1, b)pB(b)[x→ b]+db+

1

2

∫ M

m
φ(→1,→b)pB(b)[b→ x]+db.

We first show h is continuously differentiable on R. For x ↑ (supp(pB))o, we have that

h(x) =
1

2

∫ x

m
φ(1, b)pB(b)(x→ b)db+

1

2

∫ M

x
φ(→1,→b)pB(b)(b→ x)db.

By Leibniz integral rule, differentiating h(x) with respect to x gives

h↑(x) =
1

2

∫ x

m
φ(1, b)pB(b)db→

1

2

∫ M

x
φ(→1,→b)pB(b)db. (54)

Note (54) implies that h↑ is continuous on (supp(pB))o. If M is a finite number, we examine the
continuity of h↑ at x ⇔ M . For x > M , we have

h(x) =
1

2

∫ M

m
φ(1, b)pB(b)(x→ b)db.

Again by Leibniz integral rule we have

h↑(x) =
1

2

∫ M

m
φ(1, b)pB(b)db. (55)

Clearly, h↑(x) is continuous when x > M . According to (54) and (55), we have limx↘M+ h↑(x) =
limx↘M↑ h↑(x). By Lemma (19), h is differentiable at x = M and h↑ is continuous at x = M .
Therefore, h↑(x) is continuous when x ⇔ M . Noticing a similar discussion can be applied to m, we
conclude that h↑ is continuous on R.
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Next, we show h↑(⇓) and h↑(→⇓) are well-defined. Note by (54) and (55) we have

h↑(+⇓) =
1

2

∫ M

m
φ(1, b)pB(b)db. (56)

This integral is always well-defined since φ is uniformly continuous and pB(b) has heavier tail than
e→b2 . Similarly, we have

h↑(→⇓) = →
1

2

∫ M

m
φ(→1,→b)pB(b)db, (57)

which implies h↑(→⇓) is also well-defined.

We then examine the second-order differentiability of h. For x ↑ (supp(pB))o, differentiating (54)
gives:

h↑↑(x) =
1

2
φ(1, x)pB(b) +

1

2
φ(→1,→x)pB(b)

= pB(b)φ
+(1, x),

(58)

which implies h is twice continuously differentiable on (supp(pB))o. For x ↑ R \ (supp(pB))o,
notice such x exists only if m or M is a finite number. For the case of M < ⇓, by (55), we have
h↑↑(x) = 0 when x > M . Similarly, if m > →⇓, we have h↑↑(x) = 0 when x < m.

Finally, if m = →⇓ or M = ⇓, by (58) and by noticing that φ is uniformly continuous and that
B is sub-Gaussian, we have

∫
h↑↑(b)|b|db is well-defined. If both m and M are finite numbers, then

we’ve just shown h↑↑ is compactly supported. Therefore,
∫
h↑↑(b)|b|db is also well-defined. By this,

we conclude the proof.

Recall that, for any φ ↑ #ReLU, φ can be uniquely decomposed into the sum of an even function and
an odd function6: φ(w, b) = φ+(w, b)+φ→(w, b), where φ+(w, b) = (φ(w, b)+φ(→w,→b))/2 and
φ→(w, b) = (φ(w, b)→ φ(→w,→b))/2. In the following result, we present the closed-form solution
for the minimal representation cost problem (17) with the cost functional described in problem (42).
Proposition 21. Given h ↑ FReLU, consider the minimal representation cost problem

min
ς↔”ReLU

∫
(φ(w, b))2dµ s.t. h(x) = g(x,φ), ′x ↑ R, (59)

where g(·,φ) is defined in (41). The solution to problem (59), denoted by R(h), is given by





(R(h))+(1, b) =
h↑↑(b)

pB(b)

(R(h))→(1, b) =

∫
R h↑↑(b)|b|db→ 2h(0)

E[B2]
b+ h↑(+⇓) + h↑(→⇓)s

(60)

where h↑(+⇓) = limx↘+↗ h↑(x) and h↑(→⇓) = limx↘→↗ h↑(x).

Proof. [Proof of Proposition 21] Fix an h ↑ FReLU. We now show that the constraints g(·,φ) = h(·)
in problem (59) is equivalent to






φ+(1, b) =
h↑↑(b)

pB(b)
,

∫
φ→(1, b)dµB = h↑(+⇓) + h↑(→⇓),

∫
φ→(1, b)bdµB =

∫

R
h↑↑(b)|b|db→ 2h(0).

(61)

We first show (61) is sufficient for the equality g(·,φ) = h(·). For φ ↑ #ReLU satisfying (61),
consider the function

s(x) = h(x)→ g(x,φ).

6Recall a function ω on {↔1, 1} ↑ [↔Bb, Bb] is called an even function if ω(w, b) = ω(↔w,↔b) for all
(w, b) in its domain; and an odd function if ω(w, b) = ↔ω(↔w,↔b) for all (w, b) in its domain.
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Clearly, s(x) ↑ FReLU. By Proposition 20, for x /↑ supp(pB), we have s↑↑(x) = 0 → 0 = 0. For
x ↑ supp(pB), applying the computation given in (58), we have

s↑↑(x) = h↑↑(x)→ pB(b)φ
+(1, b) = 0.

This implies s↑(x) is a piece-wise constant function on R. According to Proposition 20, s↑(x) is
continuous. Hence, s↑(x) is constant on R. Using similar computations as presented in (56) and (57),
we have that limx↘↗ ▷xg(x,φ) + limx↘→↗ ▷xg(x,φ) =

∫
φ→(1, b)dµB. Therefore,

s↑(+⇓) + s↑(→⇓) = h↑(+⇓) + h↑(→⇓)→

∫
φ→(1, b)dµB = 0.

Therefore, s↑(x) = 0 for all x ↑ R and s(x) is a constant function. By (61), we have

g(0,φ) =

∫
φ(w, b)[→b]+dµ

=

∫
φ+(w, b)

|→ b|

2
+ φ→(w, b)

→b

2
dµ

=

∫
φ+(1, b)

|→ b|

2
dµB +

∫
φ→(1, b)

→b

2
dµB

=

∫

R
h↑↑(b)

|b|

2
db→

∫
φ→(1, b)

b

2
dµB

= h(0),

(62)

which implies s = 0 and hence h(x) = g(x,φ) for x ↑ R.

We now show (61) is also necessary for the equality g(·,φ) = h(·). Assume g(·,φ) = h(·). It’s
clear from (56), (57), and (58) that φ must satisfy the first and second equations in (61). Noting
that g(0,φ) = h(0) and according to (62), we have φ must satisfy the third equation in (61) as well.
Therefore, g(·,φ) = h(·) is equivalent to (61) and the minimal representational cost problem (59) is
equivalent to the following problem:

min
ς↔”ReLU

∫
φ2(w, b)dµ s.t. φ satisfies (61). (63)

We now explicitly solve problem (63). To simplify the notation, we let





Sh = h↑(+⇓) + h↑(→⇓),

Ch =

∫

R
h↑↑(b)|b|db→ 2h(0).

(64)

Since the measure µ is symmetric, the following Pythagorean-type equality holds for any φ in #ReLU:
∫
(φ(w, b))2dµ =

∫
(φ+(w, b))2dµ+

∫
(φ→(w, b))2dµ

=

∫
(φ+(1, b))2dµB +

∫
(φ→(1, b))2dµB.

Note in (61), φ+(1, b) is completely determined. Hence, to solve (63) it suffices to solve

min
ς↑

↔”ReLU

ς↑
: odd

∫
(φ→(w, b))2dµ s.t.






∫
φ→(1, b)dµB = Sh,

∫
φ→(1, b)bdµB = Ch.

(65)

The first order optimality condition for the above question can be written as

2φ→(1, b)→ ⇁1 → ⇁2b = 0, (66)

where ⇁1,⇁2 ↑ R are Lagrangian multipliers. Plugging in (66) to the constraints in (65) gives





1

2
⇁1 +

E[B]
2

⇁2 = Sh

E[B]
2

⇁1 +
E[B2]

2
⇁2 = Ch.
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Since the measure µ is symmetric, the density function pB must be an even function on R. This
implies E[B] = 0. Therefore, ⇁1 = 2Sh and ⇁2 = 2Ch/E[B2]. Finally, R(h), which is the solution
to (63), is determined by 





(R(h))+(1, b) =
h↑↑(b)

pB(b)

(R(h))→(1, b) =
Ch

E[B2]
b+ Sh,

which concludes the proof.

Finally, with Proposition 12 and Proposition 21, we can write the implicit bias in the function space.
Proposition 22. Assume φ̄ solves (42), then h̄(x) =

∫
φ̄(w, b)[wx → b]+dµ solves the following

variational problem

min
h↔FReLU

G1(h) + G2(h) + G3(h) s.t. h(xi) = yi → f(xi, ω̂), ′i ↑ [m],

where






G1(h) =

∫ Bb

→Bb

(h↑↑(x))2

pB(x)
dx

G2(h) = (h↑(+⇓) + h↑(→⇓))2

G3(h) =
1

E[B2]

(∫

R
h↑↑(b)|b|db→ 2h(0))

)2

.

Proof. [Proof of Proposition 22] By Proposition 12, h̄(·) solves the following problem

min
h↔FReLU

∫ (
R(h)(w, b)

)2
dµ s.t. h(xi) = yi → f(xi, ω̂) ′i ↑ [m].

Notice that
∫ (

R(h)(w, b)
)2
dµ =

∫
((R(h))+(w, b))2 + ((R(h))→(w, b))2dµ

=

∫
((R(h))+(1, b))2 + ((R(h))→(1, b))2dµB.

(67)

Recall Sh and Ch as defined in (64). Then plugging in (60) to (67) gives:
∫ (

R(h)(w, b)
)2
dµ =

∫ (h↑↑(x)

pB(x)

)2

dµB +

∫ ( Ch

E[B2]
x+ Sh

)2

dµB

=

∫ Bb

→Bb

(h↑↑(x))2

pB(x)
dx+

( Ch

E[B2]

)2
∫ Bb

→Bb

x2dµB + S2

h

∫ Bb

→Bb

dµB

=

∫ Bb

→Bb

(h↑↑(x))2

pB(x)
dx+

C2

h

E[B2]
+ S2

h,

which concludes the proof.

The above results can be summarized by the following commutative diagram:

#ReLU = #Even ̸ #Odd

FReLU = FAbs ̸ FA#ne

R R R.

C! C! C!

R!

G1+G2+G3

R!

G1

R!

G2+G3

(68)

We state Proposition 21 for networks with absolute value activations below. The proof can be viewed
as a special case of the proof of Proposition 21 and thus is omitted.
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Proposition 23 (Proposition 21 for networks with absolute value activations). Let FAbs =
{h(x) =

∫
φ(w, b)|wx → b|dµ : φ ↑ C(supp(µ)),φ is even and uniformly continuous}. Given

h ↑ FAbs, consider the minimal representation cost problem

min
ς↔”Abs

∫
(φ(w, b))2dµ s.t. h(x) = g(x,φ), ′x ↑ R. (69)

The solution to problem (69), denoted by R(h), is given by

R(h)(1, b) =
h↑↑(b)

2pB(b)
.

With Proposition 14, Proposition 16, Proposition 18, and Proposition 23, we obtain Theorem 2 for
networks with absolute value functions, which is stated below.
Theorem 24 (Implicit bias of mirror flow for wide univariate absolute value network). Consider
a two layer absolute value network (1) with d input units and n hidden units, where we assume n is
sufficiently large. Consider parameter initialization (2) and, specifically, let pB(b) denote the density
function for random variable B. Consider any finite training data set {(xi, yi)}mi=1

that satisfies
xi ↖= xj when i ↖= j and {↙xi↙2}

m
i=1

↗ supp(pB), and consider mirror flow (4) with a potential
function ! satisfying Assumption 1 and learning rate ϖ = #(1/n). Then, there exist constants
C1, C2 > 0 such that with high probability over the random parameter initialization, for any t ⇔ 0,

↙ω(t)→ ω̂↙↗ ∝ C1n
→1, lim

n↘↗

↙H(t)→H(0)↙2 = 0, ↙f(t)→ y↙2 ∝ e→ϑ0C2t↙f(0)→ y↙2.

Moreover, letting ω(⇓) = limt↘↗ ω(t), we have for any given x ↑ Rd, that limn↘↗ |f(x, ω(⇓))→
f(x, ωGF(⇓))| = 0, where ωGF(⇓) denotes the limiting point of gradient flow, i.e., mirror flow (4)
with !(ω) = ↙ω↙2

2
, on the same training data and initial parameter.

Assuming univariate input data, i.e., d = 1, we have for any given x ↑ R, that limn↘↗ |f(x, ω(⇓))→
f(x, ω̂)→ h̄(x)| = 0, where h̄(·) is the solution to the following variational problem:

min
h↔FAbs

∫

supp(pB)

(h↑↑(x))2

pB(x)
dx s.t. h(xi) = yi → f(xi, ω̂), ′i ↑ [m].

Here FAbs = {h(x) =
∫
φ(w, b)|wx→b|dµ : φ ↑ C(supp(µ)),φ is even and uniformly continuous}

is the space of functions that can be represented by an infinitely wide absolute value network with an
even and uniformly continuous output weight function φ.

Before ending this section, we present the proof of Proposition 12.

