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ABSTRACT

This paper proposes U-FARE, an uncertainty-aware fair federated
learning (FL) framework aimed at improving disease prediction in
healthcare, with a specific focus on Alzheimer’s disease detection.
U-FARE incorporates evidential neural networks (ENN) to quan-
tify uncertainty, enhancing both model fairness and accuracy. The
framework ensures group-level fairness, providing consistent model
performance across diverse healthcare environments despite data
heterogeneity. We evaluate U-FARE on three real-world healthcare
datasets—NACC, OASIS, and ADNI—comparing its performance to
several state-of-the-art fairness-aware FL methods. Experimental
results demonstrate that U-FARE outperforms baseline methods in
both prediction accuracy and fairness, effectively balancing these
two crucial aspects. The results also reveal the trade-off between
fairness and accuracy, where higher fairness levels may compro-
mise prediction accuracy. U-FARE achieves the highest accuracy
(0.928) on the NACC dataset, consistently outperforms the compet-
itive baseline q-FedAvg by 46%, particularly when higher fairness
constraints are applied, and outperforms methods like Ditto and
q-FFL with minimal accuracy variance and loss disparity. This is the
first approach to simultaneously optimize fairness and accuracy in
FL for Alzheimer’s disease detection, providing a novel solution to
the challenge of fair and effective Al in healthcare. The framework
demonstrates the potential to address data heterogeneity while
ensuring privacy and fairness in real-world applications.

CCS CONCEPTS

« Computing methodologies — Cooperation and coordination;
Distributed artificial intelligence; Reasoning about belief
and knowledge; Machine learning; - Security and privacy —
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1 INTRODUCTION

The advent of artificial intelligence (AI) in healthcare has revolution-
ized disease detection, diagnosis, and management, particularly in
complex conditions like Alzheimer’s disease, where early diagnosis
is crucial for timely intervention and improved quality of life [1, 34].
However, medical data heterogeneity — arising from differences in
demographics, imaging modalities, and clinical protocols — makes it
challenging to develop models that perform uniformly well across
diverse populations [1, 34]. Federated learning (FL) has emerged as
a promising approach for training models collaboratively while pre-
serving data privacy, facilitated by the proliferation of distributed
medical devices and patient data [30]. Yet, achieving ethical Al in
healthcare through FL presents challenges, particularly in ensur-
ing fairness and addressing uncertainty in predictions. Fairness
is essential to avoid exacerbating disparities in healthcare access
and outcomes. FL often focuses on group fairness, as data quality,
quantity, and distribution vary across devices [7]. Without group
fairness, disparities in model performance can lead to inequitable
outcomes, undermining trust in Al systems [7, 30].

Uncertainty in healthcare Al is a critical factor influencing fair-
ness, particularly in disease prediction, where it can affect patient
outcomes [25, 36]. The heterogeneous and non-IID nature of data
in FL can amplify uncertainty, causing uneven learning and unre-
liable predictions across the network, which impacts fairness and
reliability [23]. Uncertainty-aware approaches offer several advan-
tages in FL. They allow quality-aware aggregation by weighting
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contributions based on reliability, preventing low-quality or outlier
data from skewing the global model [32]. These models also sup-
port personalized adaptation, improving local performance while
maintaining global fairness, and are robust to adversarial or noisy
data [32]. Uncertainty estimates enhance trust and interpretabil-
ity, allowing clinicians to make informed decisions [25]. One of
the key technical challenges lies in integrating uncertainty into
fairness to improve the performance of FL-based healthcare sys-
tems. Therefore, this work proposes an uncertainty-aware fair FL
framework that ensures high prediction accuracy in Alzheimer’s
detection while maintaining robust group fairness, even with data
heterogeneity. We make the following key contributions:

e We propose an uncertainty-aware, fair federated learning (FL)
framework, named U-FARE: Uncertainty-aware, FAir fedeRated
IEarning, designed explicitly for healthcare systems in disease
prediction. The framework utilizes evidential neural networks
(ENN) to quantify uncertainty during the learning process, en-
hancing model performance (i.e., prediction accuracy) and fair-
ness. This is the first approach to integrate ENNs into FL settings.

o We ensure group-level fairness in the uncertainty-aware FL frame-
work, guaranteeing consistent model performance across all
clients. Group-level fairness ensures that the model performs
equitably across different groups of clients, even when their data
varies in quality, quantity, or distribution [11]. By addressing dis-
parities in data quality and distribution, the framework promotes
equitable outcomes, ensuring that each client, regardless of their
data characteristics, benefits from uniform model performance in
diverse healthcare settings. Furthermore, unlike existing works,
we explicitly consider fairness threats in testing our fairness-
aware FL framework. This provides a more rigorous evaluation
of fairness mechanisms under adversarial conditions, ensuring
robustness in real-world applications.

e We evaluate the proposed approach on real-world healthcare
datasets, marking the first application of uncertainty-aware fair
FL to Alzheimer’s disease detection [17, 27]. The results demon-
strate the superior performance of U-FARE, highlighting its ef-
fectiveness in balancing fairness and prediction accuracy while
achieving state-of-the-art results. To date, no prior work has
addressed the challenge of optimizing both fairness and model
accuracy using FL for Alzheimer’s disease detection.

o The framework provides a comprehensive comparison with exist-
ing fairness-aware FL methods, demonstrating U-FARE’s superior
performance in terms of prediction accuracy, fairness, accuracy
variance (AV), and loss disparity (LD). This benchmarking show-
cases U-FARE’s robustness in handling data heterogeneity while
maintaining fairness.

e We present a novel sensitivity analysis on varying fairness levels,
illustrating the trade-off between fairness and prediction accu-
racy. This analysis provides key insights into how the system
balances these metrics effectively and guides the fine-tuning of
the framework to achieve the desired outcome.

