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Abstract

We consider a binary classifier defined as the sign of a tropical rational function, that is, as
the di!erence of two convex piecewise linear functions. In particular, the set of functions
represented by a ReLU neural network can be regarded as a subset in the parameter space of
tropical rational functions, specifically, it is contained as a semialgebraic set. We initiate the
study of two di!erent subdivisions of the parameter space of tropical rational functions with
fixed number of terms in the numerator and denominator: a subdivision into semialgebraic
sets, on which the combinatorial type of the decision boundary is fixed, and a subdivision into
a polyhedral fan, capturing the combinatorics of the partitions of the dataset. The sublevel
sets of the 0/1-loss function arise as subfans of this classification fan, and we show that the
level-sets are not necessarily connected. We describe the classification fan i) geometrically, as
normal fan of the activation polytope, and ii) combinatorially through a list of properties of
associated bipartite graphs, in analogy to covector axioms of oriented matroids and tropical
oriented matroids. Our findings extend and refine the connection between neural networks
and tropical geometry by observing structures established in real tropical geometry, such as
positive tropicalizations of hypersurfaces and tropical semialgebraic sets.

1 Introduction

We consider a binary classification task with hypotheses given by signs of real-valued functions parameterized
by artificial neural networks with piecewise linear activation functions. Given a classification task, we are
interested in the sets of parameters for which the network perfectly classifies the training data, or for which
it makes a certain number of errors, that is, the level sets of the 0/1-loss function. We seek to understand
the combinatorial and discrete-geometric structures underlying such a classification task using polyhedral
methods. One of our aims is to enhance the synergies between neural networks and real tropical geometry
to facilitate progress in both communities by translating some concepts and results.

The combinatorics of the functions represented by neural networks with piecewise linear activations has
received significant attention over the years, e.g., in the works of Pascanu et al. (2014); Montúfar et al.
(2014); Telgarsky (2016); Raghu et al. (2017); Serra et al. (2018); Balestriero et al. (2019), or works listed
in the overview article of Huchette et al. (2023). A new trend in theoretical considerations of (deep) neural
networks with piecewise linear activation functions is to study them through the lens of tropical geome-
try, a mathematical framework which is tailored to understand the geometry of piecewise linear functions.
The language of tropical geometry in the context of binary classification already appeared in the work of
Charisopoulos & Maragos (2017), and the relation to feedforward neural networks with ReLU activation
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was expanded independently by Charisopoulos & Maragos (2018) and Zhang et al. (2018) and to maxout
networks by Charisopoulos & Maragos (2018) and Montúfar et al. (2022). The connection arises through
the fact that any function represented by such a neural network is continuous piecewise linear (and vice
versa, Arora et al. 2018) and can thus be written as the di!erence of two convex piecewise linear functions
(Hartman, 1959; Wang, 2004). Such a di!erence is called a tropical rational function. The representation as
such a di!erence is not unique, and has been studied for instance by Kripfganz & Schulze (1987) and Melzer
(1986); Schlüter & Darup (2020); Tran & Wang (2023).

In recent years, there has been increased interest in real tropical geometry, which also encompasses sign
information and aims to study tropical varieties inside all orthants (see, e.g., Jell et al. 2020 and Rau et al.
2022). This is the perspective that we take in the present article. Concretely, we consider di!erences g → h

of two convex (and continuous) piecewise linear functions g, h, where we fix the maximum possible number
of linear terms of each, g and h.

The simplest instance of this setup is a linear classifier, which is the special case where g and h are linear
functions. Here, results have been rediscovered in many di!erent mathematical communities. The well-known
work of Cover (1964) studied the structure of the space of parameters of linear classifiers, which is subdivided
by an arrangement of hyperplanes, and described the solution set of the classification task as a polyhedral
cone. These structures have been expanded widely by the combinatorics community in the years since. One
notable example is the counting formula for chambers in a general hyperplane arrangement by Zaslavsky
(1975), and the development of oriented matroids (Björner et al., 1999), which are combinatorial objects that
capture the combinatorial structure of the data and their corresponding hyperplane arrangements. Linear
classifiers can be modeled by linear networks, which (over-)parametrize linear functions as compositions of
linear functions, one for each layer of the network. The space of parameters of linear functions that can
be represented by a linear network consists of matrices whose rank is at most equal to the minimum width
of any of the network layers, which is an algebraic variety inside the space of matrices. In analogy, in this
article we describe the space of parameters of piecewise linear functions that can be represented by a ReLU
neural network as a semialgebraic set inside the space of tropical rational functions.

In general, the combinatorial structure of the parameter space refers to its subdivision into regions repre-
senting di!erent dichotomies of the input data. Such subdivisions have been considered in several classic
works studying the growth function and Vapnik-Chervonenkis dimension of binary classifiers (Vapnik &
Chervonenkis, 1971); see Anthony & Bartlett (1999, Part I) and references. These subdivisions naturally
interact with the level sets of the training loss. The loss landscape of neural networks has been studied in
a series of works, obtaining results on the connectivity of sublevel sets or the existence of paths descending
to a global minimum. For instance, under some conditions it is known that if the data is linearly separable
then all local minima are global minima (Gori & Tesi, 1992). In general, it has been observed that local
minima are not necessarily global minima (Brady et al., 1989; Sontag & Sussmann, 1989) and, depending
on the loss function, the number of local minima may grow exponentially in the input dimension even for
single neurons (Auer et al., 1995). For networks with piecewise linear activations, spurious local minima are
common (Safran & Shamir, 2018; Liu, 2022). This can be rectified under a catalogue of assumptions. In
particular, it can be shown that, given an appropriate level of overparametrization, most di!erentiable local
minima are global minima (Soudry & Ho!er, 2018; Karhadkar et al., 2024). Various works have studied how
any two parameters can be connected through a continuous path in which the energy gap remains bounded
(Freeman & Bruna, 2017; Kuditipudi et al., 2019; Nguyen et al., 2021). We also note a stream of works
(Wang et al., 2022; Mishkin et al., 2022; Mishkin & Pilanci, 2023; Ergen & Pilanci, 2021; Matena & Ra!el,
2022) which considers the solution sets in terms of duality and the solution set for convex reformulations
of the non-convex optimization problem. Further, the symmetries of neural network parametrization maps
have been studied for instance by Rolnick & Kording (2020) and Grigsby et al. (2023) and also in relation
to the optimization landscape by Simsek et al. (2021).

For classification with piecewise linear functions, not only the parameter space exhibits a (not necessarily
polyhedral) subdivision, but also the input space exhibits a polyhedral subdivision, which is induced by the
decision boundary. To this day, understanding the decision boundary of deep neural networks remains a
di"cult task both in theory and in practice (Humayun et al., 2023). For a ReLU neural network, it is known
that the decision regions and the decision boundary are unbounded whenever the width of every layer is
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at most equal to the input dimension d (Beise et al., 2021; Johnson, 2019; Nguyen et al., 2018), and if the
network consists of a single hidden layer of width d + 1 then the decision regions can have no more than
one bounded connected component (Grigsby & Lindsey, 2022). The connection between decision boundaries
and tropical geometry is straightforward through subcomplexes of tropical hypersurfaces (Zhang et al., 2018;
Charisopoulos & Maragos, 2018; Alfarra et al., 2023; Piwek et al., 2023). Notably, this subcomplex is a
familiar object in real tropical geometry as the (signed-)positive tropicalization of a hypersurface over the
field of real or complex Puiseux series (Viro, 2006; Speyer & Williams, 2005; Brandenburg et al., 2023). This
connection to real tropical geometry goes beyond decision boundaries: In parameter space we observe that
the set of solutions of a classification task can be formulated as a tropical semialgebraic set, a class of sets
which has only recently started to enjoy systematic considerations (Allamigeon et al., 2020; Jell et al., 2020).

Contributions. In this article, we consider the combinatorics of continuous piecewise linear classifiers. We
consider a finite data set D ↑ Rd and classifiers defined as signs of functions g → h : Rd

↓ R, where g and h

are convex and continuous piecewise linear functions with at most n and m linear pieces, respectively. We
initiate the study of two di!erent subdivisions of the parameter space !(d, n, m) of such classifiers: The first
is a subdivision of the parameter space into semialgebraic sets where the combinatorial type of the decision
boundary is fixed. The second is a polyhedral subdivision, called the classification fan. This is obtained from
the activation fan, a polyhedral fan which captures the activation patterns of the tropical rational function.
The di!erent possible dichotomies of the data and the sublevel sets of the 0/1-loss function arise as subfans
of the classification fan. We describe the fan i) geometrically, as the normal fan of the activation polytope,
and ii) combinatorially through a list of properties of bipartite graphs associated with the activation patterns
in analogy to covector axioms of oriented matroids. From this we can show that in the separable case the
sublevel sets of the 0/1-loss function are connected for linear classifiers, but are disconnected for general
piecewise linear classifiers. Furthermore, we show that the parameter space of a fixed architecture of ReLU
neural networks is a semialgebraic set of bounded degree inside the parameter space of tropical rational
functions, and thus intersects both subdivisions of !(d, n, m) nontrivially.

This article aims to address multiple audiences: A data-driven audience with a background in machine
learning interested in understanding the underlying combinatorics, and a (discrete) geometric audience with
an interest towards applications concerning neural networks. We try to accommodate for the di!erent
backgrounds throughout the exposition.

Overview. In Section 2 we begin by recalling known results and concepts describing linear classification.
We introduce three di!erent points of view to study natural subdivisions in parameter space: As chambers
of a hyperplane arrangement HD (i.e., connected components of the complement of HD), as cones in the
normal fan ”D of a polytope PD, and as maximal covectors of a realizable oriented matroid. The subsequent
sections are devoted to generalizing this theory to classification by continuous piecewise linear functions. In
Section 3 we describe the connection of continuous piecewise linear functions to ReLU neural networks and
tropical geometry. While in the linear case the decision boundary is a hyperplane, in Section 4 the decision
boundary is piecewise linear. In Section 5 we introduce the activation polytope and the activation fan, a
polytope and its normal fan which are in analogy to the fan ”D and PD from the linear case. Each cone is
labeled by an activation pattern, and we relate the set of activation patterns to sets of covectors of oriented
and tropical oriented matroids. In Section 6 we consider subdivisions of the parameter space of continuous
piecewise linear functions: We first introduce the classification fan (Section 6.1). Afterwards (Section 6.2) we
describe an arrangement of indecision surfaces, which is the natural analog of the hyperplane arrangement
HD, and the cells of this arrangement are compatible with the activation and classification fan. We show
that the sublevel sets of the 0/1-loss can be viewed as subfans of the classification fan, resulting in a study
of the perfect classification fan (Section 6.3) and the (sub)-level sets of the 0/1-loss function (Section 6.4).

2 Linear Classifiers

We motivate our studies from classical results about linear classification problems. Many results presented in
this section have been rediscovered in di!erent mathematical communities, using the language of classifiers,
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hyperplane arrangements or realizable oriented matroids. These di!erent viewpoints serve as an inspiration
for what follows, as in the upcoming sections we will generalize this to a theory for classifiers defined by
neural networks with ReLU activation and tropical rational functions.

Let D = {p1, . . . , pM } ↔ Rd be a finite set of data points. A linear binary classifier or simple perceptron is
a function fω : Rd

↓ {→1, 0, 1}, fω(x) = sgn(↗ s, x ↘ + a), defined by taking the sign of a linear function with
parameters ω = (a, s), where a ≃ R, s ≃ Rd. The parameter space is !(d) = {ω = (a, s) | a ≃ R, s ≃ Rd

} ⇐=
Rd+1. The function fω defines an a"ne hyperplane which separates the data points into three classes,
{p ≃ D | fω(p) > 0}, {p ≃ D | fω(p) < 0} and {p ≃ D | fω(p) = 0}. The last of these sets is empty for
generic choices of parameters. In this case, fω induces a dichotomy C ≃ {→, +}

M via Ci = fω(pi).

We now discuss three di!erent points of view on these dichotomies. We first state the equivalent viewpoints,
and define the terms in this statement afterwards.
Theorem 2.1. Let D ↔ Rd be a finite data set. Then

(i) the hyperplane arrangement HD =
⋃

p→D(1, p)↑ subdivides the parameter space !(d) into regions
according to the represented dichotomies,

(ii) HD induces the normal fan of the zonotope PD =
∑

p→D conv(0,
( 1

p
)
),

(iii) the dichotomies are the maximal covectors of a realizable oriented matroid.

For p ≃ Rd we consider (1, p)↑ = {(a, s) ≃ !(d) |
〈

( a

s ) ,
( 1

p
) 〉

= 0} as a hyperplane through the origin. A
linear hyperplane arrangement H ↔ Rd+1 is a collection of hyperplanes through the origin, and it subdivides
the ambient space into chambers, which are the connected components of Rd+1

\ H and are open polyhedral
cones.

We recall a few more definitions from polyhedral geometry. A polyhedron is the intersection of finitely many
closed halfspaces and a polytope is a bounded polyhedron. Equivalently, a polytope P ↑ Rd is the convex
hull of finitely many points v1, . . . , vn ≃ Rd (Ziegler, 1995, Theorem 1.1), i.e. P = conv(v1, . . . , vn), where

conv(v1, . . . , vn) = {ε1v1 + · · · + εnvn | εi ≃ [0, 1], ε1 + · · · + εn = 1} .

A hyperplane supports P if it bounds a closed halfspace containing P , and any intersection of P with such a
supporting hyperplane yields a face F of P . A face is a proper face if F ⊋ P and inclusion-maximal proper
faces are referred to as facets. Note that also the empty set is a face of P and by convention dim(⇒) = →1.

The Minkowski sum of polytopes P1, . . . , Pk ↑ Rd is

P1 + · · · + Pk = {x1 + · · · + xk | xi ≃ Pi for i ≃ [k]} ,

and a zonotope is a Minkowski sum of line segments.

A polyhedral cone C ↑ Rd is a polyhedron such that εu + µv ≃ C for every u, v ≃ C and ε, µ ≃ R↓0.
Equivalently, it is the conical hull of finitely many vectors u1, . . . , un ≃ Rd (Ziegler, 1995, Theorem 1.3), i.e.

C = cone(u1, . . . , un) = {µ1u1 + · · · + µnrn | µ1, . . . , µn ⇑ 0} .

The lineality space of C is the linear space L(C) = C ⇓ (→C) and a cone is pointed if its lineality space is
trivial. The rays of C are its 1-dimensional faces. A polyhedral fan ” ↑ Rd is a finite family of nonempty
polyhedral cones such that every nonempty face of a cone in ” is also a cone in ”, and the intersection of
any two cones in ” is a face of both. An inclusion-maximal cone of ” is called a maximal cone. The fan ”
is complete if

⋃
C→! C = Rd and it is pure if all inclusion-maximal cones have the same dimension.

Any hyperplane arrangement H uniquely induces a polyhedral fan ”, whose maximal cones are the Euclidean
closures of the chambers of H. A wall of ” is an intersection of maximal cones that has codimension 1. In
particular, if ” ↑ Rd is a complete (and thus pure) polyhedral fan, then the walls are the cones of dimension
d → 1, and must always exists.
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Given any polytope P ↔ Rd+1, the (outer) normal cone of a face F of P is

NF (P ) = {y ≃ (Rd+1)↔
| ↗ z, y ↘ = max

x→P

↗ x, y ↘ for all z ≃ F},

and the normal fan of P is the collection of normal cones over all faces of P . A polytope is a zonotope if
and only if its normal fan is induced by a hyperplane arrangement H.