Proof. [Proof of Proposition 12] Note R! is a well-defined map since C! is strictly convex on
#. By assumption, problem (14) has a unique solution. Notice R!(g(·, φ̄)) is feasible for (14).
Hence, by the optimality of φ̄, we have R!(g(·, φ̄)) = φ̄, i.e. φ̄ is the parameter with the minimal
cost for g(·, φ̄). Now assume ĥ solves (17). By noticing g(·, φ̄) is feasible for (18), we have
C!∈R!(ĥ) ∝ C!∈R!(g(·, φ̄)) = C!(φ̄). Since R!(ĥ) is also feasible for problem (14), R!(ĥ) = φ̄
and therefore ĥ(·) = g(·, φ̄).

A.4 THEOREM 2 FOR UNCENTERED POTENTIAL

In this subsection, we characterize the implicit bias of mirror flow with “uncentered” and unscaled
potential functions that satisfying the following assumptions.
Assumption 25. The potential function ! : R3n+1

⇑ R satisfies: (i) ! can be written in the
form !(ω) =

∑
3n+1

k=1
ε(ωk), where ε is a real-valued function on R; (ii) ! is twice continuously

differentiable; (iii) ⇐2!(ω) is positive definite for all ω ↑ R3n+1.
Theorem 26 (Theorem 2 for uncentered potentials). Consider a two layer ReLU network (1) with
d input units and n hidden units, where we assume n is sufficiently large. Consider parameter
initialization (2) and assume B is compactly supported on [→B,B] for some B > 0. Let pB(b)
denote the density function for random variable B. Consider any finite training data set {(xi, yi)}mi=1
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that satisfies xi ↖= xj when i ↖= j and {↙xi↙2}
m
i=1

↗ supp(pB), and consider mirror flow (4) with
a potential function ! satisfying Assumption 25 and learning rate ϖ = #(1/n). Then, there exist
constants C1, C2 > 0 such that with high probability over the random parameter initialization, for
any t ⇔ 0,

↙ω(t)→ ω̂↙↗ ∝ C1n
→1/2, lim

n↘↗

↙H(t)→H(0)↙2 = 0, ↙f(t)→y↙2 ∝ e→ϑ0C2t↙f(0)→y↙2. (70)

Moreover, letting ω(⇓) = limt↘↗ ω(t), we have for any given x ↑ Rd, that limn↘↗ |f(x, ω(⇓))→
f(x, ωGF(⇓))| = 0, where ωGF(⇓) denotes the limiting point of gradient flow, i.e., mirror flow (4)
with !(ω) = ↙ω↙2

2
, on the same training data and initial parameter.

Assuming univariate input data, i.e., d = 1, we have for any given x ↑ R, that limn↘↗ |f(x, ω(⇓))→
f(x, ω̂)→ h̄(x)| = 0, where h̄(·) is the solution to the following variational problem:

min
h↔FReLU

G1(h) + G2(h) + G3(h) s.t. h(xi) = yi → f(xi, ω̂), ′i ↑ [m],

where






G1(h) =

∫

supp(pB)

(h↑↑(x))2

pB(x)
dx

G2(h) = (h↑(+⇓) + h↑(→⇓))2

G3(h) =
1

E[B2]
(B(h↑(+⇓)→ h↑(→⇓))→ (h(B) + h(→B)))2.

(71)

Here FReLU = {h(x) =
∫
φ(w, b)[wx → b]+dµ : φ ↑ C(supp(µ)),φ is uniformly continuous},

h↑(+⇓) = limx↘+↗ h↑(x), and h↑(→⇓) = limx↘→↗ h↑(x).

The proof of Theorem 26 mirrors the proof of Theorem 2, which we discussed in previous subsections.
For brevity, below we only provide the proof sketch and highlight the differences brought by the
change in assumptions.

First, we show Lemma 13 holds for uncentered potentials. Notice that

Hij(0) =
1

n

3n+1∑

k=1

⇐εkf(xi; ω̂)
1

ε↑↑(ω̂k)
⇐εkf(xj ; ω̂)

=
1

n

n∑

k=1

1

ε↑↑(âk)
ϑ(ŵT

k xi → b̂k)ϑ(ŵ
T
k xj → b̂k) +

1

nε↑↑(d̂)

+
1

n

n∑

k=1

â2kϑ
↑(ŵT

k xi → b̂k)ϑ
↑(ŵT

k xj → b̂k)
( 1

ε↑↑(b̂k)
+

d∑

r=1

xi,rxj,r

ε↑↑(ŵk,r)

)
.

By sub-Gaussian concentration inequality, we have maxk↔[n] |âk| = Op(
√

(log n)/n). By noticing
that maxk↔[n],i↔[m] ϑ(ŵ

T
k xi → b̂k) = O(1) since W and B are bounded, we have

1

n

n∑

k=1

( 1

ε↑↑(âk)
→

1

ε↑↑(0)

)
ϑ(ŵT

k xi → b̂k)ϑ(ŵ
T
k xj → b̂k)

P
⇑ 0,

which implies Hij(0)
P
⇑ H↗. The remainder analysis proceeds as in the proof of Lemma 13.

Next, we show Proposition 14 and Proposition 16 hold. Note the key ingredients which are needed
in proving these two results and which relate to the potentials are: (i) there exists a constant ς > 0
such that with high probability, ↙Q(0)↙2 ∝ ς and ↙Q(t)↙2 ∝ ς if ↙ω(t) → ω(0)↙↗ = op(1); and
(ii) ↙Q(t) → Q(0)↙2 = op(1) if ↙ω(t) → ω(0)↙↗ = op(1), where we use the same notation as in
Proposition 14. We verify these two properties for uncentered potentials. Since B is compactly
supported, we have with high probability, maxk↔[3n+1] |ωk(0)| < C for some constant C independent
of n. Since 1/ε↑↑(·) is uniformly continuous on [→2C, 2C], we have

↙Q(t)→Q(0)↙2 = max
k↔[3n+1]


1

ε↑↑(ωk(t))
→

1

ε↑↑(ωk(0))

 = op(1).
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given ↙ω(t)→ ω(0)↙↗ = op(1). Meanwhile, notice that

↙Q(t)↙2 = max
k↔[3n+1]

1

ε↑↑(ωk(t))
∝ max

k↔[3n+1]

1

ε↑↑(ωk(0))
+


1

ε↑↑(ωk(t))
→

1

ε↑↑(ωk(0))

.

By the continuity of ε↑↑ we have ↙Q(t)↙2 can be bounded by some constant ς > 0 with high
probability, given ↙ω(t)→ ω(0)↙↗ = op(1).

Then, we show Proposition 17 holds. Notice that for uncentered potentials,

D!(a,a(0)) =
∑

k↔[n]

(
ε(ak)→ ε(ak(0))→ ε↑(ak(0))(ak → ak(0))

)

=
∑

k↔[n]

(ε↑↑(ak(0))

2
+R(ak → ak(0))

)
(ak → ak(0))

2,

where R captures the error produced by Taylor approximation and satisfies limz↘0 R(z) = 0.
Consider Ln(φ) =

∫
◁(w, b)

(
φ(w, b)

)2
dµn where ◁(wk(0), bk(0)) =

ω→→
(ak(0))

2
+ R(ak → ak(0))

for k ↑ [n]. Hence, if ā solves (40), φ̄n, which satisfies φ̄n(wk(0), bk(0)) = āk → ak(0) for k ↑ [n],
solves the following problem:

min
ς↔”ReLU

Ln(φ) s.t. ≃φ,ϑ⇒n = yi → f(xi, ω̂).

Let φ̄↑

n be the solution to the following problem:

minς↔”ReLUL
↑

n(φ) s.t. ≃φ,ϑi⇒n = yi → f(xi, ω̂), i ↑ [m],

where L↑

n(φ) ↭
∫

ε↑↑(0)

2

(
φ(w, b)

)2
dµn.

Notice that

|Ln(φ)→ L↑

n(φ)| = |

∫ (
◁(w, b)→

ε↑↑(0)

2

)
φ2(w, b)dµn|

∝ max
k↔[n]


ε↑↑(ak(0))

2
→

ε↑↑(0)

2
+R(ak → ak(0))

 · ↙φ↙2n.

Following the same analysis as in the proof of Proposition 17, we have with high probability
maxk↔[n] āk→ak(0) = op(1), maxk↔[n] ā

↑

k→ak(0) = op(1), ↙φ̄n↙
2
n = Op(1), and ↙φ̄↑

n↙
2
n = Op(1).

Meanwhile, noticing that maxk↔[n] |ak(0)| = Op(
√
(log n)/n) holds with high probability and by

the continuity of ε↑↑, we have maxk↔[n] |ε
↑↑(ak(0))→ ε↑↑(0)| = op(1). Therefore, we have

|Ln(φ̄n)→ L↑

n(φ̄n)|, |Ln(φ̄
↑

n)→ L↑

n(φ̄
↑

n)| = op(1).

The remainder analysis proceeds as in the proof of Proposition 17.

So far, we have shown that the training converges to zero training error, the lazy training occurs,
and the implicit bias in the infinite width limit can be exactly described as in Proposition 17. Then
Proposition 22 directly applies and gives the claimed results.

B PROOF OF THEOREM 9

In this section, we present the proof of Theorem 9. We follow the strategy that we introduced in
Section 3.3 and break down the main Theorem into several intermediate results. Specifically, in
Proposition 27 we show the mirror flow training converges to zero training error and is in the lazy
regime. In Proposition 32, we characterize the implicit bias of mirror flow with scaled potentials in
the parameter space. In Proposition 37, we obtain the function space description of the implicit bias.

We use plimn↘↗
Xn = X or Xn

P
⇑ X to denote that random variables Xn converge to X in

probability. We use the notations Op and op to denote the standard mathematical orders in probability
(see Appendix A for a detailed description).
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B.1 LINEARIZATION

We show that for mirror flow with scaled potentials, if the Hessian of the potential function is flat
enough, the mirror flow converges to zero training error and is in the lazy regime (Proposition 27),
and the network obtained by training all parameters can be well-approximated by that obtained by
training only output weights (Proposition 29). Further, we show that if the potential is induced
a univariate function of the form ε(z) = 1

ϱ+1
(↼(z) + ↽z2) with convex function ↼ and positive

constant ↽ as in Assumption 8, one can always choose sufficiently large ↽ to obtain the sufficient
“flatness” (Proposition 30).

Note that under mirror flow with scaled potential, the evolution of the network output is governed by
the following matrix:

H(t) =
1

n
Jεf(t)(⇐

2!(ω))→1Jεf(t)
T ,

where, by Assumption 8, the inverse Hessian matrix takes the form of

(⇐2!(ω(t)))→1 = Diag
( 1

ε↑↑(n(ωk → ω̂))

)
.

It’s clear that the behavior of the Hessian map is determined by the behavior of ε. In the following
analysis, we consider the following functions to measure the flatness of the Hessian map: for C ⇔ 0,

01(C) = inf
z↔[→C,C]

(ε↑↑(z))→1, 02(C) = sup
z↔[→C,C]

(ε↑↑(z))→1, 03(C) = sup
z↔[→C,C]

|ε↑↑↑(z)|.

Note function 01(C) characterizes the smallest possible eigenvalue of (⇐2!(ω))→1 when ω satisfies
↙ω → ω̂↙↗ ∝ Cn→1. Similarly, 02 characterizes the largest possible eigenvalue. Hence, 01/02

captures the largest possible condition number of the inverse Hessian matrix. By definition, 01/02

is monotonically decreasing. In the following Proposition, we show that if 01/02 decays with a
moderate rate such that it takes a larger value than L/C for a particular constant L determined by the
training data and the network architecture at some point C, the mirror flow converges to zero training
error and it is in the lazy training regime.
Proposition 27. Consider a single-hidden-layer univariate network (1) with ReLU or absolute
value activation function, d input units and n hidden units. Assume n is sufficiently large. Consider
parameter initialization (2). Assume B has a compact support. Given any finite training data set
{(xi, yi)}mi=1

that satisfies xi ↖= xj when i ↖= j and {↙xi↙2}
m
i=1

↗ supp(pB), consider mirror flow
(4) with learning rate ϖ = ϖ0/n, ϖ0 > 0 and potential function !. Assume ! can be written in the
form of !(ω) = 1

n2

∑
3n+1

k=1
ε
(
n(ωk → ω̂k)

)
, where ε is a real-valued C3-smooth function on R and

has strictly positive second derivatives everywhere. Assume there exists constant C1 > 0 satisfying

01(C1)

02(C1)
⇔

8
↔
m(Bx + 1)K↙f(0)→ y↙2

⇁0

·
1

C1

, (72)

where ⇁0 = plimn↘↗
⇁min(

1

nJεf(0)Jεf(0)
T ), m is the size of the training data set, Bx =

maxi↔[m] ↙xi↙2, and K is a constant determined by B and A. Then with high probability over
random initialization,

sup
t≃0

↙ω(t)→ ω̂↙↗ ∝ C1n
→1, inf

t≃0

⇁min(H(t)) ⇔
01(C1)⇁0

4
.

Moreover,

↙f(t)→ y↙2 ∝ exp
(
→

01(C1)⇁0

4
ϖ0t

)
↙f(0)→ y↙2, ′t ⇔ 0.