2 RELATED WORK

2.1 Fairness-aware Federated Learning

Mohri et al. [29] introduced Agnostic Federated Learning (AFL),
optimizing model performance across all client distributions by
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minimizing worst-case loss, ensuring robustness and fairness in
heterogeneous settings. Li et al. [22] proposed q-Fair Federated
Learning (q-FFL), an optimization framework for fairness in feder-
ated systems with non-IID data, prioritizing clients with higher loss
values to reduce performance disparities. q-FFL includes three algo-
rithms: q-FedAvg, which extends Federated Averaging with client
loss-based weighting; q-FedSGD, which adapts stochastic gradient
descent; and -MAML, integrating fairness into Model-Agnostic
Meta-Learning (MAML) for better client task generalization.

Li et al. [21] developed Ditto, a personalized federated learning
framework optimizing both global and individual client models,
allowing adaptation to unique data while benefiting from shared
knowledge. However, Ditto lacks specific fairness metrics for eval-
uation. Liu et al. [24] proposed the Contribution-Aware Federated
Learning (CAreFL) framework for smart healthcare, improving
model aggregation efficiency by 2.84 times while ensuring fair, ex-
plainable, and privacy-preserving evaluations. Diising and Cimiano
[10] introduced the Benefit and Contribution metrics, showing that
data imbalances reduce benefits while increasing client contribu-
tions. Hosseini et al. [13] developed Proportionally Fair Federated
Learning (Prop-FFL) to reduce performance variations across hospi-
tals, while Cui et al. [8] used multi-objective optimization to ensure
fairness and performance consistency across local clients.

Ezzeldin et al. [11] proposed FairFed, a fairness-aware aggre-
gation algorithm to enhance group fairness in FL by evaluating
fairness on local datasets and adjusting aggregation weights by
aligning global fairness metrics, which ensures privacy via secure
aggregation. Li et al. [23] adapted the Gini coeflicient to quantify
fairness in FL, measuring fairness in model accuracy across clients.

While most works focus on collaborative fairness, they often
neglect group fairness, especially in healthcare settings. Li et al.
[22] addresses group fairness but does not apply it to real-world
datasets like healthcare data. Our approach addresses these gaps by
introducing an uncertainty-aware fair method tailored for health-
care datasets, specifically Alzheimer’s disease, while enhancing
group fairness and overcoming the limitations of prior work.

2.2 FL-based Disease Diagnosis and Detection

Meerza et al. [27] introduced the first FL approach for automatic
Alzheimer’s Disease (AD) diagnosis using spontaneous speech anal-
ysis, ensuring fairness across clients. They employed q-FEDAvg and
q-FEDSgd aggregation mechanisms to mitigate algorithmic bias
from data heterogeneity. Zhang et al. [42] applied cryptographic
techniques in IoT and FL-based healthcare systems to protect local
models from adversarial attacks like model reconstruction. Yazdine-
jad et al. [41] proposed the AP2FL model, using Trusted Execu-
tion Environments (TEE) to secure both clients and servers during
training, while integrating Active Personalized Federated Learning
(ActPerFL) and Batch Normalization (BN) to mitigate performance
degradation due to data heterogeneity.

Li et al. [20] developed ADDetector, an FL-based AD detection
system that ensures privacy against man-in-the-middle attacks
through asynchronous aggregation and enhances accuracy with
linguistic features from smart speakers. Mitrovska et al. [28] com-
pared FedAvg and secure aggregation for AD detection under data
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heterogeneity and member inference attacks. Khalil et al. [17] de-
ployed an FL-based method to create a shared AD prediction model
without accessing sensitive local data, improving training efficiency
via hardware acceleration. Kumar et al. [18] proposed a blockchain-
based FL model for COVID-19 detection using CT imaging and
introduced data normalization to address data heterogeneity. Simi-
larly, Singh et al. [37] implemented an FL and blockchain framework
for patient monitoring in smart healthcare.

While some works address fairness, many lack comprehensive
evaluation strategies and fairness metrics. Moreover, few consider
fairness attacks, which are essential for evaluating fairness under
adversarial conditions. This study examines adversarial attacks on
FL systems and employs fairness metrics to assess our approach
using real-world healthcare datasets.

