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Figure 1. OneDiffusion is a unified diffusion model designed for both image synthesis and understanding across diverse tasks. It
supports text-to-image generation (red box), conditional image generation from input images (orange box) and it’s reverse task Image
understanding (green box). It can also perform ID customization (blue box), and multi-view generation (purple box) with arbitrary number
of input and output images.
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Abstract

We introduce OneDi f fusion, a versatile, large-scale dif-
fusion model that seamlessly supports bidirectional image
synthesis and understanding across diverse tasks. It en-
ables conditional generation from inputs such as text, depth,
pose, layout, and semantic maps, while also handling tasks
like image deblurring, upscaling, and reverse processes
such as depth estimation and segmentation. Additionally,
OneDiffusion allows for multi-view generation, cam-
era pose estimation, and instant personalization using se-
quential image inputs. Our model takes a straightforward
yet effective approach by treating all tasks as frame se-
quences with varying noise scales during training, allow-
ing any frame to act as a conditioning image at inference
time. QOur unified training framework removes the need
for specialized architectures, supports scalable multi-task
training, and adapts smoothly to any resolution, enhancing
both generalization and scalability. Experimental results
demonstrate competitive performance across tasks in both
generation and prediction such as text-to-image, multiview
generation, ID preservation, depth estimation and camera
pose estimation despite a relatively small training dataset.
Our code and checkpoint are freely available at https :
//github.com/lehduong/OneDiffusion.

1. Introduction

Diffusion models, particularly in text-to-image (T2I) gen-
eration, have recently achieved remarkable results. Models
such as DALL-E [46], Imagen [46], and Stable Diffusion
[15, 44, 50] have established new benchmarks for generat-
ing high-quality, photorealistic images from text prompts.
Additionally, recent studies have demonstrated the effec-
tiveness of diffusion models in various other computer vi-
sion tasks, such as depth estimation [23] or optical flow esti-
mation [38, 53], efc. However, despite these advancements,
diffusion models are typically trained individually for either
T2I generation or specific tasks.

In contrast, large language models (LLMs) (e.g. GPT-
4 [1]) have demonstrated their ability to function as univer-
sal models. They can perform a wide range of tasks across
different domains without the need for task-specific mod-
ules, and can effectively handle tasks they have not been
explicitly trained in a zero-shot manner. This universality
has been immensely valuable; it has dramatically simplified
using training and scaling these models, and ultimately led
to better performance. This incentivizes us to ask whether
diffusion models can become universal in a similar way.

Designing a unified architecture for diverse image syn-
thesis tasks presents significant challenges. Current meth-
ods often depend on external add-ons to handle new tasks.
For example, ControlNet [73] or T2I-Adapter [40] require
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specialized modules to encode the conditional inputs, and
personalization models typically require encoding the iden-
tity through a pretrained facial recognition network and
adding auxiliary losses to preserve identity [21, 63, 68]. Ad-
ditionally, tasks vary widely in their input requirements. For
instance, multi-view generation alone requires handling ar-
bitrary input-output view combinations, posed or unposed
images, and camera pose conditioning [18, 25, 35, 54, 62],
while image understanding tasks require diverse outputs
such as depth, pose, or segmentation. Finally, existing train-
ing recipes are often tightly tuned to particular tasks and
therefore cannot be relied on to generalize between tasks.

In this work, we present OneDiffusion — a unified
diffusion model that seamlessly supports bidirectional im-
age synthesis and understanding across diverse tasks. Our
approach enables a single model to perform multiple tasks
without the need for external losses and add-ons. Inspired
by recent advances in diffusion models for sequential data
[7, 51, 74], we model all conditions and target images as a
sequence of “views” with varying noise levels during train-
ing. At inference, any of the views can be used as a condi-
tional input, or set to noise and then used to generate an
output image. Conditioning text can also be changed to
define the task, and specify additional conditioning details
(e.g. camera pose). The simple, but flexible, framework al-
lows our model to support many kinds image generation
and image understanding tasks with a unified architecture
and training objective.

To demonstrate how general purpose our training al-
gorithm is, we train OneDiffusion completely from
scratch. First, we train on text-to-image task to equip the
model with general image synthesis abilities, then on our
One-Gen dataset to learn the full set of tasks. Our final
model has 2.8 billion parameters and is equipped with a
diverse set of skills, shown in Figure 1. The model also
adapts naturally to various resolutions, enabling zero-shot
high-resolution generation even when such resolutions were
not encountered during training.