Proof. [Proof of Proposition 27] To ease the notation, let J(t) = Jεf(t) and Q(t) = (⇐2!(ω(t)))→1.
For i ↑ [m] and k ↑ [n], let ϑik(t) = ϑ(wk(t)Txi → bk(t)) and ϑ↑

ik(t) = ϑ↑(wk(t)Txi → bk(t)).

Assume C1 satisfies (72). Consider the map τ : [0,⇓) ⇑ R, τ(t) = n↙ω(t) → ω̂↙↗. Consider
t1 = inf{t ⇔ 0: τ(t) > C1}. Clearly, t1 > 0. Now we aim to show t1 = +⇓. Assume t1 < ⇓ for
the sake of contradiction. Since τ(·) is continuous, τ(t1) = C1 and τ(t) ∝ C1 for t ↑ [0, t1].
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In the following, let t be any point in [0, t1]. Since n↙ω(t)→ ω̂↙↗ ∝ C1 we have

⇁min(Q(t)) = min
k

 1

ε↑↑(n(ω(t)→ ω̂))


⇔ 01(C1) > 0.

By Lemma 13, with sufficiently large n and with high probability, ⇁min(n→1J(0)J(0)T ) > ↼0
2

. For
i, j ↑ [m] we have

|(n→1J(t)J(t)T )ij → (n→1J(0)J(0)T )ij | ∝ I1 + I2 + I3, (73)

where 




I1 =
1

n

n∑

k=1

|ϑik(t)ϑjk(t)→ ϑik(0)ϑjk(0)|;

I2 = |xT
i xj |

1

n

n∑

k=1

|ak(t)
2ϑ↑

ik(t)ϑ
↑

jk(t)→ ak(0)
2ϑ↑

ik(0)ϑ
↑

jk(0)|;

I3 =
1

n

n∑

k=1

ak(t)2ϑ↑

ik(t)ϑ
↑

jk(t)→ ak(0)
2ϑ↑

ik(0)ϑ
↑

jk(0)|.

(74)

Since A is sub-Gaussian random variable, and B are bounded random variable, there exists K > 1
such that with high probability,

↙b(0)↙↗ ∝ K, ↙a(0)↙↗ ∝ ↙a(0)↙2 ∝ K. (75)

Then we have for any i, j ↑ [m], k ↑ [n],

|ϑik(t)| ∝ |wk(t)
Txi|+ |bk(t)| ∝ (Bx + 1)2K,

and

|ϑik(t)→ ϑjk(t)| ∝ ↙wk(t)→ wk(0)↙2↙xi↙2 + |bk(t)→ bk(0)| ∝
↔

d(Bx + 1)C1n
→1.

Therefore, we have

I1 ∝
1

n

n∑

k=1

(
|ϑik(t)→ ϑik(0)||ϑjk(t)|+ |ϑik(0)||ϑjk(t)→ ϑjk(0)|

)

∝
1

n

∑

k↔[n]

Op(1)op(1) +Op(1)op(1)

= op(1).

Noticing ↙a(0)↙2 = Op(1), for I2 we have

I2 ∝
B2

x

n

∑

k↔[n]

(
ak(0)

2
|ϑ↑

ik(t)ϑ
↑

jk(t)→ ϑ↑

ik(0)ϑ
↑

ik(0)|+ |ak(t)
2
→ ak(0)

2
|

)

=
B2

x

n

(
2↙a(0)↙2

2
+

∑

k↔[n]

op(1)
)

= op(1).

Using a technique similar to that applied for I2 above, we have I3 = op(1). By applying a union
bound we have ↙n→1J(t)J(t)T → n→1J(0)J(0)T ↙2 = op(1). Then for large enough n, we have
⇁min(n→1J(t)J(t)T ) ⇔ ⇁0/4. Therefore, we have

⇁min(H(t)) ⇔ ⇁min(n
→1J(t)J(t)T )⇁min(Q(t)) >

01(C1)⇁0

4
. (76)

Then we have
d

dt
↙f(t)→ y↙2

2
∝ →2ϖ0

01(C1)⇁0

4
↙f(t)→ y↙2

2

and
↙f(t)→ y↙2 ∝ exp(→

01(C1)⇁0

4
ϖ0t)↙f(0)→ y↙2. (77)
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Notice that,
↙Jakf(t)↙2 ∝

↔
m↙Jakf↙↗ ∝

↔
m(Bx↙wk(t)↙2 + |bk(t)|) ∝ 2

↔
mK(Bx + 1). (78)

Then with large enough n and for all k ↑ [n], we have

|
d

dt
ak(t)| ∝

ϖ0
n
↙Q(t)↙2↙Jakf(t)↙2↙f(t)→ y↙2

∝
ϖ0
n

· 02(C1) · 2
↔
mK(Bx + 1) · exp(→

01(C1)⇁0

4
ϖ0t)↙f(0)→ y↙2.

(79)

and hence

|ak(t)→ ak(0)| ∝

∫ t

0

|
d

dt
ak(s)|ds

<
802(C1)

↔
mK(Bx + 1)↙f(0)→ y↙2

01(C1)⇁0

n→1

∝ C1n
→1.

(80)

Similarly, by noticing that with large enough n,





↙Jwk,rf(t)↙2 ∝
↔
mBx|ak(t)| ∝ 2

↔
mBxK, ′k ↑ [n], r ↑ [d];

↙Jbkf(t)↙2 ∝
↔
m|ak(t)| ∝ 2

↔
mK, ′k ↑ [n];

↙Jdf(t)↙2 =
↔
m.

(81)

Comparing (81) to (78) and using a similar computations as in (79) and (80), we conclude that
τ(t1) < C1, which yields a contradiction. It then follows that (76) and (77) hold for t ⇔ 0. This
concludes the proof.

We point out that Proposition 27 can be extended to the case where only output weights are trained,
without requiring any additional efforts. We present the results in the following proposition.
Proposition 28. Assume the same assumptions in Proposition 27. Assume constant C1 > 0 satisfies
(72). Then with high probability over random initialization, for any t ↑ [0,⇓),

↙ω̃(t)→ ω̂↙↗ ∝ C1n
→1, ↙f̃(t)→ y↙2 ∝ exp(→

01(C1)⇁0

4
ϖ0t)↙f(0)→ y↙2.

In the following result we show that training only the output weights well approximates training all
parameters.
Proposition 29. Assume the same assumptions as in Proposition 27. Assume there exists a constant
C1 which satisfies (72) and

02(C1)03(C1)
(
⇁0

02(C1)

01(C1)
+ 10m(Bx + 1)2K2

(02(C1)

01(C1)

)2)
∝

(⇁0)2

16(Bx + 1)K
↔
m↙f(0)→ y↙2

.

(82)
Then for any x ↑ Rd and with high probability over initialization,

lim
n↘↗

sup
t≃0

↙f(x, ω(t))→ f(x, ω̃(t))↙2 = 0.

Proof. [Proof of Proposition 29] We define the following function defined for t ⇔ 0:

1(t) = n3/2
↙a(t)→ ã(t)↙↗.

For any fixed C > 0, consider t1 = inf{t ⇔ 0: 1(t) > C}. Now we aim to prove t1 = +⇓. For the
sake of contradiction, assume t1 < +⇓. Then we have for t ↑ [0, t1], 1(t) ∝ C and in particular,
1(t1) = C.

Assume that C1 > 0 satisfies (72) and (82). According to Proposition 27 and Proposition 28, we
have supt≃0 ↙n(ω(t)→ ω̂)↙↗ ∝ C1 and supt≃0 ↙n(ω̃(t)→ ω̂)↙↗ ∝ C1. By assumption, (ε↑↑(x))→1

is Lipschitz continuous on [→C1, C1]. Let L denote the corresponding Lipschitz constant. Note that

L ∝ sup
x↔[C1,C1]

|(
1

ε↑↑(x)
)↑| = sup

x↔[C1,C1]

|ε↑↑↑(x)|

(ε↑↑(x))2
∝ 02(C1)

203(C1).
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Next we bound the difference between H(t) and H̃(t). To simplify the notation, we let ϑik(t) =
ϑ(wk(t)Txi → bk(t)) for i ↑ [m] and k ↑ [n]. For i, j ↑ [m] we have the following decomposition:

|Hij(t)→ H̃ij(t)| ∝ I1 + I2 + I3, (83)

where





I1 =
1

n

n∑

k=1


ϑik(t)ϑjk(t)

ε↑↑(n(ak(t)→ ak(0)))
→

ϑik(0)ϑjk(0)

ε↑↑(n(ãk(t)→ ak(0)))

;

I2 =
1

n

n∑

k=1

d∑

r=1

(
|xi,rxj,r|


ak(t)2ϑ↑

ik(t)ϑ
↑

jk(t)

ε↑↑(n(wk,r(t)→ wk,r(0)))


)
+

ak(t)2ϑ↑

ik(t)ϑ
↑

jk(t)

ε↑↑(n(bk(t)→ bk(0)))



I3 =
1

n


1

ε↑↑(n(d(t)→ d(0)))

.

(84)

Since A is sub-Gaussian and B is bounded, there exists K > 1 such that with high probability,

↙b(0)↙↗ ∝ K, ↙a(0)↙↗ ∝ ↙a(0)↙2 ∝ K. (85)

Noticing ↙ω(t)→ ω̂↙↗ < C1n→1, we have for large enough n and for any i, j ↑ [m], k ↑ [n], t ⇔ 0,

|ϑik(t)| ∝ |wk(t)
Txi|+ |bk(t)| ∝ (Bx + 1)2K

and

|ϑik(t)→ ϑjk(t)| ∝ ↙wk(t)→ wk(0)↙2↙xi↙2 + |bk(t)→ bk(0)| ∝
↔

d(Bx + 1)C1n
→1.

Recall 02(C1) = supz↔[→C1,C1]
(ε↑↑(z))→1. By noticing ↙a(t) → ã(t)↙↗ < Cn→3/2, we have for

t ↑ [0, t1],

I1 ∝
1

n

n∑

k=1

(
|ϑik(t)→ ϑik(0)||ϑjk(t)|02(C1) + |ϑik(0)||ϑjk(t)→ ϑjk(0)|02(C1)+

|ϑik(0)||ϑjk(0)|(
1

ε↑↑(nak(t))
→

1

ε↑↑(nãk(t))
)
)

∝
1

n

n∑

k=1

(
Op(n

→1)02(C1) +Op(n
→1)02(C1) + 4K2(Bx + 1)2LCn→1/2

)

= 4K2(Bx + 1)2LCn→1/2 +Op(n
→1)02(C1).

In the meantime, note that ↙a(t)→a(0)↙2 ∝
↔
n↙a(t)→a(0)↙↗ = O(n→1/2). Therefore, ↙a(t)↙2 ∝

↙a(0)↙2 + ↙a(t)→ a(0)↙2 = Op(1). Then we have that for t ↑ [0, t1],

I2 ∝
d

n
(B2

x + 1)↙a(t)↙2
2
02(C1) = Op(n

→1)02(C1), I3 ∝ Op(n
→1)02(C1).

Then with large enough n we have for all i, j ↑ [m] that

sup
t↔[0,t1]

|Hij(t)→ H̃ij(t)| ∝ 5K2(Bx + 1)2LCn→1/2

and hence
sup

t↔[0,t1]
↙H(t)→ H̃(t)↙2 ∝ 5mK2(Bx + 1)2LCn→1/2. (86)

Recall 01(C1) = infz↔[→C1,C1]
(ε↑↑(z))→1. Let r(t) = f(t) → f̃(t) and C2 = (01(C1)⇁0)/4.

Consider the function u(t) = ↙r(t)↙2 defined on t ↑ [0, t1]. Clearly, u(t) is continuous on [0, t1].
Since u(t) = 0 if and only if r(t) = 0, we have that u(t) is differentiable whenever u(t) ↖= 0. In
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particular, when u(t) ↖= 0, notice that

d

dt
(eC2ϑ0tu(t))2 =

d

dt
↙eC2ϑ0tr(t)↙2

2

= 2eC2ϑ0tr(t)T
d

dt
(eC2ϑ0tr(t))

= 2e2C2ϑ0tr(t)T
(
C2ϖ0r(t)→ ϖ0H(t)(f(t)→ y) + ϖ0H̃(t)(f̃(t)→ y)

)

= 2ϖ0e
2C2ϑ0t

(
r(t)T (H̃(t)→H(t))(f̃(t)→ y)→ r(t)T (H(t)→ C2In)r(t)

)

∝ 2ϖ0e
2C2ϑ0tr(t)T (H̃(t)→H(t))(f̃(t)→ y)

∝ 2ϖ0e
2C2ϑ0tu(t)↙H̃(t)→H(t)↙2↙f̃(t)→ y↙2,

(87)
where in the first inequality we use the property ⇁min(H(t)) > C2 for any t ⇔ 0 from Proposition 27.
Meanwhile, we have

d

dt
(eC2ϑ0tu(t))2 = 2eC2ϑ0tu(t)

d

dt
(eC2ϑ0tu(t))

and hence by (87),

d

dt
(eC2ϑ0tu(t)) ∝ ϖ0e

C2ϑ0t↙H̃(t)→H(t)↙2↙f̃(t)→ y↙2.

Now consider t ↑ [0, t1]. Let t↑ = inf{s ↑ [0, t] : r(s) ↖= 0}. Then we have

eC2ϑ0tu(t) ∝

∫ t

t→
ϖ0e

C2ϑ0s↙H̃(s)→H(s)↙2↙f̃(s)→ y↙2ds.