2.3 Uncertainty-Aware Al-based Disease
Diagnosis and Detection

MacDonald et al. [25] emphasized the role of uncertainty in Al
healthcare, particularly in decision-making, safety, and reliability.
It helps quantify confidence in predictions, is critical for high-risk
domains like clinical decision-making, and supports fairness by
identifying model bias, especially in underrepresented populations.
Tabarisaadi et al. [38] improved Al reliability in skin cancer de-
tection by integrating uncertainty quantification (UQ) into mod-
els, using algorithms like MC Dropout, Bayesian Ensembling, and
SNGP. Ghoshal et al. [12] applied Bayesian Convolutional Neural
Networks (BCNN) for grading pancreatic adenocarcinoma, using
predictive uncertainty to flag unreliable predictions. Prince et al.
[31] introduced Bayesian deep learning to enhance the diagnosis
of adamantinomatous craniopharyngioma (ACP) from MRI images,
identifying uncertainty through predictive distributions. Wang et al.
[40] proposed FedUAA, an FL model for diabetic retinopathy, incor-
porating uncertainty-aware weighting to evaluate client reliability
and adapt aggregation weights.

While uncertainty-aware models improve reliability, their cal-
ibration often lacks consistency across demographic subgroups,
leading to varying confidence levels. Existing works overlook secu-
rity challenges, such as adversarial attacks, which degrade model
performance. In contrast, our approach uses uncertainty-aware
techniques to enhance both model performance and fairness in FL
healthcare systems, even under adversarial conditions.

3 PRELIMINARIES
3.1 Evidential Neural Networks (ENNs5s)

An Evidential Neural Network (ENN) is similar to classical neural
networks, with the key difference being that the softmax layer is
replaced by an activation layer (i.e. ReLU) to ensure non-negative
outputs. These outputs are then treated as the evidence vector,
which is used to model a predicted Dirichlet distribution [35] built
on the theory of Dempster-Shafer theory [9] and Subjective Logic [15].
Instead of outputting a single class label, it produces a belief func-
tion that quantifies the confidence in various possible outcomes. Hu
et al. [14] further enhanced [35]’s work, allowing it to measure the
quality of the predicted Dirichlet distributions directly. For a given
sample i, let f(x;|©) denote the evidence vector predicted by the
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network for classification, where x; € R represents the input fea-
tures and © corresponds to the network parameters. The associated
Dirichlet distribution has parameters a; = f(x;|©) + 1. Let y; rep-
resent the true label. The Dirichlet density Dir(p;; ) serves as the
prior for the Multinomial distribution, Multi(y;|p;). To estimate
the parameters «; for sample i, the following sum of squared loss
is formulated, given the Dirichlet PDF:
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tion. The k-dimensional Dirichlet PDF represents the multinomial
probability density over a domain with cardinality k, which can re-
duce to a Beta PDF with the specific case of a binary domain (k = 2)
as a binary opinion. This work uses the Beta PDF to represent a

binomial opinion in binary decision-making for disease prediction.

3.2 Problem Statement

This work uses an uncertainty-aware FL framework to detect Alzheimer’s

disease while ensuring group-level fairness. The system is struc-
tured as a horizontal FL model, with a global model hosted on a
cloud server and local models operating across hospitals (clients).
This decentralized approach maintains data privacy, as each hos-
pital trains its local model using patient data and sends periodic
updates to the global model. The challenge is ensuring fair updates
from local models, handling data heterogeneity across hospitals.

This work aims to propose a solution to these challenges by
introducing U-FARE (Uncertainty-aware, FAir fedeRated IEarning),
a novel uncertainty-aware, fair FL framework designed specifically
for healthcare disease prediction tasks. U-FARE leverages evidential
neural networks (ENN) to have the model performance of each
client uniformly distributed (group fairness) while maintaining the
high prediction accuracy of the predictive model. We formulate the
objective by:

maximize GF(M(0%)), subjectto ACC(M(6%)) > 1.

@

In our system, M(6*) denotes the testing prediction accuracy across
the local models with parameters 6* after achieving the total com-
munication rounds. 0 is a set of local model parameters each client
learns. GF(M(0%)) is group fairness, which will be measured by
specific fairness metrics (see Section 6.4), and 7 is a threshold for
the testing accuracy. This approach underlines our commitment
to developing an uncertainty-aware, fair FL for the healthcare sys-
tem, achieving high prediction accuracy while guaranteeing group
fairness across participants.

4 SYSTEM MODEL
4.1 Network Model

The smart healthcare system considered here employs a network
model that integrates multiple hospitals as clients and a cloud server
as the central server, as illustrated in Figure 1. This FL structure is
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Figure 1: Network model of FL healthcare system.

known as horizontal federated learning (HFL), where data share
the same feature space but come from different sample spaces. In
an FL-based smart healthcare system, each hospital collects indi-
vidual data, such as medical images (feature space), from multiple
patients (sample space) to train its local predictive model. While
hospitals may treat different patients, they all use the same types
of information, such as MRI images, to detect specific diseases.
For FL operations, the system begins with the central server ini-
tializing a global model, which is then distributed to each client
(i.e., hospital). Each client trains the model locally using its patient
data, computes updates, and sends these updates back to the cen-
tral server. The server aggregates these updates, refines the global
model, and redistributes the improved model to all clients. This iter-
ative process of local training, update aggregation, and global model
refinement continues for several rounds until the model reaches
satisfactory performance. A deep learning (DL) model, deployed
across clients and the central server, is used to detect Alzheimer’s
disease, outputting a binary classification: 0 for healthy and 1 for
disease diagnosis. This approach enables the development of ro-
bust predictive models by leveraging diverse datasets from multiple
hospitals while ensuring patient data privacy and security.

