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ABSTRACT
This paper proposes U-FARE, an uncertainty-aware fair federated

learning (FL) framework aimed at improving disease prediction in

healthcare, with a specific focus on Alzheimer’s disease detection.

U-FARE incorporates evidential neural networks (ENN) to quan-

tify uncertainty, enhancing both model fairness and accuracy. The

framework ensures group-level fairness, providing consistentmodel

performance across diverse healthcare environments despite data

heterogeneity. We evaluate U-FARE on three real-world healthcare

datasets—NACC, OASIS, and ADNI—comparing its performance to

several state-of-the-art fairness-aware FL methods. Experimental

results demonstrate that U-FARE outperforms baseline methods in

both prediction accuracy and fairness, effectively balancing these

two crucial aspects. The results also reveal the trade-off between

fairness and accuracy, where higher fairness levels may compro-

mise prediction accuracy. U-FARE achieves the highest accuracy

(0.928) on the NACC dataset, consistently outperforms the compet-

itive baseline q-FedAvg by 46%, particularly when higher fairness

constraints are applied, and outperforms methods like Ditto and

q-FFL with minimal accuracy variance and loss disparity. This is the

first approach to simultaneously optimize fairness and accuracy in

FL for Alzheimer’s disease detection, providing a novel solution to

the challenge of fair and effective AI in healthcare. The framework

demonstrates the potential to address data heterogeneity while

ensuring privacy and fairness in real-world applications.

CCS CONCEPTS
• Computing methodologies → Cooperation and coordination;
Distributed artificial intelligence; Reasoning about belief
and knowledge; Machine learning; • Security and privacy →
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1 INTRODUCTION
The advent of artificial intelligence (AI) in healthcare has revolution-

ized disease detection, diagnosis, and management, particularly in

complex conditions like Alzheimer’s disease, where early diagnosis

is crucial for timely intervention and improved quality of life [1, 34].

However, medical data heterogeneity – arising from differences in

demographics, imaging modalities, and clinical protocols – makes it

challenging to develop models that perform uniformly well across

diverse populations [1, 34]. Federated learning (FL) has emerged as

a promising approach for training models collaboratively while pre-

serving data privacy, facilitated by the proliferation of distributed

medical devices and patient data [30]. Yet, achieving ethical AI in

healthcare through FL presents challenges, particularly in ensur-

ing fairness and addressing uncertainty in predictions. Fairness

is essential to avoid exacerbating disparities in healthcare access

and outcomes. FL often focuses on group fairness, as data quality,

quantity, and distribution vary across devices [7]. Without group

fairness, disparities in model performance can lead to inequitable

outcomes, undermining trust in AI systems [7, 30].

Uncertainty in healthcare AI is a critical factor influencing fair-

ness, particularly in disease prediction, where it can affect patient

outcomes [25, 36]. The heterogeneous and non-IID nature of data

in FL can amplify uncertainty, causing uneven learning and unre-

liable predictions across the network, which impacts fairness and

reliability [23]. Uncertainty-aware approaches offer several advan-

tages in FL. They allow quality-aware aggregation by weighting
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contributions based on reliability, preventing low-quality or outlier

data from skewing the global model [32]. These models also sup-

port personalized adaptation, improving local performance while

maintaining global fairness, and are robust to adversarial or noisy

data [32]. Uncertainty estimates enhance trust and interpretabil-

ity, allowing clinicians to make informed decisions [25]. One of

the key technical challenges lies in integrating uncertainty into

fairness to improve the performance of FL-based healthcare sys-

tems. Therefore, this work proposes an uncertainty-aware fair FL

framework that ensures high prediction accuracy in Alzheimer’s

detection while maintaining robust group fairness, even with data

heterogeneity. We make the following key contributions:
• We propose an uncertainty-aware, fair federated learning (FL)

framework, named U-FARE: Uncertainty-aware, FAir fedeRated
lEarning, designed explicitly for healthcare systems in disease

prediction. The framework utilizes evidential neural networks

(ENN) to quantify uncertainty during the learning process, en-

hancing model performance (i.e., prediction accuracy) and fair-

ness. This is the first approach to integrate ENNs into FL settings.

• We ensure group-level fairness in the uncertainty-aware FL frame-

work, guaranteeing consistent model performance across all

clients. Group-level fairness ensures that the model performs

equitably across different groups of clients, even when their data

varies in quality, quantity, or distribution [11]. By addressing dis-

parities in data quality and distribution, the framework promotes

equitable outcomes, ensuring that each client, regardless of their

data characteristics, benefits from uniform model performance in

diverse healthcare settings. Furthermore, unlike existing works,

we explicitly consider fairness threats in testing our fairness-

aware FL framework. This provides a more rigorous evaluation

of fairness mechanisms under adversarial conditions, ensuring

robustness in real-world applications.

• We evaluate the proposed approach on real-world healthcare

datasets, marking the first application of uncertainty-aware fair

FL to Alzheimer’s disease detection [17, 27]. The results demon-

strate the superior performance of U-FARE, highlighting its ef-

fectiveness in balancing fairness and prediction accuracy while

achieving state-of-the-art results. To date, no prior work has

addressed the challenge of optimizing both fairness and model

accuracy using FL for Alzheimer’s disease detection.

• The framework provides a comprehensive comparison with exist-

ing fairness-aware FL methods, demonstrating U-FARE’s superior
performance in terms of prediction accuracy, fairness, accuracy

variance (AV), and loss disparity (LD). This benchmarking show-

cases U-FARE’s robustness in handling data heterogeneity while

maintaining fairness.

• We present a novel sensitivity analysis on varying fairness levels,

illustrating the trade-off between fairness and prediction accu-

racy. This analysis provides key insights into how the system

balances these metrics effectively and guides the fine-tuning of

the framework to achieve the desired outcome.

