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ABSTRACT

The site conditions that make astronomical observatories in space and on the
ground so desirable—cold and dark—demand a physical remoteness that leads
to limited data transmission capabilities. Such transmission limitations directly
bottleneck the amount of data acquired and in an era of costly modern obser-
vatories, any improvements in lossless data compression has the potential scale
to billions of dollars worth of additional science that can be accomplished on
the same instrument. Traditional lossless methods for compressing astrophysical
data are manually designed. Neural data compression, on the other hand, holds
the promise of learning compression algorithms end-to-end from data and out-
performing classical techniques by leveraging the unique spatial, temporal, and
wavelength structures of astronomical images. This paper introduces AstroCom-
press (https://huggingface.co/AstroCompress): a neural compres-
sion challenge for astrophysics data, featuring four new datasets (and one legacy
dataset) with 16-bit unsigned integer imaging data in various modes: space-based,
ground-based, multi-wavelength, and time-series imaging. We provide code to
easily access the data and benchmark seven lossless compression methods (three
neural and four non-neural, including all practical state-of-the-art algorithms). Our
results on lossless compression indicate that lossless neural compression techniques
can enhance data collection at observatories, and provide guidance on the adoption
of neural compression in scientific applications.

1 INTRODUCTION

Machine learning is having an increasingly large impact on natural sciences (Carleo et al., 2019;
Wang et al., 2023). One of the primary hurdles of data-driven scientific discovery is bandwidth
bottlenecks in data collection and transmission, particularly if the data is collected autonomously in
high-throughput scientific instruments like telescopes or biological sequencing devices. Pairing this
with the precision demands of many scientific domains, there is a significant interest for improved
data compression methods across scientific domains.

A compression algorithm, or codec, is comprised of a pair of algorithms that can encode data into a
smaller size, and then decode back to the original or near-original data. Neural compression algorithms
(Yang et al., 2023b) have recently surpassed traditional codecs on image (Ballé et al., 2017; Yang et al.,
2020b; He et al., 2022) and video compression (Lu et al., 2019; Agustsson et al., 2020; Yang et al.,
2020a; Mentzer et al., 2022). Compared to these visual media applications, where fast decoding is
crucial, (Minnen, 2021), scientific domains often prioritize compression performance and/or encoding
speed. This is because data analysis can be done on powerful supercomputers over days or weeks, but
the instruments’ data collection rates are extremely high and data must be transmitted rapidly. Science
can more readily and substantially benefit from neural compression—which generally achieves high
compression rates at the expense of time (Yang & Mandt, 2023).
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Scientific data exhibit unique statistical patterns and signal-to-noise distributions, potentially making
traditional handcrafted codecs less suitable. Neural compression, being learned end-to-end from the
data, can automatically exploit redundancies occurring in the data and accelerate the development of
practical codecs for custom applications.

We are at the cusp of a scientific data explosion. Current imaging efforts mapping the mouse
hippocampus (Google, 2024) are estimated to contain 25 petabytes of imaging data. Human genomics
data is expected to generate 2–10 exabytes of data over the next decade (NIH, 2024). The Square
Kilometer Array (SKA), a ground-based telescope, is expected to collect 62 exabytes per year (Farnes
et al., 2018), where improvements in lossless compression could significantly reduce storage costs.

In 2027, NASA will launch the Nancy Grace Roman Space Telescope, or "Roman." A recent audit
(NASA, 2024) emphasizes that the single greatest concern for Roman is data transmission issues
due to an "unprecedented" data scale and unprepared downlink networks that lack the necessary
bandwidth. Space telescopes suffer a unique problem: due to limited bandwidth and onboard storage,
any data that cannot be transmitted must be deleted and is thus permanently lost. Given Roman’s
estimated cost of $4.3 billion, a mere 1% improvement in lossless compression for Roman thus
imputes a value of $43 million on the additional data gathered. This will be the first space telescope
with the ability to run modern codecs, as the recently launched James Webb Space Telescope (JWST)
was planned more than 20 years ago and has highly limited compute onboard (Gardner et al., 2023).

Astrophysics presents novel challenges and opportunities for learned compression. Astronomical
imaging captures the locations, spatial extent, temporal changes, and colors of celestial objects
and events. Despite variations in detector and instrumentation physics across the electromagnetic
spectrum, much of the raw data is stored as 2D digital arrays, mapping intensity at pixel locations
(x, y) to a projection of the flux of objects on sky. Repeated integrations enhance depth (higher signal-
to-noise) through post-processing co-addition and can be used to measure time variations in celestial
events. Color information is obtained from co-spatial observations using different instruments or
filters with selective wavelength sensitivity.

As detector sizes grow and costs per pixel decline, larger optical and infrared arrays are being
deployed. The Rubin Observatory, now in commissioning, has the largest optical camera ever built,
with 189 CCDs comprising 3.2 billion pixels (Kahn et al., 2010). It can generate 20–30 TB of raw
imaging data per night with 5-second integrations. The main imaging camera of JWST features ten
2048× 2048 pix2 detectors (Gardner et al., 2023), compared to the single 256× 256 pix2 array of the
Hubble Space Telescope (Thompson et al., 1998). Unlike CCDs and CMOS detectors, which are read
only once per exposure, IR arrays (e.g. that of JWST) are continuously sampled during integration,
producing 3D data cubes with arbitrarily large temporal samples. Optical and IR instruments convert
photon signals captured by pixelated semiconductor detectors into digital values using analog-to-
digital (A/D) converters, resulting in 16-bit depth images. Each pixel value includes flux from
astronomical sources (which we refer to as “sources” in the rest of the paper), sky background,
A/D-introduced noise, and “dark current” arising from the non-zero detector temperature.

The need to transmit large amounts of data efficiently and losslessly is a critical challenge for
premier astronomical facilities, which often operate in remote locations to optimize observations.
This remoteness complicates data transmission to distant computational and archival centers. For
ground-based facilities, the inability to transmit raw data as quickly as it is obtained (e.g., via
wired internet) means hard copies of the data must be (periodically) moved physically, degrading
time-sensitive science (Bezerra et al., 2017). Space-based facilities risk losing data if it cannot be
transmitted with high-enough bandwidth. These constraints are practical and evident in current
space missions. The Kepler mission (Borucki et al., 2010) produced ∼190 MB of raw data from
42 CCDs every 6 seconds but had to coadd 10–250 exposures and transmit only selected pixels
around 200,000 preselected stars due to bandwidth and storage limits (Jenkins & Dunnuck, 2011).
The TESS satellite (Ricker et al., 2015) combines 2-second integrations from 4 CCDs into frames of
60 seconds or 30 minutes and transmits only the 10×10 pixels around pre-designated objects and
full-frame 30-minute coadds. JWST enforces strict data rate limits during observations to stay within
deep space downlink constraints, affecting data collection and storage (STSCI, 2024). Bottlenecks in
data transmission directly impact the scientific potential of modern observatories. Given the high
cost of developing and maintaining modern observatory instruments, improved data compression can
significantly increase the value of data available to researchers. Lossless compression of raw imaging
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data before transmission is thus highly desirable, especially for space-based facilities, balancing
improved compression ratios against computational and hardware costs.

This benchmark serves multiple purposes. Firstly, we release several large, unlabeled astronomy
datasets spanning the range of imaging found across modern astronomy. We note that astronomy
has several other modes of data collection, such as radio interferometry and spectroscopy, both of
which are out of scope for our work. Our goal is to foster a machine-learning community focused on
astrophysical data compression, aiming for improved compression methods that can eventually
be practically deployed on space telescopes. Secondly, we benchmark several neural lossless
compression algorithms on the data, demonstrating that neural compression has significant potential
to outperform classical methods. We hope that our initial results will encourage further research
(cf. Thiyagalingam et al. 2022), leading to even better outcomes and a deployable algorithm. Future
astronomy codecs can also be developed and benchmarked on this dataset for lossy compression,
where we anticipate significant progress and improvements.