4.2 Node Model

In the healthcare network, the clients are individual hospitals. Each
hospital possesses its own local dataset, which includes patient
information, medical records, imaging data, etc. The hospitals do
not share their raw data with other institutions to maintain patient
privacy and comply with data protection regulations. Each hospital
trains a local model on its dataset. During this process, the hospi-
tal’s data never leaves its premises. Instead, the hospital computes
updates to the model (such as gradients) based on its local data.
These updates are then sent to the central server. This setup allows
hospitals to collaborate on developing robust predictive models
without compromising patient confidentiality. It is challenging to
create a more diverse and generalized model since the data from
different hospitals can vary significantly in terms of demographics,
disease prevalence, and medical practices.

The central server acts as the aggregator and coordinator of the
federated learning process. It does not have direct access to any raw
data from the hospitals. The central server collects model updates
(e.g., gradients or model parameters) from all participating clients. It
aggregates these updates to create a global model. This global model
is then sent back to the clients, which further train it using their
local data in the next iteration. This process is repeated for multiple
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rounds until the model converges to a satisfactory performance
level. The central server facilitates collaboration among hospitals,
ensuring that the benefits of shared learning are realized without
compromising data privacy. It orchestrates the overall learning
process, ensuring that the global model continually improves by
leveraging the diverse datasets of all participating hospitals.

4.3 Threat Model

To understand the vulnerabilities within FL systems and evaluate
the effectiveness of our approach against different attacks, we exam-
ine adversarial attacks performed on compromised clients aiming
to disrupt the training process by modifying the local model param-
eters or local training datasets. We consider them fairness attacks
since malicious updates can further create performance discrepan-
cies among clients, violating the fairness principle of uniform local
performance [33].

e Byzantine attacks [5] primarily target clients (i.e., hospitals),
prolonging their learning duration or leading to model diver-
gence while training their local models. They disrupt the FL
training process by injecting arbitrary metrics via Stochastic Gra-
dient Descent (SGD) updates. In this work, we employ a Gaussian
noise-based approach to introduce Gaussian noise into the model
parameters of compromised clients before they are uploaded to
the central server. The success of Byzantine attacks introduces
Byzantine updates that can skew the global model to perform
poorly on specific data distributions, affecting only a subset of
participants. Clients with local data distributions closer to the poi-
soned updates are disproportionately affected, creating unequal
performance across participants.

e Poisoning attacks [39] compromise the datasets on clients that
deliberately manipulate input data to deceive the model into
making incorrect predictions. These manipulations are often
minimal and invisible to humans but can cause significant errors
in the model’s output. This work considers a backdoor-based ap-
proach [3], in which a malicious client injects a specific pattern
or trigger into its local training data to manipulate the global
model’s behavior. The attacker aims to make the model perform
generally on standard inputs but produce attacker-desired out-
puts when the trigger is present. Such an attack can cause the
global model to learn biased or incorrect patterns, disproportion-
ately affecting local devices with data that overlaps with poisoned
classes. For instance, if certain classes are targeted for backdoor-
ing, participants with a higher proportion of these classes in their
local datasets will experience degraded performance, breaking
the fairness guarantee.

5 PROPOSED APPROACH: U-FARE

In the FL context, group fairness differs from its interpretation
in traditional deep learning domains. A group-level fair solution
means more uniform regarding various metrics. One common met-
ric for uniformity is the variance of accuracy distribution, which
we can formally define the notion of fairness [22].

Definition 1[22]: A solution w is more fair than w if the perfor-
mance of m devices {Fy, ..., F,} satisfies

Var(Fi(w), ..., Fm(w)) < Var(F1(w ), ..., Fm(w)).  (3)
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Ensuring fairness in a smart healthcare system for disease detec-
tion is crucial for equitable healthcare outcomes across hospitals.
Disparities in model performance can lead to unequal access to ac-
curate diagnoses, exacerbating healthcare inequalities. By ensuring
consistent model performance across hospitals, we promote reliable
healthcare services regardless of geographic or demographic differ-
ences. This enhances trust in the system and ensures high-quality
patient care, improving overall public health outcomes. Therefore,
developing a fair FL framework is essential for building a robust
and adaptable healthcare system that serves diverse populations.

To achieve group-level fairness in an ENN-based FL framework,
we propose an algorithm integrating the uncertainty and fairness by
introducing a concept of the degree of conflict. As described before,
An ENN model is built on Subjective Logic (SL), which can formulate
a belief model as the output of the ENN model to explicitly deal
with uncertainty. In SL [15], a client A can form its opinion about
a given proposition X, denoted by wf} = {bx, ux, ax }, where by
is the belief masses distribution, uy is the uncertainty mass, and
ay is the base rate (i.e., prior belief) distribution of variable X. The
components satisfy the additivity requirement with ux + 3 bx (x) =
1. A core assumption of SL is that different agents can hold varying
opinions about the same variable. This demonstrates the subjective
way people perceive the world.