We evaluate OneDiffusion on a diverse set of both
generative and predictive tasks. On T2I, OneDiffusion
efficiently generates high-quality images while utilizing
fewer number of parameters. In the multiview generation
task, OneDiffusion demonstrates performance compa-
rable to state-of-the-art methods that are specifically de-
signed and exclusively trained for this purpose. We also
show that OneDiffusion supports novel conditioning
setups, such as text-to-multi-view and image-to-multi-view.
For high-variability tasks like face identification from a
single image, the model is capable of generating multiple
consistent images featuring diverse expressions and poses,
demonstrating strong generalization to unseen domains.



2. Related work

Diffusion models for generative tasks Recent advance-
ments in diffusion models have greatly improved image
generation capabilities, with models like Stable Diffusion
[3, 4, 15, 44, 50, 77] setting new standards in text-to-image
synthesis. Beyond general image generation, controllable
diffusion models such as ControlNet [73] and T2I-Adapter
[40] allow fine-grained control via auxiliary inputs like edge
or depth maps. Similar structured conditioning has been ap-
plied to inverse problems [42, 43, 57], enabling applications
such as super-resolution or inpainting. Meanwhile, instruct-
Pix2Pix [5] introduces natural language-guided image edit-
ing, making these tools more user-friendly. For person-
alized applications, identity-focused models, including IP-
Adapter [68], InstantID [63], PhotoMaker [28], and PuLiD
[21], personalize generation by conditioning on reference
images. Moreover, in multi-view generation, recent meth-
ods [18, 35, 54, 62], employ camera ray embeddings or 3D
geometry to achieve consistent viewpoints. Together, these
innovations showcase the versatility of diffusion models in
delivering controllable, personalized, and multi-perspective
image synthesis.

Diffusion models for predictive tasks Beyond image
generation and manipulation, diffusion models have also
proven effective for predictive tasks within computer vision.
Marigold [23] fine-tunes the Stable Diffusion model [50]
to perform monocular depth estimation, demonstrating the
adaptability of diffusion models for prediction-based appli-
cations. Furthermore, diffusion models have been utilized
for optical flow estimation, as shown in the works of Sax-
ena et al. [53] and Luo et al. [38], where the models pre-
dict pixel-level motion between consecutive frames. Addi-
tionally, Li et al. [27] trained a diffusion model for open-
vocabulary semantic segmentation, showcasing the poten-
tial of these models for more complex vision tasks. Prior
works have attempt to unify diffusion model for predictive
tasks [17, 19]. These studies show that diffusion models are
not only useful for generating images but also highly effec-
tive for various predictive tasks in computer vision.

Unified diffusion models Several attempts have been
made to unify diffusion model for different type of con-
trols [45, 65, 75]. However, they are limited to utiliza-
tion of multiple image conditions. These models usually
requires to design complicated adapters for different condi-
tions. [36, 37, 60, 76] propose unified models for language
and images. Concurrently, [64] propose finetuning multi-
modal large language model with diffusion objective on di-
verse tasks like text-to-image, editing, and subject-driven
generation etc. In contrast, our model distinguishes itself
by leveraging bidirectional capabilities of diffusion models
and addressing a wide range of diverse tasks.
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3. Methodology

3.1. Flow matching for generative modeling

Flow matching [2, 31, 34] is a framework for training
continuous-time generative models by learning a time-
dependent vector field that transports between two probabil-
ity distributions. More specifically, a time-dependent vec-
tor field u; : [0,1] x R? — R? governs the transformation
from a base distribution pg to the target distribution p; ~ ¢
through an ODE dz = u.(z)dt.

The solution of this ODE is a flow ¢; : [0,1] x R? — R4
with initial condition ¢g(x) = x, and this flow character-
izes a push-forward operation p; = [¢;]4po, in which p, is
the density of samples x ~ pg transported by u from time 0
to time . The goal is approximate this ODE using a learned
time-dependent vector field parameterized as a neural net-
work vg(t, ). Due to the intractable nature of u;, [31] pro-
posed to learn vy (¢, z) using the conditional flow matching
(CFM) objective:

['CFM(H) = Et,q(z),pt(aﬂz) ||U9(t,.13) - Ut($|2)”2 ey

This objective is equivalent to the original flow matching
objective, and only requires the samples from the target dis-
tribution and a suitable conditional probability path.