In sum, our main contributions to the datasets and benchmarks track are as follows:

• A large (∼320 GB), novel dataset captures a broad range of real astrophysical imaging data,
carefully separated into train and test sets, with easy access via HuggingFace datasets.

• An extensive comparison of lossless classical and neural compression methods on this data,
the first publication to our knowledge where neural compression has been systematically
studied on astronomical imaging.

• Various qualitative analyses that further our understanding of the bit allocation in astronomi-
cal images and inform potential exploration for future lossy compression codec designs.

2 BACKGROUND AND RELATED WORK

Compression is widely used in astronomy to transmit raw data from satellites, to store smaller files in
archives, and to speed the movement of files across networks. The consultative Committee for Space
Data Systems (CCSDS, 2024) periodically reports on recommendations for methods—all variants
of JPEG-LS and JPEG-2000 (see below), though not yet JPEG-XL—to compress images and data
cubes as they are transmitted in packets from satellites to ground stations. Specialized commercially
available space-hardened hardware modules that implement these standards are in use both by NASA
and the European Space Agency (ESA). Once on the ground, images are usually held and transmitted
by major archives with bzip2, Hcompress, or Rice compression (cf. Pence et al. 2009 and §4.1).
Compressed image storage (and manipulation codes; Seaman et al. 2010) are standardized in the file
formats, like FITS (Pence et al., 2010) and HDF5, commonly in use by astronomers. Many have
studied and proposed refinements of these methods both for lossless (Villafranca et al., 2013; Pata
& Schindler, 2015; Thomas et al., 2015; Maireles-González et al., 2023; Mandeel et al., 2021) and
lossy (Maireles-González et al., 2022) compression. Notably, all of these works rely on manually
designed codecs using relatively simple probability models and classical transforms from signal
processing.

In contrast to traditional hand-designed codecs, neural compression algorithms based on deep
generative models (Yang et al., 2023b) can be optimized end-to-end on the target data of interest,
and has demonstrated significantly improved compression performance. Lossless compression
involves estimating a probability model of the data, and neural lossless methods are typically built
on discrete normalizing flows (Hoogeboom et al., 2019), diffusion models (Kingma et al., 2021),
VAEs (Townsend et al., 2019; Mentzer et al., 2019), and probabilistic circuits (Liu et al., 2022). Unlike
lossy compression which requires evaluating the (lossy) reconstruction quality, lossless compression
is primarily concerned with the bit-rate (the lower the better) or compression ratio (the higher the
better); however building a neural lossless codec with high compression ratio and low computation
complexity remains a challenge.

A small but growing community has been testing neural compression methods for data from special-
ized scientific domains. Hayne et al. (2021) published a study on neural compression for image-like
turbulence and climate data sets using a lossy neural compression model. Choi et al. (2021) studied
similar neural compression models on plasma data. Huang & Hoefler (2023) compress climate data
by overfitting a neural network and using the network weights as compressed data representation.
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Wang et al. (2023) adopted a classical-neural hybrid approach in medical image compression. Overall,
we are unaware of any efforts applying neural compression to astronomical images.

While the astronomical data in public archives (MAST, 2024) are vast, the assembly process for a
machine learning suitable corpus requires significant domain knowledge. With dozens of parameters
defining each observation (sky region, exposure time, filter, grating, pupil, etc.) and myriad data
structures, these archives are too unwieldy for ML practitioners. Previous attempts at ML-friendly
corpus creation, such as Galaxy10 (Leung & Bovy, 2019) (see also Xue et al. 2023 and Khujaev
et al. 2023), have typically rescaled data to 8-bit RGB images, significantly reducing dynamic range
and thereby losing much of the information critical for novel scientific analysis. Hayat et al. (2021)
assembled a 266 GB corpus of processed float32 64×64 pix2 5-filter image cutouts around bright
galaxies. AstroCompress, in contrast, is focused on uint16 images that represent a much wider
diversity of real-world raw data, including large regions of low SNR and major imaging artifacts.

3 ASTROCOMPRESS CORPUS

Our central contribution is the AstroCompress corpus, curated to capture a broad range of real
astrophysical imaging data and presented to enable the exploration of neural compression. The corpus
is released on HuggingFace and can be easily accessed using Python, with code examples in the
Supplementary Material. The corpus consists of 5 distinct datasets, spanning a variety of observing
conditions from space and from Earth, types of detector technology, and large dynamic ranges. The
quantity of data is three orders of magnitude larger and more varied than previous compression-
focused corpora (Pata & Schindler, 2015; Maireles-González et al., 2023) to ensure ample training
data for ML-based approaches. In contrast to previous corpora containing only ground-based data,
our dataset has a strong focus on space-based data, for which improved compression is much more
critical. Besides the typical 2D imaging data, we also include higher-dimensional (3D and 4D) data
cubes containing multiple images of the same spatial origin but along different wavelength and/or
temporal dimensions. The raw data source for the data cubes provides only single timestep images,
which were then scraped, mosaicked spatially to create larger images, and then stacked across time.
These data cubes are a unique feature of our corpus, offering compression algorithms the opportunity
to exploit redundancies along additional dimensions to achieve higher compression ratio, and enables
the exploration of sequential compression techniques such as residual coding and adaptive coding
(see Section 4). To help avoid over-fitting (or over-testing) on certain regions of the sky, great care
was taken to ensure no two images in the same dataset overlap spatially. We briefly describe the five
datasets comprising AstroCompress, presenting the some key features in Fig. 1, and defer details of
their composition and acquisition to the Supplementary Material:

GBI-16-2D (Keck) This is a diverse, 2D optical imaging dataset from the ground-based W. M. Keck
Observatory. It contains 137 images of size either 2248× 2048 or 3768× 2520 pix2, obtained in a
variety of observing conditions, filters, and across exposure times from seconds to >10 min.

SBI-16-2D (Hubble) This dataset is derived from the Hubble Space Telescope (HST) Advanced
Camera for Surveys (ACS; Sirianni et al. 2005) observations in the F606W (∼red) filter. It contains
4282 images of size 4144× 2068 pix2. A major challenge (and opportunity for compression) in these
raw space-based images are the preponderance of random cosmic ray-affected pixels and charge
transfer inefficiencies causing vertical stripping (see Fig. 1).

SBI-16-3D (JWST) This dataset comes from the NIRCAM instrument onboard the James Webb
Space Telescope (JWST), taken with the F200W (infrared) filter. It contains 1273 3D cubes of T×
2048 × 2048, for time steps T , typically ranging as 5 ⪅ T ⪅ 10. The instrument repeatedly measures
the cumulative optimal charge across time, and therefore the pixel value at a given spatial location
cube increases with T until reaching a saturation value (216 − 1). This directly allows for residual
coding, i.e., compressing an initial 2D frame and the temporal differences of 2D frames subsequently.

GBI-16-4D (SDSS) This ground-based dataset is assembled from the Sloan Digital Sky Survey
(SDSS; York et al. 2000). We assembled 500 four-dimensional cube representations of different
800×800 pix2 portions of the sky, each one observed from t = 1 up to T ≈ 90 times in F=5 filters
(u, g, r, i, z), each cube having shape T × F × 800× 800. Compared to JWST, this dataset contains

4



Published as a conference paper at ICLR 2025

×

×

×

×

×

t
0 ×

×

t
0

t
1

t
n

Figure 1: Depiction of salient features in the AstroCompress corpus using representative images from
each dataset. Inset to the JWST t0 (first) image are the value changes in time for a small sample
of pixels. In SDSS there are 5 filtered images per observation epoch, up to a variable number n
observations in the same portion of the sky. The inset of Hubble zooms in on a spiral galaxy, showing
cosmic ray hits (black) and charge transfer inefficiency, causing vertical flux smearing. The actual
pixel values in Keck are shown for a zoomed-in 5×5 pix2 region.

multiple channels associated with different wavelength filters, and presents rich possibilities for
modeling and/or compression that takes into account correlation among all four dimensions.