Regarding predictive tasks, having different opinions about the
same sample can be a significant issue since it complicates deter-
mining the best prediction outcome. Accordingly, the degree of
conflict (DC) [16] measures the disparity between opinions and
can be utilized to manage differing views about the same target.
Consider two agents, B and C, each holding opinions wﬁ and wg
about a common variable X. A fundamental way to quantify the
conflict between these opinions is through the projected distance
(PD), as:

PD(wg,w}C;) = % Z |P§(x) - P)C((x) .
xeX

The PD has the property PD € [0,1]. When PD = 0, it indicates
identical projected probability distributions, signifying no conflict,
though the underlying opinions may differ. Conversely, PD = 1
corresponds to maximum disagreement, arising when the projected
probabilities represent completely opposing views. However, a high
PD does not always show conflict, as high uncertainty in one or
both opinions can mitigate the potential disagreement. When un-
certainty is high, a greater PD can be tolerated since uncertain
opinions contribute less weight in any fusion process.

The conjunctive certainty (CC) [15] is then leveraged as a logical
metric to quantify the combined certainty of two opinions, 2, and

4)

wg, and is defined as:
CC(wk,0%) = (1-uf)(1-uf). (5)

The value of CC lies in the range [0, 1], where CC = 0 indicates
complete uncertainty in at least one opinion, and CC = 1 means
both opinions are fully certain with no uncertainty.

The degree of conflict (DC) between the opinions is defined as
the product of PD and CC.

Definition 2 [15]: Consider two agents, B and C, who hold respec-

tive opinions a))% and w)c( regarding a shared variable X. The degree

of conflict (DC) between these opinions, denoted as DC (w)%, w)c(),
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is defined as follows:

DC(wg, w)c() = PD(wg, a))c() . CC(wB, w)cé)

(6)

With our FL framework, client A’s current opinion about a patient
is significantly in conflict with the updated global model’s opinion
wg, and client B’s opinion has low DC with wg about the same
patient, the prediction accuracy of client A and B will be different
and result in a large variance of the performance distribution which
means unfair. Therefore, we leverage the concept of DC to achieve
fairness in clients by reducing degree of conflict between clients’
opinions and the central server’s opinion.

Our framework follows the training procedure of FedAvg [26]
and extends with the proposed uncertainty-aware approach. At
the beginning of each communication round ¢, the central server
randomly selects K clients to participate in the FL training process.
The server then transmits the global model parameters 0; to the
selected clients. Each client k updates 6; for E epochs using its local
dataset X}, resulting in the updated model Gf,

With the updated local model, client k computes the parameters
of the Dirichlet distribution as follows:

ok ={ai|ieX) = {f(ul0F)+1]ieXy), @)

where f (x,-|9£‘ ) represents the evidence vector predicted by the
network for classification tasks on client k’s local dataset, and
x; € X denotes the input feature.
Next, given W is the number of classes in Xk, client k calculates
: k : k .
the belief mass ka and uncertainty Uy, by:

pk — (xiwf) uJo=
Xk S > Xk
where S = ¥ e x, (f (xi05) +1).

Finally, each client k sends its updated model 9;‘ and its opinion,
represented as wﬁk
Algorithm 1 demonstrates the previous steps with lines 1-6.

After receiving the local updates from the clients, the central
server updates the global model parameters 6y, using the standard
FedAvg approach:

3 ®)

= (b;‘(k, uf(k, a)k(k), back to the central server.

K
Zin b

X ©)

where K is the total number of selected clients, the server computes
the global opinion wg( based on 60;+1, and X represents the global
dataset. Following this, the central server evaluates the DC between

Or+1 =

the global opinion wg( and each selected client’s opinion wk x based
on Eq. (6). The server sorts the selected clients in descending order
based on their DC with the global opinion to identify the client
with the highest conflict with the global model. The server recal-
culates the global model by assigning a higher weight to the most
conflicting client, scaled by a factor A. This highlights the primary
innovation of the proposed algorithm, which leverages uncertainty
quantification, distinguishing it from traditional fairness-aware ap-
proaches, such as q-FFLs [22], which adjust a client’s influence on
the global model based on its loss value. Algorithm 1 describes
this process in lines 7-10.

Enhancing the influence of the client that most conflicts with
the global model can help reduce performance disparities but may
also compromise the prediction accuracy for that client. To address
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Algorithm 1 U-FARE

Require: Total number of clients N, number of selected clients K,
clients’ datasets {X1, ..., X}, total communication rounds T,
Epoch E, initialized model parameters 0y, clients k = 1,...,m

1: fort=0,...,T-1do

Central server randomly selects K clients

Central server sends local model 6; to all selected clients

Each selected client k updates 6; for E epochs to obtain 95‘

a)k( )

k

Each client k sends Gf and opinion wf(k to central server

Each client k formulates its opinion Wy, = (ka, Uy,

B

7. Central server updates 6;41
8:  Central server obtains global opinion wg( based on 041

9:  Find 0* = arg maxf=1 DC(7, 9§(k)

10:  Compute new 6;,1 by
TR, 0f+ 26"
0141 = - x
where A is the weight assigned to the client with the highest
conflict.
11: end for

this, it is essential to determine an optimal scaling factor, A, that
improves the uniformity of local model performance while main-
taining high overall prediction accuracy. We carefully fine-tune
A through empirical experiments, selecting the value that outper-
forms baseline approaches in terms of both fairness and prediction
accuracy.