2 RELATED WORK
2.1 Fairness-aware Federated Learning
Mohri et al. [29] introduced Agnostic Federated Learning (AFL),

optimizing model performance across all client distributions by

minimizing worst-case loss, ensuring robustness and fairness in

heterogeneous settings. Li et al. [22] proposed q-Fair Federated

Learning (q-FFL), an optimization framework for fairness in feder-

ated systems with non-IID data, prioritizing clients with higher loss

values to reduce performance disparities. q-FFL includes three algo-

rithms: q-FedAvg, which extends Federated Averaging with client

loss-based weighting; q-FedSGD, which adapts stochastic gradient

descent; and q-MAML, integrating fairness into Model-Agnostic

Meta-Learning (MAML) for better client task generalization.

Li et al. [21] developed Ditto, a personalized federated learning

framework optimizing both global and individual client models,

allowing adaptation to unique data while benefiting from shared

knowledge. However, Ditto lacks specific fairness metrics for eval-

uation. Liu et al. [24] proposed the Contribution-Aware Federated

Learning (CAreFL) framework for smart healthcare, improving

model aggregation efficiency by 2.84 times while ensuring fair, ex-

plainable, and privacy-preserving evaluations. Düsing and Cimiano

[10] introduced the Benefit and Contribution metrics, showing that

data imbalances reduce benefits while increasing client contribu-

tions. Hosseini et al. [13] developed Proportionally Fair Federated

Learning (Prop-FFL) to reduce performance variations across hospi-

tals, while Cui et al. [8] used multi-objective optimization to ensure

fairness and performance consistency across local clients.

Ezzeldin et al. [11] proposed FairFed, a fairness-aware aggre-

gation algorithm to enhance group fairness in FL by evaluating

fairness on local datasets and adjusting aggregation weights by

aligning global fairness metrics, which ensures privacy via secure

aggregation. Li et al. [23] adapted the Gini coefficient to quantify

fairness in FL, measuring fairness in model accuracy across clients.

While most works focus on collaborative fairness, they often

neglect group fairness, especially in healthcare settings. Li et al.

[22] addresses group fairness but does not apply it to real-world

datasets like healthcare data. Our approach addresses these gaps by

introducing an uncertainty-aware fair method tailored for health-

care datasets, specifically Alzheimer’s disease, while enhancing

group fairness and overcoming the limitations of prior work.

2.2 FL-based Disease Diagnosis and Detection
Meerza et al. [27] introduced the first FL approach for automatic

Alzheimer’s Disease (AD) diagnosis using spontaneous speech anal-

ysis, ensuring fairness across clients. They employed q-FEDAvg and

q-FEDSgd aggregation mechanisms to mitigate algorithmic bias

from data heterogeneity. Zhang et al. [42] applied cryptographic

techniques in IoT and FL-based healthcare systems to protect local

models from adversarial attacks like model reconstruction. Yazdine-

jad et al. [41] proposed the AP2FL model, using Trusted Execu-

tion Environments (TEE) to secure both clients and servers during

training, while integrating Active Personalized Federated Learning

(ActPerFL) and Batch Normalization (BN) to mitigate performance

degradation due to data heterogeneity.

Li et al. [20] developed ADDetector, an FL-based AD detection

system that ensures privacy against man-in-the-middle attacks

through asynchronous aggregation and enhances accuracy with

linguistic features from smart speakers. Mitrovska et al. [28] com-

pared FedAvg and secure aggregation for AD detection under data
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heterogeneity and member inference attacks. Khalil et al. [17] de-

ployed an FL-based method to create a shared AD prediction model

without accessing sensitive local data, improving training efficiency

via hardware acceleration. Kumar et al. [18] proposed a blockchain-

based FL model for COVID-19 detection using CT imaging and

introduced data normalization to address data heterogeneity. Simi-

larly, Singh et al. [37] implemented an FL and blockchain framework

for patient monitoring in smart healthcare.

While some works address fairness, many lack comprehensive

evaluation strategies and fairness metrics. Moreover, few consider

fairness attacks, which are essential for evaluating fairness under

adversarial conditions. This study examines adversarial attacks on

FL systems and employs fairness metrics to assess our approach

using real-world healthcare datasets.

2.3 Uncertainty-Aware AI-based Disease
Diagnosis and Detection

MacDonald et al. [25] emphasized the role of uncertainty in AI

healthcare, particularly in decision-making, safety, and reliability.

It helps quantify confidence in predictions, is critical for high-risk

domains like clinical decision-making, and supports fairness by

identifying model bias, especially in underrepresented populations.

Tabarisaadi et al. [38] improved AI reliability in skin cancer de-

tection by integrating uncertainty quantification (UQ) into mod-

els, using algorithms like MC Dropout, Bayesian Ensembling, and

SNGP. Ghoshal et al. [12] applied Bayesian Convolutional Neural

Networks (BCNN) for grading pancreatic adenocarcinoma, using

predictive uncertainty to flag unreliable predictions. Prince et al.

[31] introduced Bayesian deep learning to enhance the diagnosis

of adamantinomatous craniopharyngioma (ACP) from MRI images,

identifying uncertainty through predictive distributions. Wang et al.

[40] proposed FedUAA, an FL model for diabetic retinopathy, incor-

porating uncertainty-aware weighting to evaluate client reliability

and adapt aggregation weights.

While uncertainty-aware models improve reliability, their cal-

ibration often lacks consistency across demographic subgroups,

leading to varying confidence levels. Existing works overlook secu-

rity challenges, such as adversarial attacks, which degrade model

performance. In contrast, our approach uses uncertainty-aware

techniques to enhance both model performance and fairness in FL

healthcare systems, even under adversarial conditions.