Hence for all t ↑ [0, t1], we have

↙r(t)↙2 ∝ e→C2ϑ0t

∫ t

t→
ϖ0e

C2ϑ0s↙H̃(s)→H(s)↙2↙f̃(s)→ y↙2ds

∝ ϖ0e
→C2ϑ0t(5mK2(Bx + 1)2LCn→1/2)

∫ t

t→
↙f(0)→ y↙2ds

∝ ϖ0e
→C2ϑ0t5mK2(Bx + 1)2LC↙f(0)→ y↙2tn

→1/2.

(88)

We have that for all k ↑ [n] and with sufficiently large n,

|
d

dt
(ak(t)→ ãk(t))|

=
ϖ0
n


1

ε↑↑(nak(t))
Jakf(t)

T (f(t)→ y)→
1

ε↑↑(nãk(t))
Jakf(0)

T (f̃(t)→ y)


∝
ϖ0
n

( 
1

ε↑↑(nak(t))
→

1

ε↑↑(nãk(t))

 ↙Jakf(t)↙2↙f(t)→ y↙2

+


1

ε↑↑(nãk(t))

 ↙Jakf(t)→ Jakf(0)↙2↙f(t)→ y↙2

+


1

ε↑↑(nãk(t))

 ↙Jakf(0)↙F ↙r(t)↙2
)
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Noticing ↙ω(t)→ ω̂↙↗ ∝ C1n→1 and using (88), we have that

|
d

dt
(ak(t)→ ãk(t))|

∝
ϖ0
n

(
LCn→1/2

·
↔
m(Bx↙wk(t)↙2 + |bk(t)|) · ↙f(0)→ y↙2e

→C2ϑ0t

+ 02(C1) ·
↔
m(Bx↙wk(t)→ wk(0)↙2 + |bk(t)→ bk(0)|) · ↙f(0)→ y↙2e

→C2ϑ0t)

+ 02(C1) ·
↔
m(Bx↙wk(0)↙2 + |bk(0)|) · ϖ0e

→C2ϑ0t5mK2(Bx + 1)2LC↙f(0)→ y↙2tn
→1/2

)

∝
2ϖ0

↔
m↙f(0)→ y↙2
exp(C2ϖ0t)

(
LC ·K(Bx + 1)n→3/2 +Op(n

→2)02(C1)C1

+ 502(C1)(Bx + 1)3K3ϖ0mLCtn→3/2
)

∝
2LC(Bx + 1)Kϖ0

↔
m↙f(0)→ y↙2

exp(C2ϖ0t)

(
2 + 502(C1)(Bx + 1)2K2ϖ0mt

)
n→3/2

Recall L ∝ 02(C1)203(C1) and C2 = (01(C1)⇁0)/4. Then t ↑ [0, t1] and k ↑ [n] we have

|ak(t)→ ãk(t)|

<2LC(Bx + 1)Kϖ0
↔
m↙f(0)→ y↙2

(∫
↗

0

2 + 502(C1)(Bx + 1)2K2ϖ0ms

exp(C2ϖ0s)
ds

)
n→3/2

=2LC(Bx + 1)K
↔
m↙f(0)→ y↙2

801(C1)⇁0 + 8002(C1)m(Bx + 1)2K2

(01(C1)⇁0)2
n→3/2

∝02(C1)
203(C1)

01(C1)⇁0 + 10m(Bx + 1)2K202(C1)

01(C1)2
·
16(Bx + 1)K

↔
m↙f(0)→ y↙2

(⇁0)2
Cn→3/2

∝Cn→3/2,

where the last inequality comes from the fact that C1 satisfies (82). Hence, we have 1(t) < C for
t ↑ [0, t1]. Note this holds at t = t1, which yields a contradiction. Hence, t1 = +⇓. By (88) we
have that all t ⇔ 0,

↙f(t)→ f̃(t)↙2 = op(1)e
→C2ϑ0tt. (89)

Next we fix the constants C1 and C and aim to show f(·, ω(t)) agrees with f(·, ω̃(t)) on any given
test data x ↑ Rd. For a fix x ↑ Rd, consider

d

dt
f(x, ω(t)) = →ϖ0H(t, x)(f(t)→ y)

H(t, x) ↭ ⇐εf(x, ω(t))(⇐
2!(ω(t)))→1Jεf(t)

T

and
d

dt
f(x, ω̃(t)) = →ϖ0H̃(t, x)(f̃(t)→ y)

H̃(t, x) = ⇐af(x, ω̂)(⇐
2!(ã(t)))→1Jaf(0)

T

Using the fact that ↙a(t)→ ã(t)↙ ∝ Cn→3/2 and applying a decomposition similar to (83) and (84),
we have

sup
t≃0

↙H(t, x)→ H̃(t, x)↙2 = Op(n
→1/2). (90)

For large enough n, by (85) and ↙ω(t)→ ω̂↙↗ ∝ C1n→1, we have

↙Jεf(t)↙
2

F =
m∑

i=1

(
1 +

n∑

k=1

|ϑik(t)|
2 +

n∑

k=1

|ak(t)|
2
|ϑ↑

ik(t)|
2(↙xi↙

2

2
+ 1)

)

∝ m+
m∑

i=1

n∑

k=1

(
2↙wk(t)↙

2

2
↙xi↙

2 + 2|bk(t)|
2 + |ak(t)|

2(↙xi↙
2 + 1)

)

= Op(n),

(91)
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and hence ↙Jεf(t)↙2 = Op(
↔
n). Note a similar bound applies to ↙Jεf(x, ω(t))↙2. Then with large

enough n we have for t ⇔ 0,

↙H(t, x)↙2 ∝
1

n
↙Jεf(x, ω(t))↙2↙Q(t)↙2↙Jεf(t)↙2 = Op(1).

Finally, using (89) and (90), we have for t ⇔ 0,

|f(x, ω(t))→ f(x, ω̃(t))|

∝

∫ t

0


d

ds
(f(x, ω(s))→ f(x, ω(s)))

ds

∝

∫ t

0

ϖ0H(s, x)(f(s)→ y)→ ϖ0H̃(s, x)(f̃(s)→ y)
ds

∝

∫ t

0

ϖ0↙H(s, x)↙2↙f(s)→ f̃(s)↙2

+ ϖ0↙H(s, x)→ H̃(s, x)↙2↙f̃(s)→ y↙2ds

∝

∫
↗

0

Op(1)op(1)e
→C2ϑ0ssds+Op(n

→1/2)

∫
↗

0

↙f(0)→ y↙2
2
e→C2ϑ0sds

= op(1),

which gives the claimed results.

Next we show that, if the potential ! satisfies Assumption 8, one can select a sufficiently large ↽ to
ensure that the conditions in Proposition 27 and 29 are satisfied.
Proposition 30. Consider a potential function that satisfies the assumptions in Proposition 27.
Further, assume that ε(x) = 1

ϱ+1
(↼(x) + ↽x2) with convex function ↼ ↑ C3(R) and positive

constant ↽ > 0. Let D1, D2 be constants defined as follows:

D1 =
8
↔
m(Bx + 1)K↙f(0)→ y↙2

⇁0

, D2 = 10m(Bx + 1)2K2.

Consider functions 21 and 22 defined as follows:





21(C) =
supz↔[→C,C] ↼

↑↑(z) ·D1

2(C →D1)
, ′C > D1;

22(C) =
sup

|z|<C |↼↑↑↑(z)| ·D1

⇁0

(
⇁0

(
1 + sup

|z|<C
↼↑↑(z)

)
+D2

(
1 + sup

|z|<C
↼↑↑(z)

)2)
, ′C > 0.

(92)
Then there exists C1 > 0 that satisfies (72) and (82) whenever ↽ > ↽0 with ↽0 defined as follows:

↽0 = max{
1

2
, 1 + inf

C→>D1

21(C
↑), 22(C

⇓)}, C⇓ = sup{C > D1 : 21(C) < 1 + inf
C→>D1

21(C
↑)}.

Proof. [Proof of Proposition 30] Since ↼↑↑
⇔ 0, we have that for z ↑ [→C,C],

↽ + 1

supz↔[→C,C] ↼
↑↑(z) + 2↽

∝
1

ε↑↑(z)
=

↽ + 1

↼↑↑(z) + 2↽
∝

↽ + 1

2↽
.

Hence we can take

01(C) =
↽ + 1

supz↔[→C,C] ↼
↑↑(z) + 2↽

, 02(C) ≡
↽ + 1

2↽
.

Then we have

01(C)

02(C)
=

↽ + 1

supz↔[→C,C] ↼
↑↑(z) + 2↽

↽ + 1

2↽
=

2↽

supz↔[→C,C] ↼
↑↑(z) + 2↽

.
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Then (72) can be reformulated as

2↽

supz↔[→C,C] ↼
↑↑(z) + 2↽

· C ⇔ D1. (93)

When C > D1, we can rearrange (93) as follows

↽ ⇔
supz↔[→C,C] ↼

↑↑(z) ·D1

2(C →D1)
↭ 21(C) (94)

Note 21(C) is a continuous function on C > D1. This implies whenever ↽ satisfies

↽ > inf
C→>D1

2(C ↑) (95)

there exists C > D1 such that (94) holds and thus (72) holds.

On the other side, notice that

03(C) = sup
z↔[→C,C]

|ε↑↑↑(z)| =
supz↔[→C,C] |↼

↑↑↑(z)|

↽ + 1
.

Then (82) can be reformulated as

supz↔[→C,C] |↼
↑↑↑(z)|

2↽

(
⇁0

(
1 +

supz↔[→C,C] ↼
↑↑(z)

2↽

)
+D2

(
1 +

supz↔[→C,C] ↼
↑↑(z)

2↽

)2)
∝

⇁0

2D1

.

(96)
If ↽ > 1/2, we have

1 +
supz↔[→C,C] ↼

↑↑(z)

2↽
< 1 + sup

z↔[→C,C]

↼↑↑(z).

Therefore, (96) holds if the following holds

↽ ⇔
sup

|z|<C |↼↑↑↑(z)| ·D1

⇁0

(
⇁0

(
1 + sup

|z|<C
↼↑↑(z)

)
+D2

(
1 + sup

|z|<C
↼↑↑(z)

)2)
↭ 22(C). (97)

Now, assume ↽ satisfies

↽ > max{1 + inf
C→>D1

21(C
↑), 22(C

⇓)}, C⇓ = sup{C > D1 : 21(C) < 1 + inf
C→>D1

21(C
↑)}.

Since ↽ > 1 + infC→>D1 21(C
↑), then for any C that satisfies

C ↑ {C > D1 : 21(C) < 1 + inf
C→>D1

21(C
↑)}, (98)

we have (94) holds and thus (72) holds. At the same time, since 22 is non-decreasing, we have for
any C that satisfies (98),

↽ > 22(C
⇓) ⇔ 22(C),

which implies (82) also holds. This concludes the proof.

In the following result, we show that when ε is the hypentropy potential ϱϖ , the conditions in
Proposition 27 and 29 are satisfied with sufficiently large ς.
Proposition 31. Consider a potential function that satisfies the assumptions in Proposition 27.
Further, assume that ε(x) = ϱϖ(x) is the hypentropy function with sufficiently large ς. Then there
exists C1 > 0 that satisfies (72) and (82).

Proof. Notice that
ϱ↑↑ϖ(x) =

1√
x2 + ς2

, ϱ↑↑↑ϖ (x) = →
x

(x2 + ς2)3/2
.

Therefore, we can take 01, 02 and 03 as follows:

01(C) = ς, 02(C) =
√
C2 + ς2, 03(C) =


C

(C2 + ς2)3/2

.
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Therefore, given any fixed C > 0, we have

lim
ϖ↘↗

C01(C)

02(C)
= lim

ϖ↘↗

Cς√
C2 + ς2

= C.

Therefore, by selecting C1 = 2 8
⇐
m(Bx+1)K⇑f(0)→y⇑2

↼0
, we have that for sufficiently large ς,

C101(C1)

02(C1)
⇔

C1

2
=

8
↔
m(Bx + 1)K↙f(0)→ y↙2

⇁0

.

This implies (72) holds. Now fix C1. Since 02(C1)03(C1) = |
C1↔

C2
1+ϖ2

|, we have 02(C1)03(C1) ⇑

0 as ς ⇑ ⇓. Meanwhile, notice that ↽2(C1)

↽1(C1)
⇑ 1 as ς ⇑ ⇓. It then follows that

lim
ϖ↘↗

02(C1)03(C1)
(
⇁0

02(C1)

01(C1)
+ 10m(Bx + 1)2K2

(02(C1)

01(C1)

)2)
= 0.

Therefore, with large enough ς, we have (82) also holds for C1. This concludes the proof.

B.2 IMPLICIT BIAS IN PARAMETER SPACE

By Theorem 11, the final parameter of the network with absolute value activation function whose
only output weights are trained is the solution to following problem:

min
ã↔Rn

D!(ã,a(0)) s.t.
∑

k↔[n]

ãk|wk(0)
Txi → bk(0)| = yi, ′i ↑ [m]. (99)

Similar to the case of ReLU networks, we can write infinitely wide absolute-value networks as
follows:

g(x,φ) =

∫
φ(w, b)|wTx→ b| dµ.