6 EXPERIMENTAL SETUP
6.1 Datasets

To evaluate our proposed approach, we utilize a collection of datasets
specifically focused on Alzheimer’s disease detection. Below, we
provide a detailed description of each dataset and its relevance to
Alzheimer’s disease detection:

e Alzheimer’s Disease Neuroimaging Initiative (ADNI) [2]:
ADNI is a large, longitudinal, multi-site study launched in 2004
to advance research on Alzheimer’s disease (AD). ADNI is one
of the most significant and influential research projects in the
field of neurodegenerative diseases. This dataset contains 3D
volumetric magnetic resonance imaging (MRI) scans for binary
classification of Alzheimer’s disease vs. cognitive normal. They
were preprocessed to extract measurements of regional volumes
derived from neuroimaging data. The final dataset is tabular,
consisting of 24,159 samples, each characterized by 87 features.
OASIS-3 [19]: The OASIS-3 dataset is a comprehensive retrospec-
tive resource for studying normal aging and Alzheimer’s disease.
It spans 30 years and includes data from 1,378 participants aged
42-95 years. This dataset includes MRI scans designed for bi-
nary classification between Alzheimer’s disease and cognitively
normal states, with a total of 40332 samples.

National Alzheimer’s Coordinating Center (NACC): This
database collects data through the Uniform Data Set (UDS), which
has been collecting longitudinal standardized clinical data since
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Table 1: Key DESIGN PARAMETERS AND DEFAULT VALUES

Parameter Value
Total number of clients 5
Communication rounds 20
Local training epochs 40
Simulation runs 10
Learning rate 0.1
Learning rate lambda 0.1
Batch size 64

2005. Data are provided by Alzheimer’s Disease Research Cen-
ters (ADRCs) as part of the National Institute of Aging’s ADRC
Program. We select an MRI dataset for binary classification of
Alzheimer’s disease vs. cognitive normal, including 16200 image
samples.

For each dataset, we employ the Synthetic Minority Over-sampling
Technique (SMOTE) [6] to mitigate the class imbalance, ensuring an
equal number of samples in both the positive and negative classes.
Aside from SMOTE, no additional data preprocessing techniques
are applied, as the primary objective of this work extends beyond
merely improving prediction accuracy.

6.2 Parameterization

The hyperparameters used in the experiments are meticulously
selected to optimize the performance of the federated learning
framework. The learning rate is set to 0.1, along with a learning rate
lambda of 0.1 to effectively balance the loss components. Each client
performs local training using a batch size of 64 over 40 epochs per
round. The framework comprises 20 communication rounds, with
five clients actively participating in each round, and the simulations
are repeated 10 times to ensure robust evaluation. A convolutional
neural network (CNN) is utilized as the model, chosen for its effi-
ciency and effectiveness in image classification. Table 1 provides a
detailed summary of the key parameters and their default values
used in the experiments.

6.3 Comparing Schemes

To evaluate the effectiveness of our proposed approach, we compare
U-FARE with the following state-of-the-art fairness-aware schemes:

e Agnostic FL (AFL) [29] is a framework that optimizes a cen-
tralized model to perform well across any target distribution,
formed by a mixture of client distributions, addressing biases in
FL. This approach naturally promotes fairness and provides data-
dependent guarantees for learning, along with a fast optimization
algorithm and convergence bounds.

q-FedSGD [22] is an optimization method designed to solve the
q-Fair Federated Learning (q-FFL) problem using Stochastic Gra-
dient Descent (SGD) in FL settings. It extends the idea of fairness
in federated learning by adjusting the gradients to promote a
more uniform accuracy distribution across participating devices.
q-FedAvg [22] is a communication-efficient version of q-FedSGD,
replacing the update steps with a heuristic approach.

q-MAML [22] is a meta-learning method that extends the q-FFL
objective to improve fairness in personalized models. It learns
a model initialization that can be quickly adapted to new tasks
with limited data, while reducing accuracy variance across tasks.
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o Ditto [21] is a personalized federated learning framework that
balances fairness and robustness in statistically heterogeneous
networks by addressing competing data constraints and model
poisoning attacks and performance uniformity across devices.

6.4 Metrics

We evaluate the performance of the proposed FL system by measur-
ing prediction accuracy and (group) fairness through three metrics:

e Prediction Accuracy measures the consistency between the
model’s predicted results for detecting Alzheimer’s disease and
the actual observed values. We evaluate the model performance
by capturing the testing accuracy of aggregation for each com-
munication round.

e Loss Disparity (LD) [4] computes the variance in testing loss
values across clients, formulated by:

N
1
D= Z Var(L;), (10)
i=1
where £; is the testing loss value of client i, and N is the to-
tal number of clients. A lower LD indicates a more equitable
distribution of loss, and thus a more fair FL system.
e Accuracy Disparity (AD) [22] measures the variance in accu-
racy across clients, defined as:
1 2
AD = N Z (Accuracyi - Accuracy) , (11)
i=1
where Accuracy; is client i’s prediction accuracy for detecting
Alzheimer’s disease, and Accuracy is the average accuracy across
clients. A lower AD represents a higher group fairness of predic-
tive performance in the FL framework.