GBI-16-2D-Legacy This small ground-based dataset obtained on multiple CCDs across many
different telescopes is reproduced from the public corpus released by Maireles-González et al. (2023)
and assembled by us in HuggingFace dataset format. Our experiments only made use of the
subset of data from the Las Cumbres Observatory (LCO).

4 EXPERIMENTS

We establish the compression performance of our selected neural and non-neural compression methods
on our proposed datasets. We describe our experiment protocol in Sec. 4.2, and present our main
results in Sec. 4.3. Our results show that, even with only minimal architectural adjustments, neural
compression can match or even surpass the best classical codecs. Our bit-rate estimates obtained with
VDM (Kingma et al., 2021) consistently dominate all the neural and non-neural methods considered,
suggesting significant room for future improvements. On the other hand, neural codecs designed for
natural image data, such as L3C and PixelCNN, have difficulty exploiting cross-frame correlations in
astronomy images, likely due to the image noise characteristics.

To better understand how the behavior of the algorithms depends on data characteristics, we examine
bit-rate allocation both qualitatively and quantitatively in Sec. 4.4. Echoing earlier findings from
Pence et al. (2009), we see a strong correlation between bit-rate and measures of noise such as SNR
and exposure time, confirming that most of the bits are allocated to noisy pixels that can be well
modeled by i.i.d. white noise distributions. Lastly, we explore the out-of-domain generalization
performance of a neural compression method, Integer Discrete Flows, in Sec. 4.5.

4.1 COMPRESSION METHODS

We note that astronomy-specific compression implementations have stalled since Pence et al. (2009),
and so the latest algorithm in current use is Rice. The most recent works by (Maireles-González et al.,
2023) and the CCSDS (CCSDS, 2022) have established JPEG-2000 as a state-of-the-art, though
it has yet to be deployed to telescopes. Members of our team regularly work with astronomy data
collections pipelines, and we confirm this information.
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We consider four non-neural methods as baselines, including three standard codecs from the Joint
Photographic Experts Group (JPEG) and one codec developed by the Jet Propulsion Laboratory
(JPL). The imagecodecs library provides the necessary APIs for all methods. Specifically, we
run JPEG-XL, JPEG-LS, JPEG-2000, and RICE codecs in lossless mode with default settings.
Additionally, we run JPEG-XL under standard and maximum effort modes as an extra reference, an
algorithm that has not been tested for astronomy in any previous works, and show that it establishes a
new state-of-the-art amongst non-neural methods.

We adopt three well-known practical neural lossless compression methods in the literature, represent-
ing key approaches in deep generative modeling for compression:

Integer Discrete Flows (IDF) (Hoogeboom et al., 2019): a flow-based model extending the concept
of normalizing flows (Rezende & Mohamed, 2015) for lossless compression. Unlike conventional
normalizing flow models that operate on continuous data, IDF employs discrete bijective mappings
using invertible neural networks to connect discrete pixels with a discrete latent.

L3C (Mentzer et al., 2019): a VAE-based lossless compression method utilizing a two-part code
(Yang et al., 2023b). It trains a hierarchical VAE with discrete latents; a given image is compressed
by first entropy coding the inferred latents, and then entropy coding the image conditioned on the
latents.

PixelCNN++ (Salimans et al., 2017): an autoregressive model using masked convolutions to model
the distribution of each pixel given previous pixels in a raster scan order. PixelCNN++ naturally
allows for lossless compression using autoregressive entropy coding (Mentzer et al., 2019).

Additionally, we use Variational Diffusion Model (VDM) (Kingma et al., 2021) to demonstrate
the theoretical performance achievable by current state-of-the-art likelihood-based models. Unlike
most diffusion models that target sample quality, VDM incorporates a learned noise schedule and
Fourier features, and surpasses Transformer-based autoregressive models on likelihood scores. The
likelihood score of VDM can be operationalized as the lossless compression cost of bits-back coding
(Townsend et al., 2019; Kingma et al., 2021), although the resulting codec requires a high number of
diffusion steps for encoding/decoding and may not be practical.

Handling 16-bit data: Most neural lossless compression methods are designed for RGB image
compression, operating on 8-bit (unsigned) integers. To accommodate 16-bit data of AstroCompress,
we minimally modify the neural compression methods as follows: for L3C and PixelCNN++, which
both use a discretized logistic mixture likelihood model (Salimans et al., 2017), we increase the
number of bins from 28 − 1 to 216 − 1; for IDF, we simply change the input normalization constant
from 28 to 216. Alternatively, we consider treating each 16-bit pixel as two sub-pixels: the most
significant byte (MSB) and the least significant byte (LSB), converting a 1-channel 16-bit image into
a 2-channel 8-bit image; we then double the number of input channels of each model accordingly.
We refer to Supplementary Material for more details.

4.2 EXPERIMENT SETUP

We experiment on two categories of data: single-frame images and spectrally/temporally correlated
images captured at multiple wavelengths or time steps. We consider the LCO, Keck, and Hubble
datasets as single-frame image datasets. For the JWST datasets, we select the first time step of each
3D image cube and form a single-frame dataset, called JWST-2D, and the residual (i.e., difference)
between consecutive frames as a separate, temporally correlated dataset, called JWST-2D-Res. We
sub-select three benchmark datasets from SDSS as follows: (1) the first time step of the r filter band
forms a single-frame dataset, called SDSS-2D; (2) the first time step of the g, r, and i filter bands
constitute a spectrally correlated dataset, called SDSS-3Dλ; and (3) the first three time steps of the r
filter band create a temporally correlated dataset, called SDSS-3DT.

For all experiments, we use a fixed split of training and testing images (details in Supplement). The
training set is further divided into 85% for training and 15% for validation. For each method, we train
and evaluate two model variants as described above, either handling 16-bit input directly or treating
it as 8-bit input with double the number of channels; we report the best compression performance
between the two variants. We train on random 32× 32 spatial patches and apply random horizontal
flipping. For evaluation, we divide each image evenly into 32× 32 patches, apply reflective padding
beforehand if needed. We evaluate the model’s compression performance by compressing all patches
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Experiment Neural Methods Non-neural Methods

IDF L3C PixelCNN++ VDM JPEG-XL (max) JPEG-XL JPEG-LS JPEG-2000 RICE

LCO 2.83 1.67 2.02 3.64 2.98 2.78 2.81 2.80 2.65

Keck 2.04 1.89 2.08 2.11 2.01 1.97 1.97 1.96 1.84

Hubble 2.94 2.90 3.13 3.33 3.26 2.92 2.86 2.67 2.64

JWST-2D 1.44 1.38 1.44 1.44 1.38 1.33 1.35 1.37 1.24

SDSS-2D 2.91 2.36 3.35 3.27 3.38 3.14 3.16 3.20 2.96

JWST-2D-Res 3.14 2.91 2.80 — 3.35 2.37 3.24 1.69 3.08

SDSS-3Dλ 3.05 2.29 2.88 — 3.49 3.23 3.24 3.28 3.05

SDSS-3DT 3.03 2.59 3.02 — 3.48 3.23 3.24 3.29 3.05

Table 1: Compression ratios for all methods across experiments, with bold text indicating the
best performance and underlined text indicating the second best. The top and bottom subsections
of the table contain single-frame and spectrally/temporally correlated-frame compression results,
respectively.

Figure 2: Hubble exposure
times plotted against compres-
sion ratios using various algo-
rithms. Longer exposure times
tend to induce more incompress-
ible noise and, hence, reduce
compression ratios.

of an image and combining the results to determine overall performance on that image. This process is
then repeated for all test images, and the average compression performance is reported. Compression
ratio is calculated as the uncompressed bit depth / negative log-likelihood assigned by the model,
aligning closely with actual on-disk entropy coding performance using arithmetic coding.