Note the above integral always annihilates the odd component of φ since |wTx→b| is an even function
of (w, b) and µ is symmetric. Therefore, for networks with absolute value activation functions, we
lose no generality to restrict the parameter space to the space of even and continuous functions:

#Abs = {φ ↑ #ReLU : φ is even and uniformly continuous}. (100)

In the following result, we characterize the limit of the solution to (99) when n tends to infinity.
Proposition 32. Let gn and g be defined as follows:






gn(x,φ) =

∫
φ(w, b)|wTx→ b| dµn,

g(x,φ) =

∫
φ(w, b)|wTx→ b| dµ.

(101)

Assume ā is the solution to (99). Assume the potential function ! can be written in the form of
!(ω) = 1

n2

∑
3n+1

k=1
ε
(
n(ωk → ω̂k)

)
, where ε is a real-valued C3-smooth function on R and has

strictly positive second derivatives everywhere. Let #Abs be defined as in (100) and φ̄n ↑ #Abs

be any function that satisfies φ̄n(wk(0), bk(0)) = n(āk → ak(0)). Assume φ̄ is the solution of the
following problem:

min
ς↔”Abs

∫
Dω

(
φ(w, b), 0

)
dµ, s.t. g(xi,φ) = yi → f(xi, ω̂), ′i ↑ [m]. (102)

Then given any x ↑ Rd, with high probability over initialization, limn↘↗ |gn(x, φ̄n)→ g(x, φ̄)| = 0.

We will need the following two lemmas for the proof. We omit the proof of the Lemmas to maintain
clarity.
Lemma 33 (Jacod & Sørensen, 2018, Theorem 2.5). For n ↑ N, let Gn(·) = Gn(·, z) be a random
Rm-valued function defined on Rm, where z = (z1, · · · , zn) consists of n independent samples from
a pre-specified random variable zk ↓ Z . Let G(·) be a deterministic Rm-valued function defined on
Rm. Assume there exist ⇁̄ ↑ Rm and a neighborhood U of ⇁̄ such that the following hold:
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i) Gn(⇁̄)
P
⇑ 0 as n ⇑ ⇓, and G(⇁̄) = 0.

ii) For any z, Gn(·) and G(·) are continuously differentiable on Rm, and as n ⇑ ⇓

sup
↼↔U

↙J↼Gn(⇁)→ J↼G(⇁)↙F
P
⇑ 0.

iii) The matrix J↼G(⇁̄) is non-singular.

Then there exists a sequence {⇁̄(n)
}n↔N such that Gn(⇁(n)) = 0 and

↙⇁̄(n)
→ ⇁̄↙↗

P
⇑ 0.

Lemma 34 (Newey & McFadden, 1994, Lemma 2.4). Let a(·, z) be a random real-valued function
on a compact set U ↗ Rm. Let z1, . . . , zn be independent samples from a pre-specified random
variable Z . Let µn denote the empirical measure associated with samples {zk}nk=1

and µ denote the
probability measure of Z . Assume the following hold:

i) For any z, a(·, z) is continuous.

ii) There exists d(z) such that |a(⇁, z)| < d(z) holds for all ⇁ ↑ U and EZ [d(z)] < ⇓.

Then
sup
↼↔U


∫

a(⇁, z)dµn →

∫
a(⇁, z)dµ

 P
⇑ 0.

We now present the proof of Proposition 32.

Proof. [Proof of Proposition 32] To ease the notation, for k ↑ [n], let zk = (wk(0), bk(0)) ↑ Rd+1

denote the input weight and bias associated with the k-th neuron at initialization. For j ↑ [m], define
ϑj(z) = ϑj(w, b) = |wTxj → b|. Let Z denote the random vector (W,B), and ỹi = yi → f(xi, ω̂).

Notice that for any a ↑ Rn and φ that satisfies φ(wk(0), bk(0)) = n(ak → ak(0)) for k ↑ [n], we
have

D!(a,a(0)) =
1

n2

∑

k↔[n]

(
ε(n(ak → ak(0)))→ ε(0)→ nε↑(0)(ak → ak(0))

)

=
1

n

∫
ε(φ(w, b))→ ε(0)→ ε↑(0)φ(w, b)dµn

=
1

n

∫
Dω(φ(w, b), 0)dµn.

Therefore, since ā is the solution to (99), we have that φ̄n solves:

min
ςn↔”Abs

∫
Dω(φn(w, b), 0)dµn s.t. gn(xi,φn) = ỹi, i ↑ [m]. (103)

The Lagrangian of problem 103 can be written as

L(φn,ω) =

∫
Dω(φn(w, b), 0)dµn →

m∑

j=1

⇁j

(∫
φn(z)ϑj(z)dµn → ỹi

)
.

Here ⇁ = (⇁1, . . . ,⇁m)T ↑ Rm is the vector Lagrangian multipliers. The optimality condition
⇐ςnL = 0 implies that

0 = ε↑(φn(zk))→ ε↑(0)→
m∑

j=1

⇁jϑj(zk), ′k ↑ [n].

By Assumption, ε↑↑(x) > 0 everywhere and ε ↑ C3(R). Therefore, ε↑ is invertible and (ε↑)→1 is
continuously differentiable. Therefore, φ̄n must satisfy:

φ̄n(zk) = (ε↑)→1

(
ε↑(0) +

m∑

j=1

⇁̄(n)
j ϑj(zk)

)
, ′k ↑ [n],
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where ⇁̄(n) is determined by the following equations
∫
(ε↑)→1

(
ε↑(0) +

m∑

j=1

⇁̄(n)
j ϑj(z)

)
· ϑi(z) dµn = ỹi, ′i ↑ [m], (104)

Problem (103) is strictly convex in the quotient space of #Abs by the subspace of functions with zero
,2(µn) semi-norm. Hence, φ̄n is unique in the ,2(µn) sense. Note that (ε↑)→1 is injective, and that
by Lemma 13, for large enough n and with high probability, the matrix Jaf(0) = (ϑj(zk))j,k is full
row-rank. Therefore, the Lagrangian multipliers ⇁̄(n) is uniquely determined by (104).

According to (104), we can select φ̄n as

φ̄n(z) = (ε↑)→1

(
ε↑(0) +

m∑

j=1

⇁̄(n)
j ϑj(z)

)
, ′z ↑ supp(µ). (105)

Note supp(µ) is a compact set and (ε↑)→1 is continuous, we have φ̄n defined above is even and
uniformly continuous and therefore lies in #Abs.

Let z = (z1, . . . , zn)T . We define a random Rm-valued function as follows:

(
Gn(⇁, z)

)
i
↭

∫
(ε↑)→1

(
ε↑(0) +

m∑

j=1

⇁jϑj(z)
)
· ϑi(z) dµn → ỹi, i = 1, . . . ,m.

Then by (104), ⇁̄(n) is a root of Gn, and, as we have shown, it is the unique root.

Similarly, according to the optimality condition, the solution φ̄ to problem (102) can be given by

φ̄(z) = (ε↑)→1

(
ε↑(0) +

m∑

j=1

⇁̄jϑj(z)
)
, ′z ↑ supp(µ), (106)

where ⇁̄ is a root of the following deterministic Rm-valued function:

(
G(⇁)

)
i
↭

∫
(ε↑)→1

(
ε↑(0) +

m∑

j=1

⇁jϑj(z)
)
· ϑi(z) dµ→ ỹi, i = 1, . . . ,m.

Since problem (102) is strictly convex in #Abs, φ̄ is unique. At the same time, note that (ε)→1 is
injective, and that {ϑj}

m
j=1

are linearly independent in L2(µ), as we have shown in the proof of
Proposition 13. Hence, ⇁̄ is the unique root of G.

Now we aim to prove that ⇁̄(n) converges to ⇁̄ in probability. Notice that, by law of large number,
Gn(⇁) converges to G(⇁) in probability for any fixed ⇁. This implies that

Gn(⇁̄)
P
⇑ G(⇁̄) = 0.

Since ε ↑ C3(R), we know for any fixed z, Gn(⇁, z) and G(⇁) are continuously differentiable in ⇁.
To ease the notation, let 3(x) = (ε↑)→1(x). Then we have that






(
J↼Gn(⇁)

)

ij
=

∫
3↑
(
ε↑(0) +

m∑

l=1

⇁lϑl(z)
)
ϑi(z)ϑj(z) dµn,

(
J↼G(⇁)

)

ij
=

∫
3↑
(
ε↑(0) +

m∑

l=1

⇁lϑl(z)
)
ϑi(z)ϑj(z) dµ.

Let U be a compact neighborhood of ⇁̄. Notice that µ is compactly supported and 3↑ is continuous.
Then there exists a constant K such that

3↑(ε↑(0) +
m∑

l=1

⇁lϑl(z)) ∝ K, ′⇁ ↑ U, z ↑ supp(µ).
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Define dij(z) = Kϑi(z)ϑj(z). Then we have that
3↑

(
ε↑(0) +

m∑

l=1

⇁lϑl(z)
)
ϑi(z)ϑj(z)

 ∝ Kϑi(z)ϑj(z) = dij(z), ′⇁ ↑ U.

Meanwhile, it’s clear that for any i, j ↑ [m], there exists a polynomial Pij(z) of z, whose degree is
independent of n, such that |dij(z)| ∝ |Pij(z)| holds for any z ↑ supp(µ). Recall Z is a bounded
random variable. Therefore, EZ(dij(z)) < ⇓. Then, by Lemma 34, we have

sup
↼↔U


(
J↼Gn(⇁)

)

ij
→

(
J↼G(⇁)

)

ij

 P
⇑ 0.

Notice the size of the matrix J↼Gn and J↼G is independent of n. With a union bound we then have

sup
↼↔U

↙J↼Gn(⇁)→ J↼G(⇁)↙F
P
⇑ 0.

Next we show J↼G(⇁̄), given below, is non-singular,
(
J↼G(⇁̄)

)

ij
=

∫
3↑
(
ε↑(0) +

m∑

l=1

⇁̄lϑl(z)
)
ϑi(z)ϑj(z) dµ.

To this end, we consider the map ≃·, ·⇒⇓ : L2(µ)↘ L2(µ) ⇑ R defined by

≃f, g⇒⇓ ↭
∫

3↑
(
ε↑(0) +

m∑

l=1

⇁̄lϑl(z)
)
f(z)g(z) dµ, ′f, g ↑ L2(µ).

Clearly, ≃·, ·⇒⇓ is symmetric and linear. For any f ↑ L2(µ) with f ↖= 0, i.e. µ
(
{z : f(z) ↖= 0}

)
> 0.

Then there exists a compact set A ↗ supp(µ) such that µ(A ∀ {f(z) ↖= 0}) > 0. Since {ϑl}l↔[m]

are continuous and {⇁̄l}l↔[m] are fixed, the set

A↑ ↭ {

m∑

l=1

⇁̄lϑl(z) : z ↑ A} ↗ R

is non empty and bounded. Then by noticing 3↑ is continuous and 3↑(x) > 0, ′x ↑ R, we have

≃f, f⇒⇓ =

∫
3↑
(
ε↑(0) +

m∑

l=1

⇁̄lϑl(z)
)
f2(z) dµ

⇔ inf
x↔A→

3↑(x) ·

∫

A
(f(z))2 dµ

> 0.

Therefore, ≃·, ·⇒⇓ is a well-defined inner product on L2(µ). Noting that J↼G(⇁̄) can be the viewed
as the Gram matrix of {ϑl}

m
l=1

with respect to ≃·, ·⇒⇓, and that {ϑl}
m
l=1

are linearly independent in
L2(µ), we have J↼G(⇁̄) is non-singular. Since ⇁̄(n) and ⇁̄ is the unique root of Gn(·) and G(·),
respectively, by Lemma 33 we have

↙⇁̄(n)
→ ⇁̄↙↗ = op(1). (107)

Now consider a fixed x ↑ R. We aim to show that |gn(x, φ̄)→ g(x, φ̄)| = op(1). Recall that





gn(x, φ̄) =

∫
φ̄(w, b)|wTx→ b| dµn,

g(x, φ̄) =

∫
φ̄(w, b)|wTx→ b| dµ.

Since φ̄ and the absolute value functions are continuous and µ is compactly supported, by law of
large number, we have

|gn(x, φ̄)→ g(x, φ̄)| = op(1). (108)
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Hence, it remains to show |gn(x, φ̄n)→ gn(x, φ̄)| = op(1). Notice that ⇁̄ is a fixed point in Rm and
⇁̄(n) converges to ⇁̄ in probability, and that µ is compact support. Then there exists a constant K ↑ > 0
independent of n such that with high probability,

ε↑(0) +
m∑

j=1

⇁̄(n)
j ϑj(w, b)

,
ε↑(0) +

m∑

j=1

⇁̄jϑj(w, b)
 ∝ K ↑, ′(w, b) ↑ supp(µ).

Notice (ε↑)→1 is continuously differentiable on R and hence is Lipschitz continuous on [→K ↑,K ↑].
Let L denote the corresponding Lipschitz coefficient. Then we have that

|gn(x, φ̄n)→ gn(x, φ̄)|

∝

∫ φ̄n(w, b)→ φ̄(w, b)
ϑ(wTx→ b) dµn

∝

∫ (ε↑)→1

(
ε↑(0) +

m∑

j=1

⇁̄(n)
j ϑj(w, b)

)
→ (ε↑)→1

(
ε↑(0) +

m∑

j=1

⇁̄jϑj(w, b)
)ϑ(wTx→ b) dµn

∝

∫
L


m∑

j=1

(
⇁̄(n)
j → ⇁̄j

)
ϑj(w, b)

ϑ(wTx→ b) dµn

∝

∫
L↙⇁̄(n)

→ ⇁̄↙↗

m∑

j=1

(
ϑ(wTxj → b)

)
· ϑ(wTx→ b) dµn

∝

(
L

∫
ϑ(wTx→ b)

m∑

j=1

ϑ(wTxj → b) dµn

)
↙⇁̄(n)

→ ⇁̄↙↗.