3 PRELIMINARIES
3.1 Evidential Neural Networks (ENNs)
An Evidential Neural Network (ENN) is similar to classical neural

networks, with the key difference being that the softmax layer is

replaced by an activation layer (i.e. ReLU) to ensure non-negative

outputs. These outputs are then treated as the evidence vector,

which is used to model a predicted Dirichlet distribution [35] built

on the theory ofDempster-Shafer theory [9] and Subjective Logic [15].
Instead of outputting a single class label, it produces a belief func-

tion that quantifies the confidence in various possible outcomes. Hu

et al. [14] further enhanced [35]’s work, allowing it to measure the

quality of the predicted Dirichlet distributions directly. For a given

sample 𝑖 , let 𝑓 (x𝑖 |Θ) denote the evidence vector predicted by the

network for classification, where x𝑖 ∈ R𝐿 represents the input fea-

tures and Θ corresponds to the network parameters. The associated

Dirichlet distribution has parameters 𝜶𝑖 = 𝑓 (x𝑖 |Θ) + 1. Let 𝑦𝑖 rep-

resent the true label. The Dirichlet density Dir(p𝑖 ;𝜶 ) serves as the
prior for the Multinomial distribution, Multi(𝑦𝑖 |p𝑖 ). To estimate

the parameters 𝜶𝑖 for sample 𝑖 , the following sum of squared loss

is formulated, given the Dirichlet PDF:

L(𝑓 (x𝑖 |Θ), 𝑦𝑖 ) =
∫ ∥𝑦𝑖 − p𝑖 ∥22

𝐵(𝜶𝑖 )

𝐾∏
𝑗=1

𝑝
(𝛼𝑖 𝑗−1)
𝑝𝑖 𝑗

𝑑p𝑖 (1)

∼
𝐾∑︁
𝑗=1

(
𝑦2𝑖 𝑗 − 2𝑦𝑖 𝑗E[𝑝𝑖 𝑗 ] + E[𝑝2𝑖 𝑗 ]

)
,

where 𝐵(𝜶 ) =
∏𝐾
𝑖=1 Γ (𝛼𝑖 )

Γ
(∑𝐾

𝑖=1 𝛼𝑖

) and E is the expected probability distribu-

tion. The 𝑘-dimensional Dirichlet PDF represents the multinomial

probability density over a domain with cardinality 𝑘 , which can re-

duce to a Beta PDF with the specific case of a binary domain (𝑘 = 2)

as a binary opinion. This work uses the Beta PDF to represent a

binomial opinion in binary decision-making for disease prediction.

3.2 Problem Statement
Thiswork uses an uncertainty-aware FL framework to detect Alzheimer’s

disease while ensuring group-level fairness. The system is struc-

tured as a horizontal FL model, with a global model hosted on a

cloud server and local models operating across hospitals (clients).

This decentralized approach maintains data privacy, as each hos-

pital trains its local model using patient data and sends periodic

updates to the global model. The challenge is ensuring fair updates

from local models, handling data heterogeneity across hospitals.

This work aims to propose a solution to these challenges by

introducing U-FARE (Uncertainty-aware, FAir fedeRated lEarning),

a novel uncertainty-aware, fair FL framework designed specifically

for healthcare disease prediction tasks. U-FARE leverages evidential
neural networks (ENN) to have the model performance of each

client uniformly distributed (group fairness) while maintaining the

high prediction accuracy of the predictive model. We formulate the

objective by:

maximize 𝐺𝐹 (𝑀 (𝜃∗)), subject to ACC(𝑀 (𝜃∗)) ≥ 𝜏 . (2)

In our system,𝑀 (𝜃∗) denotes the testing prediction accuracy across
the local models with parameters 𝜃∗ after achieving the total com-

munication rounds. 𝜃∗ is a set of local model parameters each client

learns. 𝐺𝐹 (𝑀 (𝜃∗)) is group fairness, which will be measured by

specific fairness metrics (see Section 6.4), and 𝜏 is a threshold for

the testing accuracy. This approach underlines our commitment

to developing an uncertainty-aware, fair FL for the healthcare sys-

tem, achieving high prediction accuracy while guaranteeing group

fairness across participants.

4 SYSTEM MODEL
4.1 Network Model
The smart healthcare system considered here employs a network

model that integrates multiple hospitals as clients and a cloud server

as the central server, as illustrated in Figure 1. This FL structure is
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Figure 1: Network model of FL healthcare system.

known as horizontal federated learning (HFL), where data share

the same feature space but come from different sample spaces. In

an FL-based smart healthcare system, each hospital collects indi-

vidual data, such as medical images (feature space), from multiple

patients (sample space) to train its local predictive model. While

hospitals may treat different patients, they all use the same types

of information, such as MRI images, to detect specific diseases.

For FL operations, the system begins with the central server ini-

tializing a global model, which is then distributed to each client

(i.e., hospital). Each client trains the model locally using its patient

data, computes updates, and sends these updates back to the cen-

tral server. The server aggregates these updates, refines the global

model, and redistributes the improved model to all clients. This iter-

ative process of local training, update aggregation, and global model

refinement continues for several rounds until the model reaches

satisfactory performance. A deep learning (DL) model, deployed

across clients and the central server, is used to detect Alzheimer’s

disease, outputting a binary classification: 0 for healthy and 1 for

disease diagnosis. This approach enables the development of ro-

bust predictive models by leveraging diverse datasets from multiple

hospitals while ensuring patient data privacy and security.

4.2 Node Model
In the healthcare network, the clients are individual hospitals. Each

hospital possesses its own local dataset, which includes patient

information, medical records, imaging data, etc. The hospitals do

not share their raw data with other institutions to maintain patient

privacy and comply with data protection regulations. Each hospital

trains a local model on its dataset. During this process, the hospi-

tal’s data never leaves its premises. Instead, the hospital computes

updates to the model (such as gradients) based on its local data.

These updates are then sent to the central server. This setup allows

hospitals to collaborate on developing robust predictive models

without compromising patient confidentiality. It is challenging to

create a more diverse and generalized model since the data from

different hospitals can vary significantly in terms of demographics,

disease prevalence, and medical practices.