4.3 COMPRESSION PERFORMANCE

The top subsection of Table 1 presents compression ratios on single-frame compression experiments.
Among the neural codecs, PixelCNN++ and IDF consistently achieve the most competitive perfor-
mance. The estimated compression performance of VDM significantly surpass all existing methods
on most datasets, suggesting significant room for future improvement with neural compression
methods. Among the non-neural codecs, JPEG-XL (max) dominates across all datasets, establishing
itself as the new state-of-the-art non-neural method which has not been considered in prior literature.
Note that on the LCO dataset, the previous highest compression ratio was 2.79 by Maireles-González
et al. (2023), and our results for JPEG-LS, JPEG-2000, and RICE, are consistent with those of
Maireles-González et al. (2023) on this dataset.

When it comes to spectrally/temporally correlated data, we expect higher compression ratios for
all the methods due to the additional correlations that can be exploited. This is indeed the case, as
seen in the bottom subsection of Table 1; however, non-neural codecs show surprisingly superior
performance boosts than the neural codecs. This indicates a need for further improvement in the
neural compression techniques, which have largely been designed for image compression, to better
extract cross-wavelength or cross-timestep information.

4.4 THE EFFECT OF NOISE

Following Pence et al. (2009), our Figure 2 illustrates an inverse relationship between compression
ratios and exposure time, which is one of the key variables in determining the signal-to-noise ratio
(SNR) in an image. We demonstrate a negative correlation between these two variables, likely because
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Figure 3: From left to right, an example SDSS-2D image: raw image, SNR heatmap, and PixelCNN++
bitrate heatmap. Colors are z-score normalized for visualization; colorbars indicate true values.

an increase in exposure time results in an increased number of noise bits. We hypothesize that the
plateau seen will reverse at higher exposure times as many CCD pixels reach their max physical
value, reducing image entropy. In Supplementary Section D, we further explore a strong relationship
between background pixel noise levels and compressibility amongst all test images from all datasets.

Figures 3 and 4 use data from a single, representative SDSS-2D frame. We used photutils

(photutils, 2024) estimate the sky’s background noise to get the SNR at each pixel, and then to
compute a mask of all sources. The 2D background was estimated by dividing the 800 × 800
image into 50× 50 patches and excluding pixels above 3σ of the median value. The medians and
standard deviations of the remaining pixels were interpolated to get the final background and noise
images. SNR was calculated as SNR = (original_image - background) / noise.
Source pixels were detected by applying a kernel around any pixels above 3σ, creating a smoothed
mask for signal-generating objects.

Figure 3 demonstrates that source pixels have higher bitrates, as expected—in a sense, these pixels
are more "surprising," and thus a lower likelihood is assigned. Interestingly, the background pixel
regions of the bitrate heatmap are significantly more noisy than the corresponding SNR background.
This suggests that there may be potential for reduction in the bitrate of the higher bitrate background
pixels, as we might expect most background pixels to exhaust a similar number of bits.

Figure 4: Left: SNR heatmap of an example image (Figure 3), showing source (top) vs. background
(bottom) pixels. Middle: histogram of PixelCNN++ total bit allocation for various binned SNR
values. Right: scatterplot showing the positive correlation between SNR and PixelCNN++ bitrate.

Figure 4 furthermore demonstrates the extreme bit-rate consumption by background noise pixels.
On this image, 98.5% of pixels fell under 3 SNR. Some source pixels were placed in the lowest
SNR bin, but this is likely due to some overestimation of source radii in the source masking process.
Interestingly, the scatterplot resembles a step function, with a jump from Bitrate ≈ 3 bits per
pixel to Bitrate ≈ 10 bits per pixel at SNR ≈ 101—the transition point where stars and galaxies
emerge over background noise.
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4.5 GENERALIZATION PERFORMANCE

LCO Keck Hubble JWST-2D SDSS-2D

LCO 2.83 1.01 1.09 0.84 2.31

Keck 2.70 2.05 2.20 1.19 3.02

Hubble 0.67 0.94 2.94 1.22 0.69

JWST-2D 1.46 1.45 1.47 1.44 1.50

SDSS-2D 2.27 1.24 1.75 1.02 2.91

All data 2.82 1.87 2.98 1.38 3.18

Table 2: IDF generalized performance across
single-frame datasets. Rows indicate train set;
columns indicate test set. Bold indicates best
in the test set; underline indicates second-best.

We take IDF as our representative model for in-
vestigating generalization performance, where we
train and evaluate on all pairs of the single-frame
compression tasks, as well as train on all these
datasets combined. Table 2 shows that the cross-
data generalization performance depends heavily
on the training data used, and training on some
of the datasets (e.g., Keck, JWST-2D) consistently
resulted in better generalization performance than
others (LCO, Hubble). In particular, the test perfor-
mance on SDSS-2D when trained on Keck was even
better than when trained on SDSS-2D itself. We
hypothesize that the diversity of wavelength filters
and background noise in the Keck dataset, as mentioned in Section 3 and shown in Figure 5, may
explain its unexpected generalizability. Overall, the best generalization performance was achieved by
training on all the datasets combined, suggesting the importance of exposing the model to a variety
of data characteristics. Additional model experiments trained on RGB images and evaluated on our
dataset are discussed in the supplementary section E.

4.6 COMPUTATIONAL METRICS

To offer practical considerations, we present runtime metrics that would be valuable in assessing
the feasibility of these methods for real-world applications. Table 3 shows various runtime for
inference from neural methods and coding time for classical methods. JPEG-XL with max effort and
JPEG-2000 seem to scale quadratically with the number of input pixels, while all other neural and
non-neural algorithms scale linearly with the number of input pixels. Note that in order to work with
limited GPU memory, our neural methods primarily operate on 32 × 32 patches, which very likely
limits the achievable compression ratio. By comparison, our non-neural baselines always receive full
images as input. We stress that the JPEG-XL max algorithm takes nearly 90 seconds for a Hubble
image, which would likely be infeasible for practical use given that Hubble collects 15-30 GB of
data per day, nearly requiring the entire day for compression alone (NASA, 2014). IDF is roughly
10x faster than JPEG-XL max and often outperforms all non-neural methods other than JPEG-XL
max. While we acknowledge that runtimes are inherently hardware and parallelization-dependent,
this work is primarily aimed at inspiring a broader research trajectory towards advanced compression
techniques over the coming decade. Consequently, we defer the nuanced practical considerations of
space-compatible hardware and runtime optimization to future investigations, noting that all presented
algorithms leverage unoptimized reference implementations. We note that the long runtime of VDM
is currently impractical due to a large number of expensive neural network evaluations. However,
there exists extensive research on speeding up diffusion models by several orders of magnitude
Salimans & Ho (2022) Cao et al. (2024) Ulhaq & Akhtar (2022) Yang et al. (2023a), which can
potentially translate their excellent bit-rate estimates into practical compression performance.

5 DISCUSSION OF FUTURE DIRECTION

Lossy compression in astronomy can likely achieve significantly higher compression ratios com-
pared to lossless methods. For astronomy, where most pixels are dominated by noise, lossy compres-
sion is particularly promising. Collaborations between astronomers and machine learning experts
could lead to the development of advanced lossy compression algorithms that selectively discard
non-essential data, preserving only the scientifically valuable information. One simple approach
might mask astronomical sources and prioritize the accuracy of source pixels. Another approach
could involve near-lossless compression, which ensures a strict user-defined upper bound on the error
of every individual reconstructed pixel (Bai et al., 2022). Such an approach would be attractive to
astronomers, who may desire a known error measurement for uncertainty propagation.

Encode-decode time tradeoffs factor crucially in remote data transmission. Astronomy prioritizes
compression performance, followed by manageable encoding times. Slow decoding on the ground
is a non-issue. Traditional compression methods optimize for fast decoding, so future work should
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explore trading decoding speed for higher compression ratios. This asymmetry favors autoregressive
methods that can yield higher compression ratios but slow sequential decoding (Yang et al., 2023b),
with Transformer models being potential candidates (Child et al. (2019), Roy et al. (2021)).