The hyperplane arrangement HD =
⋃

M

i=1(1, pi)↑
↔ !(d) uniquely induces a polyhedral fan ”D ↔ !(d),

which is the normal fan of the zonotope PD =
∑

p→D conv((0,
( 1

p
)
). Here, 0 = (0, . . . , 0) denotes the zero

vector in Rd+1. We can label each cone ϑ of the fan ”D by a vector of signs,

Cε =
(

sgn(
〈

ω,
( 1

p1

) 〉
), . . . , sgn(

〈
ω,

( 1
pM

) 〉
)
)

= (fω(p1), . . . , fω(pM )) ≃ {→, 0, +}
M

,

where we can choose any parameter vector ω contained in the relative interior of ϑ. We call Cε the (signed)
covector of ϑ. The interiors of maximal cones of ”D consist of parameters which define a strict separation of
the data, and are labeled with covectors C ≃ {→, +}

M without zero entries (i.e. dichotomies). On the other
hand, lower-dimensional cones are non-strict, i.e. there exist some data points pi which lie on the separating
hyperplane, and Ci = 0 for these data points. Duality between polytopes and normal fans implies that the
vertices of PD are in bijection with the dichotomies that the simple perceptron can compute.
Example 2.2. Consider the 1-dimensional dataset D = {→2, →1, 0, 1, 2} ↔ R1. The parameter space
!(1) ⇐= R2 contains the hyperplane arrangement HD consisting of five hyperplanes H↗2 = (1, →2)↑

, H↗1 =
(1, →1)↑

, H0 = (1, 0)↑
, H1 = (1, 1)↑

, H2 = (1, 2)↑, as depicted in Figure 1. The induced polyhedral fan ”D
consists of 10 maximal (2-dimensional) cones. Any two neighboring maximal cones in this fan are separated
by one of the 10 1-dimensional walls. The fan ”D is the normal fan of the polytope PD with vertices

( 0
0 ) ,

( 1
↗2

)
,
( 2

↗3
)

,
( 3

↗3
)

,
( 4

↗2
)

, ( 5
0 ) , ( 4

2 ) , ( 3
3 ) , ( 2

3 ) , ( 1
2 ) .

This polytope can be written as the Minkowski sum of line segments

PD = conv(0,
( 1

↗2
)
) + conv(0,

( 1
↗1

)
) + conv(0, ( 1

0 )) + conv(0, ( 1
1 )) + conv(0, ( 1

2 ))

and is hence a zonotope. The vertices of the zonotope are dual to the 2-dimensional cones of ”D. As can
be seen in Figure 1, each maximal cone of ”D is the normal cone of a vertex of PD. The figure also shows
the covectors of these maximal cones ϑ, i.e., the dichotomies (fω(→2), fω(→1), fω(0), fω(1), fω(2)) for ω ≃ ϑ in
the interior of the cones. The value fω(p) expresses on which side of the hyperplane Hp the corresponding
cone lies. For example, let C be the 1-dimensional cone that is the wall between the cone with covector
(→, →, +, +, +) and (→, +, +, +, +). Then the covector of C is (→, 0, +, +, +), expressing that C is contained
in the hyperplane H↗1.

H0H1
H2

H↗1
H↗2

(→, →, →, →, →)

(→, →, →, →, +)
(→, →, →, +, +) (→, →, +, +, +)

(→, +, +, +, +)

(+, +, +, +, +)

(+, +, +, +, →)
(+, +, +, →, →)(+, +, →, →, →)

(+, →, →, →, →)

(a) The hyperplane arrangement HD. (b) The zonotope PD.

Figure 1: Illustration of Example 2.2. The left panel shows the parameter space and its subdivision by
the hyperplane arrangement HD for a dataset D consisting of five points in R1. The right panel shows the
polytope PD.

As all covectors in this article are signed covectors, we omit the word “signed” throughout this article.
The maximal covectors (or topes) are the covectors with inclusion-maximal support, i.e. the dichotomies.
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We will use the notation [M ] = {1, . . . , M}. For two covectors C, D, we define the separation set as
S(C, D) = {i ≃ [M ] | Ci = →Di ⇔= 0}. The set of all covectors forms an oriented matroid. More formally,
an oriented matroid is a pair ([M ], C), where C is a collection of elements of {→, 0, +}

[M ] (called [signed]
covectors) satisfying the following axioms (Goodman et al., 2018, Section 6.2.1):

(C I) (Zero) (0, . . . , 0) ≃ C;

(C II) (Symmetry) C ≃ C =↖ →C ≃ C;

(C III) (Composition) if C, D ≃ C then (C ↙ D) ≃ C, where (C ↙ D)i =
{

Ci if Ci ⇔= 0,

Di otherwise;

(C IV) (Elimination) if C, D ≃ C and i ≃ S(C, D) then there exists some Z ≃ C such that Zi = 0 and
Zj = (C ↙ D)j ∝ j ≃ [M ] \ S(C, D).

Any collection of covectors that arises through a hyperplane arrangement is called a realizable oriented
matroid. To each oriented matroid, one can associate a dual oriented matroid; for realizable oriented matroids
this captures the geometry of the vector configuration given by the normal vectors of the hyperplanes, i.e.
the dataset D.

In a classification task, we are typically interested in a strict separation of the data, represented by a
dichotomy. We now fix a target dichotomy C

↔
≃ {→, +}

M , which divides the data into two sets D
C

→

+ = {pi ≃

D | C
↔
i

= +}, D
C

→

↗ = D \ D
C

→

+ . The target dichotomy C
↔ is a covector in the oriented matroid if and only

if there exists a hyperplane separating the data into D
C

→

+ , D
C

→

↗ , i.e. the data is linearly separable according
to C

↔. Equivalently, by Farkas’ Lemma, the covector exists if and only if conv(DC
→

+ ) ⇓ conv(DC
→

↗ ) = ⇒. For
any parameter vector ω, the 0/1-loss-function errC→ counts the number of mistakes, i.e.

errC→(ω) = |{i ≃ [M ] | sgn(fω(pi)) = →C
↔
i
}|.

Since the 0/1-loss function is constant along chambers of HD and (relative interiors of) cones of ”D, we allow
ourselves to write errC→(ϑ) for chambers or cones ϑ ≃ ”D. In the notation of separation sets given above, if
D is the covector associated to ϑ then errC→(ϑ) = |S(C↔

, D)|. Note that we choose to interpret data points
which lie on the classifying hyperplane to be correctly classified. This technical distinction is irrelevant on
interiors of maximal cones and allows us to consider polyhedral fans in Section 6.

The k
th level set is the polyhedral subfan ”k

D = {ϑ ≃ ” | errC→(ϑ) = k}, and the sublevel set is ”↘k

D =⋃
k

l=0 ”k

D. If the data is linearly separable according to C
↔, then the set ”0

D of parameters with 0 error is a
maximal cone of ”D. On the other hand, if the data is not linearly separable, then the minimum error on
the interior of any maximal cone will be larger than 0 and multiple maximal cones may be minima of the
0/1-loss.
Example 2.3. We continue with Example 2.2. Consider a target dichotomy C

↔
1 = (+, →, +, →, +). This

asks for a separation of the input data points {→2, →1, 0, 1, 2} by a hyperplane in R1 such that {→2, 0, 2} lie
on the positive side of the hyperplane, and {→1, 1} on the negative side. Similarly, C

↔
2 = (+, →, →, +, +) asks

for a separation into {→2, 1, 2} and {→1, 0}. Clearly the data is not linearly separable in accordance with
either of these target dichotomies. Figure 2 shows the value of errC→ on each cone of HD for both target
dichotomies. Notably, for C

↔
1 the set of minimizers of err↔

C
consists of 5 maximal cones, which pairwise

intersect only in the origin, and are thus not connected through walls. On the other hand, for C
↔
2 the set of

minimizers consists of a single cone and is a convex set.

In the remainder of this section, we study the connectivity of sublevel sets for linear classifiers. If one seeks
to find a set of parameters ω ≃ !(d) which separates the data, then in practice this can be achieved by
minimizing a suitable loss function in the parameter space !(d) using an iterative optimization procedure.
In this case the search variable is likely to move from chamber to chamber with transitions going through
walls of codimension 1. We would like to understand under which circumstances there exists a path along
which the loss function is monotonically decreasing. The following statement is an adaptation of Björner
et al. (1999, Proposition 4.2.3) and we give a proof for completeness. Recall that for covectors C, D, the
separation set is S(C, D) = {i ≃ [M ] | Ci = →Di ⇔= 0}.
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3

2 3 2 3

2

3232
(a) Target dichotomy C→

1 .

3

2 1 2 3

2

3432
(b) Target dichotomy C→

2 .

Figure 2: Illustration of Example 2.3. For a given set of input data points the figure shows the polyhedral
fan ”D in parameter space along with the value of the 0/1-loss for the two target dichotomies C

↔
1 (left) and

C
↔
2 (right). The sets of minimizers are shown in gray.

Proposition 2.4. Let C, D be two maximal covectors corresponding to maximal cones of ”D. Then there
exists a sequence of maximal covectors D = D

0
, D

1
, . . . , D

k = C such that the cones corresponding to
D

i
, D

i+1 are connected through a wall of codimension 1 for i = 0, . . . , k → 1 and S(C, D
i) > S(C, D

i+1).

Proof. First note that the maximal cones are labelled by covectors without any zero entry. For two such
covectors, we have D↙C = D, and for any i ≃ S(C, D), axiom (C IV) translates to the existence of a covector
Z such that Zi = 0 and Zj = Cj for all j ≃ [M ] \ S(C, D). We prove the statement by induction on the size
of S(C, D). Since C, D can be assumed not to have zero entries, this is the number of entries in which C and
D di!er. Suppose S(C, D) = {i}. By (C IV) there exists a covector Z such that Zi = 0 and Zj = Cj = Dj

for all j ≃ [M ] \ {i}. Thus, the chambers corresponding to C, D are separated by the hyperplane (1, pi)↑

and Z corresponds to the wall C ⇓ D.

Suppose now the statement holds for any D
≃
, D

≃≃ such that |S(D≃
, D

≃≃)| < k and let S(C, D) = k. Fix
i ≃ S(C, D). By (C IV) there exists some covector Z such that Zi = 0 and Zj = Cj = Dj for all
j ≃ [M ] \ S(C, D). Let A = {i ≃ [M ] | Zi = 0} and l = |A| ⇑ 1. Among all such covectors, choose Z such
that l is minimal. Thus, there exists no strict subset A

≃ ⊋ A and covector Z
≃ such that Z

≃
i

= 0, Z
≃
j

= Cj = Dj

for all [M ] \ S(C, D) and Z
≃
j

⇔= 0 for all j ≃ [M ] \ A
≃. Recall that Z

≃ corresponds to a cone of a ”D, which is
contained in the hyperplane (1, pj)↑ if and only if Z

≃
j

= 0. Since Z exists, but no such Z
≃ exists, this implies

that the hyperplanes (1, pj), j ≃ A all coincide. In other words, if Z is chosen minimally, then pj = pj↑ for
all j, j

≃
≃ A, and hence Z represents a wall of ”D. By (C III) we have that also (Z ↙ C) and (Z ↙ D) are

covectors. Note that (Z ↙C)j = Zj = (Z ↙D)j ⇔= 0 for all j ≃ [M ]\A, and {(Z ↙C)i, Zi, (Z ↙D)i} = {+, 0, →}

for all i ≃ A. Thus, (Z ↙ C), (Z ↙ D) correspond to adjacent maximal chambers separated by (1, pi), i ≃ A,
and the separating wall corresponds to Z. Since S(C, Z ↙ C) < k and S(Z ↙ D, D) < k, there exist strictly
decreasing sequences from C to (Z ↙ C) and from Z ↙ D to D by induction, which together form a sequence
from C to D.

Given a sequence ϑ1, . . . , ϑk ≃ ”D of maximal cones, we say that the sequence forms a path in ”D connecting
ϑ1 and ϑk if ϑi, ϑi+1 intersect in a wall of codimension 1 for all i ≃ [k → 1]. Proposition 2.4 allows us to
characterize the set of local and global minima, and bound the error along paths between two minima.
Theorem 2.5. If the data is linearly separable, then the sublevel sets ”↘k

D of the 0/1-loss function are
connected through walls of codimension 1 for any k ⇑ 0. Conversely, if the data is not linearly separable
and the set of minimizers of the 0/1-loss function consists of more than one maximal cone, then it is not
connected through codimension 1. Moreover, if ϑ, ϑ

≃ are distinct maximal cones which are local minima of
the 0/1-loss, if m = errC→(ϑ) denotes the minimum error and if ϑ, ϑ1, . . . , ϑl, ϑ

≃ forms a path, then errC→ is
bounded from above along this path by m + ′

l+1
2 ∞.

The first two statements of this theorem are well-established in the literature; the (sub-) level sets of the
0/1-loss function are dual to k-facets heavily studied in computational geometry (Wagner, 2008, Section
1.2), and to linear programs with violated constraints (Matou#ek, 1995). In Section 6 we will make related
statements for the case of continuous piecewise linear classifiers. Therefore, we give a proof for completeness
also for this theorem. Before we prove the statement, we point out that the assertion of the second sentence
is not void, and truly necessary, as can be seen from the two target dichotomies given in Example 2.3.
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Proof. Suppose the data D is linearly separable. Then the set which minimizes errC→ is ”0
D = {C

↔
} and

consists of a single chamber. In particular, ”0
D is connected. For any k > 0 and D ≃ ”k

D, we have that
errC→(D) = S(C↔

, D) = k, and Proposition 2.4 implies that there is a decreasing path from D to C
↔ through

walls of codimension 1. Thus, the sublevel sets are connected through walls. For the second statement,
suppose that D is not separable and the set of minimizers contains at least two chambers. Now, assume for
contradiction that it is connected through a wall of codimension 1. That means there are covectors C, D

with minimal |S(C↔
, C)| = |S(C↔

, D)| and an index i such that the corresponding chambers are separated
by the ith hyperplane (1, pi)↑. In other words, Ci = →Di and Cj = Dj for all j ≃ [M ], j ⇔= i. The latter
implies |S(C↔

, C)| ⇔= |S(C↔
, D)|, a contradiction. For the last statement, let ϑ = ϑ0, ϑ1, . . . , ϑl, ϑ

≃ = ϑl+1 be
a path in ”D, and let Di be the covector corresponding to ϑi. Then err↔

C
(ϑi) = S(C, Di). However, since

ϑi, ϑi+1 intersect in codimension 1, we have that S(Di, Di+1) = 1 and so err↔
C

(ϑi+1) ∈ err C
↔(ϑi) + 1, i.e.

the error increases in each cone at most by one. Since err↔
C

(ϑ0) = err↔
C

(ϑl+1) this implies that the increase
of the error along the path is bounded in terms of the length of the path by ′

l+1
2 ∞, yielding a total bound of

m + ′
l+1

2 ∞ on the path.

The bound of m + ′
l+1

2 ∞ can indeed be attained even as minimum among all paths between ϑ and ϑ
≃.

One example is the 1-dimensional data with coordinates 1, 2, . . . , 4k for some k ≃ N and target dichotomy
(+, . . . , +︸ ︷︷ ︸

k times

, →, . . . , →︸ ︷︷ ︸
2k times

, +, . . . , +︸ ︷︷ ︸
k times

). The covectors minimizing the 0/1-loss are

(+, . . . , +︸ ︷︷ ︸
k times

, →, . . . , →︸ ︷︷ ︸
3k times

, ) and (→, . . . , →︸ ︷︷ ︸
3k times

, +, . . . , +︸ ︷︷ ︸
k times

),

each making m = k mistakes, and are connected by two distinct paths, each of length l + 1 = 2k + 1, so
m + ′

l+1
2 ∞ = 2k. One of the paths contains the covector (+, . . . , +), and the other contains (→, . . . , →), each

of them making 2k mistakes and thus attaining the bound.