The central server acts as the aggregator and coordinator of the

federated learning process. It does not have direct access to any raw

data from the hospitals. The central server collects model updates

(e.g., gradients or model parameters) from all participating clients. It

aggregates these updates to create a global model. This global model

is then sent back to the clients, which further train it using their

local data in the next iteration. This process is repeated for multiple

rounds until the model converges to a satisfactory performance

level. The central server facilitates collaboration among hospitals,

ensuring that the benefits of shared learning are realized without

compromising data privacy. It orchestrates the overall learning

process, ensuring that the global model continually improves by

leveraging the diverse datasets of all participating hospitals.

4.3 Threat Model
To understand the vulnerabilities within FL systems and evaluate

the effectiveness of our approach against different attacks, we exam-

ine adversarial attacks performed on compromised clients aiming

to disrupt the training process by modifying the local model param-

eters or local training datasets. We consider them fairness attacks
since malicious updates can further create performance discrepan-

cies among clients, violating the fairness principle of uniform local

performance [33].

• Byzantine attacks [5] primarily target clients (i.e., hospitals),

prolonging their learning duration or leading to model diver-

gence while training their local models. They disrupt the FL

training process by injecting arbitrary metrics via Stochastic Gra-

dient Descent (SGD) updates. In this work, we employ a Gaussian

noise-based approach to introduce Gaussian noise into the model

parameters of compromised clients before they are uploaded to

the central server. The success of Byzantine attacks introduces

Byzantine updates that can skew the global model to perform

poorly on specific data distributions, affecting only a subset of

participants. Clients with local data distributions closer to the poi-

soned updates are disproportionately affected, creating unequal

performance across participants.

• Poisoning attacks [39] compromise the datasets on clients that

deliberately manipulate input data to deceive the model into

making incorrect predictions. These manipulations are often

minimal and invisible to humans but can cause significant errors

in the model’s output. This work considers a backdoor-based ap-

proach [3], in which a malicious client injects a specific pattern

or trigger into its local training data to manipulate the global

model’s behavior. The attacker aims to make the model perform

generally on standard inputs but produce attacker-desired out-

puts when the trigger is present. Such an attack can cause the

global model to learn biased or incorrect patterns, disproportion-

ately affecting local devices with data that overlaps with poisoned

classes. For instance, if certain classes are targeted for backdoor-

ing, participants with a higher proportion of these classes in their

local datasets will experience degraded performance, breaking

the fairness guarantee.

5 PROPOSED APPROACH: U-FARE
In the FL context, group fairness differs from its interpretation

in traditional deep learning domains. A group-level fair solution

means more uniform regarding various metrics. One common met-

ric for uniformity is the variance of accuracy distribution, which

we can formally define the notion of fairness [22].

Definition 1 [22]: A solution𝑤 is more fair than𝑤 ‘
if the perfor-

mance of𝑚 devices {𝐹1, ..., 𝐹𝑚 } satisfies

Var(𝐹1 (𝑤), . . . , 𝐹𝑚 (𝑤)) < Var(𝐹1 (𝑤
′
), . . . , 𝐹𝑚 (𝑤

′
)). (3)
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Ensuring fairness in a smart healthcare system for disease detec-

tion is crucial for equitable healthcare outcomes across hospitals.

Disparities in model performance can lead to unequal access to ac-

curate diagnoses, exacerbating healthcare inequalities. By ensuring

consistent model performance across hospitals, we promote reliable

healthcare services regardless of geographic or demographic differ-

ences. This enhances trust in the system and ensures high-quality

patient care, improving overall public health outcomes. Therefore,

developing a fair FL framework is essential for building a robust

and adaptable healthcare system that serves diverse populations.

To achieve group-level fairness in an ENN-based FL framework,

we propose an algorithm integrating the uncertainty and fairness by

introducing a concept of the degree of conflict. As described before,

An ENNmodel is built on Subjective Logic (SL), which can formulate

a belief model as the output of the ENN model to explicitly deal

with uncertainty. In SL [15], a client 𝐴 can form its opinion about

a given proposition 𝑋 , denoted by 𝜔𝐴
𝑋

= {𝒃𝑋 , 𝑢𝑋 , 𝒂𝑋 }, where 𝒃𝑋
is the belief masses distribution, 𝑢𝑋 is the uncertainty mass, and

𝒂𝑋 is the base rate (i.e., prior belief) distribution of variable 𝑋 . The

components satisfy the additivity requirement with𝑢𝑋 +∑ 𝒃𝑋 (𝑥) =
1. A core assumption of SL is that different agents can hold varying

opinions about the same variable. This demonstrates the subjective

way people perceive the world.

Regarding predictive tasks, having different opinions about the

same sample can be a significant issue since it complicates deter-

mining the best prediction outcome. Accordingly, the degree of
conflict (DC) [16] measures the disparity between opinions and

can be utilized to manage differing views about the same target.

Consider two agents, 𝐵 and 𝐶 , each holding opinions 𝜔𝐵
𝑋
and 𝜔𝐶

𝑋
about a common variable 𝑋 . A fundamental way to quantify the

conflict between these opinions is through the projected distance
(PD), as:

𝑃𝐷 (𝜔𝐵𝑋 , 𝜔
𝐶
𝑋 ) =

1

2

∑︁
𝑥∈𝑋

���𝑃𝐵𝑋 (𝑥) − 𝑃𝐶𝑋 (𝑥)
��� . (4)

The 𝑃𝐷 has the property 𝑃𝐷 ∈ [0, 1]. When 𝑃𝐷 = 0, it indicates

identical projected probability distributions, signifying no conflict,

though the underlying opinions may differ. Conversely, 𝑃𝐷 = 1

corresponds to maximum disagreement, arising when the projected

probabilities represent completely opposing views. However, a high

𝑃𝐷 does not always show conflict, as high uncertainty in one or

both opinions can mitigate the potential disagreement. When un-

certainty is high, a greater 𝑃𝐷 can be tolerated since uncertain

opinions contribute less weight in any fusion process.