Codec SDSS-2D (800x800) Hubble (4144x2068)

IDF 0.42 ± 0.01 6.03 ± 0.24

L3C 5.18 ± 1.04 73.04 ± 2.36

PixelCNN++ 1.48 ± 1.05 20.49 ± 0.18

JPEG-XL max 3.14 ± 0.14 87.76 ± 13.30

JPEG-XL default 0.06 ± 0.002 0.91 ± 0.07

JPEG-LS 0.02 ± 0.0002 0.316 ± 0.04

JPEG-2000 0.09 ± 0.003 1.76 ± 0.11

RICE 0.008 ± 0.0002 0.12 ± 0.02

VDM 2301 ± 229.2 33072 ± 19.8

Table 3: Compression (encoding) runtime
(in sec/image) on the SDSS-2D and Hubble
datasets. For neural methods, we measure
the time for evaluating the likelihood under
the model without entropy coding.

Time-series imaging has the potential for better com-
pression ratios by exploiting correlations across time.
We achieved extremely high compression ratios on the
JWST-2D-Res dataset, as the frames were collected
back-to-back in time, whereas the SDSS-3DT dataset
did not see the same results when compressing multi-
ple frames over time. This may be due to SDSS-3DT
images of the same sky location being taken days apart,
with atmospheric conditions, moon phase, and other
factors introducing too much variance. We encourage
more exploration of dataset construction and compres-
sion for back-to-back time-series imagery. Such com-
pression will be critical for the operation of the next-
generation of wide-field time-domain surveys from
space, such as CuRIOS (Gulick et al., 2022).

Further exploration of the data specificity vs. gen-
erality spectrum is needed. There is a wide variety of
data types in astronomy, such as spectrometry, radio,
and imagery data, and within imagery data, ground-based vs. space-based. Moving down this
hierarchy: different telescopes, different instruments within telescopes, and different parameters
within instruments follow. As an example, an astronomer setting up an observation for the NIRCAM
instrument on JWST may select exposure time, readout pattern, wavelength filter, pupil, etc (JWST,
2024). In our study, we purposefully restricted our scope to imagery data of one or a few wavelength
filters, but allowed for a wide range of exposure times, readout patterns, and other parameters. We
believe this set of data is specialized enough to demonstrate improvements over generic algorithms
such as Rice or HCompress, but also accommodates a reasonably wide range of use cases. The right
level of specificity will depend on the compression ratios achieved vs. ease of deployment.

We hypothesize that high diversity, multi-modal datasets may be preferable for training compression
models, as indicated by strong generalization performance from training on the diverse Keck dataset
(see Sec. 4.5). This would make for a multi-purpose compressor that could be a practical successor to
JPEG-XL. Eventually, large, multi-modal models and datasets may leverage imaging, spectroscopic
and catalogue data all at once.

6 CONCLUSION

AstroCompress aims to incentivize the development of astronomy-tuned neural codecs for eventual
real-world deployment, by providing datasets that are representative of real use cases. While this
work focuses on lossless neural compression, many other machine learning tasks are intimately
related. Compression is “bijectively” linked with likelihood estimation by Shannon’s source coding
theorem (Shannon, 1948). We suggest the use of our dataset in other machine learning for astronomy
contexts, such as self-supervised learning for foundation models, semantic search and anomaly
detection. Improved lossless and near-lossless neural codecs explored through AstroCompress will
likely transfer to other kinds of high resolution, high bit-depth imagery, such as satellite imagery,
radio astronomy and biological imaging (as mentioned in Section 1).

6.1 LIMITATIONS

Limitations of our dataset include a lack of spectroscopic, radio astronomy or floating-point data. We
leave much work to be done on neural methods that can efficiently compress 3D data cubes. Finally,
to reduce computation, our compression results for neural compression methods are obtained from
evaluating likelihoods under the models without entropy coding. Our relatively inefficient entropy
coding implementation shows a negligible overhead compared to bit-rate estimates, and we leave
more efficient implementations of the neural compression algorithms to future work.
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Supplementary Material

A DATASET SUPPLEMENTALS

Telescope Dataset ID Location
Central

Wavelength (Å)
Bandpass

Filter
Resolution

(arcsec / pix)
Image Sizes

(pix×px)
Total #
Arrays

Total Dataset
Size (GB)

Approx.
Total Pixels

LCO GBI-16-2D-Legacy
multiple sites

Earth varies B, V , rp, ip 0.58 3136× 2112 9 0.1 5.5× 107

Keck GBI-16-2D
HI,

USA,
Earth

varies,
4500–8400 B, V , R, I 0.135

2248×2048;
3768 × 2520 137 1.5 7.4× 108

Hubble SBI-16-2D
LEO,
Space 5926 F606W 0.05 4144 × 2068 2140 69 1.8× 1010

JWST SBI-16-3D
L2,

Space 19840 F200W 0.031
2048×2048
× #Groups 1273 90 7.0× 109

SDSS GBI-16-4D
NM,
USA,
Earth

3543,
4770,
6231,
7625,
9134

all of
[u, g, r, i, z] 0.396

800×800×5
× #Timesteps 500 158 1.6× 1010

Table 4: Datasets summary. Total pixels computed using each 16-bit data point as one “pixel.”

A.1 NAMING CONVENTIONS

Throughout this work, the data are referred to in three different ways depending on the context; we
elucidate the reference conventions here.

A.1.1 DATASET ID

The adopted Dataset ID naming convention provides a shorthand description of the origin and form
of the data:

(origin)(data taking mode)-(number of bits per pixel)-(dimensionality),

where origin is either space-based (SB) or ground-based (GB), and data taking mode refers to the
primary objective of the exposure, only I (imaging1). -2D implies each instance is a 2-dimensional
array. -3D may be thought of as a temporal sequence of images (ie., movie) taken in roughly the
same portion of the sky. -4D may be thought of as a temporal sequence of images taken in the same
portion of the sky at different wavelengths. Clearly, -3D and -4D may be decomposed into individual
2D images. All data in the corpus are uint16 but future datasets may be added with different bit
depths.

This is a standardized way of naming our datasets that include functional details, allowing one to
quickly search for or identify the kind of data from the name alone.

A.1.2 TELESCOPE OR SURVEY NAME

For brevity and ease of reading, we use the “telescope” column as nicknames to refer to each of our
published datasets throughout our paper.

A.1.3 EXPERIMENTAL DATASET NAMES

For several reasons, some of our benchmark models were trained on a subset of a dataset. To this end,
we added additional descriptors to the dataset nicknames as a way to describe these subselections.
LCO, Keck, and Hubble were unchanged and used fully. JWST was used in two forms: a first frame
model from JWST-2D (jwst[t=0] for every image cube), and JWST-2D-Res (we used all of the
residual images to train a separate residual coding model, i.e., jwst[t=i+1]− jwst[t=i] for

1Other data taking modes such as spectroscopy may be added in future work.
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all i, for every image cube). SDSS was split into three datasets: SDSS-2D (sdss[t=0][λ=2]),
SDSS-3Dλ (sdss[t=0][λ=1,2,3]), SDSS-3DT (sdss[t=0,1,2][λ=2]).

A.2 ACCESSIBILITY

All datasets herein are released under the AstroCompress project as HuggingFace datasets and
may be accessed as numpy nd-arrays in Python:

import numpy as np

from datasets import load_dataset

dataset = load_dataset(f"AstroCompress/{name}", config, split=split, \

streaming=True, trust_remote_code=True)

ds = dataset.with_format("np", columns=["image"], dtype=np.uint16)

ds[0]["image"].shape # −> ( tup le with shape of the numpy array )

Here name is one of the five datasets described below, config is either "tiny" (small number of
files for code testing purposes; default value) or "full" (full dataset), and split is one of "train" or
"test". To use the datasets with pytorch:

import torch

from torch.utils.data import DataLoader

dataset = load_dataset(f"AstroCompress/{name}", config, split=split, \

streaming=True, trust_remote_code=True)

dst = dataset.with_format("torch", columns=["image"], dtype=torch.uint16, \

device=device)

dataloader = DataLoader(dst, batch_size=batch_size , num_workers=num_workers)

next(iter(dataloader)) # −> y i e l d s the f i r s t batch of images

where device is the pytorch device to use (e.g., "gpu", "mps:0").