7 RESULTS & ANALYSIS

7.1 Performance Comparison Analyses

Table 2 presents a detailed performance comparison of various
fairness-aware FL methods, and the proposed U-FARE on three
healthcare-related datasets: NACC, OASIS, and ADNI. The table pro-
vides results for both IID (Independent and Identically Distributed)
and non-1ID (non-Independent and Identically Distributed) data
distributions, which are typical scenarios in federated learning for
healthcare. In terms of prediction accuracy (Acc), U-FARE consis-
tently shows superior performance across all datasets and data
distributions. For example, on the NACC dataset under IID con-
ditions, U-FARE achieves the highest accuracy (0.928) compared
to other methods, which demonstrates its effectiveness in making
accurate predictions.

Furthermore, U-FARE stands out not only in terms of accuracy
but also in its fairness metrics, which are represented by accuracy
variance (AV) and loss disparity (LD). Both AV and LD are critical
for evaluating the fairness of FL methods, with lower values being
preferable. U-FARE consistently maintains the lowest AV and LD
values, indicating its ability to reduce fairness issues such as dis-
parate performance across different clients. For instance, on the
NACC dataset under IID conditions, U-FARE has an AV of 0.0007
and LD of 0.0006, which is substantially better than other methods,
including Ditto, which has a higher AV and LD. Under the non-IID
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conditions, where the data is more challenging due to heteroge-
neous distributions across clients, U-FARE continues to demonstrate
its superiority in fairness. The method significantly reduces AV and
LD while maintaining competitive accuracy. For example, in the
ADNI dataset under non-IID conditions, U-FARE achieves an accu-
racy of 0.802, along with AV and LD values of 0.039 and 0.0497,
respectively, outperforming the other methods in terms of both
fairness and prediction accuracy.

Additionally, we observe an interesting inconsistency between
the two fairness metrics. For instance, in the case of the NACC
dataset, U-FARE outperforms all baseline methods in terms of
prediction accuracy and accuracy variance, yet it falls short of
q-FedAvg in terms of loss disparity. This discrepancy may arise
because q-FedAvg is a loss-based approach that achieves fairness by
assigning higher weights to clients with higher loss values during
training. In contrast, U-FARE leverages an uncertainty-aware fair
approach, where uncertainty more accurately represents prediction
outcomes than loss values. This may explain why U-FARE achieves
superior performance in balancing both accuracy and fairness, as
it utilizes uncertainty to enhance the model’s understanding of its
predictions, leading to better overall outcomes.

7.2 Sensitivity Analyses

7.2.1 Varying the level of fairness. In our approach, fairness
is not explicitly set or controlled, unlike in q-FFL methods, where
fairness levels can be directly adjusted. To evaluate the performance
of our proposed U-FARE, we conduct a sensitivity analysis by vary-
ing the fairness levels of the g-value-based baseline methods. This
enables us to identify the specific fairness levels at which our ap-
proach outperforms the baseline methods, offering insights into its
effectiveness under different fairness constraints.

Figures 2 to 4 show the effect of varying fairness levels, repre-
sented by the g value. The proposed U-FARE consistently outper-
forms all baseline methods across the three datasets, even at the
highest fairness levels, except for q-FedAvg. For q-FedAvg, U-FARE
performs better when g > 0.01 for IID data and consistently excels
with non-IID data on the NACC dataset, as shown in Figure 2. On
the OASIS dataset (Figure 3), U-FARE not only surpasses q-FedAvg in
prediction accuracy but also achieves superior fairness for g > 0.1
with IID data, maintaining this advantage for all fairness levels
with non-IID data. With the ADNI dataset in Figure 4, U-FARE out-
performs q-FedAvg on both fairness metrics and achieves higher
prediction accuracy for g > 0.1.

As expected, higher fairness levels often compromise prediction
accuracy. An increase in g results in greater fairness, as measured by
LD, but also a decrease in prediction accuracy due to the inclusion of
lower-performing clients, which lowers overall model performance.
However, this trend does not hold for the AV metric, which increases
as q rises, indicating lower fairness. Although Li et al. [22] report
different findings, our sensitivity analysis aligns with theirs in terms
of performance comparison, suggesting that loss is not a robust
metric for representing prediction outcomes or addressing fairness.
Notably, in q-FFLs, the models and datasets used differ from those
in this study, which could explain the discrepancies. This indicates
that the g value may need fine-tuning for each specific setting (i.e.,
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Table 2: SUMMARY OF PERFORMANCE COMPARISON