By the law of large numbers,
∫

ϑ(wTx→ b)
m∑

j=1

ϑ(wTxj → b) dµn
P
⇑

∫
ϑ(wTx→ b)

m∑

j=1

ϑ(wTxj → b) dµ.

Hence
∫
ϑ(wTx→ b)

∑m
j=1

ϑ(wTxj → b) dµn can be bounded by a finite number independent of n.
Then by (107), we have

|gn(x, φ̄n)→ gn(x, φ̄)| = op(1). (109)
Finally, combine (108) and (109), we have

|gn(x, φ̄n)→ g(x, φ̄)| < |gn(x, φ̄n)→ gn(x, φ̄)|+ |gn(x, φ̄)→ g(x, φ̄)| = op(1),

which concludes the proof.

B.3 FUNCTION DESCRIPTION OF THE IMPLICIT BIAS

Assume the input dimension is one, i.e., d = 1. Now we study the solution to problem (102) in the
function space

FAbs =


g(x,φ) =

∫
φ(w, b)|wx→ b|dµ : φ ↑ #Abs


.

In the following result, we show that FAbs is a subspace of FReLU which can be obtained by
eliminating all non-zero affine functions in FReLU.
Proposition 35. Let FA#ne denote the space of affine functions on R. Then FReLU = FAbs̸FA#ne.
Moreover, if h ↑ FAbs, then G2(h) = 0 and G3(h) = 0, where G2 and G3 are defined in (7).

Proof. [Proof of Proposition 35] We first show both FAbs and FA#ne are subspaces of FReLU.
Assume h(x) =

∫
φ(w, b)|wx → b|dµ ↑ FAbs. Notice the ReLU activation function can be

decomposed as [z]+ = z/2 + |z|/2. Since φ is an even function, we have for all x ↑ R,

h(x) =

∫
φ(w, b)|wx→ b|dµ =

∫
2φ(w, b)[wx→ b]+dµ.

44



Published as a conference paper at ICLR 2025

Since 2φ ↑ #ReLU, FAbs ↗ FReLU. Now assume h(x) = zx + w with z, w ↑ R. Consider φh

defined by 



φh(1, b) = →

2w

E[B2]
b+ 2z;

φh(→1, b) = →φh(1,→b).

Note φh is an odd function. Then we have for any x ↑ R,
∫

φh(w, b)[wx→ b]+dµ =

∫
φh(1, b)

x→ b

2
dµB

=

∫

supp(pB)

φh(1, b)

2
pB(b)db


x→

∫

supp(pB)

φh(1, b)

2
pB(b)bdb



=

∫

supp(pB)

zpB(b)db


x→

∫

supp(pB)

→
w

E[B2]
pB(b)b

2db



= zx+ w.

Hence, FA#ne ↗ FReLU.

Next we show FAbs ∀ FA#ne = {0}, i.e. the only affine function in FAbs is the zero function.
Assume h(x) =

∫
φ(w, b)|wx → b|dµ ↑ FAbs is an affine function. For x ↑ (supp(pB))o, by

Leibniz integral rule we have
h↑↑(x) = 2φ(1, x)pB(x). (110)

Since h is an affine function, we have 2φ(1, x)pB(x) = 0. Now since pB(x) > 0, φ(1, x) =
φ(→1,→x) = 0, which implies h(x) = 0 for x ↑ R.

Next we show that for any h ↑ FReLU, there exists h1 ↑ FAbs and h2 ↑ FA#ne such that
h = h1 + h2. This can be directly verified by the following computation: for any φ ↑ #ReLU,
∫

φ(w, b)[wx→ b]+dµ =

∫
φ+(w, b)

|wx→ b]

2
dµ+

∫
φ→(w, b)

wx→ b

2
dµ

=

∫
φ+(w, b)

|wx→ b]

2
dµ+

∫
φ→(1, b)

2
dµB · x→

∫
φ→(1, b)b

2
dµB.

Therefore, we have FReLU = FAbs ̸ FA#ne.

We now show G2 and G3 vanish on FAbs. Without loss of generality, we assume supp(pB) = [m,M ]
where m,M are finite numbers. Assume h(x) =

∫
φ(w, b)|wx→ b|dµ ↑ FAbs Then for x > M , we

have

h(x) =

∫ M

m
φ(1, b)(x→ b)pB(b)db

and

h↑(x) =

∫ M

m
φ(1, b)pB(b)db.

Similarly, for x < m we have

h(x) =

∫ M

m
φ(1, b)(→x+ b)pB(b)db

and

h↑(x) = →

∫ M

m
φ(1, b)pB(b)db.

Therefore, h↑(+⇓) + h↑(→⇓) = 0 and G2(h) = 0.

To show G3(h) = 0, we consider the following function

s(x) = h(x)→

∫
φh(w, b)|wx→ b|dµ,

where φh ↑ #Abs is defined by

φh(1, b) =
h↑↑(b)

2pB(b)
.
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It is clear that s(x) ↑ FAbs ↗ FRelu. By Proposition 20, s↑↑ vanishes when x ↖= supp(pB). For
x ↑ (supp(pB))o, similar to computation in (110) we also have s↑↑(x) = 0. Therefore, s↑ is a
piece-wise affine function. According to Proposition 20, s↑ is continuous. Therefore, s↑ is a constant
function. By what we just shown above, the only constant function in FAbs is the zero function.
Therefore, h(x) = g(x,φh) for all x ↑ R. In particular, we have that

h(0) = g(0,φh) =

∫
φh(w, b)|→ b|dµ =

∫

supp(pB)

h↑↑(b)
|b|

2
db.

Therefore,
∫
supp(pB)

h↑↑(b)|b|db→ 2h(0) = 0 and G3(h) = 0. With this, we conclude the proof.

In the following result, we solve the minimal representation cost problem (17) with the cost functional
described in problem (102), i.e. C!(φ) =

∫
Dω(φ(w, b), 0) dµ.

Proposition 36. Let g be as defined in (101). Given h ↑ FAbs, consider the following minimal
representation cost problem

min
ς↔”Abs

∫
Dω(φ(w, b), 0)dµ s.t. g(x,φ) = h(x), ′x ↑ R. (111)

Then the solution to problem (111), denoted by, R!(h), is given by

R!(h)(1, b) =
h↑↑(b)

2pB(b)
. (112)

Proof. [Proof of Proposition 36] Note it suffices to show that the constraint g(·,φ) = h(·) in problem
(111) is equivalent to

φ(1, b) =
h↑↑(b)

2pB(b)
. (113)

If h(·) = g(·,φ), then by calculation as in (110) we have φ must satisfy (113). This implies (113) is
necessary for the equality g(·,φ) = h(·). Assume φ satisfies (113). Consider the following function

s(x) = h(x)→

∫
φ(w, b)|wx→ b|dµ.

As we shown in the proof for Proposition 35, s(x) = 0 on R. Therefore, the solution to (111) is given
by (112) and we conclude the proof.

Now we can write down the implicit bias problem in the function space. The following Proposition is
a direct result of Proposition 12 and Proposition 36.
Proposition 37. Assume φ̄ solves problem (102). Then h̄(x) = g(x, φ̄), as defined in (101), solves
the following variational problem

min
h↔FAbs

∫

supp(pB)

Dω

( h↑↑(x)

2pB(x)
, 0
)
pB(x)dx s.t. h(xi) = yi → f(xi, ω̂), ′i ↑ [m]. (114)

In the following result, we show that Theorem 9 also holds for hypentropy potentials ϱϖ(x) =

x arcsinh(x/ς) +
√
x2 → ς2 when ς is sufficiently large.

Theorem 38 (Implicit bias of mirror flow with scaled hypentropy). Assume the same assumptions
as in Theorem 9, except that the potential is given by: !(ω) = n→2

∑
k↔[3n+1]

ϱϖ(n(ωk→ ω̂k)), where
ϱϖ is the hypentropy potential. Assume ς is sufficiently large. Then with high probability over the
random initialization, there exist constant C1, C2 > 0 such that for any t ⇔ 0,

↙ω(t)→ ω̂↙↗ ∝ C1n
→1, ↙f(t)→ y↙2 ∝ e→ϑ0C2t↙f(0)→ y↙2

Moreover, assuming univariate input data, i.e., d = 1, and letting ω(⇓) = limt↘↗ ω(t), we have for
any given x ↑ R that limn↘↗ |f(x, ω(⇓))→ f(x, ω̂)→ h̄(x)| = 0, where h̄(·) is the solution to the
following variational problem:

min
h↔FAbs

∫

supp(pB)

D⇀ω

( h↑↑(x)

2pB(x)
, 0
)
pB(x)dx s.t. h(xi) = yi → f(xi, ω̂), ′i ↑ [m].

Here D⇀ω denotes the Bregman divergence on R induced by the hypentropy potential and is given by
D⇀ω (x, y) = x (arcsinh(x/ς)→ arcsinh(y/ς))→

√
x2 + ς2 +

√
y2 + ς2.
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Proof. [Proof of Theorem 38] By Proposition 31, with sufficiently large ς, Proposition 27 and 29
holds for ε = ϱϖ . Note in Proposition 32 we only require function ε to be C3-smooth and to have
positive second derivatives everywhere, which is satisfied by the hypentropy function. Also, notice
Proposition 36 does not use information on the potential function. Therefore, Theorem 9 holds in this
case and we conclude the proof.

C DISCUSSION ON PARAMETRIZATION AND INITIALIZATION

In this section, we comment on the parametrization (1) and initialization scheme (2) that we considered
in this work, and compare these to NTK parametrization and Anti-Symmetrical Initialization.

Unit-norm initialized input weights In initialization (2), we require the input weights to be
sampled from the unit sphere Sd→1. This choice aims to make the minimal representation cost problem
(17) more tractable. Specifically, by this, for univariate input data we have supp(µ) = {→1, 1}↘ R
and the parameter space for infinitely wide ReLU networks, i.e. the space of uniformly continuous
functions on supp(µ), becomes much smaller than the case when input weights are sampled from
a general sub-Gaussian distribution and supp(µ) = R ↘ R. We note this is a common setting in
literature on representation cost for overparameterized networks (Savarese et al., 2019; Ongie et al.,
2020). In Appendix E.2, we further discuss the challenge of solving the minimal representation cost
problem for input weights sampled from general distributions.

Dependence of lazy training on parametrization and initialization Lazy training is known to
be dependent on the way the model is parameterized and how the parameters are initialized (Chizat
et al., 2019). In this work, we consider the parametrization (1) and initialization (2) for shallow
ReLU networks. However, there are other settings that also lead to lazy training in gradient descent.
Generally, consider a two-layer ReLU network of the following form:

f(x) =
1

sn

n∑

i=1

ak[w
T
k x→ b]+ + d,

where sn is a scaling factor dependent on the number of hidden units n. According to Williams et al.
(2019), for gradient descent training, there are two ways to enter the lazy regime: (1) initializing
the input weights and biases significantly larger than output weights; and (2) setting sn = o(n) and
considering n ⇑ ⇓. Infinitely wide networks with standard parametrization, which we consider in
this work, aligns with the second approach, as sn is set to 1.

Standard vs. NTK parametrization When sn is set to
↔
n, we obtain the NTK parametrization

(Jacot et al., 2018), in which the networks are parametrized as follows:

f(x) =
1
↔
n

n∑

i=1

akϑ(w
T
k x→ bk) + d.

Under NTK parametrization, a typical initialization scheme is to independently sample all parameters
from a standard Gaussian distribution or, more generally, from a sub-Gaussian distribution. Note that,
compared to standard parametrization in (1) and (2), the factor 1/

↔
n appears before the sum, rather

than as a scaling factor in the initialization distribution of the output weights. As a result, not only
the output weights are normalized at initialization, their gradients are also normalized throughout
training. It is known that, although gradient descent under both settings is in the kernel regime (lazy
regime), but they correspond to training different kernel models and yield different implicit biases
(Williams et al., 2019; Ghorbani et al., 2021). Specifically, noted by Jin & Montúfar (2023), under
NTK parametrization one can not approximate the training dynamics of the full model by that of the
model whose only output weights are trained. This implies the approach in this work, in particular
the formulation of problem 14, can not be directly applied to networks with NTK parametrization.