3.2. Proposed Approach

Objective We cast the problem of image generation with
multimodal conditions as sequential modeling. Inspired
by previous work on diffusion model for sequential data
[7, 51, 74], we jointly model all conditions and target im-
ages as a sequence of “views”. Note that the number of
views N is determined by tasks. Particularly, N = 1 for
text-to-image tasks, N = 2 for image-to-image translation
such depth/pose/image editing, etc, N > 2 for multiview
generation or ID customization.

Mathematically, let N views {x;}
be sampled from a training dataset ¢(x1,...,xy). Given
time variables t¢;, our goal is to learn a function
Ug(tl,...,tN,Xl,...,XN) [0, 1]N x RNXHXWXD
RIXWXNXD ntuitively, vg serves as a generalized time-
dependent vector field where each input x; paired with its
respective time variable ;.

Learning vy enables arbitrary conditional generation,
where any subset of views can be selected as conditions
to generate the remaining views, as explained below. This
setup allows us to dynamically configure the generation
process, supporting flexible applications across a range of
generative tasks.

221 c HQIIXVV><D

Training Our training pipeline is visualized on the left
side of Figure 2. At each training step, we independently
sample ¢; ~ LogNorm(0, 1) [15] and Gaussian noise €; ~
N(0,I). This results in different noise levels for each
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Figure 2. Illustration of training and inference pipeline for OneDiffusion. We encode the desired task for each sample via a special
task token. During training we independently sample different diffusion timesteps for each view and add noise to them accordingly. In
inference, we replace input image(s) with Gaussian noises while setting timesteps of conditions to 0.

views. We apply an interpolation-based forward process:

2)

where a; and f; satisfy the boundary conditions oy =
0,0 = 1 and By = 1,1 = 0. Similar to [77], we adopt
the linear interpolation schedule:

t.
X, =y, X + P €

xfi =t;x; + (1 —t;)e 3)

the corresponding velocity field u; for each view x; is:
wi(ti, X)) = X; — € “4)
with the aggregated target as u = (x1 — €1,...,XNy —€N) €

RNXHXWXD " our training loss is the joint flow-matching
objective:
L’(Q) :E [”’U@(tl,...,tN,Xh...,XN)—UH2] (5)

This flow matching objective [2, 31, 34] guides the model
to learn the optimal velocity field vg by minimizing the dif-
ference from the target velocity field u.

Inference Our framework allows for both joint sampling
and conditional sampling across any chosen set of views.
In details, we define the target views we want to sample
as Xx {x;}ick, and the set of conditional views as
X\x = {Xi}igx. To perform conditional sampling, we
start by initializing the target views x as Gaussian noise.
At each timestep ¢, we compute the corresponding time-
dependent vector field vy (¢,x|X\ k) by fixing the condi-
tional views to their known values x\ i X and setting
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their time variables to zero {\x = 0; while keeping the
time variables of the target views as tx = ¢:
vé( (t,x|x\ g = X

(6)
Note that unlike vy, vg‘f is a valid time dependent vector
field, as all the views in K now has the same ¢t. Thus,
by integrating this vector field using an ordinary differen-
tial equation (ODE) solver, we can generate the conditional
samples we are interested in. We illustration the inference
on the right side of Figure 2.

3.3. Implementation Details

Model architecture We adopt the Next-DiT architecture
[77] in our model. By leveraging a full transformer-based
architecture, our model can work with different numbers of
views N. We independently encode each frame i.e. images
and conditions as latent z € RY*XHXWXC yith a VAE to-
kenizer [15] and concatenate them in N dimension. With
flexible IV, our approach establishes a universal framework
which supports diverse input-modality with variable length.
Following [77], we also apply 3D RoPE [58] for positional
encoding, enabling generalization to different resolutions
and aspect ratios.

Text-to-Image (1 views) With only a single “view”, train-
ing and inference follow the same process as standard text-
to-image diffusion models. We prepend the task label
[ [text2image] ] to the caption to specify the task.

Image-to-Image (2 views) We set the first view as the tar-
get image and the second as the conditioning input. Dur-
ing inference, we can use one or both views for generation,

:X) :’U@(tK :t,t\K == O,XK :X7X\K :X)



Figure 3. High-resolution samples from text of our OneDi ffusion model, showcasing its capabilities in precise prompt adherence,
attention to fine details, and high image quality across a wide variety of styles.

and the model is trained to produce the target image. For
tasks like bounding box or semantic map generation, we add
the hexadecimal color code and class label to the prompt.
For instance, to segment a mouse with a yellow mask,
the prompt is: [[semantic2image]] <#FFFFO0O0
yellow mask: mouse> photo of a Fur-
ther details are provided in the appendix.