The conjunctive certainty (CC) [15] is then leveraged as a logical

metric to quantify the combined certainty of two opinions, 𝜔𝐵
𝑋
, and

𝜔𝐶
𝑋
, and is defined as:

𝐶𝐶 (𝜔𝐵𝑋 , 𝜔
𝐶
𝑋 ) = (1 − 𝑢𝐵𝑋 ) (1 − 𝑢

𝐶
𝑋 ) . (5)

The value of 𝐶𝐶 lies in the range [0, 1], where 𝐶𝐶 = 0 indicates

complete uncertainty in at least one opinion, and 𝐶𝐶 = 1 means

both opinions are fully certain with no uncertainty.

The degree of conflict (DC) between the opinions is defined as

the product of 𝑃𝐷 and 𝐶𝐶 .

Definition 2 [15]: Consider two agents, 𝐵 and𝐶 , who hold respec-

tive opinions𝜔𝐵
𝑋
and𝜔𝐶

𝑋
regarding a shared variable𝑋 . The degree

of conflict (𝐷𝐶) between these opinions, denoted as 𝐷𝐶 (𝜔𝐵
𝑋
, 𝜔𝐶
𝑋
),

is defined as follows:

𝐷𝐶 (𝜔𝐵𝑋 , 𝜔
𝐶
𝑋 ) = 𝑃𝐷 (𝜔𝐵𝑋 , 𝜔

𝐶
𝑋 ) ·𝐶𝐶 (𝜔

𝐵
𝑋 , 𝜔

𝐶
𝑋 ) . (6)

With our FL framework, client 𝐴’s current opinion about a patient

is significantly in conflict with the updated global model’s opinion

𝜔𝑔 , and client 𝐵’s opinion has low DC with 𝜔𝑔 about the same

patient, the prediction accuracy of client 𝐴 and 𝐵 will be different

and result in a large variance of the performance distribution which

means unfair. Therefore, we leverage the concept of DC to achieve

fairness in clients by reducing degree of conflict between clients’

opinions and the central server’s opinion.

Our framework follows the training procedure of FedAvg [26]

and extends with the proposed uncertainty-aware approach. At

the beginning of each communication round 𝑡 , the central server

randomly selects 𝐾 clients to participate in the FL training process.

The server then transmits the global model parameters 𝜃𝑡 to the

selected clients. Each client 𝑘 updates 𝜃𝑡 for 𝐸 epochs using its local

dataset 𝑋𝑘 , resulting in the updated model 𝜃𝑘𝑡 .

With the updated local model, client 𝑘 computes the parameters

of the Dirichlet distribution as follows:

𝜶𝑘𝑋𝑘 = {𝜶𝑖 | 𝑖 ∈ 𝑋𝑘 } = {𝑓 (𝑥𝑖 |𝜃𝑘𝑡 ) + 1 | 𝑖 ∈ 𝑋𝑘 }, (7)

where 𝑓 (𝑥𝑖 |𝜃𝑘𝑡 ) represents the evidence vector predicted by the

network for classification tasks on client 𝑘’s local dataset, and

𝑥𝑖 ∈ 𝑋𝑘 denotes the input feature.

Next, given𝑊 is the number of classes in 𝑋𝑘 , client 𝑘 calculates

the belief mass 𝒃𝑘
𝑋𝑘

and uncertainty 𝑢𝑘
𝑋𝑘

by:

𝒃𝑘𝑋𝑘 =
𝑓 (𝑥𝑖 |𝜃𝑘𝑡 )

𝑆
, 𝑢𝑘𝑋𝑘

=
𝑊

𝑆
, (8)

where 𝑆 =
∑
𝑥𝑖 ∈𝑋𝑘 (𝑓 (𝑥𝑖 |𝜃

𝑘
𝑡 ) + 1).

Finally, each client 𝑘 sends its updated model 𝜃𝑘𝑡 and its opinion,

represented as 𝜔𝑘
𝑋𝑘

= (𝒃𝑘
𝑋𝑘
, 𝑢𝑘
𝑋𝑘
,𝜶𝑘
𝑋𝑘

), back to the central server.

Algorithm 1 demonstrates the previous steps with lines 1-6.

After receiving the local updates from the clients, the central

server updates the global model parameters 𝜃𝑡+1 using the standard
FedAvg approach:

𝜃𝑡+1 =

∑𝐾
𝑖=1 𝜃

𝑡
𝑖

𝐾
, (9)

where 𝐾 is the total number of selected clients, the server computes

the global opinion 𝜔
𝑔

𝑋
based on 𝜃𝑡+1, and 𝑋 represents the global

dataset. Following this, the central server evaluates the DC between

the global opinion𝜔
𝑔

𝑋
and each selected client’s opinion𝜔𝑘

𝑋𝑘
, based

on Eq. (6). The server sorts the selected clients in descending order

based on their DC with the global opinion to identify the client

with the highest conflict with the global model. The server recal-

culates the global model by assigning a higher weight to the most

conflicting client, scaled by a factor 𝜆. This highlights the primary

innovation of the proposed algorithm, which leverages uncertainty

quantification, distinguishing it from traditional fairness-aware ap-

proaches, such as q-FFLs [22], which adjust a client’s influence on

the global model based on its loss value. Algorithm 1 describes

this process in lines 7-10.