3 Piecewise Linear Classifiers, ReLU Networks, and Tropical Rational Functions

In this section we extend the theoretical framework from linear classifiers to the more general case of classi-
fication with continuous piecewise linear functions. An important instance of this are neural networks with
piecewise linear activation functions.

Recall that an L-layer feedforward neural network represents a function f : Rdin ↓ Rdout which is obtained as
a composition f = ϑ

(L)
↙ ϖ

(L)
↙ · · · ↙ ϑ

(1)
↙ ϖ

(1). For each ϱ ≃ [L] the preactivation function ϖ
(ϑ) : Rdω↓1 ↓ Rdω

is an a"ne function ϖ
(ϑ)(x) = W

(ϑ)
x + c

(ϑ) with weights W
(ϑ)

≃ Rdω⇐dω↓1 and biases c
(ϑ)

≃ R(dω) of the ϱ
th

layer, and din = d0, dout = dL. A ReLU neural network is a neural network with ReLU activation function
(Rectified Linear Unit) ϑ

(ϑ)(x1, . . . , xdω) = (max(x1, 0), . . . , max(xdω , 0)). We denote f
(ϑ) : Rdin ↓ Rdω , f

(ϑ) =
ϑ

(ϑ)
↙ ϖ

(ϑ)
↙ · · · ↙ ϑ

(1)
↙ ϖ

(1) and f
(0)(x) = x. The number L of such compositions is the depth of the network,

and the dimension dϑ, ϱ ≃ [L] is the width of the ϱ
th layer. We do not impose any further restrictions on the

weights and biases and so the choices of the depth and width of each layer determine the architecture of the
network. The network consists of all of its activation and preactivation functions.

Any function represented by a ReLU neural network is a continuous piecewise-linear function. A powerful
framework to study piecewise-linear functions is provided by the language of tropical geometry. This is the
geometry over the tropical semiring (or max-plus algebra) where we define tropical addition, multiplication,
exponentiation and division as

a ∋ b = max(a, b), a △ b = a + b, a
⇒b = a · b, a ▽ b = a → b for a, b ≃ R.

For vectors x, s ≃ Rd we will write x
⇒s = x

⇒s1
1 △ · · · △ x

⇒sd
d

= ↗ x, s ↘. A tropical Laurent polynomial is a
function g : Rd

↓ R of the form

g(x) =
⊕

i→[n]
ai △ x

⇒si = max
i→[n]

(ai + ↗ si, x ↘),

8
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where x = (x1, . . . , xd) is the input variable and ai ≃ R and si ≃ Zd
, i ≃ [n], are parameters. A tropical

signomial follows the same definition, except that we allow si ≃ Rd
, i ≃ [n]. For the purposes of this article,

this distinction makes no di!erence, so we use these terms interchangeably. In the same spirit, we define a
tropical rational function as a function

f(x) = (g ▽ h)(x) =
⊕

i→[n]
ai △ x

⇒si ▽

⊕

j→[m]
bj △ x

⇒tj = max
i→[n]

(ai + ↗ si, x ↘) → max
j→[m]

(bj + ↗ tj , x ↘),

which is determined by its parameter vector ω = (a1, s1 . . . , an, sn, b1, t1, . . . , bm, tm), where ai ≃ R, si ≃ Rd

for i ≃ [n] and bj ≃ R, tj ≃ Rd for j ≃ [m]. We denote by !(d, n, m) the (n + m)(d + 1)-dimensional space
of parameters of tropical rational functions with n terms in the numerator and m terms in the denominator,
and for a fixed ω ≃ !(d, n, m) we denote by gω ▽ hω the associated tropical rational function. In Section 6
we show that !(d, n, m) allows a natural polyhedral fan structure in analogy to the fan and hyperplane
arrangement from Section 2.

A tropical signomial is a convex and continuous piecewise linear function, and vice versa. Every continuous
(possibly non-convex) piecewise linear function can be written as the di!erence of two convex piecewise linear
functions, and this di!erence is a tropical rational function. This establishes the connection to ReLU neural
networks.

Theorem 3.1 (Arora et al. 2018, Theorem 2.1 and Zhang et al. 2018, Theorem 5.4). A function f : Rd
↓ R

is a tropical rational function if and only if f can be represented by a feedforward ReLU network. Any tropical
rational function g ▽ h with n terms in the numerator and m terms in the denominator can be represented
by a ReLU network with depth at most min(̸log2(d + 1)7 + 1, max(̸log2(n)7, ̸log2(m)7) + 2).

A similar result has also appeared in work of Siahkamari et al. (2020). The original formulation of Zhang
et al. (2018, Theorem 5.4) has an additional condition on the weights to be integer, however this is merely an
artifact of the distinction between tropical Laurent polynomials and signomials. Given the class of tropical
rational functions with a bounded number of terms in the numerator and denominator, this gives a su"cient
condition on the depth of the architecture.

We may also consider the reverse direction: Let ReLU(d0, d1, . . . , dL↗1, dL) be the set of piecewise linear
functions that can be represented by a fully-connected ReLU network with d0 = d inputs and L layers of
sizes d1, . . . , dL ≃ N, with dL = 1. Given a fixed such architecture, we seek to find n, m ≃ N such that
for any function f ≃ ReLU(d, d1, . . . , dL↗1, 1) there exists a parameter ω ≃ !(d, n, m) such that f = fω.
For lower bounds on n, m, let kconvex be the maximum number of linear pieces over all convex functions in
ReLU(d, d1, . . . , dL↗1, 1), and kconcave the maximum number of linear pieces of any concave function. Then
necessarily we have n ⇑ kconvex and m ⇑ kconcave. To obtain upper bounds, we consider a simple decomposi-
tion of the functions represented by a ReLU network as di!erences of convex piecewise linear functions, whose
size depends on kconvex and kconcave in each step. For most of the functions in ReLU(d, d1, . . . , dL↗1, 1) the
decomposition that we apply is by no means minimal for the individual function. However, this decompo-
sition allows us to consider the space of ReLU networks as semialgebraic sets inside !(d, n, m). We will
discuss minimal decompositions at the end of this section.

Theorem 3.2. Let d = d0, d1, . . . , dL↗1, dL = 1 ≃ N. There exist n, m ≃ N such that each function in
ReLU(d, d1, . . . , dL↗1, 1) can be represented by a point in !(d, n, m), and there is a semialgebraic subset of
!(d, n, m) (described by polynomial inequalities) representing exactly the points in ReLU(d, d1, . . . , dL↗1, 1).
This semialgebraic set can be described by polynomial inequalities of degree ∈ L + 1. The n, m can be chosen
as n = 2m and log2(m) ∈

∑
L↗1
k=1 2L↗1↗k

∏
L↗1
l=k

dl.

We make the statement of this theorem more precise. Recall that any vector of parameters ω ≃ !(d, n, m)
defines a tropical rational function gω ▽ hω with at most n monomials in the numerator and at most m

monomials in the denominator. Let CPWL(Rd
,R) be the space of all continuous piecewise linear functions

from Rd to R, and let ς : !(d, n, m) ↓ CPWL(Rd
,R) with ς(ω) = gω ▽ hω. Then Theorem 3.2 says that

for any d1, . . . , dL↗1 ≃ N there exist values n, m ≃ N such that ReLU(d, d1, . . . , dL↗1, 1) ↑ ς(!(d, n, m)),
and there exists a semialgebraic set S ↑ !(d, n, m) such that ς(S) = ReLU(d, d1, . . . , dL↗1, 1).
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Proof. We show this by induction on L. For L = 1, let W ≃ R1⇐d
, c ≃ R denote the weights and biases.

Then the network represents the function f
(1) = max(Wx + c, 0). This is already a convex piecewise linear

function (so max(Wx + c, 0) → 0 is a representation as a di!erence with n = 2, m = 1). We still perform
a transformation to illustrate the procedure that we will use for L > 1 in the induction step. We write
W = W+ → W↗, where W+, W↗ ≃ R1⇐d

↓0 . Then one representation of f
(1) = max(Wx + c, 0) as di!erence of

convex functions is

gω → hω = max(W+x + c, W↗x) → W↗x

for the parameter vector ω = (c, W+, 0, W↗, 0, W↗) ≃ ς
↗1(f (1)) ↑ !(d, 2, 1). Since W+, W↗ are nonnegative

vectors with disjoint support, we have that ω is contained in the semialgebraic set

S = {(a1, s1, a2, s2, b1, t1) ≃ R3(d+1)
| a2 = b1 = 0, s2 = t2 ∈ 0, s1 ⇑ 0, s1is2i = 0 ∝ i ≃ [d]},

which is defined by d + 2 linear equations, 2d linear inequalities and d quadratic equations.

Conversely, for any ω ≃ S, the function ς(ω) is represented by a ReLU network as follows. If ω =
(a1, s1, 0, s2, 0, t1), where s1, s2 are nonnegative and have disjoint support, then defining W = s1 →s2 ≃ R1⇐d

gives ς(ω) = max(Wx + a1, 0), which is represented by the network with layers of sizes d0 = d, d1 = 1,
weights W and biases a1.

We now proceed by induction L ↓ L + 1, and consider a ReLU network with L + 1 layers. The idea
of the induction is as follows. Let W and c be the weights and biases of the last layer. Then W =
W

+
→ W

↗ has a canonical decomposition into nonnegative matrices, and the entire function is of the form
f

(L+1) = max(
∑

dL

k=1 Wkfk + c, 0), where f1. . . . , fk are the tropical rational functions in the L
th layer.

Writing fk = gk → hk as a di!erence of two convex functions, we obtain the decomposition f
(L+1) =

max(
∑

dL

k=1(W +
k

→W
↗
k

)(gk →hk)+c, 0) = max(
∑

dL

k=1 W
+
k

gk +W
↗
k

hk +c, W
↗
k

gk +W
+
k

hk)→(W ↗
k

gk +W
+
k

hk).
We now perform this computation in more detail.

The first L layers represent a collection of dL tropical rational functions, i.e. f
(L) : Rd0 ↓ RdL ,

f
(L)(x) =





g
(L)
1 (x) ▽ h

(L)
1 (x)

...
g

(L)
dL

(x) ▽ h
(L)
dL

(x)



 ,

g
(L)
k

(x) =
⊕

i→[nk,L]
a

k,L

i
△ x

sk,L
i , h

(L)
k

(x) =
⊕

j→[mk,L]
b

k,L

j
△ x

tk,L
j ,

where nk,L, mk,L ≃ N, k ≃ [dL] and a
k,L

i
, b

k,L

j
≃ R, s

k,L

i
, t

k,L

j
≃ Rd0 . Again, let W = W

+
→ W

↗ with
W+, W↗ ≃ R1⇐dL

↓0 , c ≃ R be the weights and biases of the last layer.

Let

Yconvex =
dL

k=1
(W +

k
g

(L)
k

(x) + W
↗
k

h
(L)
k

(x)),

Yconcave =
dL

k=1
(W ↗

k
g

(L)
k

(x) + W
+
k

h
(L)
k

(x)).

Then f
(L+1)(x) = max(Yconvex → Yconcave + c, 0) = max(Yconvex + c, Yconcave) → Yconcave. We now compute

Yconvex. Yconcave can be computed analogously. For any nonnegative number Wk holds Wk max(a, b) =

10
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max(Wka, Wkb), and furthermore max(a, b) + max(c, d) = max(a + c, a + d, b + c, b + d). Thus,

Yconvex =
dL

k=1
(W +

k
g

(L)
k

(x) + W
↗
k

h
(L)
k

(x))

=
dL

k=1
W

+
k

max
i→[nk,L]


a

k,L

i
+


s

k,L

i
, x


+ W

↗
k

max
j→[mk,L]


b

k,L

j
+


t

k,L

j
, x



=
dL

k=1
max

i→[nk,L]


W

+
k


a

k,L

i
+


s

k,L

i
, x


+ max

j→[mk,L]


W

↗
k


b

k,L

j
+


t

k,L

j
, x



=
dL

k=1
max

i→[nk,L]
j→[mk,L]


W

+
k


a

k,L

i
+


s

k,L

i
, x


+ W

↗
k


b

k,L

j
+


t

k,L

j
, x

 
.

In the following, we use the notation
max

k→[dL]
ik→[nk,L]
jk→[mk,L]

to denote the maximum over all i1 ≃ [n1,L], . . . , idL ≃ [ndL,L], j1 ≃ [m1,L], . . . , jdL ≃ [mdL,L]. Applying again
distributivity of tropical multiplication (i.e. that max(a, b) + max(c, d) = max(a + c, a + d, b + c, b + d)), and
bilinearity of ↗ ·, · ↘ yields

= max
k→[dL]

ik→[nk,L]
jk→[mk,L]


d

k=1
W

+
k


a

k,L

ik
+


s

k,L

ik
, x


+ W

↗
k


b

k,L

jk
+


t

k,L

jk
, x

 

= max
k→[dL]

ik→[nk,L]
jk→[mk,L]

 
dL

k=1
W

+
k

s
k,L

ik
+ W

↗
k

t
k,L

jk
, x


+

dL

k=1
(W +

k
a

k,L

ik
+ W

↗
k

b
k,L

jk
)


,

(1)

and this expression consists of
∏

dL

k=1 nk,L

∏
dL

k=1 mk,L linear terms. A similar reasoning applies to Yconcave.
Recall that W is a (1 ∀ dL)-matrix, and thus (W +

k
a

k,L

ik
+ W

↗
k

b
k,L

jk
) ≃ R.

In the following, we use the shorthand notations

a
(L+1)
k,ik,jk

= a
(L+1)
i1,...,idL

,j1,...,jdL
,

a
(L+1)
k,nk,L+ik,mk,L+jk

= a
(L+1)
n1,L+i1,...,ndL,L+idL

,m1,L+j1,...,mdL,L+jdL
,

where ik ≃ [nk,dL ], jk ≃ [mk,dL ] for all k ≃ [dL]. With this, we have expressed f
(L+1) as a quotient of two

tropical polynomials:

f
(L+1)(x) = max

k→[dL]
ik→[nk,L]
jk→[mk,L]


a

(L+1)
k,ik,jk

+


s
(L+1)
k,ik,jk

, x


, a

(L+1)
k,nk,L+ik,mk,L+jk

+


s
(L+1)
k,nk,L+ik,mk,L+jk

, x


→

max
k→[dL]

ik→[nk,L]
jk→[mk,L]


b

(L+1)
k,ik,jk

+


t
(L+1)
k,ik,jk

, x



for some parameters a
(L+1)
k,ik,jk

, b
(L+1)
k,ik,jk

≃ R and s
(L+1)
k,ik,jk

, t
(L+1)
k,ik,jk

≃ Rd where ik ≃ [nk,L], jk ≃ [mk,L] for any
k ≃ [dL]. In other words, we have proven that

f
(L+1)(x) ≃ ς(!(d, 2

dL

k=1
nk,L

dL

k=1
mk,L,

dL

k=1
nk,L

dL

k=1
mk,L)).
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We first discuss the semialgebraic constraints on these parameters. By induction, the parameters of the
tropical rational function representation f

(L)
k

= g
(L)
k

→ h
(L)
k

, k ≃ [dL] are contained in a semialgebraic set
S

(L) which can be described by polynomial inequalities of degree at most L + 1. The above computation
(1) imposes linear relations between the parameters of f

(L+1) in terms of the parameters of f
(L)
k

, k ≃ [dL].
More specifically,

s
(L+1)
k,ik,jk

=
dL

k=1
W

+
k

s
k,L

ik
+ W

↗
k

t
k,L

jk
, a

(L+1)
k,ik,jk

=
dL

k=1
(W +

k
a

k,L

ik
+ W

↗
k

b
k,L

jk
) + c,

s
(L+1)
k,nk,L+ik,mk,L+jk

=
dL

k=1
W

↗
k

s
k,L

ik
+ W

+
k

t
k,L

jk
, a

(L+1)
k,nk,L+ik,mk,L+jk

=
dL

k=1
W

↗
k

a
k,L

ik
+ W

+
k

b
k,L

jk
, (2)

t
(L+1)
k,ik,jk

= s
(L+1)
k,nk,L+ik,mk,L+jk

, b
(L+1)
k,ik,jk

=a
(L+1)
k,nk,L+ik,mk,L+jk

.