ID Customization (2-4 views) We sample images of the
same individual across views, concatenating captions for
each input image and using a token [ [imgX] ] to denote
each image. We also prepend the task label [ [faceid]]
to the captions. At inference, we can condition on an arbi-
trary number of images and generate multiple outputs, lead-
ing to more consistent results.

Multiview Generation (4-12 views) Inspired by [18], we
use Pliicker ray embeddings to represent camera poses.
For each image patch, we calculate Pliicker coordinates as
r = (o x d, d) using its ray origin o and direction d. The
result embedding has dimensions H/8 x /8 x 6, matching
the spatial size of the latent, and is replicated across chan-
nels to form a 16 channel embedding. Unlike [18], we treat
ray embedding as a independent “view” following image
latents as a unified sequence rather than concatenating by
channels. This design allows flexible denoising, enabling
multi-view image generation conditioned on camera poses
or sampling ray embeddings to predict poses from image
conditions, similar to RayDiffusion [72]. We scale the ray
embeddings to have unit variance, as in [50].

As with other tasks, we prepend the task label
[[multiview]] to the caption. During inference, we
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can substitute images or Pliicker ray embeddings with
Gaussian noise for multi-view generation and camera pose
estimation, respectively.

Training details Our model is trained from scratch using
a flow-matching objective. Similar to prior works [8, 15],
we use a three stage training recipe. In the first stage, we
pretrained the text-to-image model with resolution of 2562
(500K steps) and 5122 (500K steps). In the second stage,
we continue training on a mixed of tasks, using 5122 for T2I
and 2562 for other tasks, for a total of IM steps. Finally, in
the last stage, we finetune the model at a high resolution
of (1024) for T2I. For ID customization fine-tuning, we use
2-5 views. For fewer views (2-3), we apply a resolution of
5122, while for more views, we use 2562 resolution.

During training, we use an in-batch sampling strategy at
each stage, sampling tasks (T2I, Image-to-Image, ID cus-
tomization, and multiview generation) with equal probabil-
ity. The noise scheduler’s shift value is set to 3, as sug-
gested in [15]. We use AdamW optimizer with learning rate
1n = 0.0005. Training is performed on a TPU v3-256 pod
with a global batch size of 256 in the first two phases, and
the final fine-tuning stage is completed on 64 H100 GPUs
using the same configuration.

4. One-Gen Datasets

Text-to-Image We leverage both public and internal (syn-
thetic) datasets. The public datasets including: PixelProse
[56], Unsplash, Coyo [6], JourneyDB [41]. Additionally,
we use a 10M internal synthetic dataset consisting of images
re-captioned with LLaVA-NeXT [32] and Molmo [11]. The
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Figure 4. Illustration of our model capability to generate HED, depth, human pose, semantic mask, and bounding box from input image.

For semantic segmentation, we segment the
segmenting

(highlighted in yellow) and the moon (highlighted in cyan) the first example, while
(yellow), sky (cyan) in the second. For object detection, We localize the head and moon (both highlighted in cyan).

Leveraging these conditions, we can reverse the process to recreate a variant of the input image based on the same caption. Additionally,
we can edit the image by modifying specific elements, such as replacing the moon with Saturn (last example).

length of the text description for each image varies from 100
to 150 words. When an original prompt is available, we use
both the LLM-generated caption and the original caption.
Image-to-Image For simpler tasks e.g. deblurring, in-
painting, image generation from canny edge, or upscaling,
we use a 1M -sample subset of our synthetic data and apply
the corresponding pre-processor for each image to create an
input condition. For more complex tasks, we create a syn-
thetic dataset from outputs generated by Midjourney, Stable
Diffusion, and Flux-dev following the below process:
Semantic Map and Detection For each image, we use
the LLaVA-NeXT [32] model to identify entities or sub-
jects (e.g., person, shirt, dog, building), with a maximum
of 10 entities per image. Based on these subject names
from LLaVA-Next, we perform semantic segmentation
using SAM [24] and extract bounding boxes. Each class
is assigned a random color from a predefined list. This
dataset contains 350K triplets consisting of a semantic
map, bounding box, and the original image.