Enhancing the influence of the client that most conflicts with

the global model can help reduce performance disparities but may

also compromise the prediction accuracy for that client. To address
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Algorithm 1 U-FARE

Require: Total number of clients 𝑁 , number of selected clients 𝐾 ,

clients’ datasets {𝑋1, . . . , 𝑋𝑚}, total communication rounds 𝑇 ,

Epoch 𝐸, initialized model parameters 𝜃0, clients 𝑘 = 1, . . . ,𝑚

1: for 𝑡 = 0, . . . ,𝑇 − 1 do
2: Central server randomly selects 𝐾 clients

3: Central server sends local model 𝜃𝑡 to all selected clients

4: Each selected client 𝑘 updates 𝜃𝑡 for 𝐸 epochs to obtain 𝜃𝑘𝑡
5: Each client 𝑘 formulates its opinion 𝜔𝑘

𝑋𝑘
= (𝒃𝑘

𝑋𝑘
, 𝑢𝑘
𝑋𝑘
,𝜶𝑘
𝑋𝑘

)
6: Each client 𝑘 sends 𝜃𝑘𝑡 and opinion 𝜔𝑘

𝑋𝑘
to central server

7: Central server updates 𝜃𝑡+1
8: Central server obtains global opinion 𝜔

𝑔

𝑋
based on 𝜃𝑡+1

9: Find 𝜃∗ = argmax
𝐾
𝑘=1

𝐷𝐶 (𝜃𝑔
𝑋
, 𝜃𝑘
𝑋𝑘

)
10: Compute new 𝜃𝑡+1 by

𝜃𝑡+1 =

∑𝐾
𝑘=1

𝜃𝑡
𝑘
+ 𝜆𝜃∗

𝐾
,

where 𝜆 is the weight assigned to the client with the highest

conflict.

11: end for

this, it is essential to determine an optimal scaling factor, 𝜆, that

improves the uniformity of local model performance while main-

taining high overall prediction accuracy. We carefully fine-tune

𝜆 through empirical experiments, selecting the value that outper-

forms baseline approaches in terms of both fairness and prediction

accuracy.

6 EXPERIMENTAL SETUP
6.1 Datasets
To evaluate our proposed approach, we utilize a collection of datasets

specifically focused on Alzheimer’s disease detection. Below, we

provide a detailed description of each dataset and its relevance to

Alzheimer’s disease detection:

• Alzheimer’s Disease Neuroimaging Initiative (ADNI) [2]:
ADNI is a large, longitudinal, multi-site study launched in 2004

to advance research on Alzheimer’s disease (AD). ADNI is one

of the most significant and influential research projects in the

field of neurodegenerative diseases. This dataset contains 3D

volumetric magnetic resonance imaging (MRI) scans for binary

classification of Alzheimer’s disease vs. cognitive normal. They

were preprocessed to extract measurements of regional volumes

derived from neuroimaging data. The final dataset is tabular,

consisting of 24,159 samples, each characterized by 87 features.

• OASIS-3 [19]: The OASIS-3 dataset is a comprehensive retrospec-

tive resource for studying normal aging and Alzheimer’s disease.

It spans 30 years and includes data from 1,378 participants aged

42–95 years. This dataset includes MRI scans designed for bi-

nary classification between Alzheimer’s disease and cognitively

normal states, with a total of 40332 samples.

• National Alzheimer’s Coordinating Center (NACC): This
database collects data through the UniformData Set (UDS), which

has been collecting longitudinal standardized clinical data since

Table 1: Key Design Parameters and Default Values

Parameter Value
Total number of clients 5

Communication rounds 20

Local training epochs 40

Simulation runs 10

Learning rate 0.1

Learning rate lambda 0.1

Batch size 64

2005. Data are provided by Alzheimer’s Disease Research Cen-

ters (ADRCs) as part of the National Institute of Aging’s ADRC

Program. We select an MRI dataset for binary classification of

Alzheimer’s disease vs. cognitive normal, including 16200 image

samples.

For each dataset, we employ the SyntheticMinority Over-sampling

Technique (SMOTE) [6] to mitigate the class imbalance, ensuring an

equal number of samples in both the positive and negative classes.

Aside from SMOTE, no additional data preprocessing techniques

are applied, as the primary objective of this work extends beyond

merely improving prediction accuracy.

6.2 Parameterization
The hyperparameters used in the experiments are meticulously

selected to optimize the performance of the federated learning

framework. The learning rate is set to 0.1, along with a learning rate

lambda of 0.1 to effectively balance the loss components. Each client

performs local training using a batch size of 64 over 40 epochs per

round. The framework comprises 20 communication rounds, with

five clients actively participating in each round, and the simulations

are repeated 10 times to ensure robust evaluation. A convolutional

neural network (CNN) is utilized as the model, chosen for its effi-

ciency and effectiveness in image classification. Table 1 provides a

detailed summary of the key parameters and their default values

used in the experiments.

6.3 Comparing Schemes
To evaluate the effectiveness of our proposed approach, we compare

U-FARE with the following state-of-the-art fairness-aware schemes:

• Agnostic FL (AFL) [29] is a framework that optimizes a cen-

tralized model to perform well across any target distribution,

formed by a mixture of client distributions, addressing biases in

FL. This approach naturally promotes fairness and provides data-

dependent guarantees for learning, along with a fast optimization

algorithm and convergence bounds.

• q-FedSGD [22] is an optimization method designed to solve the

q-Fair Federated Learning (q-FFL) problem using Stochastic Gra-

dient Descent (SGD) in FL settings. It extends the idea of fairness

in federated learning by adjusting the gradients to promote a

more uniform accuracy distribution across participating devices.

• q-FedAvg [22] is a communication-efficient version of q-FedSGD,

replacing the update steps with a heuristic approach.

• q-MAML [22] is a meta-learning method that extends the q-FFL

objective to improve fairness in personalized models. It learns

a model initialization that can be quickly adapted to new tasks

with limited data, while reducing accuracy variance across tasks.
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• Ditto [21] is a personalized federated learning framework that

balances fairness and robustness in statistically heterogeneous

networks by addressing competing data constraints and model

poisoning attacks and performance uniformity across devices.

6.4 Metrics
We evaluate the performance of the proposed FL system by measur-

ing prediction accuracy and (group) fairness through three metrics:

• Prediction Accuracy measures the consistency between the

model’s predicted results for detecting Alzheimer’s disease and

the actual observed values. We evaluate the model performance

by capturing the testing accuracy of aggregation for each com-

munication round.