Dataset  Data Type ‘ q-FedAvg (g =1) ‘ q-FedSGD (g = 1) ‘ q-MAML (g = 1) ‘ AFL ‘ Ditto ‘ U-FARE
| Acc AV LD | Acc AV LD | Acc AV LD | Acc AV LD | Acc AV LD | Acc AV LD
NACC 1D 0473  0.0020  0.0002 | 0.635 0.0021  0.0037 | 0.618  0.0021  0.0023 | 0.602 00021 00017 | 0736  0.0073  0.0231 | 0.928  0.0007  0.0006
Non-IID 0610 01018  0.0039 | 0.620 0.0605 0.0457 | 0.622  0.0592  0.0410 | 0.639  0.0487 02345 | 0752 00566 0.0762 | 0.890  0.0157  0.0142
OASIS 1D 0499  0.0016  0.0006 | 0.603  0.0015  0.0015 | 0.593  0.0015  0.0013 | 0589  0.0015  0.0007 | 0.600  0.0055  0.0026 | 0.832  0.0012  0.0008
Non-IID 0493 00706  0.0102 | 0554 0.0597 00378 | 0.573  0.0495  0.0296 | 0.563  0.0444  0.1993 | 0.680  0.0383  0.0214 | 0.837  0.0077  0.0018
ADNI 1D 0679  0.0025  0.0006 | 0.838  0.0014  0.0007 | 0.858  0.0015  0.0006 | 0.817  0.0017  0.0001 | 0.818  0.019 00376 | 0.912  0.0010  0.0015
Non-IID 0652 00220  0.0096 | 0799  0.0054  0.0031 | 0.801  0.0057  0.0028 | 0.817  0.0039  0.0004 | 0.802  0.039  0.0497 | 0.921  0.0044  0.0037
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Figure 2: Effect of varying the level of fairness (q) under NACC IID and non-IID datasets.

model and dataset) to achieve the desired balance, where higher ¢
enhances fairness.

7.2.2 Varying the number of clients. Figures 5 to 7 explore how
performance metrics change with varying numbers of clients in the
FL system. We find that U-FARE continues to outperform baseline
methods across all three metrics, with no significant sensitivity to
increasing the number of clients. Notably, for the ADNI dataset
shown as Figure 7, Ditto demonstrates a more pronounced sensitiv-
ity to changes in client numbers across all metrics. As the number of
clients increases, Ditto improves prediction accuracy and fairness,
surpassing U-FARE when the client count exceeds 15. This suggests
that Ditto’s personalized approach benefits from larger-scale FL
systems, leveraging the increased number of clients effectively.

7.2.3 Varying the attack severity. We investigate two types of
adversarial attacks outlined in our threat model (see Section 4.3). We
employ a backdoor approach for the poisoning attack by injecting
triggers into 10% of the training data, where the triggers correspond
to the positive class. To evaluate the impact of the Byzantine attack,
we examine the attack severity, which represents the probability
of an attacker successfully executing an attack at any given time .
For example, with an attack severity of 0.1, there is a 10% chance

229

that the attacker will successfully inject Gaussian noise into the
local model parameters. We experiment with the NACC dataset by
injecting backdoor triggers into the dataset and then generating
both IID and non-IID data as training samples.

Figure 8 illustrates the impact of different levels of attack sever-
ity, where higher severity triggers an attack to succeed more often,
representing a higher impact on the performance metrics of FL
schemes. For U-FARE, increased attack severity leads to a decline
in prediction accuracy and fairness, in terms of AV, as illustrated
in Fig. 8 (a), (b), (d) and (e). An increase in attack severity results
in lower prediction accuracy due to the inclusion of more compro-
mised local updates, undermining the model’s prediction accuracy
and AV performance. However, attack severity does not signif-
icantly impact LD, showing the system’s robustness under one
fairness metric. It is worth mentioning that Ditto is most robust
to adversarial attacks under the IID setting in terms of fairness
performance, as shown in Figrue 8. As attack severity increases,
the AV decreases, resulting in a fairer FL system. This is because
Ditto trains personalized models for each client by considering both
local data and shared global knowledge. This allows each client
to maintain its model tailored to its data, reducing the impact of
malicious updates from other clients.
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Figure 4: Effect of varying the level of fairness (g) under ADNI IID and non-IID datasets.

8 CONCLUSION & FUTURE WORK

This work proposed U-FARE, an uncertainty-aware fair FL frame-
work to enhance the prediction accuracy and fairness of Al models
in healthcare systems, particularly in the context of Alzheimer’s
disease detection. U-FARE integrates evidential neural networks
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into the FL paradigm to quantify and manage uncertainty, offering
significant advantages over existing fairness-aware FL methods.
The experimental results demonstrated the superior performance
of U-FARE across a range of healthcare datasets, including NACC,
OASIS, and ADNI, where it consistently outperformed other fairness-
aware FL methods in terms of both prediction accuracy and fairness
metrics. Our method maintained the lowest values for accuracy
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Figure 5: Effect of varying the number of clients under NACC IID and non-IID datasets.
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Figure 6: Effect of varying the number of clients under OASIS IID and non-IID datasets.

variance and loss disparity, indicating its ability to reduce fairness
issues and promote equitable performance across clients. Further-
more, U-FARE exhibited strong resilience to adversarial attacks,
maintaining reliability in prediction accuracy and fairness even
under poisoning and Byzantine attacks.

The insights gained from our sensitivity analysis suggest that
while increasing fairness levels can reduce prediction accuracy,
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U-FARE balances these trade-offs effectively. Our approach, driven
by uncertainty-aware principles, proves more reliable and robust
than traditional fairness metrics like loss-based approaches.

For the future work, we aim to leverage privacy-preserving
techniques into U-FARE to ensure both privacy and fairness while
maintaining high prediction accuracy. We will also explore the re-
lationship between fairness, privacy, and uncertainty to develop an
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