A.3 DATASET COLLECTION AND SCIENTIFIC DETAILS

A.3.1 DATASET COLLECTION OVERVIEW

All of the data that we have pulled is public data from various astronomical archives. The specific
licenses under which the data have been released are noted in the acknowledgment section. Here we
detail the selection and curation process for each dataset. Table 4 provides a broad overview of the
corpus.

At a high level: for each dataset, we generally come up with a set of logical filters and pull a list
of observations via API and/or direct download from the archives where the data are disseminated.
An observation refers to one telescope’s “visit” to a certain place in the sky, integrated over a short
period of time (typically less than 20 min). Each observation can result in multiple versions of that
observation in the archives, as many archives store various processed versions of observations along
with the associated calibration data used. For a given observation, we download the one file in raw
form (uint16; processed data is usually float32). Finally, we select a subset of the downloaded
data that contains no pairwise overlapping of the image footprint on the sky. This ensures that
compression models trained on the training set do not overfit on regions of the sky present in the test
data. It also allows users to safely create their own validation sets from subsets of our training sets.

A.3.2 GBI-16-2D (KECK)

This is a 2-D optical imaging dataset from the ground-based W. M. Keck Observatory, obtained in
a variety of observing conditions, filters, and across exposure times from 30 seconds to >10 min.
The data are all selected from the Low Resolution Imaging Spectrometer (LRIS; Oke et al. (1995))
and are from scientific observations (as opposed to calibration exposures) obtained by one of the
co-authors of this paper (J.S.B.) from 2005 to 2010. Since LRIS has a dichroic optical element, which
splits the incoming beam at a designated wavelength, the data are obtained either with the blue or
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red side camera. Each camera has its own filter wheel allowing for imaging in a variety of different
bandpasses. The raw data of a given observation are stored in FITS format (Pence et al., 2010). The
LRIS CCDs are readout using 2 amplifiers which are stored in distinct logical and memory sections
(called Header Data Units; HDUs) within the FITS files. The blue side camera has two CCDs and
the redside camera had 1 CCD before June 2009 and 2 thereafter (Rockosi et al., 2010). In addition
to storing the light-exposed regions, LRIS FITS files usually include small regions of virtually read
pixels, called overscan regions, which aid image processing.

Collection

We used the Keck Observatory Archive (KOA) to identify raw LRIS science images obtained under
the principal investigator program by J.S.B. These data were then downloaded and checked for
potential footprint overlaps using the positional information of the telescope pointings from the FITS
header. The data assembly code for the HuggingFace GBI-16-2D dataset handles the variety of FITS
formats and emits 2D images of size 2248×2048 or 3768×2520 pix2. An example image from this
dataset, with two amplifier reads, is shown in Fig. 1.

A.3.3 SBI-16-2D (HUBBLE)

This dataset is based on data from the Wide Field Channel (WFC) instrument of the Advanced Camera
for Surveys (ACS) onboard the Hubble Space Telescope (HST). Unlike the GBI-16-2D dataset, all
observations in SBI-16-2D are obtained in space and with the same bandpass filter (F606W), providing
a more uniform point-spread function across the dataset. Our goal with assembling SBI-16-2D is
two-fold. First, we aim to provide a large (> 50 GB), raw 2-D optical imaging dataset from space.
Second, space-based CCD imaging, unlike ground based imaging, suffers significantly from charge
particle collisions with the detectors (called “cosmic-ray [CR] hits”). Such random hits add spurious
counts to the affected pixels, corrupting the scientific utility of the observations. WFC CCDs also
demonstrate large amounts of charge transfer inefficiency leading to correlated streaks in the vertical
direction (see Fig. 1).

Collection

We first compile a list of observations that fit our criteria, including instrument, filter choice,
and integration time ranges. This data was then downloaded from the Mikulski Archive for
Space Telescopes (MAST): https://mast.stsci.edu/search/ui/#/hst. For repro-
ducibility, we provide a script that performs this in our HuggingFace repository located at
SBI-16-2D/utils/pull_hubble_csv.py. Explanations for each filtering process can be
found in the code comments therein. Each FITS file contains two images each of size 4144× 2068;
these images are stored in the 1st and 4th headers in the FITS files. After removing overlapping
regions in the sky, the final dataset amounts to 4282 images of size 4144× 2068.

A.3.4 SBI-16-3D (JWST)

This dataset comes from the NIRCAM instrument on the James Webb Space Telescope (JWST).
NIRCAM conducts up-the-ramp imaging of various objects in several infrared wavelengths. During
up-the-ramp sampling, the aperture is exposed to a region in space, and light continuously accumulates
charge on the array. The array repeatedly measures this cumulative charge for multiple frames, thus
creating a 3-D time-series image tensor. Every N frames is averaged to create a "group", each of
which is stored in our arrays in the T dimension (where N is determined by the “read pattern”). We
strongly encourage interested readers to learn more about the JWST readout patterns on the official
documentation page 2. It is worth noting that the time gap between subsequent observations varies,
depending on readout pattern, but is roughly in the realm of twenty seconds to two minutes. For
this reason, we expect that most physical conditions present in the field of view should remain static
across time steps.

Collection

Similar to Hubble, we pulled the JWST observations list from the JWST section of MAST. A script
version of this can be found at SBI-16-3D/utils/pull_jwst_csv.py. Explanations for

2https://jwst-docs.stsci.edu/jwst-near-infrared-camera/

nircam-instrumentation/nircam-detector-overview/nircam-detector-readout-patterns
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each filtering process can be found in the code comments there. We provide 1273 images of size
2048 by 2048 by T , where T represents time, under the F200W wavelength filter.

A.3.5 GBI-16-4D (SDSS)

This dataset is assembled from “Stripe 82” of the Sloan Digital Sky Survey (SDSS; York et al. (2000)).
Stripe 82, a ∼250 sq. deg. equatorial region was repeatedly imaged in 5 optical bandpasses with
30 total CCDs over the course of many months for several years, with supernova discovery as the
main science objective (Sako et al., 2018). Images are obtained in drift scan mode by fixing the
telescope in declination and letting the sky naturally move across the field of view as the CCDs are
readout at the sidereal rate. For a given nightly “run” across Stripe 82, the SDSS image reduction
pipeline (Stoughton et al., 2002) creates (for each of the 6 camera columns, “camcols”) “field”
images spanning a similar declination (ie., north-south) and right ascension (RA; ie., east-west). The
images served by the legacy SDSS archive3 are 2048×1489 uint16 pixels, calibrated with a world
coordinate system (WCS) that maps pixel location to sky position.

In total, we release 500 GBI-16-4D cubes as part of this dataset, with an uncompressed size of 158GB.
At a fixed wavelength, the images in time mimic the raw uint16 time sequence produced by imaging
satellites, like Kepler, TESS, and CuRIOS (Gulick et al., 2022). Exploiting the correlations in time
(and wavelength) should improve the effective compression compared to the single-slice capabilities.

We note that the gap in time between subsequent timestep images may be many nights, resulting
in very different background sky conditions. While the background sky levels across nights are
relatively uncorrelated, the pixels containing astrophysical sources exhibit significant correlation.

Collection

We queried the SDSS Stripe 82 database to assemble a table of 160k unique Stripe 82 field images
deemed to be of top quality (quality flag = 3) and then randomly sampled fields and determined
the center of the field sky positions. For each such field, we queried the SDSS Stripe 82 database for
other images (regardless of quality) that overlap the field center and downloaded those images.
Since field images from different runs are not aligned in RA, we also downloaded the two fields
immediately adjacent and created a stitched-together mosaic of those three images. We then used the
WCS in each mosaic image to cut out the same position across all available runs across all available
filters.