• Loss Disparity (LD) [4] computes the variance in testing loss

values across clients, formulated by:

𝐿𝐷 =
1

𝑁

𝑁∑︁
𝑖=1

Var(L𝑖 ), (10)

where L𝑖 is the testing loss value of client 𝑖 , and 𝑁 is the to-

tal number of clients. A lower LD indicates a more equitable

distribution of loss, and thus a more fair FL system.

• Accuracy Disparity (AD) [22] measures the variance in accu-

racy across clients, defined as:

AD =
1

𝑁

𝑁∑︁
𝑖=1

(
Accuracy𝑖 − Accuracy

)
2

, (11)

where Accuracy𝑖 is client 𝑖’s prediction accuracy for detecting

Alzheimer’s disease, and Accuracy is the average accuracy across

clients. A lower AD represents a higher group fairness of predic-

tive performance in the FL framework.

7 RESULTS & ANALYSIS
7.1 Performance Comparison Analyses
Table 2 presents a detailed performance comparison of various

fairness-aware FL methods, and the proposed U-FARE on three

healthcare-related datasets: NACC, OASIS, and ADNI. The table pro-

vides results for both IID (Independent and Identically Distributed)

and non-IID (non-Independent and Identically Distributed) data

distributions, which are typical scenarios in federated learning for

healthcare. In terms of prediction accuracy (Acc), U-FARE consis-

tently shows superior performance across all datasets and data

distributions. For example, on the NACC dataset under IID con-

ditions, U-FARE achieves the highest accuracy (0.928) compared

to other methods, which demonstrates its effectiveness in making

accurate predictions.

Furthermore, U-FARE stands out not only in terms of accuracy

but also in its fairness metrics, which are represented by accuracy

variance (AV) and loss disparity (LD). Both AV and LD are critical

for evaluating the fairness of FL methods, with lower values being

preferable. U-FARE consistently maintains the lowest AV and LD

values, indicating its ability to reduce fairness issues such as dis-

parate performance across different clients. For instance, on the

NACC dataset under IID conditions, U-FARE has an AV of 0.0007

and LD of 0.0006, which is substantially better than other methods,

including Ditto, which has a higher AV and LD. Under the non-IID

conditions, where the data is more challenging due to heteroge-

neous distributions across clients, U-FARE continues to demonstrate

its superiority in fairness. The method significantly reduces AV and

LD while maintaining competitive accuracy. For example, in the

ADNI dataset under non-IID conditions, U-FARE achieves an accu-

racy of 0.802, along with AV and LD values of 0.039 and 0.0497,

respectively, outperforming the other methods in terms of both

fairness and prediction accuracy.

Additionally, we observe an interesting inconsistency between

the two fairness metrics. For instance, in the case of the NACC

dataset, U-FARE outperforms all baseline methods in terms of

prediction accuracy and accuracy variance, yet it falls short of

q-FedAvg in terms of loss disparity. This discrepancy may arise

because q-FedAvg is a loss-based approach that achieves fairness by

assigning higher weights to clients with higher loss values during

training. In contrast, U-FARE leverages an uncertainty-aware fair

approach, where uncertainty more accurately represents prediction

outcomes than loss values. This may explain why U-FARE achieves

superior performance in balancing both accuracy and fairness, as

it utilizes uncertainty to enhance the model’s understanding of its

predictions, leading to better overall outcomes.

7.2 Sensitivity Analyses
7.2.1 Varying the level of fairness. In our approach, fairness

is not explicitly set or controlled, unlike in q-FFL methods, where

fairness levels can be directly adjusted. To evaluate the performance

of our proposed U-FARE, we conduct a sensitivity analysis by vary-

ing the fairness levels of the 𝑞-value-based baseline methods. This

enables us to identify the specific fairness levels at which our ap-

proach outperforms the baseline methods, offering insights into its

effectiveness under different fairness constraints.

Figures 2 to 4 show the effect of varying fairness levels, repre-

sented by the 𝑞 value. The proposed U-FARE consistently outper-

forms all baseline methods across the three datasets, even at the

highest fairness levels, except for q-FedAvg. For q-FedAvg, U-FARE
performs better when 𝑞 ≥ 0.01 for IID data and consistently excels

with non-IID data on the NACC dataset, as shown in Figure 2. On

the OASIS dataset (Figure 3), U-FARE not only surpasses q-FedAvg in
prediction accuracy but also achieves superior fairness for 𝑞 ≥ 0.1

with IID data, maintaining this advantage for all fairness levels

with non-IID data. With the ADNI dataset in Figure 4, U-FARE out-

performs q-FedAvg on both fairness metrics and achieves higher

prediction accuracy for 𝑞 ≥ 0.1.

As expected, higher fairness levels often compromise prediction

accuracy. An increase in𝑞 results in greater fairness, as measured by

LD, but also a decrease in prediction accuracy due to the inclusion of

lower-performing clients, which lowers overall model performance.

However, this trend does not hold for the AVmetric, which increases

as 𝑞 rises, indicating lower fairness. Although Li et al. [22] report

different findings, our sensitivity analysis aligns with theirs in terms

of performance comparison, suggesting that loss is not a robust

metric for representing prediction outcomes or addressing fairness.