Thus the feasible parameters are given as the image of a polynomial map evaluated over a semialgebraic
set. In turn, they form a semialgebraic set. Moreover, we have written the variables s

(L+1)
k,ik,jk

etc. as a linear
combination of the variables s

k,L

ik
etc., i.e. as the solution of a polynomial of degree 1 in these variables. By

induction, each of the s
k,L

ik
’s is a solution to a system of polynomials of degree L + 1. Substituting these

polynomials into a polynomial of degree 1 yields a system of polynomials of degree L + 2.

We now discuss the number of monomials in this representation. By induction, we can choose each nk,L =
2mk,L and log2(mk,L) ∈

∑
L↗1
k=1 2L↗1↗k

∏
L↗1
l=k

dl. Therefore

log2(mL+1) =
dL

k=1
log2(nk,L) +

dL

k=1
log2(mk,L)

∈ dL(
L↗1

k=1
2L↗1↗k

L↗1

l=k

dl + 1) + dL(
L↗1

k=1
2L↗1↗k

L↗1

l=k

dl)

=
L↗1

k=1
2L↗1↗k

L

l=k

dl + dL +
L↗1

k=1
2L↗1↗k

L

l=k

dl

= 2


L↗1

k=1
2L↗1↗k

L

l=k

dl


+

L

k=L

2L↗k

L

l=k

dl

=
L↗1

k=1
2L↗k

L

l=k

dl +
L

k=L

2L↗k

L

l=k

dl

=
L

k=1
2L↗k

L

l=k

dl

and the stated bound follows.

We have just proven ReLU(d, d1, . . . , dL, 1) ↑ ς(S), where S is the semialgebraic set which is implicitly
defined through the recursive relations in (2). For the reverse inclusion, let ω ≃ S. By induction, there
exist weights and biases defining a network in ReLU(d, d1, . . . , dL) such that a

k,L

ik
, s

k,L

ik
, b

k,L

jk
, t

k,L

jk
are the

parameters of respective tropical rational function representations of some f
(L)
k

’s. By definition of S there
exists a solution for the system of linear equations (2) in indeterminates W

+
k

, W
↗
k

. Any such solution gives
rise to the weights of the last layer.

Remark 3.3 (S is not unique). The proof of Theorem 3.2 reveals that in the above representation there
are many redundancies which are expressed in the linear equations defining the semialgebraic set. Moreover,
the choice of S is not unique: already for L = 1, choosing the representation ω

≃ = (c, W, 0, 0, 0, 0) ≃ !(d, 2, 1)
yields the semialgebraic set S

≃ = {(a1, s1, a2, s2, b1, t1) | a2 = b1 = 0, s2 = t1 = 0}. This reflects the fact that
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for a given continuous piecewise linear function there exist several possible decompositions into a di!erence of
convex piecewise linear functions. Either way, since these sets are low-dimensional relative to their ambient
space, one may want to project this into a smaller ambient space. However, for any (nontrivial) projection,
the degrees of the defining polynomials will in general be higher, and the number of defining inequalities
will increase. There is no general statement which reasonably bounds the degree and number of the defining
polynomials of the projection of a semialgebraic set.

For the number of monomials, we observe that a ReLU network with a total of N ReLUs can only represent
continuous piecewise linear functions which have at most 2N linear pieces. Several more refined bounds on
the number of linear pieces are available depending on the specific network architecture (Montúfar et al.,
2014; Montúfar, 2017; Serra et al., 2018; Hinz & van de Geer, 2020). In particular, Zhang et al. (2018,
Theorem 6.3) use similar arguments to the ones used in Theorem 3.2 to obtain a bound on the number of
linear regions. We obtain a weaker bound since we focus on the (in)equalities defining the semialgebraic set.
From such bounds on the number of linear regions one can directly obtain upper bounds on the minimal
possible n and m by considering decompositions of continuous piecewise linear functions as di!erences of
convex piecewise linear functions, such as those discussed by Kripfganz & Schulze (1987) and Schlüter &
Darup (2020). Certain upper bounds for functions in two variables have been presented by Tran & Wang
(2023) and for general piecewise linear functions by Hertrich et al. (2021, Proposition 4.3).

We close this section by noting that the statement of Theorem 3.2 is not exclusive to ReLU networks, but
holds generally for networks with piecewise linear activation functions, for appropriate choices of n, m and
degree bounds on the polynomials. For example, the proof can be adapted to yield a representation of fixed
network architectures with maxout units into a semialgebraic set in the parameter space of tropical rational
functions for some bounded n and m.

4 Decision Boundaries

In Section 2 we considered linear classifiers which separate the data into two parts by a hyperplane. In this
section, we consider the analogous separating set for continuous piecewise-linear functions. This leads to a
description of the decision boundary through the lens of (real and positive) tropical geometry.

Consider the tropical rational function g ▽ h : Rd
↓ R, where

g(x) = max
i→[n]

(ai + ↗si, x↘) and h(x) = max
j→[m]

(bj + ↗tj , x↘)

are tropical signomials with parameters ai ≃ R, si ≃ Rd, i ≃ [n] and bj ≃ R, tj ≃ Rd
, j ≃ [m]. The decision

boundary of g ▽ h is

B(g ▽ h) = {x ≃ Rd
| g(x) ▽ h(x) = 0} =


x ≃ Rd

| max
i→[n]

(ai + ↗si, x↘) = max
j→[m]

(bj + ↗tj , x↘)


.

The decision boundary B(g▽h) splits the input space into two open parts B
+

, B
↗, where either the numerator

g or the denominator h attains a higher value. A classifier g ▽ h then separates the data D into two classes
D+ ↑ B

+ and D↗ ↑ B
↗.

It was noted (Zhang et al., 2018, Proposition 6.1) that B(g ▽ h) is a subcomplex of the tropical hypersurface
T (g ∋ h). This observation was also used in the work of Alfarra et al. (2023). We will now make this
statement more precise. Consider the tropical signomial f(x) = g(x) ∋ h(x) = maxi→[N ](ai + ↗ si, x ↘), where
N = n + m, an+j = bj , sn+j = tj for j ≃ [m]. Each such tropical polynomial divides the input space Rd into
N polyhedral regions, one for each i

↔
≃ [N ], which are of the form

Ri→ =


x ≃ Rd
| ai→ + ↗ si→ , x ↘ = max

i→[N ]
(ai + ↗ si, x ↘)


.

Depending on the coe"cients, some of these regions might be empty. The collection of regions forms a
polyhedral subdivision of the input space Rd. The collection of (d → 1)-dimensional cells in this polyhedral
subdivision is the tropical hypersurface

T (f) = {x ≃ Rd
| the maximum in f(x) is attained in at least two terms}.
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Figure 3: The three combinatorial types of generic hypersurfaces defined by tropical polynomials in two vari-
ables and 4 terms (top), and the dual regular subdivisions of their Newton polygons (bottom), as described
in Example 4.1.

The tropical hypersurface is dual to a regular subdivision of the Newton polytope Newt(f) =
conv(s1, . . . , sN ) ↔ Rd, which can be obtained in the following way: Consider the lifted polytope
conv(( a1s1 ) , . . . , ( aNsN )) ↔ Rd+1. Any facet of the lifted polytope has a unique outer normal vector (up to
positive scaling). The upper hull is the collection of facets whose normal vector has a positive entry in the
first coordinate. The projection of the upper hull onto the remaining d coordinates forms a subdivision of
Newt(f), called a regular subdivision. The region Ri→ is the set of linear functionals maximizing the vertex
( ai→

si→ ) of the lifted Newton polytope, and the intersection Ri→ ⇓ Rj→ is contained in T (f) if and only if the
pair si→ , sj→ form an edge in the regular subdivision. For more detailed expositions on this duality we refer
the reader to Maclagan & Sturmfels (2015, Chapter 3.1) and Joswig (2021, Chapter 1.2).

Example 4.1 (Tropical Hypersurfaces and Newton Polytopes). Let N = 4 and d = 2, i.e. f(x) = a1 △

x
⇒s1 ∋ a2 △ x

⇒s2 ∋ a3 △ x
⇒s3 ∋ a4 △ x

⇒s4 , where ai ≃ R and si ≃ R2. The Newton polytope Newt(f) is the
convex hull of the 4 points s1, s2, s3, s4 in R2, and is thus either a triangle or a square (except for degenerate
cases where Newt(f) is not full dimensional). Choosing generic values a1, a2, a3, a4 ≃ R, we obtain three
possible regular subdivisions and their respective dual complexes, as shown in Figure 3.

We now extend this duality for understanding tropical rational functions by assigning signs to each region. We
have seen that T (g∋h) divides the input space into n+m regions. We call the full-dimensional regions Ri with
i ≃ [n], i.e. those that correspond to terms of g, the positive regions. The regions Rj , j ≃ [m] corresponding
to terms of h are the negative regions. This terminology stems from the fact that g(p) ▽ h(p) ⇑ 0 if p lies
in a positive region, and g(p) ▽ h(p) ∈ 0 if p lies in a negative region. These regions are dual to vertices in
the regular subdivision of the Newton polytope Newt(g ∋ h), i.e. to those vertices which lie in the upper hull
of the lifted Newton polytope. We equip each such vertex with the corresponding sign, obtaining positive
and negative vertices of the regular subdivision. An edge of the subdivision is a sign-mixed edge if one of
its vertices is positive and the other one is negative. Such a sign-mixed edge is dual to the intersection of a
positive and a negative region, and thus g ▽ h ∃ 0 along this intersection. We summarize this construction
as follows:

Theorem 4.2. The decision boundary B(g ▽ h) is the (d → 1)-dimensional subcomplex of T (g ∋ h) whose
maximal regions are dual to sign-mixed edges of the subdivision of the Newton polytope Newt(g ∋ h).

This statement is already implicit in earlier literature on real and positive tropicalization. If g, h are tropical
polynomials, then the decision boundary B(g ▽ h) is the tropicalization of the intersection of the positive or-
thant with a (family of) hypersurface(s). Such a hypersurface is defined through any polynomial G(x)→H(x)
such that trop(G) = g, trop(H) = h and both G and H have only nonnegative coe"cients. These connections
between decision boundaries and (tropical) algebraic geometry are, as far as we know, widely unexplored.
For more details on tropical positivity we refer the reader to Speyer & Williams (2005),Viro (2006) and
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Figure 4: All combinatorial possibilities of positive and negative regions of T (g ∋ h) for n = m = 2, up to
switching “+” and “→”, as explained in Example 4.3. The decision boundary B(g ▽ h) (top) and its dual
complex (bottom) are highlighted in blue. The right most column shows configurations of three positive
regions and one negative region (n = 3, m = 1). The decision boundary is highlighted in orange.

Brandenburg et al. (2023). For an introduction to tropicalization of polynomials and hypersurfaces, we
recommend the texts of Joswig (2021, Chapter 2) and Maclagan & Sturmfels (2015, Chapter 3.1).
Example 4.3 (Decision Boundaries and Sign-Mixed Subcomplexes). Let d = 2 and let g = a1 △ x

⇒s1∋a2 △

x
⇒s2 and h = b1 △x

⇒t1∋b2 △x
⇒t2 . The polynomial g ∋h consists of N = 4 terms, as the one in Example 4.1.

Figure 4 shows all nondegenerate combinatorial possibilities of positive and negative regions, where a “+”
indicates a region or vertex corresponding to a term of g, and a “→” indicates a region or vertex corresponding
to a term of h. The decision boundary is the 1-dimensional subcomplex of T (g∋h) consisting of line segments
and rays incident to a positive and a negative region. Figure 4 also shows a configuration where g consists of
n = 3 terms and h is a monomial (m = 1). There, the decision boundary separates the space into a bounded
(negative) cell and its (positive) complement.

The main focus of this article is the parameter space !(d, n, m) of tropical rational functions with n terms
in the numerator and m terms in the denominator. It is thus natural to ask about the geometry of the set
of parameters such that the decision boundary has a fixed combinatorial type. The decision boundary is
a polyhedral complex. The combinatorial type of a polyhedral complex captures the combinatorics of the
intersections and inclusions of its faces. Formally, it is defined as the isomorphism class of the partially
ordered set of faces, ordered by inclusion.

By the discussion above, the decision boundary is dual to a subcomplex of a Newton polytope, so the set
of parameters which gives a fixed combinatorial type of decision boundaries is subdivided into multiple (but
finitely many) smaller sets, one for each combinatorial type of regular subdivisions of Newton polytopes
defined by n + m monomials. Each such smaller set is itself determined by the combinatorial type of the
lifted Newton polytope. The set of parameters such that the Newton polytope has a fixed combinatorial
type is the realization space of the lifted polytope, and the space of parameters !(d, n, m) can be partitioned
into these realization spaces. It is known that such a realization space is a semialgebraic set, i.e. a finite
union and intersection of solution sets to polynomial inequalities. We thus obtain the following result.
Theorem 4.4. The parameter space !(d, n, m) of tropical rational functions is partitioned into semialgebraic
sets, one for each combinatorial type of regular subdivisions of n + m points in d-dimensional input space.

However, the Universality Theorem of Realization Spaces certifies that realization spaces of polytopes can
be arbitrarily complicated (Richter-Gebert & Ziegler, 1995). Moreover, observe that this partition into
semialgebraic sets is completely independent of the data set D. In Section 5 we will introduce the activation
fan, which is a polyhedral fan subdividing the parameter space, and its geometry heavily depends on the
geometry of the data. The aforementioned semialgebraic sets thus may or may not intersect cones in the
activation fan. In other words, these are distinct partitions of the parameter space whose structures are
incompatible with one another.
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Example 4.5 (Realization Space of Decision Boundaries). We consider a 1-dimensional input space d = 1,
where g(x) = max(a1 + ↗ s1, x ↘ , a2 + ↗ s2, x ↘) and h(x) = b1 + ↗ t1, x ↘. We describe the semialgebraic
nature of the realization space in (d + 1)(n + m) = 6-dimensional parameter space !(1, 2, 1). The Newton
polytope Newt(g ∋ h) is a line segment which is the convex hull of 3 points s1, s2, t1 ≃ R1 (dual to two
positive regions and one negative region), and the decision boundary consists of at most 2 distinct points.
We want to characterize the set of parameters such that B(g ▽ h) consists of two distinct points. In terms
of the Newton polytope, this is the case when t1 ≃ int(conv(s1, s2)) and

(
b1
t1

)
lies above the lifted line

segment conv(( a1s1 ) , ( a2s2 )), so that Newt(g ∋ h) is subdivided into the two line segments conv(s1, t1) and
conv(t1, s2). A subdivision into two line segments arises if and only if there exists a 0 < ε < 1 such that
εs1 + (1 → ε)s2 = t1, and εa1 + (1 → ε)a2 < b1. The semialgebraic set in parameter space is the coordinate
projection of the set of vectors (a1, s1, a2, s2, a3, s3, ε) ≃ R7 satisfying the above inequalities, by projecting
away the ε-coordinate. Concretely, the coordinate projection is the semialgebraic set

S ={(a1, s1, a2, s2, b1, t1) | s1 < t1 < s2, a1(t1 → s2) + a2(s1 → t1) < b1(s1 → s2)}
¬{(a1, s1, a2, s2, b1, t1) | s2 < t1 < s1, a2(t1 → s1) + a1(s2 → t1) < b1(s2 → s1)},

which is defined by unions and intersections of linear and quadratic polynomial inequalities. The parameters
defining decision boundaries consisting of a single point are !(1, 2, 1) \ S.