The assembled data are 4-D cube representations of the same 800×800 pix2 portion of the sky
observed from t=1 up to ∼90 times in f=5 filters (u, g, r, i, z). Given the excellent but inherently
noisy process of WCS fitting, the t× f image slices in a given cube are spatially aligned to <1 pix.
As a result, for a fixed pixel location in a given cube there are high correlations in the pixel value
across time and wavelength. While the effective integration time is identical across all image slices,
there are slices that are of higher signal-to-noise than others in the same cube and all have varying
background levels. In the few cases where an image slices does not fully overlap the central region of
the anchor field, we fill the missing region with values of zero.

A.3.6 GBI-16-2D-LEGACY

This small ground-based dataset obtained on multiple CCDs across many different telescopes is
reproduced from the public corpus released by Maireles-González et al. (2023) and assembled by us
in HuggingFace dataset format. Our experiments only made use of the subset of data from the
Las Cumbres Observatory (LCO).

Collection

We retrieved all of these files from a download page of Maireles-González et al. (2023) in a .raw
format and used a script (GBI-16-2D-Legacy/raw_to_fits.py in HuggingFace) to convert
the images to FITS format. Unlike in the other datasets, we did not check for nor remove potential
overlapping images.

3These images are from the reduction pipeline 40/41 (“rerun”) and were part of data release 7 from SDSS.
Newer reductions of the same raw data were released with different calibrations in float32 format.
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A.4 DATASET ASSEMBLY

Rejection of overlapping images After the initial download of these raw images from various
astronomy databases, a significant portion of the necessary data curation is to ensure that the imagery
does not overlap on the sky. It is particularly essential to ensure that the spatial footprint of all data in
the train set does not overlap with that of the test set. Because we anticipate that future use of this
data will split it into validation sets as well, we conservatively ensure that all of our images have
pairwise zero overlap.

This was done in two stages, the implementations for which can be found in the utils/

Stage 1. Before downloading raw imagery, we first download a metadata file that contains a list
of observations and the right ascension (RA) and declination (DEC) of each observation. These
are akin to standard spherical coordinates θ and φ. The corresponding pixel for the given RA and
DEC varies depending on the data source; it can be the image center pixel, the RA and DEC of the
target celestial object of interest, or some other pixel within the image entirely. In order to filter
out images in this overlapping set, we ran a hierarchical agglomerative clustering (HAC) algorithm
via sklearn.cluster.AgglomerativeClustering on a matrix of precomputed pairwise
angular distance matrix via astropy.coordinates.angular_separation. We made a
small modification to the astropy source code in order to allow numpy vectorization. The threshold for
clustering was selected as 2*FOV, where FOV was the field of view of any given telescope. Within
each cluster, a subset of well-separated images was downloaded.

Stage 2. After downloading the data, we were able to use the World Coordinate System (WCS)
of each image to map any given pixel in an image to an RA and DEC, using astropy.wcs.
The Python library spherical-geometry is used to compute spherical polygons from the four
corners of the image in RA/DEC, and computes overlaps between these polygon objects. In some
cases, such as for Hubble, there are two images contained within a single FITS file, so we need
to compute spherical polygons for both and then use the union of those two polygons for overlap
calculations. Using these algorithms, we further filter out overlapping images within each cluster.

Code to download raw data from source and filter it can be found in the utils folder of each
HuggingFace dataset. We hope these files, in combination with the observation list assembly code
will facilitate efforts for future experts to expand on our dataset from the astronomy data sources
themselves.

Disclaimers: Because the Keck dataset did not have WCS information, we did not run stage 2, and
instead used a more stringent clustering threshold in stage 1 and took only one image from each
cluster. No filtering was done on the very small Legacy dataset; it also contained no WCS, RA or
DEC data.

B BASELINE ALGORITHMS AND IMPLEMENTATION

From any dataset parent folder on HuggingFace, run python utils/eval_baselines.py

2d to get 2D evaluations of all algorithms. For JWST and SDSS, this 2d argument may be changed
to several other options that can be found in the command arguments help docstring. These options
allow for JWST residual ("diffs", as stated in the code) compression, compressing entire 3D tensors
for JWST and SDSS, as well as some unique SDSS experiments in which we compressed the top 8
bits and bottom 8 bits separately (2d_top and 2d_bottom). We also attempted with poor results
to compress 2D SDSS arrays composed of a single spatial pixel, but all wavelengths and timesteps
(tw). The exact functionalities are documented in the script.

The script also saves the compression ratio, read time, and write time for every single image into
a .csv file. We have already performed this and uploaded the CSV files for each dataset to the
HuggingFace parent repository. Additionally, running statistics on mean values are printed to the
console.

Implementations for all the non-neural baseline algorithms were adapted from the Python li-
brary imagecodecs=2024.1.1. All codecs in this library call the native C codec, specifically:
JPEG-XL via libjxl, JPEG-LS via charls, JPEG-2000 via OpenJPEG, and RICE forked from
cfitsio=3.49.
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All the non-neural baseline algorithms natively support 16-bit inputs.

JPEG-XL and JPEG-2000 both use "reversible color transforms" to decorrelate different channels
from each other before compressing a multi-channel image. JPEG-LS can only compress each channel
as an independent 2D image. RICE is a simple histogram-based codec that flattens N-dimensional
arrays before encoding.

In our specific implementations, JPEG-XL and JPEG-2000 supported multi-channel compression
directly. To evaluate multichannel arrays using JPEG-LS and RICE, we applied .reshape((H,
-1)) to convert them to single-channel. This was performed only on SDSS data, which resulted in an
image height of H = 800. For reporting compression ratio, we did not consider the bit-rate cost of
transmitting the data shape needed for decoding, as this overhead is negligible for even the smallest
image in our dataset.

Compute hardware was used as following: We ran classical compression codecs on a single
thread with a Intel(R) Xeon(R) Silver 4112 CPU @ 2.60GHz processor and neural
compression networks on a single NVIDIA RTX 6000 ADA.

C DETAILS ON NEURAL COMPRESSION METHODS

In this section, we provide an in-depth look at our experiments and modifications to existing neural
compression methods to work with our astronomical image data. Our implementation can be found
at https://github.com/tuatruog/AstroCompress.

C.1 DATA FORMAT

As mentioned in the main text, most neural image compression methods are designed to handle
3-channel 8-bit RGB images, so we made minor modifications to the neural compression methods to
handle the 16-bit data of AstroCompress.

At a high level, we experimented with two approaches: (1) adding support for 16-bit input directly;
(2) treating the 16-bit input as the concatenation of two 8-bit inputs – the most significant byte (MSB)
and least significant byte (LSB). We used the better of the two when reporting results, and generally
found approach (2) to perform similarly or better than approach (1). As an example, we list the
compression ratios obtained with either approach for PixelCNN++ in Table 5.

• To implement approach (1), we make the following modifications to support 16-bit input
directly: For IDF, we change the input scaling coefficient from 28 to 216, so that it models the
set Z/65536 (instead of Z/256). For L3C and PixelCNN++, which both use a discretized
logistic mixture likelihood model (Salimans et al., 2017), we increase the number of bins
from 28 − 1 to 216 − 1.

• To implement approach (2), we generally convert 16-bit input into 8-bit input while doubling
the number of channels. For a 2D (single-frame) image of shape 1×H×W , this corresponds
to treating it as an 8-bit tensor of shape 2×H ×W where the first channel contains the least
significant byte (LSB) and the second channel contains the most significant byte (MSB).
For a 3D (multi-frame) image of shape 3 ×H ×W , this corresponds to treating it as an
8-bit tensor of shape 6 ×H ×W , where the first three channels contain the LSBs of the
original input and the remaining channels contain the MSBs of the original input. The neural
compression models are modified accordingly to support the increased number of channels:

– For IDF, we simply doubled the number of input/output channels while keeping the
rest of the architecture the same;

– For L3C and PixelCNN++, we model 2-channel 8-bit images by using only the “R”
and “G” parts of the original RGB autoregressive logistic mixture likelihood model,
and we model 6-channel 8-bit images by performing the same autoregressive modeling
as the RGB case for the first 3 (LSB) channels, and similarly for the remaining 3 (MSB)
channels (so the LSB and MSB channels are modeled separately).
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Experiment 2-channel 8-bit 1-channel 16-bit
LCO 1.41 2.02
Keck 2.08 1.83
Hubble 3.13 2.71
JWST-2D 1.44 1.44
SDSS-2D 3.35 1.84

Table 5: Comparison of compression ratios for PixelCNN++ using the 2-channel 8-bit format v.s.
1-channel 16-bit format. The better result is highlighted in bold.