Anti-Symmetrical Initialization Anti-Symmetrical Initialization (ASI) (Zhang et al., 2020) is a
common technique in gradient descent analysis to ensure zero function output at initialization. In
the study of implicit bias of gradient descent, Jin & Montúfar (2023) utilize ASI as a base case and
then extend to other initializations. However, we observe that for mirror flow, ASI could in contrast
greatly complicate the implicit bias problem. In the following we briefly discuss why this happens.
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To achieve zero function output at initialization, ASI creates duplicate hidden units for the network
with flipped output weight signs. Specifically, a network with ASI is described as follows:

f(x, ω) =
1
↔
2

n∑

k=1

ak[w
T
k x→ bk]+ →

1
↔
2

n∑

k=1

a↑k[(w
↑

k)
Tx→ b↑k]+. (115)

Here ω = vec(W , b,a,W ↑, b↑,a↑) and the initial parameter ω(0) is set as

W (0) = W ↑(0) = Ŵ , b(0) = b↑(0) = b̂, a(0) = a↑(0) = â,

where Ŵ , b̂ and â are as described in (2). Assume one can simplify the implicit bias of training
model (115) to that of training the following linear model as we did for networks without ASI:

f(x, (a,a↑)) =
1
↔
2

n∑

k=1

(ak → a↑k)ϑ
(
ŵT

k x→ b̂k
)
. (116)

The corresponding mirror flow is given by
d

dt
(a(t),a↑(t)) = →ϖ(⇐2!((a(t),a↑(t))))→1

· J(a,a→)f̄(t) · (f̄(t)→ y), (117)

where f̄(t) = (f(x1, (a(t),a↑(t))), . . . , f(xm, (a(t),a↑(t))))T ↑ Rm. Assume (117) is able to
attain global optimality. Then by Theorem 11, the implicit bias is described by the following problem:

min
(a,a→)↔R2n

D!((a,a
↑), (â, â↑)) s.t. f(xi, (a,a

↑)) = yi, ′i ↑ [m]. (118)

However, observe that model (116) is “essentially” parameterized by a→ a↑ rather than by (a,a↑),
meaning that the function properties of f are tied to a→ a↑ instead of (a,a↑). A gap thus appears:
the implicit bias in parameter space describes the behavior of (a,a↑), whereas the function properties
are related to a→ a↑. To fill this gap, one can either solve the minimal representation cost problem
with respect to a cost function defined on (a,a↑) as given in (118), which can be quite challenging,
or to characterize a(⇓)→ a↑(⇓) returned by (117). The latter is also challenging, as a(t)→ a↑(t)
evolves according to the following differential equation:

d

dt
(a(t)→ a↑(t)) = →ϖ

(
(⇐2!(a(t)))→1 + (⇐2!(a↑(t)))→1

)
Jaf̄(0)(f̄(t)→ y). (119)

Noted by Azulay et al. (2021), a possible way to characterize a(⇓)→a↑(⇓) is to solve the following
equation for %:

(
(⇐2!(a(t)))→1 + (⇐2!(a↑(t)))→1

)→1

= ⇐
2%

(
a(t)→ a↑(t)

)
. (120)

If such a % exists, we have d

dt
(⇐%(a(t)→ a↑(t))) = →ϖJaf̄(0)(f̄(t)→ y). It follows that a(⇓)→

a↑(⇓) is the solution to the following problem:

min
a→a→

%(a→ a↑) s.t. f(xi, (a,a
↑)) = yi, ′i ↑ [m].

In the special case of gradient flow, i.e., !(a) = 1

2
↙a↙2

2
, we have ⇐

2!(a) ≡ I for any a ↑ Rn.
Therefore, (120) has a simple solution. However, it is known that (120) has a solution only if
((⇐2!(a(t)))→1 + (⇐2!(a↑(t)))→1)→1 satisfies the Hessian-map condition (see, e.g., Azulay et al.,
2021). This is a very special property and typically does not hold for most potentials.

D GRADIENT FLOW WITH REPARAMETRIZATION

In this section, we apply our results to study the implicit bias of gradient flow with a particular class
of reparametrization. Recall in this work, we focus on the following mirror flow with respect to
potential ! for minimizing loss function L:

d

dt
ω(t) = →ϖ(⇐2!(ω(t)))→1

⇐L(ω(t)). (121)

Consider a reparametrization map ω = G(4) and the gradient flow in 4-space for minimizing L ∈G:
d

dt
4(t) = →ϖ⇐(L ∈G)(4(t)). (122)
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By the chain rule, the dynamics of ω(t) = G(4(t)) in the ω-space induced by (122) is given by

d

dt
ω(t) = →ϖJG(4(t))(JG(4(t)))T⇐L(ω(t)), (123)

where JG(4(t)) denotes the Jacobian matrix of map G at 4(t). Notably, the two dynamics, (121)
and (123), are identical if the following equality holds for any ω = G(4):

(
⇐

2!(ω)
)→1

= JG(4)(JG(4))T . (124)

Based on this, we can directly apply our characterization of the implicit bias to gradient flow with a
reparametrization that permits a potential function satisfying (124).
Corollary 39 (Implicit bias of gradient flow with reparametrization). Consider a two-layer
ReLU network (1) with one input unit and n hidden units, where we assume n is sufficiently large.
Consider parameter initialization (2). Consider any finite training data set {(xi, yi)}mi=1

that satisfies
xi ↖= xj when i ↖= j and {xi}

M
i=1

↗ supp(pB). Consider a bijective reparametrization map
G : R3n+1

⇑ R3n+1, G(4) = ω and the gradient flow in 4-space (122) with ϖ = #(1/n). Assume
there exists a function ! : R3n+1

⇑ R such that ! satisfies Assumption 1 and the equality (124)
holds for any ω = G(4). Then letting 4(⇓) = limt↘↗ 4(t), we have for any given x ↑ R, that
limn↘↗ |f(x,G(4(⇓)))→f(x, ω̂)→h̄(x)| = 0, where h̄(·) is the solution to variational problem (7).

A similar result holds for scaled potentials and absolute value networks by Theorem 9, which we omit
for brevity. We now give concrete examples of reparametrizations that satisfy (124) in Corollary 39.
Consider the map G determined by its inverse map G→1(ω) = 4 as

(G→1(ω))k =

∫ εk

0

√
ε↑↑(x) dx, k = 1, . . . , 3n+ 1,

where ε ↑ C2(R) satisfies ε↑↑(x) > 0 for all x ↑ R. Notice that JG→1(ω) = Diag(
√
ε↑↑(ωk)) and

by the inverse function theorem, JG(4) = (JG→1(ω))→1 = Diag((ε↑↑(ωk))→1/2). It then it follows
that (124) holds for !(ω) =

∑
k↔[3n+1]

ε(ωk). In the special case when ε(x) = 1

12
x4 + 1

2
x2, we

have

(G→1(ω))k =

∫ εk

0

√
x2 + 1 dx =

ωk
2


ω2k + 1 +

1

2
arcsinh ωk, k = 1, . . . , 3n+ 1.

We note that Li et al. (2022) established the equivalence between mirror flow and a broader class of
reparametrizations, which the authors refer to as commutative reparametrizations. We did not include
discussion on these reparametrizations and leave it as a future research direction.

E MINIMAL REPRESENTATION COST PROBLEM IN GENERAL SETTINGS

In this section, we discuss solving the minimal representation cost problems for ReLU networks with
respect to a general cost function and for multivariate networks with general parameter initialization.

E.1 REPRESENTATION COST FOR RELU NETWORK AND GENERAL COST FUNCTION

Consider the following the minimal representation cost problem for a given h ↑ FReLU:

argminς↔”ReLU

∫
Dω(φ(w, b), 0)dµ s.t. h(x) =

∫
φ(w, b)[wx→ b]+dµ, ′x ↑ R. (125)

As we show in Appendix A.3, the constraints in problem (125) is equivalent to





φ+(1, b) =
h↑↑(b)

pB(b)
,

∫
φ→(1, b)dµB = h↑(+⇓) + h↑(→⇓),

∫
φ→(1, b)bdµB =

∫

R
h↑↑(b)|b|db→ 2h(0).

(126)
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For simplicity, assume the function ε satisfies ε(0) = 0 and ε↑(0) = 0. Then the objective function
in (125) can be rewritten as follows:

∫
Dω(φ(w, b), 0)dµ =

1

2

∫
ε(φ(1, b)) + ε(φ(→1, b))dµB

=
1

2

∫
ε(φ+(1, b) + φ→(1, b)) + ε(φ+(1,→b)→ φ→(1,→b))dµB.

Then by (126) solving problem (125) is equivalent to solving the following problem

argminς↑
↔”ReLU

ς↑
: odd

∫
ε
(h↑↑(b)

pB(b)
+ φ→(1, b)

)
+ ε

(h↑↑(→b)

pB(→b)
→ φ→(1,→b)

)
dµB

s.t.






∫
φ→(1, b)dµB = h↑(+⇓) + h↑(→⇓),

∫
φ→(1, b)bdµB =

∫

R
h↑↑(b)|b|db→ 2h(0).

(127)

In the special case of ε(x) = x2, where the subspace of even functions is orthogonal to the subspace
of odd functions, the objective functional in problem (127) simplifies to

∫
(φ→(1, b))2dµB. This

allows one to explicitly solve the problem. For a general ε, however, obtaining a closed-form solution
to problem (127) becomes much more challenging. We emphasize that, for any scaled potential
that admits a closed-form solution to problem (127), one can obtain the function description of the
corresponding implicit bias with the strategy we introduced in Section 3.3.

E.2 REPRESENTATION COST FOR MULTIVARIATE NETWORKS AND GENERAL INITIALIZATION

Let d ⇔ 2 denote the input dimension for the network. Assume (W,B) is a random vector on Rd
↘R,

with distribution µ and density function pW,B. Consider the space of infinitely wide ReLU networks
with d-dimensional inputs

F
(d)
ReLU

=

g(x,φ) =

∫
φ(w, b)[wTx→ b]+dµ : φ ↑ #(d)

ReLU



where #(d)
ReLU

= {φ ↑ C(supp(µ)) : φ is uniformly continuous}. For a given h ↑ F
(d)
ReLU

, consider
the minimal representation cost problem with the squared L2 norm cost:

argmin
ς↔”

(d)
ReLU

∫
(φ(w, b))2dµ s.t. h(x) = g(x,φ), ′x ↑ Rd. (128)

For univariate networks, we solve this problem by translating the constraints, h(x) = g(x,φ), to
more manageable equations as presented in (126). However, this strategy could be more challenging
for multivariate networks with general input weights initialization. We discuss this difficulty for
multivariate networks with unit-norm initialized input weights and for univariate network with general
input weights initialization separately.

For multivariate networks with unit-norm initialized input weights, i.e., supp(µ) ↗ Sd→1
↘ R, let φ

be a candidate for Problem (128), i.e., h(x) = g(x,φ), ′x ↑ Rd. Determining the even component
of φ becomes quite challenging. We now present a potential approach with the Radon transform R

and the dual Radon transform R
⇓ (for formal definition see, e.g., Helgason, 1999). Note that

$h(x) =

∫
φ(w, b)5(wTx→ b)dµ = R

⇓
{φpW,B}(x). (129)

Assuming that φpW,B is in the Schwartz space S(Sd→1
↘ R),7 then by the inversion formula for the

dual Radon transform (Solmon, 1987, Theorem 8.1) one has:

φ+(w, b) =
→R{(→$)

d+1
2 h}(w, b)

2(26)d→1pW,B(w, b)
.

7ω ↓ S(Sd↓1 ↑R) if ω(w, b) is C↑-smooth and all its partial derivatives decreases faster than (1+ |b|2)↓k

as b ↗ ↘ for any k > 0.
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However, the assumption on φpW,B does not generally hold. In particular, consider φ̄ as the solution
to following problem:

argmin
ς↔”

(d)
ReLU

∫
(φ(w, b))2dµ s.t. g(xi,φ) = yi, ′i ↑ [m]. (130)

By analogy with Proposition 17, one can expect φ̄ to characterize the parameter obtained by mirror
flow training for infinitely wide ReLU networks in the multivariate setting. By the first-order
optimality condition for problem (130), φ̄ takes the following form:

φ̄(w, b) =
m∑

i=1

⇁i[w
Txi → b]+,

where {⇁i}i↔[m] are Lagrangian multipliers to be determined. It is clear that either φ̄ = 0 or φ̄ does
not have continuous partial derivatives, implying that φ̄pW,B does not lie in S(Sd→1

↘ R) even if
pW,B does. A similar observation has been made by Ongie et al. (2020), who note the difficulty in
explicitly characterizing the representation cost with the L1 norm in the multivariate setting. Some
studies have relaxed the Schwartz space condition for the inversion formula of the Radon transform
(Helgason, 1999, Theorem 6.2, Ch. I; Jensen, 2004, Theorem 5.1), which recovers a function f
on Rd using R(f). However, to the best of our knowledge, no corresponding relaxation has been
established for the inversion formula of the dual Radon transform, which recovers a function φ on
Sd→1

↘ R using R
⇓(φ). The latter is necessary for characterizing the solution to problem (128) with

the relation given in (129).

For univariate ReLU networks with general input weight initializations, assume (W,B) is a random
vector on R↘R. Let h(x) = g(x,φ), ′x ↑ R. When determining the even component of φ, one can
differentiate h(x) twice and obtain the following equality

∫

R
φ+(w,wx)w2pW,B(w,wx)dw = h↑↑(x). (131)

Then the minimal representation cost problem on the subspace of even functions can be written as

argminς+
↔”ReLU

ς+
: even

∫
(φ+(w, b))2dµ s.t. φ+satisfies (131). (132)

For unit-norm initialized input weights, i.e., W = Unif({→1, 1}), the constraint (131) becomes a
discrete sum and it in fact completely determines φ+. Under a general distribution for input weights,
solving (132) can be challenging. We note that the unit-norm input weights constraint also appears in
other works on representation cost for overparameterized networks (Savarese et al., 2019; Ongie et al.,
2020). Jin & Montúfar (2023) considered general initialization but at the same time they required
either intractable data adjustments or otherwise adding skip connections to the network.