5 Activation Fan and Activation Polytope

In Section 2 we have seen that the parameter space of linear classifiers allows for a subdivision induced by
a hyperplane arrangement. This subdivision is the normal fan of a zonotope, and its cells correspond to
maximal covectors of an oriented matroid. In this section we make a first step towards a generalization
of this theory for continuous piecewise linear functions. Following the ideas from Section 4, we consider
subdivisions of the input space into n + m regions, which are induced by tropical hypersurfaces. This allows
us to introduce the activation fan, a polyhedral fan which is the normal fan of the activation polytope. As
an analog to covectors, we label the cones in this fan by bipartite graphs, called activation patterns. In the
later Section 6 we will then assign signs to obtain the full analog for tropical rational functions.

In Section 5.1 we introduce the concepts and investigate the general combinatorial and geometric structure
of these objects. In Section 5.2 we relate these to known concepts, namely oriented matroids and tropical
oriented matroids.

5.1 General Structure

Let D ↑ Rd be a fixed finite data set. In Section 3 we have seen that to any vector of parameters ω ≃

!(d, n, m) we can associate a tropical rational function gω ▽hω, which induces a classification of the data set.
Our goal is to understand the underlying combinatorics of this separation in parameter space. In Section 4
we have seen that the combinatorics of this separation is determined by the combinatorics of the tropical
hypersurface T (g ∋ h). Here, g ∋ h is a tropical signomial with n + m terms and T (g ∋ h) separates the
data into n + m classes. We devote this section to the study of the combinatorics of tropical signomials with
N = n + m terms within their parameter space. Later, in Section 6 we will extend these considerations to
tropical rational functions.

Consider a fixed finite data set D = {p1, . . . , pM } ↔ Rd and denote a tropical signomial f : Rd
↓ R,

f(x) = maxi→[N ](ai + ↗ si, x ↘), which is uniquely defined by its parameter vector ω = (a1, s1, . . . , aN , sN ).
We denote by !(d, N) the N(d + 1)-dimensional parameter space of tropical signomials with N terms (in
numerator and denominator combined). Given a vector of parameters ω ≃ !(d, N), we write fω for the
corresponding function. For a graph G = (V (G), E(G)) and a node v ≃ V (G) we denote the neighborhood
of v by N(v; G) = {w ≃ V (G) | vw ≃ E(G)}. For two graphs G = (V, E), G

≃ = (V, E
≃) on the same set of

nodes, we write G ¬ G
≃ for the graph with nodes V and edges E ¬ E

≃.
Definition 5.1 (Activation Pattern of Tropical Signomial). The data point pj ≃ D activates the (i↔)th term
of the tropical signomial f(x) = maxi→[N ](ai + ↗ si, x ↘) if f(pj) = ai→ + ↗ si→ , x ↘. The activation pattern
of (f, D) is the bipartite graph G = (V (G), E(G)) on nodes V (G) = D ∅ [N ] with edges E(G) = {pi |
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(b) Subdivisions in input space (top) and dual Newton polytopes (bottom).

Figure 5: The activation pattern G from Example 5.2, partitions T (fω) of the input space for three di!erent
values of ω ≃ CD(G) and dual subdivisions of Newton polytopes Newt(fω).

p activates the i
th term of f}. The degree of a vertex p, deg(p) = |N(p; G)|, is the number of terms that it

activates. The activation cone f a fixed bipartite graph G = (D ∅ [N ], E(G)) is the polyhedral cone

CD(G) = cl
(

ω = (a1, s1, . . . , aN , sN ) ≃ !(d, N) | G is the activation pattern of (fω, D)
)

in the parameter space of tropical signomials, where cl denotes the Euclidean closure.

In the notation of Section 4, the point p activates the (i↔)th term if and only if p ≃ Ri→ , where Ri→ is a
maximal region of the subdivision of Rd induced by the tropical hypersurface T (f). The activation cone
CD(G) is thus the space of tropical signomials where each data point p lies in a fixed set of regions, namely
in regions indexed by N(p; G). The activation pattern may be thought of as a multivalued generalization of
a covector of an oriented matroid, and the corresponding activation cone serves as an analog of a chamber
in the hyperplane arrangement from Section 2.
Example 5.2 (Activation Patterns). Let D = {p1, p2} ↔ R2 with p1 = (0, 0), p2 = (1, 0), let N = 4 and G

be the activation pattern on nodes V (G) = D ∅ {i1, i2, i3, i4} with edges E(G) = {(p1, i1), (p1, i2), (p2, i3)}.
This graph represents the set of tropical signomials in d = 2 variables with N = 4 terms such that the
point p1 lies in the intersection of the regions Ri1 , Ri2 corresponding to the first and second term, and the
point p2 lies in the region Ri3 . Figure 5 shows some tropical hypersurfaces T (fω) and dual subdivisions
of Newt(fω) for ω ≃ CD(G). More explicitly, the parameter of the leftmost tropical hypersurface can be
chosen as ω = (0, →1, 1, 0, 0, 0, →1, 1.5, 0.5, →2, 0, 2). Recall from Theorem 4.4 that the parameter space
is subdivided into semialgebraic sets, one for each combinatorial type of subdivisions of Newt(fω). This
example also shows that the cone CD(G) intersects all such semialgebraic sets nontrivially.

Note that, depending on the geometry of the data D, the cone CD(G) may be empty. On the other hand,
every bipartite graph H = (D ∅ [N ], E(H)) defines a polyhedral cone

C̃D(H) =


ω = (a1, s1, . . . , aN , sN ) ≃ !(d, N) | ai + ↗si, p↘ ∈ ai→ + ↗si→ , p↘ for all p ≃ D

and all i, i
↔

≃ [N ] such that pi
↔

≃ E(H)


.

If C̃D(H) ⇔= ⇒ then C̃D(H) = CD(G), where G is the smallest activation pattern such that E(H) ↑ E(G).
We write G = H for this smallest graph.
Remark 5.3 (Checking existence through linear programs). In theory it may be di"cult to determine
whether C̃D(H) is empty or not. In practice, this can be done via a linear program, where C̃D(H) is the set
of feasible solutions. This program is defined by |E(H)|(N → 1) linear inequalities (where |E(H)| ∈ N |D|),
and C̃D(H) ⇔= ⇒ if and only if the corresponding linear program has at least one solution. The activation
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pattern H can be computed by checking the validity of all N(N → 1)|D| inequalities on C̃D(H). More
specifically, H contains the edge i

↔
p if ai + ↗si, p↘ ∈ ai→ + ↗si→ , p↘ is a valid inequality for all parameters in

C̃D(H) for all i ≃ [N ].
Definition 5.4 (Activation Fan). The activation fan ”D(N) of a finite data set D ↔ Rd and tropical
signomials with N monomials is the set of all activation cones in the parameter space !(d, N).
Proposition 5.5. The activation fan ”D(N) is a complete polyhedral fan, i.e. a collection of polyhedral
cones such that the intersection of any two cones is a face of both, and that their union covers the entire
ambient space.

Proof. Let G, G
≃ be activation patterns. CD(G) is indeed a polyhedral cone, as it is defined by linear

inequalities, and for every ω ≃ CD(G), ε ≃ R one has εω ≃ CD(G). Its faces are of the form CD(G≃) where
E(G) ↔ E(G≃), and any such activation pattern defines a face of CD(G). For any pair of activation patterns
holds CD(G) ⇓ CD(G≃) = CD(G ¬ G≃) is a face both of CD(G) and CD(G≃). Therefore, the collection of all
activation cones forms a polyhedral fan. Every vector of parameters ω = (a1, s1, . . . , aN , sN ) ≃ !(d, N) gives
rise to a tropical signomial fω(x), and ω ≃ CD(H), where H is the activation pattern of (fω, D). Thus, the
activation fan is complete.

The activation fan serves as a generalization of the polyhedral fan ”D from Section 2 which is induced by
the hyperplane arrangement HD. The fan ”D is the normal fan of a zonotope, i.e. the Minkowski sum
of 1-dimensional simplices, one for each data point in D. We now show an analogous statement for the
activation fan ”D(N).
Definition 5.6 (Activation Polytope). A point p ≃ Rd defines a simplex

#(p) = conv((1, p, 0, 0, . . . , 0, 0), (0, 0, 1, p, . . . , 0, 0), (0, 0, 0, 0, . . . , 1, p)) ↔ !(d, N)

of dimension (N → 1), where 0 = (0, . . . , 0) ≃ Rd. For a finite data set D ↔ Rd, the activation polytope
PD(N) is the Minkowski sum PD(N) =

∑
p→D #(p).

Theorem 5.7. The activation fan ”D(N) is the normal fan of the activation polytope PD(N).

Proof. Since PD(N) is a Minkowski sum, the normal fan of PD(N) is the common refinement of the normal
fans of its Minkowski summands #(p), p ≃ D. For such a simplex, the vertices are of the form

vi = ( 0, . . . , 0︸ ︷︷ ︸
(i↗1)(d+1)

, 1, p, 0, . . . , 0︸ ︷︷ ︸
(N↗i)(d+1)

), for i ≃ [N ].

We describe the normal cone of a vertex vi→ for some i
↔

≃ [N ]. Since #(p) is a simplex, the normal cone
is a simplicial cone, whose facets are orthogonal to the directions of edges vi→vi for all i ≃ [N ] \ {i

↔
}. The

normal cone is thus

N
p
vi→ = {ω ≃ !(d, N) | ↗ω, vi→ → vi↘ ⇑ 0 ∝ i ≃ [N ]}

= {(a1, s1, . . . , aN , sN ) | ai→ + ↗s
↔
i
, p↘ ⇑ ai + ↗si, p↘ ∝ i ≃ [N ]}

= {(a1, s1, . . . , aN , sN ) | max
i→[N ]

(ai + ↗si, p↘) = ai→ + ↗si→ , p↘}.

Any maximal cone of the normal fan of PD(N) is of the form C =


p→D N
p
vi→(p) , where i

↔(p) ≃ [N ] with
possible repetitions. In other words,

C = {(a1, s1, . . . , aN , sN ) | max
i→[N ]

(ai + ↗si, p↘) = ai→(p) + ↗si→(p), p↘ ∝ p ≃ D},

so C = CD(G), where the activation pattern is the bipartite graph G = (D ∅ [N ], E(G)) with edge set
E(G) = {pi

↔(p) | p ≃ D, i
↔(p) ≃ [N ], C ↑ N

p
vi→(p)}. We have shown that the maximal cones of the normal

fan of PD(N) are contained in ”D(N). Since the normal fan is a complete fan, this finishes the proof.
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Remark 5.8 (Linear Classifiers are a Special Case). If N = 2 then a tropical hypersurface is defined through
the linear equation ↗ s1 → s2, x ↘ + (a1 → a2) = 0. The activation polytope PD(2) is then equivalent to the
zonotope PD =

∑
p→D conv((0, 0), (1, p)) ↑ Rd+1 from Section 2, however, this equivalence is not obvious. To

make this precise, consider the activation polytope PD(2) =
∑

p→D
conv((1, p, 0, 0), (0, 0, 1, p)) ↑ R2(d+1).

The activation polytope is contained in the (d+1)-dimensional a"ne subspace with ei = ei+d+1 for i ≃ [d+1].
Projecting PD(2) onto the first d + 1 coordinates induces an isomorphism between the zonotope PD and the
activation polytope PD(2). An activation pattern is a bipartite graph with nodes D∅{1, 2}. The isomorphism
identifies the labeling {1, 2} with the labeling {+, →}, recovering the covectors of the oriented matroid.
Proposition 5.9. The dimension of the activation polytope PD(N) ↔ !(d, N) is (N → 1)(dim(a$(D)) + 1),
where a$(D) denotes the smallest a!ne subspace containing D.

Proof. Recall that dim(PD(N)) = dim(a$(PD(N))). Moreover, the linear space which is parallel to
a$(PD(N)) is orthogonal to the lineality space L of the normal fan of PD(N), i.e. the largest linear
space which is contained in each cone of the fan. By construction, the normal fan of PD(N) is a com-
mon refinement of the normal fans of the simplices #(p), p ≃ D, and so the lineality space L of the
normal fan of PD(N) is the intersection of the lineality spaces of the simplices. We thus characterize
the lineality space L(p) of the normal fan of a simplex #(p) for a fixed p ≃ D. Again, L(p) is orthog-
onal to the linear space parallel to a$(#(p)). Since #(p) is a (N → 1)-dimensional simplex, we have
dim(L(p)) = (d + 1)N → dim(a$(#(p))) = (d + 1)N → (N → 1) = dN + 1. By construction, L(p) contains

(ei, ei, . . . , ei), i ≃ [d + 1], and (V (p), 0, . . . , 0), (0, V (p), . . . , 0), . . . , (0, 0, . . . , V (p)),

where V (p) = (1, p)↑. We denote E = span({(ei, . . . , ei) | i ≃ [d + 1]}) and W (p) =
span((V (p), 0, . . . , 0), . . . , (0, 0, . . . , V (p)) The dimension of the total linear span is dim(E) + dim(W (p)) →

dim(E ⇓ W (p)) = (d + 1) + Nd → d = Nd + 1, so the span equals L(p). The intersection of all these lineality
spaces L(p), p ≃ D is spanned by E and W =


p→D W (p) = span((V, 0, . . . , 0), . . . , (0, 0, . . . , V )), where

V =


p→D V (p) = span({1} ∀ a$(D))↑. We thus obtain for the dimension of the lineality space

dim(L) = dim(E) + dim(W ) → dim(E ⇓ W )
= (d + 1) + N(d → dim(a$(D))) → (d → dim(a$(D)))
= (d + 1) + (N → 1)(d → dim(a$(D))).

This yields dim(PD(N)) = N(d + 1) → dim(L) = (N → 1)(dim(a$(D)) + 1).

From the above proof we immediately obtain the following dual result.
Proposition 5.10. The lineality space of the activation fan ”D(N) has dimension (d+1)+(N→1)(d→a$(D))
and is generated by

(ei, ei, . . . , ei), i ≃ [d + 1], and (V, 0, . . . , 0), (0, V, . . . , 0), . . . , (0, 0, . . . , V ),

where ei ≃ Rd+1 denotes a standard basis vector, and where V = span({1}∀a$(D))↑
↑ Rd+1 is a (d→a$(D))-

dimensional vector space.

In the linear case, the cells of the hyperplane arrangement in parameter space are labelled by covectors of
the oriented matroid, and the activation patterns naturally generalize covectors. The maximal chambers are
labelled by covectors without 0 entries, corresponding to the fact that each data point in input space lies on
precisely one side of the dual hyperplane. We now show that the analog holds for activation patterns: Given
a parameter vector in the interior of a maximal cone in the activation fan, each data point lies in precisely
one region of the dual tropical hypersurface in input space.

As in the proof of Theorem 5.7, let vi(p) = (0, . . . , 0, 1, p, 0, . . . , 0) denote the i
th vertex of #(p). Since

PD(N) is a Minkowski sum, every face of PD(N) can be written uniquely as a sum of faces of #(p), for
p ≃ D. In the following, we write F =

∑
p→D F (p) for a face of PD(N), where F (p) is a face of #(p).