Notably, in q-FFLs, the models and datasets used differ from those

in this study, which could explain the discrepancies. This indicates

that the 𝑞 value may need fine-tuning for each specific setting (i.e.,
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Table 2: Summary of Performance Comparison

Dataset Data Type q-FedAvg (𝑞 = 1) q-FedSGD (𝑞 = 1) q-MAML (𝑞 = 1) AFL Ditto U-FARE

Acc AV LD Acc AV LD Acc AV LD Acc AV LD Acc AV LD Acc AV LD

NACC IID 0.473 0.0020 0.0002 0.635 0.0021 0.0037 0.618 0.0021 0.0023 0.602 0.0021 0.0017 0.736 0.0073 0.0231 0.928 0.0007 0.0006

Non-IID 0.610 0.1018 0.0039 0.620 0.0605 0.0457 0.622 0.0592 0.0410 0.639 0.0487 0.2345 0.752 0.0566 0.0762 0.890 0.0157 0.0142

OASIS IID 0.499 0.0016 0.0006 0.603 0.0015 0.0015 0.593 0.0015 0.0013 0.589 0.0015 0.0007 0.600 0.0055 0.0026 0.832 0.0012 0.0008

Non-IID 0.493 0.0706 0.0102 0.554 0.0597 0.0378 0.573 0.0495 0.0296 0.563 0.0444 0.1993 0.680 0.0383 0.0214 0.837 0.0077 0.0018

ADNI IID 0.679 0.0025 0.0006 0.838 0.0014 0.0007 0.858 0.0015 0.0006 0.817 0.0017 0.0001 0.818 0.019 0.0376 0.912 0.0010 0.0015

Non-IID 0.652 0.0220 0.0096 0.799 0.0054 0.0031 0.801 0.0057 0.0028 0.817 0.0039 0.0004 0.802 0.039 0.0497 0.921 0.0044 0.0037
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Figure 2: Effect of varying the level of fairness (𝑞) under NACC IID and non-IID datasets.

model and dataset) to achieve the desired balance, where higher 𝑞

enhances fairness.

7.2.2 Varying the number of clients. Figures 5 to 7 explore how
performance metrics change with varying numbers of clients in the

FL system. We find that U-FARE continues to outperform baseline

methods across all three metrics, with no significant sensitivity to

increasing the number of clients. Notably, for the ADNI dataset

shown as Figure 7, Ditto demonstrates a more pronounced sensitiv-

ity to changes in client numbers across all metrics. As the number of

clients increases, Ditto improves prediction accuracy and fairness,

surpassing U-FARE when the client count exceeds 15. This suggests

that Ditto’s personalized approach benefits from larger-scale FL

systems, leveraging the increased number of clients effectively.

7.2.3 Varying the attack severity. We investigate two types of

adversarial attacks outlined in our threat model (see Section 4.3). We

employ a backdoor approach for the poisoning attack by injecting

triggers into 10% of the training data, where the triggers correspond

to the positive class. To evaluate the impact of the Byzantine attack,

we examine the attack severity, which represents the probability

of an attacker successfully executing an attack at any given time 𝑡 .

For example, with an attack severity of 0.1, there is a 10% chance

that the attacker will successfully inject Gaussian noise into the

local model parameters. We experiment with the NACC dataset by

injecting backdoor triggers into the dataset and then generating

both IID and non-IID data as training samples.

Figure 8 illustrates the impact of different levels of attack sever-

ity, where higher severity triggers an attack to succeed more often,

representing a higher impact on the performance metrics of FL

schemes. For U-FARE, increased attack severity leads to a decline

in prediction accuracy and fairness, in terms of AV, as illustrated

in Fig. 8 (a), (b), (d) and (e). An increase in attack severity results

in lower prediction accuracy due to the inclusion of more compro-

mised local updates, undermining the model’s prediction accuracy

and AV performance. However, attack severity does not signif-

icantly impact LD, showing the system’s robustness under one

fairness metric. It is worth mentioning that Ditto is most robust

to adversarial attacks under the IID setting in terms of fairness

performance, as shown in Figrue 8. As attack severity increases,

the AV decreases, resulting in a fairer FL system. This is because

Ditto trains personalized models for each client by considering both

local data and shared global knowledge. This allows each client

to maintain its model tailored to its data, reducing the impact of

malicious updates from other clients.
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Figure 3: Effect of varying the level of fairness (𝑞) under OASIS IID and non-IID datasets.
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Figure 4: Effect of varying the level of fairness (𝑞) under ADNI IID and non-IID datasets.

8 CONCLUSION & FUTURE WORK
This work proposed U-FARE, an uncertainty-aware fair FL frame-

work to enhance the prediction accuracy and fairness of AI models

in healthcare systems, particularly in the context of Alzheimer’s

disease detection. U-FARE integrates evidential neural networks

into the FL paradigm to quantify and manage uncertainty, offering

significant advantages over existing fairness-aware FL methods.

The experimental results demonstrated the superior performance

of U-FARE across a range of healthcare datasets, including NACC,
OASIS, andADNI, where it consistently outperformed other fairness-

aware FL methods in terms of both prediction accuracy and fairness

metrics. Our method maintained the lowest values for accuracy
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Figure 5: Effect of varying the number of clients under NACC IID and non-IID datasets.
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Figure 6: Effect of varying the number of clients under OASIS IID and non-IID datasets.

variance and loss disparity, indicating its ability to reduce fairness

issues and promote equitable performance across clients. Further-

more, U-FARE exhibited strong resilience to adversarial attacks,

maintaining reliability in prediction accuracy and fairness even

under poisoning and Byzantine attacks.

The insights gained from our sensitivity analysis suggest that

while increasing fairness levels can reduce prediction accuracy,

U-FARE balances these trade-offs effectively. Our approach, driven

by uncertainty-aware principles, proves more reliable and robust

than traditional fairness metrics like loss-based approaches.

For the future work, we aim to leverage privacy-preserving

techniques into U-FARE to ensure both privacy and fairness while

maintaining high prediction accuracy. We will also explore the re-

lationship between fairness, privacy, and uncertainty to develop an
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Figure 7: Effect of varying the number of clients under ADNI IID and non-IID datasets.
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Figure 8: Effect of varying the degree of attack severity under NACC IID and non-IID datasets.

optimal solution for addressing potential trade-offs. Furthermore,

we plan to extend our work to handle multi-modal data, enhanc-

ing the performance and generalization of predictive models in

healthcare scenarios.
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