Depth Map We generate the depth dataset by applying
DepthAnything-v2 [67] to 500K images sampled from
various datasets, including both real and synthetic im-
ages. Additionally, we caption 40K images from Hyper-
sim dataset [49] with LLaVA-NeXT and incorporate these
into the training set.

Human Poses We collect a different subset with 50K im-
ages, primarily featuring human for pose conditioning.
We use YOLOVS to detect the bounding boxes for region
of interests and apply ViTPose [66] for pose estimation.

ID Customization We collect a dataset of celebrities and
characters from games and movies by from publicly avail-
able images. After filtering to ensure each subject has at
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least four images and removing NSFW content, the dataset
includes approximately 60K subjects and a total of 1.3M
images. We caption these images using the LLaVA-NeXT.

Multiview Generation We use the DL3DV-10K dataset
[30], Objaverse [10], CO3D [48]. For Objaverse dataset,
we utilize the 80K filtered split from LGM [59] and caption
provided by Cap3D [39]. In the DL3DV dataset, we sample
an image from each scene and caption it using LLaVA-Next.
For CO3D, we exclude captions and include only the task
token in the text input.

5. Experiments

We evaluate our OneD1i f fusion model on broad range of
image generation and understanding tasks. We do not per-
form task-specific finetuning in any results. Details about
additional qualitive examples are in the Appendix.

5.1. Text-to-Image

Qualitative results of OneDiffusion for text-to-image
task is illustrated in Figure 3. Thanks to the diversity of our
One-Gen dataset, the model can handle various art styles,
spanning both artistic and photorealistic designs.
Following previous works [15], we evaluated the text-
to-image capabilities of our model on GenEval benchmark
[20]. For each prompt, we generate 4 images using Eu-
ler solver with 100 steps and guidance scale of 5. The
results for OneDiffusion, along with those of baseline
models, are presented in Table 1. Our model demonstrates
strong performance compared to similarly sized baselines,
excelling in multitasking capabilities despite being trained
on a relatively smaller dataset.This performance is largely
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Figure 5. Illustration of the multiview generation with single input image. We equally slice the azimuth in range of [—45, 60] and elevation
in range of [—15, 45] for the left scenes. For the right scene, the azimuth range is set to [0; 360] and elevation range is set to [—15; 15].

Methods Params (B) # Data (M) GenEval 1
LUMINA-Next [77] 2.0 14 0.46
PixArt-X [9] 0.6 33 0.54
SDXL [44] 2.6 - 0.55
PlayGroundv2.5 [26] 2.6 - 0.56
IF-XL 5.5 1200 0.61
SD3-medium [15] 2.0 1000 0.62
Hunyuan-DiT [29] 1.5 - 0.63
DALLE3 - - 0.67
FLUX-dev 12.0 - 0.67
FLUX-schnell 12.0 - 0.71
OneDiffusion 2.8 75 0.65
Table 1. Comparison of text-to-image performance on the
GenEval benchmark at a resolution of 1024 x 1024.
Model Condition PSNR 1
Zero123 [33] 1-view 18.51
Zero123-XL [12] 1-view 18.93
1-view 20.24
EscherNet [25] 2-view 22.91
3-view 24.09
1-view 19.01
2-view (unknown poses) 19.83
OneDiffusion 2-view (known poses) 20.22
3-view (unknown poses) 20.64
3-view (known poses) 21.79

Table 2. Comparison of NVS metrics across different number of
condition view settings. Increasing the number of condition views
improves the reconstruction quality.

attributed to the diversity of the dataset and the comprehen-
sive captions provided for each sample.

5.2. Controllable Image generation

We show the experiment with image-to-image translation
using various source domains, including HED, depth map,
human pose, semantic map, bounding boxes. We report the
qualitative results in Figure 4 and 19 in appendix. Gener-
ated images of OneD1iffusion consistently conform var-
ious types of conditions by purely utilizing attention mech-
anisms and supplementary information from captions.

5.3. Multiview Generation

We assess our method’s multiview generation capabili-
ties using the Google Scanned Object dataset. Table 2
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compares our approach (OneDiffusion) with state-of-
the-art methods like Zerol123, Zero123-XL, and Escher-
Net, which are tailored for multiview tasks. Unlike these,
OneDiffusion supports variable conditional inputs and
can handle additional views with unknown camera poses
due to its flexible denoising framework.