Proposition 5.11. Let CD(G) ≃ ”D(N), and let F ≃ PD(N) be the dual face. Then F =∑
p→D conv (vi(p) | i ≃ N(p; G)) and N(p; G) = {i ≃ [N ] | vi(p) is a vertex of F (p)}.
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Proof. We have that CD(G) =


p→D NF (p), where NF (p) is the normal cone of the face F (p). Given
any ω ≃ NF (p) with associated tropical signomial fω, the activated terms of fω(p) are {i ≃ [N ] |

vi(p) is a vertex of F (p)}. Thus, for any activation cone CD(H) ↑ NF (p) with activation pattern H

we have that N(p; H) = {i ≃ [N ] | vi(p) is a vertex of F (p)}. Given ω ≃ CD(G) =


p→D NF (p) the
edges of the activation pattern are thus

⋃
p→D{pi | i ≃ [N ], vi(p) is a vertex of F (p)}. Dually, this yields

F =
∑

p→D conv (vi(p) | i ≃ N(p; G)).

Since every face has at least one vertex and every vertex is exactly the Minkowski sum of vertices we get the
following.
Corollary 5.12. If G is an activation pattern, then deg(p) ⇑ 1 for all p ≃ D. The activation cone CD(G)
is of maximal dimension if and only if deg(p) = 1 for all p ≃ D.

In the linear classification case, we have seen that any target dichotomy separates the data into two sets
D

C
→

+ , D
C

→

↗ , and this dichotomy exists as a maximal covector of the oriented matroid if and only if conv(DC
→

+ )⇓

conv(DC
→

↗ ) = ⇒. Note that under the identification of a covector with a bipartite graph G on nodes D∅{+, →},
we have that D

C
→

+ is the set of points which are neighbors of + in G, i.e. D
C

→

+ = N(+; G), and similarly
D

C
→

↗ = N(→; G). We now discuss necessary conditions on the geometry of the data in the more general case,
i.e. such that an activation pattern or cone may exist in the activation fan.
Theorem 5.13. Let CD(G) ≃ ”D(N) be a nonempty cone in the activation fan. Then the data set D ↔ Rd

satisfies the following necessary conditions:

(i) (Convexity for maximal cones) If CD(G) is maximal, then for every distinct i, j ≃ [N ] one has
conv(N(i; G)) ⇓ conv(N(j; G)) = ⇒.

(ii) (Convexity for arbitrary cones) Let i ≃ [N ] be a region and p1, . . . , pk ≃ N(i; G). Then for every
p ≃ D one has: p ≃ conv(p1, . . . , pk) =↖ p ≃ N(i; G).

(iii) (Regularity) There exists a subdivision of the input space into maximal regions R1, . . . , RN such that
N(i; G) ↑ Ri for each i ≃ [N ], and a dual subdivision of N points which is regular.

Proof. For cones of arbitrary dimension, (ii) follows from convexity of the regions of T (fω) for any ω ≃ CD(G).
By Corollary 5.12 the activation patterns of maximal cones satisfy N(i; G)⇓N(j; G) = ⇒ for all distinct i, j ≃

[N ]. This, together with (ii) implies (i). Finally, since CD(G) is nonempty, there exists a tropical signomial
fω such that G is the activation pattern, and the tropical hypersurface T (fω) induces the subdivision. By
Section 4, this subdivision is dual to a regular subdivion of the Newton polytope Newt(fω).

We have given necessary conditions for an activation cone to be nonempty by considering the geometry of
the data. Recall that the set of covectors of oriented matroids obey the axiom system (C I)–(C IV) on
page 6. The following result mimics a system in this spirit to describe the set of activation patterns.
Theorem 5.14. Let G be the set of activation patterns of ”D(N). Then G satisfies the following properties.

(A I) (Complete Graph) KN,D ≃ G.

(A II) (Symmetry) G ≃ G =↖ any graph isomorphic to G which arises through relabeling of the nodes
i ≃ [N ] is contained in G.

(A III) (Composition) If G, H ≃ G then (G ↙ H) ≃ G, where

N(p; G ↙ H) =
{

N(p; G) if N(p; G) ⇓ N(p; H) = ⇒,

N(p; G) ⇓ N(p; H) otherwise.

(A IV) (Elimination) If G, H ≃ G and p ≃ D then there exists a graph F ≃ G with N(p; F ) = N(p; G) ¬

N(p; H).
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(A V) (Boundary) Let S ↑ [N ] be fixed and G be the bipartite graph with edges E(G) = {pi | p ≃ D, i ≃

S}. Then G ≃ G.

(A VI) (Comparability) For any point p ≃ [D] the comparability graph CG
p
G,H

of any two patterns G, H ≃

G is acyclic.

For a pair G, H of activation patterns, we consider the comparability graph CG
p
GH

of a data point p ≃ D.
This graph has nodes [N ] and contains directed and undirected edges. We draw an edge between j and k if
j ≃ N(p; G) and k ≃ N(p; H). This edge is undirected if j, k ≃ N(p, G) ⇓ N(p, H) and j ↓ k otherwise.

(A I),(A II),(A III), and (A IV) are analogs to axioms (C I)–(C IV) of covectors of oriented matroids. On
the other hand, (A III), (A IV), (A V), and (A VI) are analogs to axioms (T I)–(T IV) of covectors of
tropical oriented matroids, which we will define formally in Section 5.2. For tropical oriented matroids, the
composition axiom is replaced by the surrounding axiom, which follows from stricter conditions on possible
perturbations of tropical hyperplanes.

Proof. (A I) is realized by ω = (0, . . . , 0), or any point in the lineality space of ”D(N). (A II) holds since
the construction of ”D(N) is symmetric in i ≃ [N ]. (A V) will be proven separately in Theorem 5.17.

For (A III), let x ≃ CD(G) and y ≃ CD(H). These are vectors of parameters of the form x =
(ax

1 , s
x

1 , . . . , a
x

N
, s

x

N
) and y = (ay

1, s
y

1, . . . , a
y

N
, s

y

N
). For φ > 0 small enough, consider z = x + φy. Then

for any p ≃ D such that N(p; G) ⇓ N(p; H) = ⇒ holds

arg max
i→[N ]

(az

i
+ ↗s

z

i
, p↘) = arg max

i→[N ]
(ax

i
+ ↗s

x

i
, p↘ + φ(ay

i
+ ↗s

y

i
, p↘)) = arg max

i→[N ]
(ax

i
+ ↗s

x

i
, p↘).

If N(p; G) ⇓ N(p; H) ⇔= ⇒, then maxi→[N ](az

i
+ ↗s

z

i
, p↘) = (ax

i→ + ↗s
x

i→ , p↘ + φ(ay

i→ + ↗s
y

i→ , p↘) if and only if both
a

x

i→ + ↗s
x

i→ , p↘ = maxi→[N ] a
x

i
+ ↗s

x

i
, p↘ and a

y

i→ + ↗s
y

i→ , p↘ = maxi→[N ] a
y

i
+ ↗s

y

i
, p↘. Thus, z ≃ CD(G ↙ H).

For (A IV), let again x ≃ CD(G) and y ≃ CD(H). There are fixed values µx(p), µy(p) ≃ R such that for
every i

↔
≃ N(p; G) and j

↔
≃ N(p; G) holds

max
i→[N ]

(ax

i
+ ↗s

x

i
, p↘) = a

x

i→ + ↗s
x

i→ , p↘ = µx(p), max
i→[N ]

(ay

i
+ ↗s

y

i
, p↘) = a

y

j→ + ↗s
y

j→ , p↘ = µy(p).

Choose z = (az

1 + µ
z(p), s

z

1, . . . , a
z

N
+ µ

z(p), s
z

N
) such that

a
z

i
+ ↗s

z

i
, p↘ + µ

z(p) = max(ax

i
+ ↗s

x

i
, p↘ + µ

y(p), a
y

i
+ ↗s

y

i
, p↘ + µ

x(p)).

For p holds

max
i→[N ]

(az

i
+ ↗s

z

i
, p↘ + µ

z(p)) = max
i→[N ]

(max(ax

i
+ ↗s

x

i
, p↘ + µ

y(p), a
y

i
+ ↗s

y

i
, p↘ + µ

x(p))

= max


max
i→[N ]

(ax

i
+ ↗s

x

i
, p↘ + µ

y(p)), max
i→[N ]

(ay

i
+ ↗s

y

i
, p↘ + µ

x(p))
)

= max(µx(p) + µ
y(p), µ

y(p) + µ
x(p))

and the maximizers are precisely the indices in N(p; G) ¬ N(p; H).

For (A VI), suppose that i0, i1, . . . , in, in+1 = i0 ≃ [N ] is a cycle in CG
p
G,H

. After contracting all undirected
edges we can assume that all edges are directed. Let again x ≃ CD(G), y ≃ CD(H). An edge from ik to ik+1
indicates that we have ik ≃ N(p; G) and ik+1 ≃ N(p; H). This gives

a
x

ik+1 + ↗s
x

ik+1 , p↘ ∈ a
x

ik
+ ↗s

x

ik
, p↘, and a

y

ik
+ ↗s

y

ik
, p↘ ∈ a

y

ik+1
+ ↗s

y

ik+1
, p↘.

and at least one of these two inequalities is strict, since the edge is directed. Together this implies

a
x

ik+1 → a
y

ik+1
+ ↗s

x

ik+1 → s
y

ik+1
, p↘ < a

x

ik
→ a

y

ik
+ ↗s

x

ik
→ s

y

ik
, p↘

Adding these conditions up for all i0, . . . , in yields 0 < 0.
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Theorem 5.14 gives necessary conditions on the set of activation patterns which appear as labels of the
activation cones. The following statement shows that not all bipartite graphs will appear as activation
patterns, unless the data points are a"nely independent and are thus at most d + 1 many.
Theorem 5.15. The activation fan ”D(N) has at most N

M maximal cones and (2N
→1)M cones of arbitrary

dimension, where N is the number of monomials and M = |D| is the number of data points. This bound is
attained if and only if the points are a!nely independent.

Proof. Recall from Corollary 5.12 that for any activation pattern deg(p) ⇑ 1 for all p ≃ D. The number of
bipartite graphs on M ∅ N without isolated nodes is M is (2N

→ 1)M , and is thus an upper bound for the
number of cones of arbitrary dimension. For cones of maximal dimension, Corollary 5.12 implies that the
activation patterns satisfy deg(p) = 1 for all p ≃ D, and the number of such bipartite graphs is N

M . It
thus remains to show that this bound is attained if and only if the points are a"nely independent. We first
assume that the points are a"nely dependent and show that there exists a graph which does not occur as
an activation pattern. Let p1, . . . , pM be a"nely dependent, i.e., there are distinct data points p1, . . . , pk,
p

≃
1, . . . , p

≃
l
, and µi, µj > 0, i ≃ [k], j ≃ [l] such that there is an a"ne dependency

k

i=1
µipi =

l

j=1
µjp

≃
j
,

k

i=1
µi =

l

j=1
µj .

Let εi = µi∑k

i=1
µi

, εj = µj∑l

j=1
µj

. Then this gives the point

q =
k

i=1
εipi =

l

j=1
εjp

≃
j

≃ conv(p1, . . . , pk) ⇓ conv(p≃
1, . . . , p

≃
l
),

and q lies in the relative interiors of both convex hulls. Therefore, Theorem 5.13 (ii) implies that such a
bipartite graph G which has N(i; G) = {p1, . . . , pk} and N(j; G) = {p

≃
1, . . . , p

≃
l
} is not an activation pattern

of ”D(N). Conversely, let p1, . . . , pM be a"nely independent, and let G be any bipartite graph such that
N(p; G) ⇔= ⇒ for all p ≃ D. Note that since the points are a"nely independent we have M ∈ d + 1. This
implies that for any i ≃ [N ] there exists an a"ne linear functional fi(x) = ci + ↗ ui, x ↘ such that fi(p) = 0
for all p ≃ N(i; G) and fi(p) < 0 for all D \ N(i; G). Choose ai = ci and si = ui for all i ≃ [N ] such
that N(i; G) ⇔= ⇒, and otherwise choose ai, si small enough. Then ω = (a1, s1, . . . , aN , sN ) is a vector of
parameters whose activation pattern is G.

Remark 5.16. The number of maximal cones in the activation fan ”D(N) equals the number of vertices of
the activation polytope PD(N). Montúfar et al. (2022) give a sharp upper bound for the number of vertices
of generic Minkowski sums. However, the Minkowski summands #(p) are not entirely generic in our case.

5.2 Linear and Tropical Classification within the Activation Fan

In Section 5.1 we have seen how activation patterns can be thought of as multivalued analogs of covectors
of oriented matroids. Specifically, Remark 5.8 describes how N = 2 recovers the linear case. In this section
we describe how also for N > 2 every activation fan carries a family of hyperplane arrangements (and
thus oriented matroids) with it, by considering intersections with a"ne spaces. We extend our findings to
tropical oriented matroids, which are analogs of oriented matroids arising through arrangements of tropical
hyperplanes.

Recall from the case of linear classification, that the dichotomies are given by a hyperplane arrangement HD
in parameter space, the normal fan of the zonotope PD.
Theorem 5.17. For any S ↑ [N ] the bipartite graph with edges E(G) = {pi | p ≃ D, i ≃ S} is an activation
pattern of a cone in ”D(N). The cone CD(G) is the normal cone of a face F of the activation polytope
PD(N), where F is itself an activation polytope PD(|S|). In particular, ranging over all sets with |S| = 2,
one gets

(
N

2
)

many faces of the activation polytope PD(N) which are equal to the zonotope PD.
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Proof. For notational convenience, we identify a (d + 1)N -dimensional point ω ≃ !(d, n, m) with a matrix
M of size (d + 1) ∀ N , where the first column is identified with the first (d + 1) entries of the vector, and so
on.

Fix S ↑ [N ]. Since D is a finite set of points, there exists a linear functional l ≃ Rd+1 such that ↗(1, p), l↘ > 0
on all p ≃ D. We define the i

th column of the matrix M
S as

M
S

i
=

{
l if i ≃ S,

0 if i ≃ [N ] \ S.

Since M
S corresponds to a vector of parameters of a tropical signomial f , it has an associated activation

pattern G, which we now describe. Recall that N(i; G) = {p ≃ D | p activate the i
th term}. For p ≃ D we

have f(p) = ↗(1p), l↘ > 0, and precisely the terms i ≃ S are active. Thus, E(G) = {pi | p ≃ D, i ≃ S}, and
this is the activation pattern of the cone CD(G) which contains M

S in its relative interior.

We now describe the face F
S of the activation polytope whose normal cone is CD(G). By Proposition 5.11,

we have that F
S =

∑
p→D F (p), where the face F (p) of #(p) is the (|S → 1|)-dimensional simplex conv(M i

|

i ≃ S). The polytope F
S lies inside an a"ne space of codimension (|S| → 1)(dim(a$(D) + 1). Inside this

a"ne space, we have F
S = PD(|S|), which is embedded into !(d, N) by inserting 0 for all columns indexed

by [N ] \ S, when we view the vertices of PD(|S|) as matrices of size (d + 1) ∀ |S| and the vertices of F
S as

matrices of size (d + 1) ∀ N .