C.2 ARCHITECTURE AND TRAINING DETAILS

IDF We adopted the implementation from Hoogeboom et al. (2019) at https://github.com/
jornpeters/integer_discrete_flows. The network and training hyper-parameters are
also set to be consistent with the default configurations from (Hoogeboom et al., 2019), which we
find to yield the best results. We train on patches of 32 × 32 with a batch size of 256. We use a
learning rate of 1× 10−3 and an exponential decay scheduler with rate 0.999.

L3C We adopted the implementation from Mentzer et al. (2019) at https://github.com/
fab-jul/L3C-PyTorch. We largely followed the default model configuration provided by
(Mentzer et al., 2019) to train the model on 2D image data across all datasets. For 3D experiments, we
increased the base convolution filter size and adjusted the latent channel size to 96 and 8, respectively.
We trained on 32 × 32 patches, with a learning rate of 1× 10−4 and an exponential decay scheduler
with rate 0.9.

PixelCNN++ We adopted the implementation from https://github.com/pclucas14/

pixel-cnn-pp and adopted the same model architecture as in the default configuration (5 resnet
blocks, 160 filters, 12 logistic mixture components, and a learning rate of 2 × 10−4). We also
explored different ways of formatting/modeling 8-bit data (converted from 16-bit input), such as
training two separate models for the LSB and MSB, or concatenating the LSB and MSB across
the width dimension instead of channel dimension, but did not observe significant improvements
compared to the basic approach of stacking the LSB and MSB along the channel dimension (as
described in Section C.1).

VDM We adopt our implementation from https://github.com/addtt/

variational-diffusion-models/tree/main which is directly based on the official im-
plementation from Kingma et al. (2021) at https://github.com/google-research/vdm.
We use a scaled-down version of the denoising network from the VDM paper (Kingma et al., 2021),
using a U-Net of depth 4, consisting of 4 ResNet blocks in the forward direction and 5 ResNet blocks
in the reverse direction, with a single attention layer and two additional ResNet blocks in the middle.
We keep the number of channels constant throughout at 128. We train on patches of size 64 × 64
(using Adam and a learning rate of 2× 10−4) and evaluate on patches of size 256 × 256 to give our
model additional context at test time.

D ADDITIONAL DATA EXPLORATIONS

What determines how easily images can be compressed? We answer this question via inspiration
from a study by Pence et al. 2009, who suggested that the compressibility of astronomy imagery is
largely determined by the noise level of background pixels, which are not part of "source" objects
such as stars and galaxies. The majority of pixels in our images are background pixels.

Shannon’s source coding theorem establishes that the entropy of a data source defines the lower
bound for the optimal bitrate. Pence et al. 2009 show that if we assume that background pixels are
drawn from a Gaussian distribution N (µ, σ2), then the corresponding per-pixel entropy in bits is
proportional to log

2
(σ). We plot this quantity below, against JPEG-LS bits per pixel.

While background pixels are not exactly drawn from a Gaussian, and JPEG-LS is not a perfect codec,
the linear relationship on this plot suggests that background noise levels significantly influence an
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Figure 5: Correlation between background noise variation and compressibility. Each point represents
a full-size image. Horizontal axis: log standard deviation of the lower 99 percent of pixel values in a
given image. Vertical axis: JPEG-LS bits per pixel, as a representative codec. Single-frame datasets
only.

image’s compressibility. Moreover, Figure 2 reinforces this insight: as exposure time increases, the
number of noise bits in background pixels rises, thereby reducing the image’s compression potential.

We note here that the SDSS and Keck datasets show a much tighter linear relationship than Hubble
images, suggesting that source pixels are more frequent and more relevant, since we have verified
that the background pixels appear quite Gaussian. This corresponds well with intuition, as Hubble
is known to sometimes take deep, long exposures of dense stellar fields. JWST images appear as
outliers, as it uses HgCdTe detectors for infrared bands, compared to the CMOS detectors for optical
imaging of all other telescopes.

E EVALUATING PRETRAINED MODELS

We briefly perform a preliminary exploration of how well a neural compression method trained on
RGB images generalizes to our astronomy data. Compression models designed for RGB images
cannot directly handle our 16-bit data; therefore, we implement a workaround by reformatting each
16-bit pixel as consisting of 3 channels of 8 bits like [MSB, MSB, LSB], where we duplicate the most
significant bits (MSB) across the first two channels and fill the last channel with the least significant
bits (LSB). As an alternative method, we also tried filling the last channel with only zeros [MSB,
LSB, 0]. We will call these workarounds “duplicated” and “zero-padded,” respectively.

We pretrained the L3C model on RGB images from OpenImages (generally around 500 pixels in
at least one dimension) and ImageNet64 datasets and evaluated on our single-frame datasets. We
also trained IDF on RGB images from Cifar10 dataset and evaluate in the same manner. Overall, we
found our RGB-pretrained model to give surprisingly robust performance on astronomy data. When
compared to the L3C model pre-trained on the respective astronomy datasets, the RGB-pretrained
model did worse by 15% - 25% on KECK, HST, and JWST-2D datasets but actually performed better
by 10% - 28% on LCO and SDSS datasets in terms of compression ratio. The detailed results are
shown in table 6.
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Model /
Dataset

L3C-OpenImages
(zero-padded)

L3C-ImageNet64
(zero-padded)

L3C-OpenImages
(duplicated)

L3C-ImageNet64
(duplicated)

IDF-Cifar10
(zero-padded)

IDF-Cifar10
(duplicated)

LCO 1.78 2.16 2.04 2.05 1.72 1.84
Keck 1.26 1.44 1.27 1.38 0.66 0.59
Hubble 1.77 2.18 1.88 1.90 0.59 1.08
JWST 1.08 1.19 1.06 1.18 0.62 0.58
SDSS 2.03 2.58 2.30 2.14 1.68 1.62

Table 6: Compression ratio of RGB-trained models across different astronomy datasets.

F FURTHER MOTIVATION

We present below a brief amount of quantitative evidence on the explosion of the astronomy data
scale and the need for advances in its processing:

Astronomy data volumes are growing at an apparently superexponential rate (see Figure 1 of (Maireles-
González et al., 2023)). A growth rate of about 10x every 10 years has become nearly 1000x every
10 years. The ability to transmit and store this data will become a massive burden preventing this
growth rate from continuing. We hope for advanced compression to alleviate some of this problem.

The current state-of-the-art supercomputers administered by the United States Department of Energy
were only recently made ready to handle exascale computing in 20234—specifically Frontier and
Aurora, the current two most powerful systems in the world according to top500.org. While this
"exascale" refers to exaflops rather than exabytes, the need for compute scale is built specifically to
address data scale.

In sum, we repeat the breadth of data sources that will soon reach exabyte scale: radio astronomy,
satellite imagery5, genomes, brain mapping and beyond. We note the massive economic potential
seen in some of these fields. Lossless methods can be applied without fear, but very carefully crafted
lossy designs may soon bring forth orders of magnitude more performant pipelines.

4https://science.osti.gov/-/media/bes/besac/pdf/202212/

7-Helland--BESAC-Panel.pdf
5https://www.earthdata.nasa.gov/s3fs-public/2022-02/ESDS_Highlights_

2019.pdf
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