In Table 2, OneDiffusion outperforms Zerol123 and
Zero123-XL in the 1-view condition and maintains strong
results with unknown poses, e.g., a PSNR of 19.83 (2-
view, unknown) vs. 20.22 (known), and 20.64 (3-view, un-
known) vs. 21.79 (known). Figure 5 shows consistent mul-
tiview outputs from a single front-view image, with more
examples in Appendix Figures 10 and 11. Our framework
also enables text-to-multiview generation using only cam-
era poses, as shown in Figure 12.

5.4. ID Customization

We further evaluate OneDiffusion on ID customization
tasks, which involve using one or multiple ID images as in-
puts for personalized generation. To assess performance,
we compare with STOA methods, including InstantID [63],
PuLID [21], and PhotoMaker [28], using both qualitative
and quantitative analyses. Our evaluation extends beyond
the standard benchmark (Unsplash-50 [16]) to test general-
ization on ID customization tasks, such as varying expres-
sions, viewpoints, and even non-human images.

Figure 6 illustrates examples of altering facial expres-
sions and gaze directions (first row), changing viewpoints
(second row), and customizing non-human IDs (third row).
Our method achieves success in these tasks, where all other
methods fail. Unlike previous approaches that rely on
face embeddings and primarily “replicate” the original face,
OneDiffusion employs attention mechanisms between
images and text conditions. This enables flexible end-to-
end training and generates more expressive outputs, mak-
ing our method suitable for a wider range of applications.
Intuitively, the mechanism that ensures consistent multi-
view generation also proves effective for manipulating cam-
era angles in ID customization, highlighting its adaptabil-
ity across related applications. Additional visualizations are
provided in Figure 13 and 14.

We also present the quantitative results on the Unsplash-
50 [16] benchmark in Table 3. This benchmark focuses
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Figure 6. Illustration of ID customization using reference images. Unlike prior methods that rely on face embeddings and often fail to
generalize, our model demonstrates superior generalization. It effectively adjusts facial expressions and gaze directions (first row), changes
viewpoints (second row), and even customizes non-human IDs (third row). All results in the third row are generated from a single reference
image, while InstantID fails as its face detector cannot detect faces in the input.

Method D+ CLIP-T{ Mothod NYUv2 DIODE
PhotoMaker [28] 0.193  27.38 AbsRel] 01T AbsRely 4 T

InstantID [63] 0.648 26.41 Di.verseDepth [69] 11.7 87.5 37.6 63.1
PULID [21] 0.654 3123 MiDaS [47] 11.1 88.5 33.2 71.5
Ours 0283 2680 DPT [47] 98 903 182 758
LeReS [70] 9.0 91.6 27.1 76.6
Table 3. Quantitative results on Unsplash-50. Omnidata [14] 7.4 94.5 339 74.2
HDN [71] 6.9 94.8 24.6 78.0
o Marigold [23] 6.0 959 31.0 77.2
solely on style changes and re-contextualization, where DepthAnything-2 [67] 4.6 97.7 271 74.8
PuLID [21] demonstrates strong performance by leverag- Ours 68 0572 294 752
ing embeddings from ID encoder networks trained on hu-
man faces for discrimination tasks. While this approach Table 4. Comparison of depth estimation methods on NYUv2 and
effectively preserves the identity traits of input images, it DIODE datasets. OneDiffusion achieves competitive perfor-
faces significant limitations when handling more complex mance compared to previous depth estimation methods.
face manipulations.
5.5. Depth Estimation 6. Conclusion
For image understanding tasks, we evaluate our model’s Our experiments demonstrate that OneDiffusion
performance on monocular depth estimation using standard achieves impressive results across a variety of tasks,
benchmarks: NYUv2 [55] and DIODE [61]. We report the including conditional T2I generation, depth estimation,
results in Table 4. Our model achieves competitive per- open vocabulary semantic segmentation, pose estimation,
formance compared to baselines that leverage pretrained multi-view generation, ID customization and camera pose
text-to-image diffusion models, such as Marigold [23]. No- estimation. We believe this work advances the capabilities
tably, as illustrated in Figures 15 and 16, our model demon- of diffusion models, providing a versatile and scalable
strates superior robustness than diffusion-based depth es- solution comparable to the flexibility offered by large
timators like Marigold. Specifically, it excels in handling language models. This represents a significant step toward
open-world images, including paintings, hazy weather, and developing a general-purpose vision model that can serve
unconventional textures. as the backbone for a wide variety of applications.
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