We dualize the above statement to find the hyperplane arrangement HD in the activation fan ”D(N). The k-
dimensional face Fij identified in the former proof is dual to a (N(d+1)→k)-dimensional cone Cij ≃ ”D(N).
More specifically, Cij = CD(G) where G is the activation pattern such that N(p, G) = {i, j} for all p ≃ D.
The k

≃-dimensional faces of Fij are dual to (N(d + 1) → k
≃)-dimensional cones of ”D(N) which contain

Cij . The collection of these cones is called the star of Cij , and denoted by star(Cij). Let lin(Cij) denote
the smallest linear space containing Cij . Projecting the cones in the star of Cij onto the orthogonal space
lin(Cij)↑ yields the normal fan of the zonotope Fij . We thus obtain the following dual statement:
Theorem 5.18. For each i, j ≃ [N ], let Cij = CD(G) be the activation cone for the pattern G with N(p; G) =
{i, j} for all p ≃ D. Then the projection of star(Cij) onto lin(Cij)↑ is the polyhedral fan induced by the
hyperplane arrangement HD.

We now move towards tropical hyperplane arrangements and tropical oriented matroids. Tropical oriented
matroids can be viewed as multivalued analogs of oriented matroids, which arise through tropical hyperplane
arrangements. We will see that activation patterns can also be viewed as generalization of realizable tropical
oriented matroids.

A tropical hyperplane H(→a) is the tropical hypersurface T (f) defined by the linear tropical polynomial
fa(x) =

⊕
i→[d] ai △ xi. It is an a"ne translate of the normal fan of a standard simplex with apex →a =

→(a1, . . . , ad) ≃ Rd. Thus, any tropical hyperplane subdivides the ambient space into d maximal regions,
one for each term of fa. Given a finite number of tropical hyperplanes H(a1), . . . , H(aM ) we consider the
common refinement of all these subdivisions, and label each region R by a tropical covector (A1, . . . , AM )
where Ai ↑ [d] is the set of indices of the terms of fai which are active on R. We obtain an activation
pattern G = ([d] ∅ D, E(G)) from a tropical covector by setting N(pi; G) = Ai for pi ≃ D = {p1, . . . , pM }.
Any set of tropical covectors which arise through such an arrangement of tropical hyperplanes is called a
realizable tropical oriented matroid.

Similarly to the linear case, tropical oriented matroids are defined through a set of axioms, and it was shown
that sets satisfying these axioms are in bijection with subdivisions of products of simplices (Horn, 2016). A
set T ↑ {(A1, . . . , AM ) | Ai ↑ [N ], i ≃ [M ]} is the set of tropical covectors of a tropical oriented matroid if
it satisfies the following axioms (Ardila & Develin, 2008, Def. 3.5).

(T I) Boundary: For each j ≃ [N ] holds ({j}, . . . , {j}) ≃ T.

(T II) Elimination: If A, B ≃ T and j ≃ [M ] then there exists a type C ≃ T with Cj = Aj ¬ Bj and
Ck ≃ {Ak, Bk, Ak ¬ Bk} for all k ≃ [M ].
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(T III) Comparability: The comparability graph CGA,B of any two types A and B in T is acyclic.

(T IV) Surrounding: If A ≃ T the any refinement is also in T .

Let A, B be tropical covectors and G, H be the corresponding activation patterns. The comparability graph
of the tropical covectors is CGA,B =

⋃
p→D C

p
G,H

, where the comparability graph C
p
G,H

is as defined in
Theorem 5.14. The refinement of a type A = (A1, . . . , AM ) with respect to an ordered partition (P1, . . . , Pr)
of [M ] is A = (A1 ⇓ Pm(1), . . . , AM ⇓ Pm(M)), where m(i) is the largest index for which Ai ⇓ Pm(i) ⇔= ⇒. Note
that (A III),(A V),(A IV) and (A VI) of Theorem 5.14 are generalizations of axioms of tropical oriented
matroids.

Similarly to Theorem 5.18 we can recover realizable tropical oriented matroids by intersection with an a"ne
subspace.
Theorem 5.19. Let N = d and consider the d-dimensional a!ne space

A = {(a1, s1, . . . , ad, sd) ≃ !(d, d) | si = ei for i ≃ [d]}.

Then ”D(d) ⇓ A is the collection of cells in the tropical hyperplane arrangement
⋃

p→D H(→p).

Proof. Let CD(G) ≃ ”D(d) such that CD(G)⇓A ⇔= ⇒, and consider the coordinate projection ↼(CD(G)) onto
coordinates (a1, . . . , ad). Any parameter ω ≃ A defines a function fω(x) =

⊕
i→[d] ai △ xi. By construction,

ω ≃ CD(G) ⇓ A if and only if a = ↼(ω) satisfies maxi→[d] ai + pi = ai→ + pi→ for all edges i
↔
p ≃ E(G). In

other words, a is contained in the region i
↔ of H(→p) for all such edges, and ↼(CD(G)) is a region in the

tropical hyperplane arrangement.

We can extend the above statement to more parameters N > d by requiring that the additional monomials
( aisi ) , i > d lie below the lifted polytope conv(( a1,

e1 ) , . . . , ( aded )). In this case they are not visible in any regular
subdivision of the dual Newton polytope, and can thus be neglected in the above proof.

The dual statement to Theorem 5.19 identifies a subcomplex of the boundary of the activation polytope
PD(d). This subcomplex corresponds to a regular subdivision of products of simplices, and coincides with
the boundary complex of the unbounded polyhedron in Develin & Sturmfels (2004, Lemma 10), whose
bounded cells determine the tropical convex hull of the points in D.

6 Classification Fan

In Section 4 we have seen how we can understand tropical rational functions g ▽ h via tropical signomials
f by separating the N terms of f into n positive and m negative terms. This defines g and h respectively,
such that f = g ∋ h and N = n + m. This procedure subdivides the regions defined by T (f) into positive
and negative regions. In terms of the activation patterns, this amounts to a coloring of the nodes [N ] as
positive or negative nodes. In this section, we consider the classification fan, the fan which arises through
the coloring of the nodes. In analogy to the linear case, we will consider the level sets and sublevel sets of
the 0/1-loss function.

6.1 Dividing the Parameter Space

Let D ↑ Rd be a finite set of points, N ≃ N and fix n, m ≃ N↓1 such that n + m = N . We split the
parameter space into parameters of the numerator g, which we denote ai, si for i ≃ [n] and parameters
of the denominator h, which are given by bj = an+j , tj = sn+j for j ≃ [m]. Given a vector of parameters
ω = (a1, s1, . . . , an, sn, b1, t1, . . . , bm, tm) ≃ !(d, n, m), this defines a numerator gω(x) = maxi→[n](ai+↗ si, x ↘)
and denominator hω(x) = maxj→[m](bj + ↗ tj , x ↘), such that fω = gω ∋ hω. Given an activation pattern G

with nodes V (G) = D ∅ [N ], the split n + m = N induces a coloring of the nodes [N ] into [n] ∅ [m].
Definition 6.1 (Activation Pattern of Tropical Rational Function). The activation pattern of (g ▽ h, D)
is the bipartite graph G = (V (G), E(G)) on nodes V (G) = D ∅ ([n] ∅ [m]) with edges E(G) = {pi |

p activates the i
th term of g} ∅ {pj | p activates the j

th term of h}.
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(b) Decision boundary in input space (top) and dual sign-mixed Newton
polytopes (bottom).

Figure 6: A coloring of the bipartite graph and the corresponding regions, as described in Example 6.2.
The positive regions are labeled by i1, i2 and colored in green, the negative regions are labeled by j1, j2 and
colored in red, and the decision boundary is highlighted in blue.

Example 6.2 (From Signomials to Rational Functions). We continue with the activation pattern of the
tropical signomials f from Example 5.2. Partitioning N = 4 into n = 2, m = 2 yields

(i) a partition of the monomials of f into two signomials g(x) = a1 △ x
⇒s1 ∋ as △ x

⇒s2 and h(x) =
b1 △ x

⇒t1 ∋ bs △ x
⇒t2 ,

(ii) a partition of the regions defined by T (f) into positive regions i1, i2 and negative regions j1, j2,

(iii) a partition of the vertices of the dual regular subdivision of Newt(f) into positive and negative
vertices.

The positive and negative regions are separated by the decision boundary of g ▽ h. Figure 6 shows all of
these partitions for the configuration from Example 5.2.

With this partition of parameters, the activation cone of G is

CD(G) =


ω | max
i→[n],j→[m]

(ai + ↗si, p↘, bj + ↗tj , p↘) = ai→ + ↗si→ , p↘ for all pi
↔

≃ E(G) and

max
i→[n],j→[m]

(ai + ↗si, p↘, bj + ↗tj , p↘) = bj→ + ↗tj→ , p↘ for all pj
↔

≃ E(G)


↑!(d, n, m).

Lemma 6.3. Fix a partition [N ] = [n] ∅ [m] and an activation pattern G of tropical rational functions.
Then for any ω ≃ CD(G) it holds that (gω ▽ hω)(p) ⇑ 0 if and only if pi

↔
≃ E(G) for some i

↔
≃ [n], and

(gω ▽ hω)(p) ∈ 0 if and only if pj
↔

≃ E(G) for some j
↔

≃ [m]. The inequality is strict if and only if the set
of neighbors of p in G is monochromatic, i.e. N(p; G) ↑ [n] or N(p; G) ↑ [m].

Proof. If maxi→[n],j→[m](ai + ↗si, p↘, bj + ↗tj , p↘) = ai→ + ↗si→ , p↘ then gω(p) ⇑ hω(p) for all i
↔

≃ [n] such
that pi

↔
≃ E(G). This inequality is strict if and only if the maximum is not attained in any term of hω(p).

Similarly, gω(p) ∈ hω(p) for all j
↔

≃ [m] such that pj
↔

≃ E(G).

Definition 6.4 (Classification Fan). The classification fan ”D(n, m) of a finite data set D ↔ Rd and
tropical rational functions with n monomials in the numerator and m monomials in the denominator is the
set of all activation cones in parameter space !(d, n, m) of tropical rational functions.
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We emphasize that the fan structures of the activation fan ”D(n + m) and classification fan ”D(n, m)
coincide. The only di!erence is a partition of the coordinates in the underlying spaces. However, this
distinction is crucial as we now want to distinguish between monomials of the numerator and monomials of
the denominator.

6.2 The Space of Dichotomies

In this section, we subdivide the parameter space !(d, n, m) into sets, each corresponding to those parameters
which classify the data according to a fixed target dichotomy. These (open) sets generalize the chambers
of the hyperplane arrangement from Section 2. We will also describe indecision surfaces as analogs of the
hyperplanes in the arrangement, which will turn out to be decision boundaries inside the parameter space.
Definition 6.5 (Indecision Surface). The indecision surface of a data point p ≃ D is

S(p) = {ω ≃ !(d, n, m) | (gω ▽ hω)(p) = 0}

in the parameter space of tropical rational functions.

We will see that the indecision surface plays the role of the hyperplane (1, p)↑ from the linear case (cf.
Section 2) in this more general setup.
Theorem 6.6. The indecision surface S(p) is a sign-mixed subfan of the normal fan of #(p) of dimension
(n + m)(d + 1) → 1. It divides the parameter space !(d, n, m) into two open connected components S

+(p) =
{ω ≃ !(d, n, m) | (gω ▽ hω)(p) > 0} and S

↗(p) = {ω ≃ !(d, n, m) | (gω ▽ hω)(p) < 0}.

Proof. First note that the indecision surface is itself the decision boundary of the tropical rational function⊕
i→[n] ai △ s

⇒p
i

▽
⊕

j→[m] bj △ t
⇒p
j

in indeterminates ai, si, bj , tj . The Newton polytope of this tropical
rational function is the simplex #(p). We use the notation from the proof of Theorem 5.7, and fix a
partition [N ] = [n] ∅ [m] as explained in Section 6.1. Theorem 4.2 implies that S(p) is a polyhedral fan,
whose maximal cones are dual to edges conv(vi, vj) where i ≃ [n] is a monomial of g and j ≃ [m] is a
monomial of h. The Euclidean closure of the region S

+(p) is the union of all normal cones of vertices
vi, i ≃ [n] and since #(p) is a simplex, this union is connected. Similarly, the closure of S

↗(p) is the union
of normal fans of vj , j ≃ [m].

Fix a target dichotomy C
↔

≃ {+, →}
M . We obtain the space of solutions of a fixed dichotomy as

!C
→

D (d, n, m) =


M

k=1 S
C

→
k (pk) = {ω ≃ !(d, n, m) | sgn (gω(pk) ▽ hω(pk)) = C

↔
k

for all k ≃ [M ]}.
Corollary 6.7. The arrangement of indecision surfaces S(p) over all p ≃ D divides the parameter space
into open sets !C

→

D (d, n, m) over all dichotomies C
↔

↑ {+, →}
M .

This arrangement can be viewed as the true analog of the hyperplane arrangement HD from the linear case,
and !C

→

D (d, n, m) plays the role of an open chamber. In Section 6.3 we will fix a target dichotomy C
↔ and

study (the closure of) the space !C
→

D (d, n, m). We will see that this space is disconnected (cf. Theorem 6.11),
but it allows a natural fan structure which is inherited from the classification fan ”D(n, m).

The subdivision into these di!erent subfans relates to the growth function and Vapnik-Chervonenkis dimen-
sion (Vapnik & Chervonenkis, 1971). This is a fundamental concept in statistical learning theory which
relates the complexity of a function class with the generalization ability of any learning algorithm based
on that function class. Let c(n, m, D) = |{C

↔
| !C

→

D (d, n, m) ⇔= ⇒}| denote the number of dichotomies
which can be attained by tropical rational functions with n + m terms on the data D. The growth function
%n,m : N ↓ N is given by %n,m(M) = max(c(D, n, m) | D ↔ Rd

, |D| = M). The VC-dimension of tropical
rational functions is max(M | %n,m(M) = 2M ). To compute the growth function, a common strategy is to
count the number of non-empty regions c(D, n, m) for a given data set D and then maximize this number
over the choice of the data set having a fixed cardinality M . We refer the reader to Anthony & Bartlett
(1999) for an overview of these techniques, and Bartlett et al. (2019) for recent bounds on the VC dimension
of neural networks with piecewise linear activation functions.
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6.3 Classifying Points Correctly

We now fix a target dichotomy C
↔

≃ {+, →}
M of the data. The dichotomy divides the data points into two

sets D
C

→

+ = {pi ≃ D | C
↔
i

= +} and D
C

→

↗ = D \D
C

→

+ . An activation pattern G of (g ▽h, D) is compatible with
C

↔ if N(p; G) ↑ [n] for all p ≃ D
C

→

+ and N(p; G) ↑ [m] for all p ≃ D
C

→

↗ . An activation pattern is weakly
compatible with C

↔ if N(p; G) ⇓ [n] ⇔= ⇒ for all p ≃ D
C

→

+ and N(p; G) ⇓ [m] ⇔= ⇒ for all p ≃ D
C

→

↗ .
Definition 6.8 (Perfect Classification Fan). The perfect classification fan ”0

D(n, m) is the subfan of the
classification fan consisting of those closed cones whose activation patterns are weakly compatible with
C

↔. In other words, ”0
D(n, m) is the restriction of the classification fan onto the set !C→

D (d, n, m) = {ω ≃

!(d, n, m) | gω(p) ⇑ hω(p) ∝ p ≃ D
C

→

+ , gω(p) ∈ hω(p) ∝ p ≃ D
C

→

↗ }.

The wisdom behind this notation will become clear in Section 6.4, where we consider level-sets of the 0/1-loss.
We have chosen to consider activation cones CD(G) as closed cones. As a consequence, we obtain lower-
dimensional cones on the boundary of !C→

D (d, n, m), whose activation patterns are only weakly compatible
with C

↔. On the other hand, this certifies nice geometric properties of the perfect classification fan.
Proposition 6.9. The perfect classification fan ”0

D(n, m) is pure, i.e. every inclusion-maximal cone is
full-dimensional.