F RIEMANNIAN GEOMETRY OF THE PARAMETER SPACE (!,⇐2”)

In this section, we briefly discuss the Riemannian geometry induced by the metric tensor ⇐2! on the
parameter space.

The Riemannian curvature tensor is a fundamental concept in differential geometry, describing how the
space curves at different points and along various directions. For a detailed introduction and rigorous
definition of the Riemannian curvature tensor, we refer the reader to Do Carmo & Flaherty Francis
(1992). Next we compute the Riemannian curvature tensor of the manifold (R3n+1,⇐2!), where !
is a potential function satisfying Assumption 1.

With the trivial coordinate chart id : R3n+1
⇑ R3n+1, the metric tensor ⇐2! takes the form of a

diagonal matrix diag(ε↑↑(ωk)). The Riemannian curvature is determined by the Christoffel symbols
for the Levi-Civita connection (see, e.g., Do Carmo & Flaherty Francis, 1992), which can be computed
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as follows:

&k
ij =

1

2

p∑

k=1

gkm(▷igjm + ▷jgmi → ▷mgij)

=
1

2
gkk(▷igjk + ▷jgki → ▷kgij)

=


(2ε↑↑(ωk))→1

· ε↑↑↑(ωk) i = j = k;

0 otherwise.

(133)

Then the components of the Riemannian curvature tensor is given by:

Rl
ijk = &m

ik &l
jm → &m

jk &l
im + ▷j&

l
ik → ▷i&

l
jk = 0 (134)

This implies the curvature tensor is everywhere zero and the Riemannian manifold (#,⇐2!) is flat
everywhere. We remark that a manifold equipped with a metric tensor of the form ⇐

2! for some
general function ! is commonly known as a Hessian manifold. We refer the reader to Shima & Yagi
(1997) for a broader discussion on the geometry on Hessian manifolds.

G EXPERIMENT DETAILS

In this section, we provide details for experiments in Section 4.

Training data For the experiments with unscaled potentials in Figure 1, we use the follow-
ing training data set: {(→1,→0.15), (→0.2,→0.15), (0, 0.15), (0.2,→0.15), (1,→0.15)}. In the
right panel of Figure 1, we apply the following shift values to the y-coordinates of all the data
points: 2.5, 1,→0.5,→2,→3.5. For the experiments with scaled potentials in Figure 2, we con-
sider a different training data set in order to highlight the effect of different scaled potentials:
{(→1, 0.15), (0.35, 0.15), (0.65,→0.15), (1, 0.15)}. Note the x-coordinates of all the training data
points are contained in [→1, 1].

Mirror descent training We use full-batch mirror descent to train the network. For mirror descent
with unscaled potentials, as the number of hidden units n varies, we set the learning rate as ϖ = 1/n
across all three potentials ε1, ε2 and ε3. For mirror descent with scaled potentials, the learning rate
for ε1 and ε2 is set to 1/n and the learning rate for ε3 is set to 2/n. We observe that for scaled
potentials, a larger p value in ε(x) = |x|p + x2 leads to slower convergence and thus we use a larger
learning rate for ε3. During each training iteration, we manually compute the inverse Hessian matrix,
multiply it by the back-propagated gradients, and then update the parameters using the preconditioned
gradients. The stopping criterion for the training is that the training loss is lower than the threshold
value 10→7. In the middle panel of Figures 1 and 2, we repeat the training five times with different
random initializations for the network. The training is implemented by PyTorch version 2.0.0.

Numerical solution to the variational problem We solve the variational problem using discretiza-
tion. We discretize the interval [→1.5, 1.5] evenly with 501 points →1.5 = t0 < t1 < · · · < t500 =
1.5 and then set the vector to be optimized as u = [h0, h1, . . . , h500, h↑

→
, h↑

+
] where hi represents the

function value h(ti) for i = 0, . . . , 500, h↑

→
represents the slope h↑(→⇓), and h↑

+
represents h↑(+⇓).

As we shown in Proposition 20, when B is compactly support on [→1, 1], we have h↑(→⇓) = h↑(x)
for any x < →1 and h↑(+⇓) = h↑(x) for any x > 1. Let (xk, yk) for k = 1, . . . ,m denote the
training data points. s For k = 1, . . . ,m, let ik = argmini↔{0,...,500} |ti → xk| record the index for
the nearest discretization point to xk. To solve variational problem (7), we consider the following two
sets of constraints applying to u: (1) hik = yk for k = 1, . . . ,m; (2) (hk → hk→1)/(t1 → t0) = h↑

→

for k ∝ i1 and (hk → hk→1)/(t1 → t0) = h↑

+
for k ⇔ i5. The second set of constraints is used

to ensure h lies in FReLU. We estimate the second derivative of h by finite difference method, i.e.
h↑↑

i = (hi+1 → 2hi + hi→1)/(t1 → t0)2 for i = 1, . . . , 499. Noting G3 has a closed-form formula
under uniformly sampled input bias in Theorem 2, we estimate the objective functionals as follows:






Ĝ1(h) =
499∑

i=1

(h↑↑

i )
2(t1 → t0)

Ĝ2(h) = (h↑

+
+ h↑

→
)2

Ĝ3(h) = 3((h↑

+
→ h↑

→
)→ (hi1 + him))2.
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Then we optimize u to minimize the above objective function. To solve variational problem (9),
we consider two additional sets of constraints (1) Ĝ2(h) = 0; and (2) Ĝ3(h) = 0. This is to ensure
h ↑ FAbs according to Proposition 35. Then we optimize u to minimize Ĝ1. We implement the
optimization by CVXPY (Diamond & Boyd, 2016) version 1.4.1. To estimate the L↗-error between
the solution to the variational and the trained networks, we evaluate the trained network on {ti}500i=0

,
denoted by {fi}500i=0

, and compute the ,↗ norm of the difference vector [f0 → h0, . . . , f500 → h500].

H ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we provide additional numerical experiments on mirror descent training.

Training trajectory in parameter space The left panel in Figure 3 illustrates that, training wide
ReLU networks using mirror descent with different unscaled potentials not only have the same
implicit bias, they also yield very close parameter trajectories. The right panel in Figure 3 illustrates
that, in contrast, training wide networks using mirror descent with different scaled potentials converge
to different solution points and have significantly different trajectories.

Figure 3: Left: 2D PCA representation of parameter trajectories under mirror descent with unscaled
potentials ε1 = x2, ε2 = |x|3 + x2, and ε3 = x4 + x2, for ReLU networks with 4860 hidden units.
Right: 2D PCA representation of parameter trajectories under mirror descent with scaled potentials
ε1, ε2, and ε3, for networks with absolute value activations and 4860 hidden units.

Lazy regime and kernel regime In Figure 4, we examine whether mirror descent with different
unscaled potentials: ε1 = x2, ε2 = |x|3 + x2, and ε3 = x4 + x2, is in the lazy regime and whether
it is in the kernel regime. According to the plot,as the network width n increases, both the distance
between the final parameter ω(⇓) and initial parameter ω̂, and the distance between the final kernel
matrix H(⇓) and initial kernel matrix H(0) decrease to zero. This verifies that mirror descent with
unscaled potentials is in both lazy regime and kernel regime, as shown in Theorem 2.

In Figure 5, we examine whether mirror descent with scaled potentials falls into lazy regime and
whether it falls into kernel regime. Specifically, we observe that ↙ω(⇓) → ω̂↙↗ decreases to zero
as n increases, which verifies that the training is in lazy regime as we shown in Theorem 9. In
the right panel of Figure 5, we see that for potentials having ε different from x2, the kernel ma-
trix moves significantly from its initial value during training, verifying our claim that networks
trained by mirror descent with diverse scaled potentials do not fall in the kernel regime. Note ε1

is 2-homogeneous. Therefore it induces the same potential function ! under Assumption 1 and
Assumption 8: 1

n2

∑
k↔[n] ε1(n(ωk → ω̂k)) =

∑
k↔[n] ε1(ωk → ω̂k). This explains why mirror descent

with the scaled potential induced by ε1 is also in the kernel regime.

Effect of ,p+,2 potential We examine how scaled potentials of the form ε(x) = |x|p + 0.1x2

affect the trained networks. In the left panel of Figure 6, we compare the solution to the variational
problem (9) with a constant pB and ε(x) = |x|p + 0.1x2 for different p values, versus B-spline
interpolations of the data with varying degrees. Interestingly, as p approaches 1, the variational
solution behaves more like linear interpolation. This trend gets clearer in the right panel, which shows
the 2D PCA representation of these interpolation functions. Here we directly consider the variational
solution for two reasons: (1) these solutions well approximate absolute value networks trained by
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Figure 4: Left: ,↗ norm of the difference between the final parameter and initial parameter of ReLU
networks trained by mirror descent with different unscaled potentials: ε1 = x2, ε2 = |x|3 + x2,
and ε3 = x4 + x2, plotted against the number of hidden units. Right: spectral norm (2-norm) of
the difference between the final kernel matrix and the initial kernel matrix from the same training
instances as the left panel, plotted against the number of hidden units.

Figure 5: Left panel: ,↗ norm of the difference between the final parameter and initial parameter
of absolute value networks trained by mirror descent with different scaled potentials: ε1 = x2,
ε2 = |x|3 + x2, and ε3 = x4 + x2, plotted against the number of hidden units. Right panel: spectral
norm (2-norm) of the difference between the final kernel matrix and initial kernel matrix from the
same training instances as the left panel, plotted against the number of hidden units. The inset shows
the same data with the y-axis in linear scale instead of log-scale.

mirror descent with scaled potentials, as shown in Theorem 9, and (2) we observe that when p takes a
large value, the mirror descent converges in a very slow rate and solving the variational problem is
more efficient. Also note, potentials ε(x) = |x|p + x2 with p < 2 are not covered by Assumption 8,
as ε does not have a second derivative at x = 0 and hence the trajectory (4) can be ill-defined.

Effect of hypentropy potentials We examine the effect of hypentropy potentials ϱϖ(x) =

x arcsinh(x/ς)→
√
x2 + ς2 (Ghai et al., 2020) on the implicit bias of mirror descent training. The

motivation behind these potentials is that, as ς ⇑ 0+ their second derivatives, ϱ↑↑ϖ(x) = 1/
√
x2 + ς2,

converges to the second derivative of the negative entropy. Moreover, the Bregman divergence induced
by the hypentropy function interpolates the squared Euclidean distance and the relative entropy or
Kullback–Leibler (KL) divergence, as ς varies from infinity to zero (Ghai et al., 2020). In agreement
with this property, in the left panel of Figure 7, we observe that when ς takes large value, the trained
networks behaves like the variational solution with ε(x) = x2, which is closely related to training
under Euclidean distance. Interestingly, as ς tends to zero, the trained networks behaves more like
the variational solution with ε(x) = |x|3. This pattern is also shown in the right panel, where we plot
the 2D PCA representations for these interpolation functions.

Trained network vs. width Figure 8 compares ReLU networks of different width, trained by
mirror descent with different unscaled potentials, against the solution to the variational problem (7).
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Figure 6: Left: comparison of multiple interpolating functions on a common data set (black crossing
points): B-spline interpolations with degree 1 (blue), 2 (green), 3 (purple), and 5 (red); solutions
to the variational problem with a constant pB and ε(x) = |x|p + 0.1x2, where p ranges from 1.1
to 4.0 with the corresponding color indicated in the colorbar. Right: 2D PCA representation of the
interpolation functions in the left panel.

Figure 7: Left: comparison of multiple interpolating functions on a common data set (black crossing
points): solutions to the variational problem with a constant pB and ε(x) = |x|p for p = 2, 3, 4,
and wide absolute value networks with uniformly initialized input biases, unit-norm initialized input
weights and zero-initialized output weights and biases, trained by mirror flow with scaled hypentropy
potentials εϖ where ς ranges from 0.2 to 8.0 with the corresponding color indicated in the colorbar.
Right: 2D PCA representation of the interpolation functions in the left panel.

In agreement with Theorem 2 and Figure 1 (middle panel), the network function converges to the
solution to the variational problem as the width increases. A further experiment is conducted for
absolute value networks and scaled mirror descent, with results shown in Figure 9. In agreement with
Theorem 9, we observe that the network function trained with different scaled potentials converges to
the solution to the corresponding variational problem as the width increases.
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Figure 8: Comparison of ReLU networks of different width, trained by mirror descent with unscaled
potentials (solid blue), against the solution to the variational problem (dashed orange). Networks of
widths n = 30, 540, 4860 (columns) are trained using three different unscaled potentials: ε1 = x2,
ε2 = |x|3 + x2, and ε3 = x4 + x2 (rows). All networks have uniformly initialized input biases,
unit-norm initialized input weights and zero-initialized output weights and biases.

Figure 9: Comparison of absolute value networks of different width, trained by mirror descent with
scaled potentials (solid blue), against solutions to the variational problem (dashed orange). Networks
of widths n = 30, 540, 4860 (columns) are trained using three different unscaled potentials: ε1 = x2,
ε2 = |x|3 + x2, and ε3 = x4 + x2 (rows). All networks have uniformly initialized input biases,
unit-norm initialized input weights and zero-initialized output weights and biases.
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