Proof. Any lower-dimensional cone in ”0
D(n, m) is the intersection of two full-dimensional cones from the

activation fan. Let CD(G), CD(H) be two full-dimensional cones of the activation fan. We show that if
CD(G), CD(H) ⇔≃ ”0

D(n, m) then CD(G) ⇓ CD(H) ⇔≃ ”0
D(n, m). Since CD(G), CD(H) are maximal, Corol-

lary 5.12 implies that CD(G), CD(H) ≃ ”0
D(n, m) if and only if G, H are compatible with the target di-

chotomy C
↔. Therefore, if CD(G) ⇔≃ ”0

D(n, m) then there exists some p
+
G

≃ D
C

→

+ such that N(p+
G

; G) ↑ [m]
or p

↗
G

≃ D
C

→

↗ such that N(p↗
G

; G) ↑ [n]. Similarly, CD(H) ⇔≃ ”0
D(n, m) implies that there exists some

p
+
H

≃ D
C

→

+ such that N(p+
H

; H) ↑ [m] or p
↗
H

≃ D
C

→

↗ such that N(p↗
H

; G) ↑ [n]. Let L = G ¬ H.
Then CD(G) ⇓ CD(H) = CD(L), and since E(L) ℜ E(G) ¬ E(H) we have that N(p+

G
; L) ⇓ [m] ⇔= ⇒ or

N(p+
H

; L) ⇓ [m] ⇔= ⇒ or N(p↗
G

; L) ⇓ [n] ⇔= ⇒ or N(p↗
H

; L) ⇓ [n] ⇔= ⇒, i.e. L is not weakly compatible with
C

↔.

The perfect classification fan can be viewed as a subfan of the activation fan, and its full-dimensional cones
are thus dual to vertices of the activation polytope. To describe these vertices, recall that PD(n + m) =∑

M

k=1 #(pk). Under the partition of the parameters, each simplex #(pi) has vertices v
k

i
, i ≃ [n] and v

k

j
, j ≃

[m], and, similarly to the construction in Section 4, we label each of these vertices with sgn(vk

i
) = + for

i ≃ [n] and sgn(vk

j
) = → for j ≃ [m]. Each vertex v of PD(n + m) can be written uniquely as v =

∑
M

k=1 v
k

l(k)
for indices l(k) ≃ [n] ∅ [m] and we equip v with the dichotomy d(v) = (sgn(v1

l(1)), . . . , sgn(vM

l(M))).

Theorem 6.10. A vertex v of PD(n + m) is dual to a full-dimensional cone of ”0
D(n, m) if and only if

d(v) = C
↔.

Proof. A vertex v has d(v) = C
↔ if and only if v lies in the intersection of the normal cones of v

k

l(k) for all
k ≃ [M ] and sgn(vk

l(k)) = C
↔
k
. By the proof of Theorem 5.7, this is equivalent to CD(G) being the normal

cone of v, where G is compatible with C
↔.

In the case of linear classifiers, the set of perfect solutions is the single polyhedral cone in the hyperplane
arrangement HD which corresponds to the dichotomy C

↔. In contrast, the perfect classification fan is an
entire polyhedral fan. Clearly, as we consider closed polyhedral cones, they always intersect in the origin.
We thus consider a stronger notion for polyhedral fans. A pure d-dimensional polyhedral fan ” is strongly
connected if for all maximal cones C, D there exists a sequence of maximal cones C = C0, C1, . . . , Ck, Ck+1 =
D such that dim(Ci ⇓ Ci+1) = d → 1. Any fan decomposes into strongly connected components, i.e. inclusion-
maximal subfans of ” which are strongly connected. The strongly connected components of the perfect
classification fan are in bijection with the connected components of !C

→

D (d, n, m), which is the interior of the
support of ”0

D(n, m).
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(b) Activation patterns of cones in the two connected components.

Figure 7: The 12 cones of correct classification from the example in the proof of Theorem 6.11, grouped in
strongly connected components.

Theorem 6.11. The perfect classification fan is not always strongly connected.

Proof. Consider the data set D = {p1, p2, p3, p4} with p1 = (0, 0), p2 = (1, 1), p3 = (2, 2), p4 = (3, 3), and
the target dichotomy is C

↔ = (+, →, →, +). The perfect classification fan ”0
D(2, 2) ↔ !(2, 2, 2) consists of 8

cones of dimension 12 (the maximal dimension), which are divided into two strongly connected components:
The intersection of any cone from the first connected component and any cone from the second component
is solely contained in the lineality space of the fan. The activation patterns of the 8 cones are shown in
Figure 7. In this example we can identify two fundamentally di!erent types of cones, assigning p2, p3 either
to the same negative index or to two separate negative indices. Then we have discrete symmetries of the
parametrization via permutation of the positive indices i1, i2 and permutation of the negative indices j1, j2.
The permutation of j1, j2 does not strongly disconnect the set, but the permutation of i1, i2 does.

In Theorem 5.15 we have seen that the trivial upper bound for the number of maximal cones in the acti-
vation fan is attained if the data points are a"nely independent. We now obtain an analogous result for
the classification fan, however, the following statement does not require the entire data set to be a"nely
independent.
Theorem 6.12. Let n, m ⇑ 2 and fix a target dichotomy C

↔. Then the perfect classification fan ”0
D(n, m)

has at most n
|DC→

+ |
m

|DC→
↓ | cones of maximal dimension. This bound is attained if and only if D

C
→

+ , D
C

→

↗ are
linearly separable and both D

C
→

+ and D
C

→

↗ are a!nely independent sets.

Proof. Since ”0
D(n, m) is a subfan of the activation fan ”D(n + m), Corollary 5.12 implies that the cones

of maximal dimension are labeled by activation patterns G such that N(G; p) = {i(p)} ↔ [n] for p ≃ D
C

→

+

and N(G, p) = {j(p)} ↔ [m] for p ≃ D
C

→

↗ . Thus, the number of maximal cones is at most n
|DC→

+ |
m

|DC→
↓ |.

Any a"ne dependency within D
C

→

+ or D
C

→

↗ forbids at least one such graph. This can be proven by following
the argument in the proof of Theorem 5.15, namely that if D

C
→

+ , D
C

→

↗ are not linearly separable, then their
convex hulls intersect, and Theorem 5.13 (i) implies the existence of a forbidden graph. Thus, the bound
is not attained. We now show that the bound can be attained for a"nely independent sets D

C
→

+ and D
C

→

↗ ,
which are linearly separable. Let G be a bipartite graph in which every point in D is incident to exactly
one edge, connecting every point in D

C
→

+ with a node in [n] and every point in D
C

→

↗ with a node in [m].
Let l(x) = c + ↗ u, x ↘ be the equation defining a separating hyperplane, i.e. l(p+) > 0 and l(p↗) < 0 for
all p

+
≃ D

C
→

+ , p
↗

≃ D
C

→

↗ . Since the points in D
C

→

+ are a"nely independent, there exists an a"ne function
fi(x) = di + ↗ vi, x ↘ for every i ≃ [n], such that fi(p+) = 0 for all p

+
≃ N(i; G) and fi(p+) < 0 for all

p
+

≃ D
C

→

+ \N(i; G). Similarly, there exists an a"ne function fj(x) = ej +↗ wj , x ↘ for every j ≃ [m] such that
fj(p↗) = 0 for all p

↗
≃ N(j; G) and fj(p↗) < 0 for all p

↗
≃ D

C
→

↗ \N(j; G). Since l(p↗) < 0 for all p
↗

≃ D
C

→

↗
we can choose a scalar ε > 0 such that for all p

↗
≃ D

C
→

↗ holds →εl(p↗) > maxi→[n] fi(p↗). Similarly, since
l(p+) > 0 for all p

+
≃ D

C
→

+ we can choose µ > 0 such that for all p
+

≃ D
C

→

+ holds µl(p+) > maxj→[m] fj(p+).
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For i
↔

≃ [n], p
+

≃ N(i↔; G) and j
↔

≃ [m], p
↗

≃ N(j↔; G) we obtain

max
i→[n]

(εl(p+) + fi(p+)) = εl(p+) + fi→(p+) = εl(p+) > 0

max
j→[m]

(→µl(p+) + fj(p+)) = →µl(p+) + max
j→[m]

(fj(p+)) < 0

max
i→[n]

(εl(p↗) + fi(p↗)) = εl(p↗) + max
i→[n]

(fi(p+)) < 0

max
j→[m]

(→µl(p↗) + fj(p↗)) = →µl(p↗) + fj→(p+) = →µl(p↗) > 0

We can thus choose ai = εc + di, si = εu + vi, bj = →µc + ej , tj = →µu + wj . This defines a vector of
parameters with activation pattern G.

We close this section on perfect classification with an observation concerning tropical semialgebraic sets.
Remark 6.13 (”0

D(n, m) is a tropical semialgebraic set). The set ”0
D(n, m) is the set of solutions to

a set of tropical polynomial inequalities. Concretely, it is given by the tropical polynomial inequalities⊕
i→[n] ai △ s

⇒p
i

⇑
⊕

j→[m] bj △ t
⇒p
j

for all p ≃ D
C

→

+ and
⊕

i→[n] ai △ s
⇒p
i

∈
⊕

j→[m] bj △ t
⇒p
j

for all p ≃ D
C

→

↗ .
Tropicalizations of semialgebraic sets have close relations to positive tropicalizations (cf. Section 4) and their
systematic study has been established in the work of Jell et al. (2020).

6.4 Sublevel Sets of the 0/1-Loss Function

Recall that the 0/1-loss function counts the number of mistakes of any function f with respect to the target
dichotomy C

↔, i.e. errC→(ω) = |{i ≃ [M ] | sgn(fω(pi)) = →C
↔
i
}|. If fω = gω ▽ hω is a tropical rational function

contained in a cone CD(G), then errC→ is constant along CD(G). We thus extend the function errC→ to cones
and activation patterns. If CD(G) is maximal, then errC→(G) counts the number of edges in G between D

C
→

+
and [m], and between D

C
→

↗ and [n].
Definition 6.14. The k

th level set is the polyhedral fan ”k

D(n, m) =
⋃

CD(G), where the union runs over all
activation patterns G such that errC→(G) = k. We define the k

th sublevel set as ”↘k

D (n, m) =
⋃

k

k↑=0 ”k
↑

D (n, m).

Proposition 6.15. If n = m, then for any level set it holds that ”k

D(n, n) ⇐= ”|D|↗k

D (n, n).

Proof. Let ω ≃ ”k

D(n, n) and define ω
≃ through parameters

a
ω

↑

i
= b

ω

i
, s

ω
↑

i
= t

ω

i
, b

ω
↑

i
= a

ω

i
, t

ω
↑

i
= s

ω

i
for i ≃ [n].

Note that the corresponding tropical rational functions satisfy fω(p) = →fω↑(p). Thus, fω makes a mistake
at p if and only if fω↑ classifies p correctly, and vice versa.

Theorem 6.10 implies that the level sets ”0
D(n, m), ”1

D(n, m), . . . , ”n+m

D (n, m) induce a partition of the
vertices of the activation polytope PD(n + m), and counting the number of vertices in each part we obtain
a sequence of natural numbers. In Algebraic Combinatorics one likes to describe sequences which are
symmetric, unimodal or log-concave. Proposition 6.15 allows us to obtain a statement in this spirit:
Corollary 6.16. Let lk denote the number of maximal cones in the k

th level set ”k

D(n, n). Then lk = l|D|↗k,
i.e. the sizes of level sets are symmetric.

Recall that Proposition 2.4 shows that in the case of linear classifiers, a cone of k mistakes is always (strongly)
connected to a cone of fewer mistakes. We now observe that the analog does not necessarily hold in the more
general setup of tropical rational functions.
Theorem 6.17. The sublevel sets ”↘k

D (n, m) are not always strongly connected, even if the data points are
in general position. More specifically, let C ↔ ”k

D(n, m) be a strongly connected component. It may happen
that all full-dimensional neighbors D ≃ ”D(n, m) of C (which are adjacent through codimension 1) satisfy
errC→(D) > k.
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Figure 8: The point configuration from Theorem 6.17 and two tropical hypersurfaces classifying the points
perfectly (left) and according to G (right).

Proof. To be precise, here we consider the standard notion of general position: M points in Rd are in general
position if no k of them, for k ∈ d+1, are contained in an a"ne subspace of dimension strictly less than k→1.
We give an example of a configuration of points in general position which can be classified perfectly, for which
however there exists a cone CD(G) with errC→(CD(G)) = 1 from which there exist no (weakly) decreasing path
to any cone with 0 mistakes. Let D

C
→

+ = {p1 = (→2, 3), p2 = (3, 3), p5 = (0, 0), p8 = (→7, →3), p9 = (3, →4)}
and D

C
→

↗ = {p3 = (1, 2), p4 = (0, 1), p6 = (→2, →1), p7 = (1, →2)}, as shown in Figure 8. We computed the
12-dimensional fan ”↘2

D (2, 2) using the software SageMath (Sage Developers, 2021). By definition, we have
”↘2

D (2, 2) = ”0
D(2, 2) ¬ ”1

D(2, 2) ¬ ”2
D(2, 2). The perfect classification fan ”0

D(2, 2) consists of 16 maximal
cones, which divide into 8 strongly connected components, and the first level set consists of 304 cones, which
divide into 28 components. The connected component containing CD(G) consists of 20 maximal cones, but
none of them is adjacent to any of the 16 cones of ”0

D(2, 2) through codimension 1. More precisely, the
connected component which contains CD(G) intersects ”1

D(2, 2) in dimension 3, which is the dimension of
the lineality space of ”D(2, 2). In this sense, the connected component containing CD(G) intersects the
perfect classification fan ”0(2, 2) trivially.

Corollary 6.18. The 0/1-loss function has local non-global minima.

7 Conclusion

We discussed binary classification by signs of parametric piecewise linear functions from the perspective of
real tropical geometry. In this context, we described sets of ReLU networks as semialgebraic sets within
sets of tropical rational functions with a fixed number of monomials in the numerator and denominator.
We highlighted on the one hand the subdivision of the parameter space by the combinatorial type of the
represented functions, specifically the combinatorial type of the decision boundary, and on the other hand
the subdivision of the parameter space by the di!erent activation patterns that are recorded on a given
dataset. These two subdivisions are complementary to each other since a priori the decision boundary is
independent of the particular data under consideration. In future work it will be interesting to study how the
two interact; concretely, for a particular input dataset one might study the types of decision boundaries that
permit certain types of classifications of that particular input dataset. The discussion of activation patterns
gives rise to a generalization of oriented matroids. We showed how this can be used to obtain results on the
structure of the loss landscape.

We hope that this work contributes to the further enhancement of the synergies between research on neural
networks and polyhedral geometry, particularly as approached in real tropical geometry. As we observed, in
some cases the same concepts appear in di!erent communities under di!erent names and leveraging results
and perspectives from each side can facilitate advances and motivate new interesting future research. We
hope that the presented discussion might serve as a springboard for further explorations including: the
containment of neural networks with piecewise linear activations within simple parametrizations of tropical
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rational functions; the structure of the subdivisions of the parameter space by the di!erent properties of the
represented functions, including the combinatorial type of the decision boundary, as well as the interface with
other subdivisions arising from a particular dataset, including complexity measures and the combinatorial
structure of the loss landscape.
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Cε sign vector associated to the cone ϑ of a hyperplane arrangement 5
”D polyhedral fan arising in linear classification induced by the data 5
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